1
|
Lewitt MS, Boyd GW. Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease. Biomolecules 2024; 14:1475. [PMID: 39595651 PMCID: PMC11592324 DOI: 10.3390/biom14111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Insulin-like growth factor-binding protein-1 (IGFBP-1) contributes to the regulation of IGFs for metabolism and growth and has IGF-independent actions. IGFBP-1 in the circulation is derived from the liver, where it is inhibited by insulin and stimulated by multiple factors, including proinflammatory cytokines. IGFBP-1 levels are influenced by sex and age, which also determine cardiometabolic risk and patterns of disease presentation. While lower circulating IGFBP-1 concentrations are associated with an unfavorable cardiometabolic risk profile, higher IGFBP-1 predicts worse cardiovascular disease outcomes. This review explores these associations and the possible roles of IGFBP-1 in the pathophysiology of atherosclerosis. We recommend the evaluation of dynamic approaches, such as simultaneous measurements of fasting IGFBP-1 and proinsulin level in response to an oral glucose challenge, as well as multi-marker approaches incorporating markers of inflammation.
Collapse
Affiliation(s)
- Moira S. Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Gary W. Boyd
- School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK;
| |
Collapse
|
2
|
Zhao Q, Liu D, Baranova A, Cao H, Zhang F. Novel Insights Into the Causal Effects and Shared Genetics Between Body Fat and Parkinson Disease. CNS Neurosci Ther 2024; 30:e70132. [PMID: 39578713 PMCID: PMC11584348 DOI: 10.1111/cns.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
AIMS Existing observational studies examining the effect of body fat on the risk of Parkinson disease (PD) have yielded inconsistent results. We aimed to investigate this causal relationship at the genetic level. METHODS We employed two-sample Mendelian randomization (TSMR) to investigate the causal effects of body fat on PD, with multiple sex-specific body fat measures being involved. We performed Bayesian colocalization analysis and cross-trait meta-analysis to reveal pleiotropic genomic loci shared between body mass index (BMI) and PD. Finally, we used the MAGMA tool to perform tissue enrichment analysis of the genome-wide association study hits of BMI. RESULTS TSMR analysis suggests that except waist circumference, higher measures of body fatness are associated with a decreased risk of PD, including BMI (OR: 0.83), body fat percentage (OR: 0.69), body fat mass (OR: 0.77), and hip circumference (OR: 0.83). The observed effects were slightly more pronounced in females than males. Colocalization analysis highlighted two colocalized regions (chromosome 3p25.3 and chromosome 17p12) shared by BMI and PD and pointed to some genes as possible players, including SRGAP3, MTMR14, and ADORA2B. Cross-trait meta-analysis successfully identified 10 novel genomic loci, involving genes of TOX3 and MAP4K4. Tissue enrichment analysis showed that BMI-associated genetic variants were enriched in multiple brain tissues. CONCLUSIONS We found that nonabdominal body fatness exerts a robust protective effect against PD. Our colocalization analysis and cross-trait meta-analysis identified pleiotropic genetic variation shared between BMI and PD, providing new clues for understanding the association between body fat and PD.
Collapse
Affiliation(s)
- Qian Zhao
- Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Dongming Liu
- Department of RadiologyAffiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuChina
| | - Ancha Baranova
- School of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
- Research Centre for Medical GeneticsMoscowRussia
| | - Hongbao Cao
- School of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Fuquan Zhang
- Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Helena GA, Kume S. A sneak peek into chronic glucose exposure and insulin secretion impairment through translatome. J Diabetes Investig 2024; 15:1174-1176. [PMID: 38949390 PMCID: PMC11363108 DOI: 10.1111/jdi.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetes is an epidemic caused by a multitude of factors. Despite the studies attempting to unravel its mechanism, there is still more to discover about glucose-insulin dynamics. In a recent issue of the Journal of Clinical Investigation, Cheruiyot et al. uncovered a translational regulatory circuit during β-cell glucose toxicity that inherently affects the translational makeup and protein expression in functioning β-cells.Journal of Clinical Investigation, Cheruiyot et al. uncovered a translational regulatory circuit during β-cell glucose toxicity that inherently affects the translational makeup and protein expression in functioning β-cells. Their multiomics approach might provide a deeper understanding of high glucose and translational regulation of genes involved in β-cell insulin impairment caused by prolonged high-glucose exposure.
Collapse
Affiliation(s)
| | - Shoen Kume
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
5
|
Camaya I, Hill M, Sais D, Tran N, O'Brien B, Donnelly S. The Parasite-Derived Peptide, FhHDM-1, Selectively Modulates miRNA Expression in β-Cells to Prevent Apoptotic Pathways Induced by Proinflammatory Cytokines. J Diabetes Res 2024; 2024:8555211. [PMID: 39022651 PMCID: PMC11254460 DOI: 10.1155/2024/8555211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
We have previously identified a parasite-derived peptide, FhHDM-1, that prevented the progression of diabetes in nonobese diabetic (NOD) mice. Disease prevention was mediated by the activation of the PI3K/Akt pathway to promote β-cell survival and metabolism without inducing proliferation. To determine the molecular mechanisms driving the antidiabetogenic effects of FhHDM-1, miRNA:mRNA interactions and in silico predictions of the gene networks were characterised in β-cells, which were exposed to the proinflammatory cytokines that mediate β-cell destruction in Type 1 diabetes (T1D), in the presence and absence of FhHDM-1. The predicted gene targets of miRNAs differentially regulated by FhHDM-1 mapped to the biological pathways that regulate β-cell biology. Six miRNAs were identified as important nodes in the regulation of PI3K/Akt signaling. Additionally, IGF-2 was identified as a miRNA gene target that mediated the beneficial effects of FhHDM-1 on β-cells. The findings provide a putative mechanism by which FhHDM-1 positively impacts β-cells to permanently prevent diabetes. As β-cell death/dysfunction underlies diabetes development, FhHDM-1 opens new therapeutic avenues.
Collapse
Affiliation(s)
- Inah Camaya
- The School of Life SciencesUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Meredith Hill
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Dayna Sais
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Nham Tran
- School of Biomedical EngineeringFaculty of Engineering and Information TechnologyUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bronwyn O'Brien
- The School of Life SciencesUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| | - Sheila Donnelly
- The School of Life SciencesUniversity of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
6
|
Güemes M, Martín-Rivada Á, Corredor B, Enes P, Canelles S, Barrios V, Argente J. Implication of Pappalysins and Stanniocalcins in the Bioavailability of IGF-I in Children With Type 1 Diabetes Mellitus. J Endocr Soc 2024; 8:bvae081. [PMID: 38712328 PMCID: PMC11071684 DOI: 10.1210/jendso/bvae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/08/2024] Open
Abstract
Context Anomalies in the growth hormone (GH)/insulin-like growth factor (IGF) axis, are common in children with type 1 diabetes mellitus (T1DM), even in those reaching a normal or near-normal final height. However, concentrations of the IGF bioavailability regulatory factors (pappalysins [PAPP-As] and stanniocalcins [STCs]) have not been reported in children with T1DM. Objective To determine serum concentrations of PAPP-As and STCs in children at diagnosis of T1DM and after insulin treatment and the correlation of these factors with other members of the GH/IGF axis, beta-cell insulin reserve, auxology, and nutritional status. Methods A single-center prospective observational study including 47 patients (59.5% male), with T1DM onset at median age of 9.2 years (interquartile range: 6.3, 11.9) was performed. Blood and anthropometric data were collected at diagnosis and after 6 and 12 months of treatment. Results At 6 and 12 months after T1DM diagnosis, there was improvement in the metabolic control (decrease in glycated hemoglobin [HbA1c] at 12 months -3.66 [95% CI: -4.81, -2.05], P = .001), as well as in body mass index SD and height SD (not statistically significant). STC2 increased (P < .001) and PAPP-A2 decreased (P < .001) at 6 and 12 months of treatment onset (P < .001), which was concurrent with increased total IGF-I and IGF-binding protein concentrations, with no significant modification in free IGF-I concentrations. HbA1c correlated with PAPP-A2 (r = +0.41; P < .05) and STC2 (r = -0.32; P < .05). Conclusion Implementation of insulin treatment after T1DM onset modifies various components of the circulating IGF system, including PAPP-A2 and STC2. How these modifications modulate linear growth remains unknown.
Collapse
Affiliation(s)
- María Güemes
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Álvaro Martín-Rivada
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Beatriz Corredor
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Patricia Enes
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Sandra Canelles
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
| | - Vicente Barrios
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Research Institute La Princesa, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, 28049 Madrid, Spain
| |
Collapse
|
7
|
Szydlowska-Gladysz J, Gorecka AE, Stepien J, Rysz I, Ben-Skowronek I. IGF-1 and IGF-2 as Molecules Linked to Causes and Consequences of Obesity from Fetal Life to Adulthood: A Systematic Review. Int J Mol Sci 2024; 25:3966. [PMID: 38612776 PMCID: PMC11012406 DOI: 10.3390/ijms25073966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
This study examines the impact of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) on various aspects of children's health-from the realms of growth and puberty to the nuanced characteristics of metabolic syndrome, diabetes, liver pathology, carcinogenic potential, and cardiovascular disorders. A comprehensive literature review was conducted using PubMed, with a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method employing specific keywords related to child health, obesity, and insulin-like growth factors. This study reveals associations between insulin-like growth factor 1 and birth weight, early growth, and adiposity. Moreover, insulin-like growth factors play a pivotal role in regulating bone development and height during childhood, with potential implications for puberty onset. This research uncovers insulin-like growth factor 1 and insulin-like growth factor 2 as potential biomarkers and therapeutic targets for metabolic dysfunction-associated liver disease and hepatocellular carcinoma, and it also highlights the association between insulin-like growth factors (IGFs) and cancer. Additionally, this research explores the impact of insulin-like growth factors on cardiovascular health, noting their role in cardiomyocyte hypertrophy. Insulin-like growth factors play vital roles in human physiology, influencing growth and development from fetal stages to adulthood. The impact of maternal obesity on children's IGF levels is complex, influencing growth and carrying potential metabolic consequences. Imbalances in IGF levels are linked to a range of health conditions (e.g., insulin resistance, glucose intolerance, metabolic syndrome, and diabetes), prompting researchers to seek novel therapies and preventive strategies, offering challenges and opportunities in healthcare.
Collapse
Affiliation(s)
- Justyna Szydlowska-Gladysz
- Department of Pediatric Endocrinology and Diabetology with Endocrine-Metabolic Laboratory, Medical University in Lublin, 20-093 Lublin, Poland
| | | | | | | | - Iwona Ben-Skowronek
- Department of Pediatric Endocrinology and Diabetology with Endocrine-Metabolic Laboratory, Medical University in Lublin, 20-093 Lublin, Poland
| |
Collapse
|
8
|
An W, Hall C, Li J, Hung A, Wu J, Park J, Wang L, Bai XC, Choi E. Activation of the insulin receptor by insulin-like growth factor 2. Nat Commun 2024; 15:2609. [PMID: 38521788 PMCID: PMC10960814 DOI: 10.1038/s41467-024-46990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular mechanism underlying IGF2-induced IR activation remains unclear. Here, we present cryo-EM structures of full-length human long isoform IR (IR-B) in both the inactive and IGF2-bound active states, and short isoform IR (IR-A) in the IGF2-bound active state. Under saturated IGF2 concentrations, both the IR-A and IR-B adopt predominantly asymmetric conformations with two or three IGF2s bound at site-1 and site-2, which differs from that insulin saturated IR forms an exclusively T-shaped symmetric conformation. IGF2 exhibits a relatively weak binding to IR site-2 compared to insulin, making it less potent in promoting full IR activation. Cell-based experiments validated the functional importance of IGF2 binding to two distinct binding sites in optimal IR signaling and trafficking. In the inactive state, the C-terminus of α-CT of IR-B contacts FnIII-2 domain of the same protomer, hindering its threading into the C-loop of IGF2, thus reducing the association rate of IGF2 with IR-B. Collectively, our studies demonstrate the activation mechanism of IR by IGF2 and reveal the molecular basis underlying the different affinity of IGF2 to IR-A and IR-B.
Collapse
Affiliation(s)
- Weidong An
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Albert Hung
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jiayi Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Junhee Park
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Liwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Lemdjo G, Kengne AP, Nouthe B, Lucas M, Carpentier A, Ngueta G. Humero-femoral index and diabetes risk in the US population- a case study. J Diabetes Metab Disord 2023; 22:1327-1335. [PMID: 37975100 PMCID: PMC10638166 DOI: 10.1007/s40200-023-01251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 11/18/2023]
Abstract
Background The between-subject variability in diabetes risk persists in epidemiological studies, even after accounting for obesity. We investigated whether the humero-femoral index (HFI) was associated with prevalence of type 2 diabetes mellitus (T2DM) and assessed the incremental value of HFI as a marker of T2DM. Methods This population-based cross-sectional study used data from the National Health and Nutrition Examination Survey from 1999 to 2018. We assessed 42,088 adults aged ≥ 30 years. HFI was defined as the upper arm length/upper leg length ratio. The outcome included undiagnosed diabetes (based on 2-hour plasma glucose levels, fasting glucose and hemoglobin A1C) and history of diabetes (diagnosed diabetes or taking antidiabetic drugs). Results As compared with the bottom quartile, the prevalence ratio of T2DM was 1.28 (95% CI 1.19-1.38) in the second, 1.61 (95% CI 1.50-1.72) in the third, and 1.75 (95% CI 1.64-1.88) in the fourth quartile of HFI (P for trend < 0.0001). The positive association remained consistent within different patterns of BMI and WC in men but was rendered null in women. After adding HFI to the reference model (including WC only), the discrimination slopes increased by 60.0% in men and 51.1% in women. Conclusion Our findings suggest that HFI may be a key component in body structure contributing to the risk of T2DM. In men, the highest HFI was associated with elevated prevalence of T2DM, independent of BMI and WC. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01251-z.
Collapse
Affiliation(s)
- Gaelle Lemdjo
- Endocrinology Unit, Jordan Medical Service, Yaounde, Cameroon
| | - André Pascal Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brice Nouthe
- Fraser Health Authority/Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Michel Lucas
- Department of Social and Preventive Medicine, Faculty of medicine, Laval University, Québec, Canada
| | - André Carpentier
- Division of Endocrinology, Department of Medicine, University of Sherbrooke, Sherbrooke, Canada
- Research Center of the CHU de Sherbrooke, University of Sherbrooke, Sherbrooke, Québec Canada
| | - Gérard Ngueta
- Research Center of the CHU de Sherbrooke, University of Sherbrooke, Sherbrooke, Québec Canada
- Department of Community Health Sciences, University of Sherbrooke, Sherbrooke, Québec Canada
- Centre de recherche du CHU de Sherbrooke, CRCHUS- Hôpital Fleurimont, Axe: Diabète, Obésité, Complications cardiovasculaires), Service d’endocrinologie, 12 eme Avenue Nord, Sherbrooke, 3001 Canada
| |
Collapse
|
11
|
Forooghi Pordanjani T, Dabirmanesh B, Choopanian P, Mirzaie M, Mohebbi S, Khajeh K. Extracting Potential New Targets for Treatment of Adenoid Cystic Carcinoma using Bioinformatic Methods. IRANIAN BIOMEDICAL JOURNAL 2023; 27:294-306. [PMID: 37873683 PMCID: PMC10707816 DOI: 10.61186/ibj.27.5.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/25/2023] [Indexed: 12/17/2023]
Abstract
Background Adenoid cystic carcinoma is a slow-growing malignancy that most often occurs in the salivary glands. Currently, no FDA-approved therapeutic target or diagnostic biomarker has been identified for this cancer. The aim of this study was to find new therapeutic and diagnostic targets using bioinformatics methods. Methods We extracted the gene expression information from two GEO datasets (including GSE59701 and GSE88804). Different expression genes between adenoid cystic carcinoma (ACC) and normal samples were extracted using R software. The biochemical pathways involved in ACC were obtained by using the Enrichr database. PPI network was drawn by STRING, and important genes were extracted by Cytoscape. Real-time PCR and immunohistochemistry were used for biomarker verification. Results After analyzing the PPI network, 20 hub genes were introduced to have potential as diagnostic and therapeutic targets. Among these genes, PLCG1 was presented as new biomarker in ACC. Furthermore, by studying the function of the hub genes in the enriched biochemical pathways, we found that insulin-like growth factor type 1 receptor and PPARG pathways most likely play a critical role in tumorigenesis and drug resistance in ACC and have a high potential for selection as therapeutic targets in future studies. Conclusion In this study, we achieved the recognition of the pathways involving in ACC pathogenesis and also found potential targets for treatment and diagnosis of ACC. Further experimental studies are required to confirm the results of this study.
Collapse
Affiliation(s)
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Peyman Choopanian
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleh Mohebbi
- ENT and Head & Neck Research Center, the Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Potalitsyn P, Mrázková L, Selicharová I, Tencerová M, Ferenčáková M, Chrudinová M, Turnovská T, Brzozowski AM, Marek A, Kaminský J, Jiráček J, Žáková L. Non-glycosylated IGF2 prohormones are more mitogenic than native IGF2. Commun Biol 2023; 6:863. [PMID: 37598269 PMCID: PMC10439913 DOI: 10.1038/s42003-023-05239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Insulin-like Growth Factor-2 (IGF2) is important for the regulation of human embryonic growth and development, and for adults' physiology. Incorrect processing of the IGF2 precursor, pro-IGF2(156), leads to the formation of two IGF2 proforms, big-IGF2(87) and big-IGF2(104). Unprocessed and mainly non-glycosylated IGF2 proforms are found at abnormally high levels in certain diseases, but their mode of action is still unclear. Here, we found that pro-IGF2(156) has the lowest ability to form its inactivating complexes with IGF-Binding Proteins and has higher proliferative properties in cells than IGF2 and other IGF prohormones. We also showed that big-IGF2(104) has a seven-fold higher binding affinity for the IGF2 receptor than IGF2, and that pro-IGF2(87) binds and activates specific receptors and stimulates cell growth similarly to the mature IGF2. The properties of these pro-IGF2 forms, especially of pro-IGF2(156) and big-IGF2(104), indicate them as hormones that may be associated with human diseases related to the accumulation of IGF-2 proforms in the circulation.
Collapse
Affiliation(s)
- Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, 12800, Prague 2, Czech Republic
| | - Lucie Mrázková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, 12800, Prague 2, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Michaela Tencerová
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Michaela Ferenčáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Tereza Turnovská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Andrzej Marek Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic.
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 116 10, Prague 6, Czech Republic.
| |
Collapse
|
13
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
14
|
Hjortebjerg R, Pedersen DA, Mengel-From J, Jørgensen LH, Christensen K, Frystyk J. Heritability and circulating concentrations of pregnancy-associated plasma protein-A and stanniocalcin-2 in elderly monozygotic and dizygotic twins. Front Endocrinol (Lausanne) 2023; 14:1193742. [PMID: 37334305 PMCID: PMC10272750 DOI: 10.3389/fendo.2023.1193742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Pregnancy-associated plasma protein-A (PAPP-A) is an IGF-activating enzyme suggested to influence aging-related diseases. However, knowledge on serum PAPP-A concentration and regulation in elderly subjects is limited. Therefore, we measured serum PAPP-A in elderly same-sex monozygotic (MZ) and dizygotic (DZ) twins, as this allowed us to describe the age-relationship of PAPP-A, and to test the hypothesis that serum PAPP-A concentrations are genetically determined. As PAPP-A is functionally related to stanniocalcin-2 (STC2), an endogenous PAPP-A inhibitor, we included measurements on STC2 as well as IGF-I and IGF-II. Methods The twin cohort contained 596 subjects (250 MZ twins, 346 DZ twins), whereof 33% were males. The age ranged from 73.2 to 94.3 (mean 78.8) years. Serum was analyzed for PAPP-A, STC2, IGF-I, and IGF-II by commercial immunoassays. Results In the twin cohort, PAPP-A increased with age (r=0.19; P<0.05), whereas IGF-I decreased (r=-0.12; P<0.05). Neither STC2 nor IGF-II showed any age relationship. When analyzed according to sex, PAPP-A correlated positively with age in males (r=0.18; P<0.05) and females (r=0.25; P<0.01), whereas IGF-I correlated inversely in females only (r=-0.15; P<0.01). Males had higher levels of PAPP-A (29%), STC2 (18%) and IGF-I (19%), whereas serum IGF-II was 28% higher in females (all P<0.001). For all four proteins, within-pair correlations were significantly higher for MZ twins than for DZ twins, and they demonstrated substantial and significant heritability, which after adjustment for age and sex averaged 59% for PAPP-A, 66% for STC2, 58% for IGF-I, and 52% for IGF-II. Discussion This twin study confirms our hypothesis that the heritability of PAPP-A serum concentrations is substantial, and the same is true for STC2. As regards the age relationship, PAPP-A increases with age, whereas STC2 remains unchanged, thereby supporting the idea that the ability of STC2 to inhibit PAPP-A enzymatic activity decreases with increasing age.
Collapse
Affiliation(s)
- Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Dorthe Almind Pedersen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Kaare Christensen
- The Danish Twin Registry and Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Lohia S, Latosinska A, Zoidakis J, Makridakis M, Mischak H, Glorieux G, Vlahou A, Jankowski V. Glycosylation Analysis of Urinary Peptidome Highlights IGF2 Glycopeptides in Association with CKD. Int J Mol Sci 2023; 24:ijms24065402. [PMID: 36982475 PMCID: PMC10048973 DOI: 10.3390/ijms24065402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Chronic kidney disease (CKD) is prevalent in 10% of world’s adult population. The role of protein glycosylation in causal mechanisms of CKD progression is largely unknown. The aim of this study was to identify urinary O-linked glycopeptides in association to CKD for better characterization of CKD molecular manifestations. Urine samples from eight CKD and two healthy subjects were analyzed by CE-MS/MS and glycopeptides were identified by a specific software followed by manual inspection of the spectra. Distribution of the identified glycopeptides and their correlation with Age, eGFR and Albuminuria were evaluated in 3810 existing datasets. In total, 17 O-linked glycopeptides from 7 different proteins were identified, derived primarily from Insulin-like growth factor-II (IGF2). Glycosylation occurred at the surface exposed IGF2 Threonine 96 position. Three glycopeptides (DVStPPTVLPDNFPRYPVGKF, DVStPPTVLPDNFPRYPVG and DVStPPTVLPDNFPRYP) exhibited positive correlation with Age. The IGF2 glycopeptide (tPPTVLPDNFPRYP) showed a strong negative association with eGFR. These results suggest that with aging and deteriorating kidney function, alterations in IGF2 proteoforms take place, which may reflect changes in mature IGF2 protein. Further experiments corroborated this hypothesis as IGF2 increased plasma levels were observed in CKD patients. Protease predictions, considering also available transcriptomics data, suggest activation of cathepsin S with CKD, meriting further investigation.
Collapse
Affiliation(s)
- Sonnal Lohia
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | | | - Jerome Zoidakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Division, Ghent University Hospital, 9000 Gent, Belgium
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-(0241)-80-80580
| |
Collapse
|
16
|
Fertan E, Gendron WH, Wong AA, Hanson GM, Brown RE, Weaver ICG. Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1-42 in Alzheimer's disease. Sci Rep 2023; 13:2043. [PMID: 36739453 PMCID: PMC9899226 DOI: 10.1038/s41598-023-29248-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aβ42) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males. However, elevated Aβ42 levels are associated with Aβ42 binding to Igf2 DMR2, increased DNA and histone methylation, and a reduction in Igf2 expression and IGF2 levels in 5xFAD mice and AD patients, independent of H19 ICR methylation. Cell culture results confirmed the binding of Aβ42 to Igf2 DMR2 increased DNA and histone methylation, and reduced Igf2 expression. These results indicate an age- and sex-related causal relationship among Aβ42 levels, epigenomic state, and Igf2 expression in AD and provide a potential mechanism for Igf2 regulation in normal and pathological conditions, suggesting IGF2 levels may be a useful diagnostic biomarker for Aβ42 targeted AD therapies.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - William H Gendron
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Gabrielle M Hanson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Brain Repair Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
17
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
18
|
Perry BW, Armstrong EE, Robbins CT, Jansen HT, Kelley JL. Temporal Analysis of Gene Expression and Isoform Switching in Brown Bears (Ursus arctos). Integr Comp Biol 2022; 62:1802-1811. [PMID: 35709393 DOI: 10.1093/icb/icac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
Hibernation in brown bears is an annual process involving multiple physiologically distinct seasons-hibernation, active, and hyperphagia. While recent studies have characterized broad patterns of differential gene regulation and isoform usage between hibernation and active seasons, patterns of gene and isoform expression during hyperphagia remain relatively poorly understood. The hyperphagia stage occurs between active and hibernation seasons and involves the accumulation of large fat reserves in preparation for hibernation. Here, we use time-series analyses of gene expression and isoform usage to interrogate transcriptomic regulation associated with all three seasons. We identify a large number of genes with significant differential isoform usage (DIU) across seasons and show that these patterns of isoform usage are largely tissue-specific. We also show that DIU and differential gene-level expression responses are generally non-overlapping, with only a small subset of multi-isoform genes showing evidence of both gene-level expression changes and changes in isoform usage across seasons. Additionally, we investigate nuanced regulation of candidate genes involved in the insulin signaling pathway and find evidence of hyperphagia-specific gene expression and isoform regulation that may enhance fat accumulation during hyperphagia. Our findings highlight the value of using temporal analyses of both gene- and isoform-level gene expression when interrogating complex physiological phenotypes and provide new insight into the mechanisms underlying seasonal changes in bear physiology.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ellie E Armstrong
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,School of the Environment, Washington State University, Pullman, WA 99164, USA
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
19
|
Buckels EJ, Hsu HL, Buchanan CM, Matthews BG, Lee KL. Genetic ablation of the preptin-coding portion of Igf2 impairs pancreatic function in female mice. Am J Physiol Endocrinol Metab 2022; 323:E467-E479. [PMID: 36459047 DOI: 10.1152/ajpendo.00401.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preptin is a 34-amino acid peptide derived from the E-peptide of pro-insulin-like growth factor 2 and is co-secreted with insulin from β-cells. Little is understood about the effects of endogenous preptin on whole body glucose metabolism. We developed a novel mouse model in which the preptin portion of Igf2 was genetically ablated in all tissues, hereafter referred to as preptin knockout (KO), and tested the hypothesis that the removal of preptin will lead to a decreased insulin response to a metabolic challenge. Preptin KO and wild-type (WT) mice underwent weekly fasting blood glucose measurements, intraperitoneal insulin tolerance tests (ITT) at 9, 29, and 44 wk of age, and an oral glucose tolerance test (GTT) at 45 wk of age. Preptin KO mice of both sexes had similar Igf2 exon 2-3 mRNA expression in the liver and kidney compared with WT mice, but Igf2 exon 3-4 (preptin) expression was not detectable. Western blot analysis of neonatal serum indicated that processing of pro-IGF2 translated from the KO allele may be altered. Preptin KO mice had similar body weight, body composition, β-cell area, and fasted glucose concentrations compared with WT mice in both sexes up to 47 wk of age. Female KO mice had a diminished ability to mount an insulin response following glucose stimulation in vivo. This effect was absent in male KO mice. Although preptin is not essential for glucose homeostasis, when combined with previous in vitro and ex vivo findings, these data show that preptin positively impacts β-cell function.NEW & NOTEWORTHY This is the first study to describe a model in which the preptin-coding portion of the Igf2 gene has been genetically ablated in mice. The mice do not show reduced size at birth associated with Igf2 knockout suggesting that IGF2 functionality is maintained, yet we demonstrate a change in the processing of mature Igf2. Female knockout mice have diminished glucose-stimulated insulin secretion, whereas the insulin response in males is not different to wild type.
Collapse
Affiliation(s)
- E J Buckels
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - H-L Hsu
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | - C M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - B G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - K L Lee
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| |
Collapse
|
20
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Martín-Rivada Á, Guerra-Cantera S, Campillo-Calatayud A, Andrés-Esteban EM, Sánchez Holgado M, Martos-Moreno GÁ, Pozo J, Güemes M, Soriano-Guillén L, Pellicer A, Oxvig C, Frystyk J, Chowen JA, Barrios V, Argente J. Pappalysins and Stanniocalcins and Their Relationship With the Peripheral IGF Axis in Newborns and During Development. J Clin Endocrinol Metab 2022; 107:2912-2924. [PMID: 35902207 DOI: 10.1210/clinem/dgac453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Pappalysins (PAPP-A, PAPP-A2) modulate body growth by increasing insulin-like growth factor I (IGF-I) bioavailability through cleavage of insulin-like growth factor binding proteins (IGFBPs) and are inhibited by stanniocalcins (STC1, STC2). Normative data on these novel factors, as well as on free IGF-I and uncleaved fractions of IGFBPs, are not well established. OBJECTIVE This work aimed to determine serum concentrations of PAPP-A, PAPP-A2, STC1, and STC2 in relationship with other growth hormone (GH)-IGF axis parameters during development. METHODS Full-term newborns (150; gestational age: 39.30 ± 1.10 weeks), 40 preterm newborns (30.87 ± 3.35 weeks), and 1071 healthy individuals (aged 1-30 years) were included in the study and divided according to their Tanner stages (males and females): I:163 males, 154 females; II:100 males, 75 females; III:83 males, 96 females; IV: 77 males, 86 females; and V:109 males,128 females. RESULTS Serum concentrations of PAPP-A, PAPP-A2, STC1, STC2, IGFBP-2, total IGFBP-4, and total IGFBP-5 were elevated at birth and declined throughout childhood. In postnatal life, PAPP-A2 concentrations decreased progressively in concomitance with the free/total IGF-I ratio; however, stanniocalcin concentrations remained stable. PAPP-A2 concentrations positively correlated with the free/total IGF-I ratio (r = +0.28; P < .001) and negatively with the intact/total IGFBP-3 ratio (r = -0.23; P < .001). PAPP-A concentrations inversely correlated with intact/total IGFBP-4 ratio (r = -0.21; P < .001), with PAPP-A concentrations being lower in females at all ages. Association studies indicate the importance of stanniocalcins and pappalysins in the control of this axis in an age-specific manner. CONCLUSION This study provides reference values of pappalysins and stanniocalcins, which modulate IGF-I activity by changing the concentrations of cleaved and uncleaved IGFBPs.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Santiago Guerra-Cantera
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Ana Campillo-Calatayud
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | | | | | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Jesús Pozo
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - María Güemes
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Leandro Soriano-Guillén
- Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Fundación Jiménez Díaz, E-28040, Madrid, Spain
| | - Adelina Pellicer
- Department of Neonatology, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Aarhus, Denmark
| | - Jan Frystyk
- Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Julie A Chowen
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049, Madrid, Spain
| | - Vicente Barrios
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Departments of Pediatrics & Pediatric Endocrinology, Research Institute "La Princesa," Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
- IMDEA, Food Institute, CEIUAM+CSI, Cantoblanco, E-28049, Madrid, Spain
| |
Collapse
|
22
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
23
|
Hu Q, Ma H, Chen H, Zhang Z, Xue Q. LncRNA in tumorigenesis of non-small-cell lung cancer: From bench to bedside. Cell Death Dis 2022; 8:359. [PMID: 35963868 PMCID: PMC9376075 DOI: 10.1038/s41420-022-01157-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has been one of the leading causes of cancer-related death worldwide, and non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer morbidity, yet the pathogenesis of NSCLC has not been fully elucidated. Recently, long-chain non-coding RNA (lncRNA) has attracted widespread attention. LncRNA is a type of non-coding RNA whose transcript length exceeds 200 nucleotides. After constant research, academics updated their understanding of lncRNA, especially its role in the biological processes of cancer cells, including epigenetic regulation, cell proliferation, and cell differentiation. Notably, examination of lncRNAs could serve as potential hallmarks for clinicopathological features, long-term prognosis, and drug sensitivity. Therefore, it is necessary to explore the functions of lncRNA in NSCLC and innovate potential strategies against NSCLC based on lncRNA-related research. Herein, we reviewed the functions of lncRNA in the occurrence, diagnosis, treatment, and prognosis of NSCLC, which not only help promote a comprehensive view of lncRNA in NSCLC, but also shed light on the potential of lncRNA-based diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Qin Hu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Hongyu Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Zhouwei Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
24
|
Xu X, Qiu Y, Chen S, Wang S, Yang R, Liu B, Li Y, Deng J, Su Y, Lin Z, Gu J, Li S, Huang L, Zhou Y. Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer. Curr Pharm Des 2022; 28:2052-2064. [DOI: 10.2174/1381612828666220608122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Non-small cell lung cancer (NSCLC) remains one of the deadliest malignant diseases, with high incidence and mortality worldwide. The insulin-like growth factor (IGF) axis, consisting of IGF-1, IGF-2, related receptors (IGF-1R, -2R), and high-affinity binding proteins (IGFBP 1–6), is associated with promoting fetal development, tissue growth, and metabolism. Emerging studies have also identified the role of the IGF axis in NSCLC, including cancer growth, invasion, and metastasis. Upregulation of IGE-1 and IGF-2, overexpression of IGF-1R, and dysregulation of downstream signaling molecules involved in the PI-3K/Akt and MAPK pathways jointly increase the risk of cancer growth and migration in NSCLC. At the genetic level, some noncoding RNAs could influence the proliferation and differentiation of tumor cells through the IGF signaling pathway. The resistance to some promising drugs might be partially attributed to the IGF axis. Therapeutic strategies targeting the IGF axis have been evaluated, and some have shown promising efficacy. In this review, we summarize the biological roles of the IGF axis in NSCLC, including the expression and prognostic significance of the related components, noncoding RNA regulation, involvement in drug resistance, and therapeutic application. This review offers comprehensive understanding of NSCLC and provides insightful ideas for future research.
Collapse
Affiliation(s)
- Xiongye Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Simin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuaishuai Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruifu Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yufei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiating Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziying Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincui Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoli Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Cohick WS. The role of the IGF system in mammary physiology of ruminants. Domest Anim Endocrinol 2022; 79:106709. [PMID: 35078102 DOI: 10.1016/j.domaniend.2021.106709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IGF system plays a central role in all stages of mammary development, lactation and involution. IGFs exert their effects on the mammary gland through both endocrine and paracrine/autocrine mechanisms and the importance of circulating versus local IGF action remains an open question, especially in ruminants. At the whole organ level, a critical role for IGFs in ductal morphogenesis and lobuloalveolar development has been established, while at the cellular level the ability of IGFs to stimulate cell proliferation and control cell survival contributes to the number of milk-secreting cells in the gland. Much of this work has been conducted in rodents which provide an affordable research model and allow for genetic manipulation of specific components of the IGF system. Research into the role of the IGF system in dairy cows has generally supported information obtained with rodents though large gaps in our knowledge remain and species differences are not well defined. Examples include whether exogenous somatotropin exerts its effects on the mammary gland through local IGF-1 synthesis which is accepted dogma in rodents, what the role of IGF-1 versus IGF-2 is in the mammary gland, and how the IGFBPs regulate IGF bioactivity. This last area is particularly under-investigated in ruminants both at the whole animal and the cellular and molecular levels. Given that the IGF system may underlie many management practices that could contribute to enhancing productive efficiency of lactation, more research into the basic biology of this important system is warranted.
Collapse
Affiliation(s)
- Wendie S Cohick
- Rutgers, The State University of New Jersey, Department of Animal Science, New Brunswick, NJ 08901, USA.
| |
Collapse
|
26
|
Determinants of IGF-II influencing stability, receptor binding and activation. Sci Rep 2022; 12:4695. [PMID: 35304516 PMCID: PMC8933565 DOI: 10.1038/s41598-022-08467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Insulin like growth factor II (IGF-II) is involved in metabolic and mitogenic signalling in mammalian cells and plays important roles in normal fetal development and postnatal growth. It is structurally similar to insulin and binds not only with high affinity to the type 1 insulin-like growth factor receptor (IGF-1R) but also to the insulin receptor isoform A (IR-A). As IGF-II expression is commonly upregulated in cancer and its signalling promotes cancer cell survival, an antagonist that blocks IGF-II action without perturbing insulin signalling would be invaluable. The high degree of structural homology between the IR and IGF-1R makes selectively targeting either receptor in the treatment of IGF-II-dependent cancers very challenging. However, there are sequence differences between insulin and IGF-II that convey receptor selectivity and influence binding affinity and signalling outcome. Insulin residue YB16 is a key residue involved in maintaining insulin stability, dimer formation and IR binding. Mutation of this residue to glutamine (as found in IGF-II) results in reduced binding affinity. In this study we sought to determine if the equivalent residue Q18 in IGF-II plays a similar role. We show through site-directed mutagenesis of Q18 that this residue contributes to IGF-II structural integrity, selectivity of IGF-1R/IR binding, but surprisingly does not influence IR-A signalling activation. These findings provide insights into a unique IGF-II residue that can influence receptor binding specificity whilst having little influence on signalling outcome.
Collapse
|
27
|
Chou SL, Ramesh S, Kuo CH, Ali A, Ho TJ, Chang KP, Hsieh DJY, Kumar VB, Weng YS, Kuo WW, Huang CY. Tanshinone IIA inhibits Leu27IGF-II-induced insulin-like growth factor receptor II signaling and myocardial apoptosis via estrogen receptor-mediated Akt activation. ENVIRONMENTAL TOXICOLOGY 2022; 37:142-150. [PMID: 34655285 DOI: 10.1002/tox.23385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/10/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Different stress condition stimulates the expression level of insulin-like growth factor receptor II (IGF-IIR) in cardiomyoblasts that lead to apoptosis. Tanshinone IIA (TSN), a pharmacologically active component from Danshen, has been shown cardioprotective effects against cardiac apoptosis induced by several stress conditions. Therefore, this study was conducted to assess the cardioprotective effects of TSN IIA mediated through the estrogen receptor (ER) in order to inhibit the Leu27IGF-II-enhanced IGF-IIR-mediated cardiac apoptosis. The estrogenic activity of TSN IIA was examined after myocardial cells were pretreated with the ER antagonist, and inhibited the phospho-inositide-3 kinase (PI3K). Here, we found that TSN IIA significantly induced ER that phosphorylated Akt. Further, Akt activation considerably suppressed the Leu27IGF-II induced IGF-IIR expression level and the downstream effectors, including Gαq and calcineurin as well as mitochondrial dependent apoptosis proteins including Bad, cytochrome c, and active caspase-3 that result in cardiac apoptosis resistance. However, the western blot analysis, JC-1 staining, and terminal deoxynucleotide transferase-mediated dUTP nick end labeling assay revealed that TSN IIA attenuated Leu27IGF-II-induced IGF-IIR mediated cardiac apoptosis was reversed by an ER antagonist such as ICI 182780, and PI3K inhibition. All these findings demonstrate that TSN IIA exerts estrogenic activity, which can activate PI3K-Akt pathway, and thereby inhibits Leu27IGFII induced IGF-IIR mediated cardiac apoptosis. Thus, TSN IIA can be considered as an effective therapeutic strategy against IGF-IIR signaling cascade to suppress cardiac apoptosis.
Collapse
Affiliation(s)
- Shui Lian Chou
- Department of Family Medicine, Jen-Ai Hospital, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Microbiology, PRIST Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Ayaz Ali
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Ko Peng Chang
- Department of Family Medicine, Jen-Ai Hospital, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - V Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
28
|
Lee KL, Aitken JF, Li X, Montgomery K, Hsu HL, Williams GM, Brimble MA, Cooper GJ. Vesiculin derived from IGF-II drives increased islet cell mass in a mouse model of pre-diabetes. Islets 2022; 14:14-22. [PMID: 34632959 PMCID: PMC8632304 DOI: 10.1080/19382014.2021.1982326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic islet-cell function and volume are both key determinants of the maintenance of metabolic health. Insulin resistance and islet-cell dysfunction often occur in the earlier stages of type 2 diabetes (T2D) progression. The ability of the islet cells to respond to insulin resistance by increasing hormone output accompanied by increased islet-cell volume is key to maintaining blood glucose control and preventing further disease progression. Eventual β-cell loss is the main driver of full-blown T2D and insulin-dependency. Researchers are targeting T2D with approaches that include those aimed at enhancing the function of the patient's existing β-cell population, or replacing islet β-cells. Another approach is to look for agents that enhance the natural capacity of the β-cell population to expand. Here we aimed to study the effects of a new putative β-cell growth factor on a mouse model of pre-diabetes. We asked whether: 1) 4-week's treatment with vesiculin, a two-chain peptide derived by processing from IGF-II, had any measurable effect on pre-diabetic mice vs vehicle; and 2) whether the effects were the same in non-diabetic littermate controls. Although treatment with vesiculin did not alter blood glucose levels over this time period, there was a doubling of the Proliferating Cell Nuclear Antigen (PCNA) detectable in the islets of treated pre-diabetic but not control mice and this was accompanied by increased insulin- and glucagon-positive stained areas in the pancreatic islets.
Collapse
Affiliation(s)
- Kate L. Lee
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Faculty of Medical and Health Sciences, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- CONTACT Kate L. Lee Faculty of Medical and Health Sciences; Maurice Wilkins Centre for Molecular BioDiscovery, Auckland, New Zealand
| | - Jacqueline F. Aitken
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Xun Li
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Kirsten Montgomery
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Huai-L. Hsu
- Faculty of Medical and Health Sciences, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Geoffrey M. Williams
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| | - Margaret A. Brimble
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| | - Garth J.S. Cooper
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Manchester Biomedical Research Centre, Central Manchester University Hospitals Nhs Foundation Trust, and the School of Biomedicine, the Medical School, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Brierley GV, Semple RK. Insulin at 100 years - is rebalancing its action key to fighting obesity-related disease? Dis Model Mech 2021; 14:273551. [PMID: 34841432 PMCID: PMC8649170 DOI: 10.1242/dmm.049340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
One hundred years ago, insulin was purified and administered to people with diabetes to lower blood glucose, suppress ketogenesis and save lives. A century later, insulin resistance (IR) lies at the heart of the obesity-related disease pandemic. Multiple observations attest that IR syndrome is an amalgamation of gain and loss of insulin action, suggesting that IR is a misnomer. This misapprehension is reinforced by shortcomings in common model systems and is particularly pronounced for the tissue growth disorders associated with IR. It is necessary to move away from conceptualisation of IR as a pure state of impaired insulin action and to appreciate that, in the long term, insulin can harm as well as cure. The mixed state of gain and loss of insulin action, and its relationship to perturbed insulin-like growth factor (IGF) action, should be interrogated more fully in models recapitulating human disease. Only then may the potential of rebalancing insulin action, rather than simply increasing global insulin signalling, finally be appreciated.
Collapse
Affiliation(s)
- Gemma V Brierley
- Biomedical Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK.,The University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
30
|
Li S, Wang W, Zhang D, Li W, Lund J, Kruse T, Mengel-From J, Christensen K, Tan Q. Differential regulation of the DNA methylome in adults born during the Great Chinese Famine in 1959-1961. Genomics 2021; 113:3907-3918. [PMID: 34600028 DOI: 10.1016/j.ygeno.2021.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/24/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Extensive epidemiological studies have established the association between exposure to early-life adversity and health status and diseases in adults. Epigenetic regulation is considered as a key mediator for this phenomenon but analysis on humans is sparse. The Great Chinese Famine lasting from 1958 to 1961 is a natural string of disasters offering a precious opportunity for elucidating the underlying epigenetic mechanism of the long-term effect of early adversity. METHODS Using a high-throughput array platform for DNA methylome profiling, we conducted a case-control epigenome-wide association study on early-life exposure to Chinese famine in 79 adults born during 1959-1961 and compared to 105 unexposed subjects born 1963-1964. RESULTS The single CpG site analysis of whole epigenome revealed a predominant pattern of decreased DNA methylation levels associated with fetal exposure to famine. Four CpG sites were detected with p < 1e-06 (linked to EHMT1, CNR1, UBXN7 and ESM1 genes), 16 CpGs detected with 1e-06 < p < 1e-05 and 157 CpGs with 1e-05 < p < 1e-04, with a predominant pattern of hypomethylation. Functional annotation to genes and their enriched biological pathways mainly involved neurodevelopment, neuropsychological disorders and metabolism. Multiple sites analysis detected two top-rank differentially methylated regions harboring RNF39 on chromosome 6 and PTPRN2 on chromosome 7, both showing epigenetic association with stress-related conditions. CONCLUSION Early-life exposure to famine could mediate DNA methylation regulations that persist into adulthood with broad impacts in the activities of genes and biological pathways. Results from this study provide new clues to the epigenetic embedding of early-life adversity and its impacts on adult health.
Collapse
Affiliation(s)
- Shuxia Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Weijing Wang
- Qingdao University School of Public Health, Qingdao, China
| | - Dongfeng Zhang
- Qingdao University School of Public Health, Qingdao, China
| | - Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark; Population Research Unit, Faculty of Social Sciences, University of Helsinki, Finland.
| | - Jesper Lund
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark; Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany.
| | - Torben Kruse
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Jonas Mengel-From
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Kaare Christensen
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
31
|
Martín-Montañez E, Valverde N, Ladrón de Guevara-Miranda D, Lara E, Romero-Zerbo YS, Millon C, Boraldi F, Ávila-Gámiz F, Pérez-Cano AM, Garrido-Gil P, Labandeira-Garcia JL, Santin LJ, Pavia J, Garcia-Fernandez M. Insulin-like growth factor II prevents oxidative and neuronal damage in cellular and mice models of Parkinson's disease. Redox Biol 2021; 46:102095. [PMID: 34418603 PMCID: PMC8379511 DOI: 10.1016/j.redox.2021.102095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
Oxidative distress and mitochondrial dysfunction, are key factors involved in the pathophysiology of Parkinson's disease (PD). The pleiotropic hormone insulin-like growth factor II (IGF-II) has shown neuroprotective and antioxidant effects in some neurodegenerative diseases. In this work, we demonstrate the protective effect of IGF-II against the damage induced by 1-methyl-4-phenylpyridinium (MPP+) in neuronal dopaminergic cell cultures and a mouse model of progressive PD. In the neuronal model, IGF-II counteracts the oxidative distress produced by MPP + protecting dopaminergic neurons. Improved mitochondrial function, increased nuclear factor (erythroid-derived 2)-like2 (NRF2) nuclear translocation along with NRF2-dependent upregulation of antioxidative enzymes, and modulation of mammalian target of rapamycin (mTOR) signalling pathway were identified as mechanisms leading to neuroprotection and the survival of dopaminergic cells. The neuroprotective effect of IGF-II against MPP + -neurotoxicity on dopaminergic neurons depends on the specific IGF-II receptor (IGF-IIr). In the mouse model, IGF-II prevents behavioural dysfunction and dopaminergic nigrostriatal pathway degeneration and mitigates neuroinflammation induced by MPP+. Our work demonstrates that hampering oxidative stress and normalising mitochondrial function through the interaction of IGF-II with its specific IGF-IIr are neuroprotective in both neuronal and mouse models. Thus, the modulation of the IGF-II/IGF-IIr signalling pathway may be a useful therapeutic approach for the prevention and treatment of PD. IGF-II hampers oxidative damage and promotes survival in a cellular model of PD. IGF-II avoids mitochondrial damage in dopaminergic cells in a model of PD. IGF-II receptor mediates the neuroprotective effect of IGF-II in a cellular model of PD. IGF-II prevents nigrostriatal degeneration and inflammation in a mice model of PD. IGF-II prevents behavioural dysfunction in a mice model of PD.
Collapse
Affiliation(s)
- Elisa Martín-Montañez
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Nadia Valverde
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Yanina S Romero-Zerbo
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Carmelo Millon
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Federica Boraldi
- Dipartimento di Scienze della Vita. Patologia Generale.Universita di Modena e Reggio Emilia. 41125, Italy
| | - Fabiola Ávila-Gámiz
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Ana M Pérez-Cano
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Pablo Garrido-Gil
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) y Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED-Madrid). Universidad de Santiago de Compostela, 15782 Spain
| | - Jose Luis Labandeira-Garcia
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) y Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED-Madrid). Universidad de Santiago de Compostela, 15782 Spain
| | - Luis J Santin
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain
| | - Jose Pavia
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain.
| | - Maria Garcia-Fernandez
- Departamento de Fisiología Humana, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Malaga, 29010, Spain.
| |
Collapse
|
32
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
33
|
Insulin-Like Growth Factor-II and Ischemic Stroke-A Prospective Observational Study. Life (Basel) 2021; 11:life11060499. [PMID: 34072372 PMCID: PMC8230196 DOI: 10.3390/life11060499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) regulates prenatal brain development, but the role in adult brain function and injury is unclear. Here, we determined whether serum levels of IGF-II (s-IGF-II) are associated with mortality and functional outcome after ischemic stroke (IS). The study population comprised ischemic stroke cases (n = 492) and controls (n = 514) from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS). Functional outcome was evaluated after 3 months and 2 years using the modified Rankin Scale (mRS), and additionally, survival was followed at a minimum of 7 years or until death. S-IGF-II levels were higher in IS cases both in the acute phase and at 3-month follow-up compared to controls (p < 0.05 and p < 0.01, respectively). The lowest quintile of acute s-IGF-II was, compared to the four higher quintiles, associated with an increased risk of post-stroke mortality (median follow-up 10.6 years, crude hazard ratio (HR) 2.34, 95% confidence interval (CI) 1.56–3.49, and fully adjusted HR 1.64, 95% CI 1.02–2.61). In contrast, crude associations with poor functional outcome (mRS 3–6) lost significance after full adjustment for covariates. In conclusion, s-IGF-II was higher in IS cases than in controls, and low acute s-IGF-II was an independent risk marker of increased mortality.
Collapse
|
34
|
LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab 2021; 52:101245. [PMID: 33962049 PMCID: PMC8513159 DOI: 10.1016/j.molmet.2021.101245] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The insulin-like growth factor family of ligands (IGF-I, IGF-II, and insulin), receptors (IGF-IR, M6P/IGF-IIR, and insulin receptor [IR]), and IGF-binding proteins (IGFBP-1-6) play critical roles in normal human physiology and disease states. SCOPE OF REVIEW Insulin and insulin receptors are the focus of other chapters in this series and will therefore not be discussed further. Here we review the basic components of the IGF system, their role in normal physiology and in critical pathology's. While this review concentrates on the role of IGFs in human physiology, animal models have been essential in providing understanding of the IGF system, and its regulation, and are briefly described. MAJOR CONCLUSIONS IGF-I has effects via the circulation and locally within tissues to regulate cellular growth, differentiation, and survival, thereby controlling overall body growth. IGF-II levels are highest prenatally when it has important effects on growth. In adults, IGF-II plays important tissue-specific roles, including the maintenance of stem cell populations. Although the IGF-IR is closely related to the IR it has distinct physiological roles both on the cell surface and in the nucleus. The M6P/IGF-IIR, in contrast, is distinct and acts as a scavenger by mediating internalization and degradation of IGF-II. The IGFBPs bind IGF-I and IGF-II in the circulation to prolong their half-lives and modulate tissue access, thereby controlling IGF function. IGFBPs also have IGF ligand-independent cell effects.
Collapse
Affiliation(s)
- Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeff M P Holly
- Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, 5042, Australia
| |
Collapse
|
35
|
Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res 2021; 170:105520. [PMID: 33639232 DOI: 10.1016/j.phrs.2021.105520] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Diabetes is a metabolic disorder and its incidence is still increasing. Diabetic vascular complications cause major diabetic mobility and include accelerated atherosclerosis, nephropathy, retinopathy, and neuropathy. Hyperglycemia contributes to the pathogenesis of diabetic vascular complications via numerous mechanisms including the induction of oxidative stress, inflammation, metabolic alterations, and abnormal proliferation of EC and angiogenesis. In the past decade, epigenetic modifications have attracted more attention as they participate in the progression of diabetic vascular complications despite controlled glucose levels and regulate gene expression without altering the genomic sequence. DNA methylation and histone methylation, and acetylation are vital epigenetic modifications and their underlying mechanisms in diabetic vascular complication are still urgently needed to be investigated. Non-coding RNAs (nc RNAs) such as micro RNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circ RNAs) were found to exert transcriptional regulation in diabetic vascular complication. Although nc RNAs are not considered as epigenetic components, they are involved in epigenetic modifications. In this review, we summarized the investigations of non-coding RNAs involved in DNA methylation and histone methylation and acetylation. Their cross-talks might offer novel insights into the pathology of diabetic vascular complications.
Collapse
|
36
|
Janssen JA, Smith TJ. Lessons Learned from Targeting IGF-I Receptor in Thyroid-Associated Ophthalmopathy. Cells 2021; 10:cells10020383. [PMID: 33673340 PMCID: PMC7917650 DOI: 10.3390/cells10020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Complex immunological mechanisms underlie the pathogenesis of thyroid-associated ophthalmopathy (TAO). Historical models of Graves’ disease and TAO have focused almost entirely on autoimmune reactivity directed against the thyrotropin receptor (TSHR). The insulin-like growth factor-I receptor (IGF-IR) has been proposed as a second participating antigen in TAO by virtue of its interactions with IGFs and anti-IGF-IR antibodies generated in Graves’ disease. Furthermore, the IGF-IR forms with TSHR a physical and functional complex which is involved in signaling downstream from both receptors. Inhibition of IGF-IR activity results in attenuation of signaling initiated at either receptor. Based on the aggregate of findings implicating IGF-IR in TAO, the receptor has become an attractive therapeutic target. Recently, teprotumumab, a human monoclonal antibody IGF-IR inhibitor was evaluated in two clinical trials of patients with moderate to severe, active TAO. Those studies revealed that teprotumumab was safe and highly effective in reducing disease activity and severity. Targeting IGF-IR with specific biologic agents may result in a paradigm shift in the therapy of TAO.
Collapse
Affiliation(s)
- Joseph A.M.J.L. Janssen
- Erasmus Medical Center, Department of Internal Medicine, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7040704
| | - Terry J. Smith
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA;
- Division of Metabolism, Department of Internal Medicine, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
37
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
38
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
39
|
Lee KL, Silvestre MP, AlSaud NH, Fogelholm M, Raben A, Poppitt SD. Investigating IGF-II and IGF2R serum markers as predictors of body weight loss following an 8-week acute weight loss intervention: PREVIEW sub-study. Obes Res Clin Pract 2021; 15:42-48. [PMID: 33431344 DOI: 10.1016/j.orcp.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Weight reduction is effective in preventing T2D however, weight reduction and maintenance is difficult to achieve on a population scale. Serum insulin-like growth factor II (IGF-II) and IGF-II receptor (IGF2R) have been associated with diabetic status and body weight in prior studies and, in addition, IGF-II has been indicated as predictive of future weight change. We measured these serum markers in participants with obesity/overweight and prediabetes from the New Zealand arm of the PREVIEW lifestyle intervention randomised trial before and after an 8-week low energy diet (LED). METHODS Total IGF-II (n = 223) and soluble IGF2R (n = 151) were measured using commercial ELISA kits on fasted serum samples taken prior to an 8-week LED and also from participants completing the LED. RESULTS IGF-II levels were not correlated with baseline body weight although mean levels did significantly decrease following the LED. Change in IGF-II serum level was correlated to fasting glucose change (p = 0.04) but not to weight change. Baseline serum IGF2R was correlated with BMI (p = 0.007) and was significantly higher in Māori compared to European Caucasian participants independent of body weight (p = 0.0016). Following LED, IGF2R change was positively associated with weight change (p = 0.02) when corrected for ethnicity. Pre-LED levels of these serum markers were not predictive of the magnitude of weight loss over the 8 weeks. CONCLUSION Neither marker was useful in predicting magnitude of short-term weight loss. IGF2R is positively associated with BMI and is higher in Māori compared to European Caucasian individuals.
Collapse
Affiliation(s)
- Kate L Lee
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Marta P Silvestre
- Human Nutrition Unit, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; CINTESIS - Centro de Investigação em Tecnologias e Serviços de Saúde
- NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisboa, Portugal
| | - Nour H AlSaud
- Human Nutrition Unit, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mikael Fogelholm
- Department of Food and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C, DK-1958 Copenhagen, Denmark
| | - Sally D Poppitt
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Human Nutrition Unit, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
40
|
Jiang J, Pu D, Hu R, Hu M, Wu Q. Evaluation of the Efficacy of the Hospital Glycemic Management System for Patients with Malignant Tumors and Hyperglycemia. Diabetes Metab Syndr Obes 2021; 14:2717-2725. [PMID: 34163199 PMCID: PMC8216063 DOI: 10.2147/dmso.s318435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To explore the efficacy of the hospital glycemic management system with information integration in patients with malignant tumors and hyperglycemia. METHODS Three hundred ninety-three patients diagnosed with malignant tumors with hyperglycemia and hospitalized in the non-endocrinology department of a specialized cancer hospital from March 2019 to November 2020 were recruited. All the patients were diagnosed and treated according to the clinical department and disease course. In total, 196 patients were divided into the control group, who received the conventional blood glucose management mode, and 197 patients were divided into the intervention group, who received the hospital glycemic management system with information integration. The average daily glucose levels were recorded before and after breakfast, lunch, and dinner, at bedtime and at night. The average glucose level, glucose compliance rate, hypoglycemia rate, hyperglycemia rate, glucose measurements per day, average number of hospitalization days and patient satisfaction were compared between the groups. RESULTS In the intervention group, the average glucose level was significantly lower than that in the control group (P<0.05). The hyperglycemia and hypoglycemia rates in the intervention group were lower than those in the control group (P<0.05). The glucose compliance rate in the intervention group was higher than that in the control group (P<0.05). The highest blood glucose level in the intervention group was lower than that in the control group (P<0.05), and the lowest blood glucose level was higher than that in the control group (P<0.05). The glucose measurements per day in the intervention group were higher than those in the control group, and the average number of hospitalization days in the intervention group was lower than that in the control group (P<0.05). Patient satisfaction in the intervention group was higher than that in the control group (P<0.05). CONCLUSION The hospital glycemic management system with information integration significantly improved the glycemic management of patients with malignant non-endocrine tumors and hyperglycemia, including their glucose level and glucose compliance rate, as well as patient satisfaction, and reduced the average number of hospitalization days and risk of hyperglycemia/hypoglycemia.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Endocrinology and Nephrology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Danlan Pu
- Department of Endocrinology and Nephrology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Renzhi Hu
- Department of Endocrinology and Nephrology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Mingyang Hu
- Department of Endocrinology and Nephrology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Qinan Wu
- Department of Endocrinology and Nephrology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, People’s Republic of China
- Correspondence: Qinan Wu Department of Endocrinology and Nephrology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, People’s Republic of China Email
| |
Collapse
|
41
|
Regulation of Fetal Genes by Transitions among RNA-Binding Proteins during Liver Development. Int J Mol Sci 2020; 21:ijms21239319. [PMID: 33297405 PMCID: PMC7731027 DOI: 10.3390/ijms21239319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Transcripts of alpha-fetoprotein (Afp), H19, and insulin-like growth factor 2 (Igf2) genes are highly expressed in mouse fetal liver, but decrease drastically during maturation. While transcriptional regulation of these genes has been well studied, the post-transcriptional regulation of their developmental decrease is poorly understood. Here, we show that shortening of poly(A) tails and subsequent RNA decay are largely responsible for the postnatal decrease of Afp, H19, and Igf2 transcripts in mouse liver. IGF2 mRNA binding protein 1 (IMP1), which regulates stability and translation efficiency of target mRNAs, binds to these fetal liver transcripts. When IMP1 is exogenously expressed in mouse adult liver, fetal liver transcripts show higher expression and possess longer poly(A) tails, suggesting that IMP1 stabilizes them. IMP1 declines concomitantly with fetal liver transcripts as liver matures. Instead, RNA-binding proteins (RBPs) that promote RNA decay, such as cold shock domain containing protein E1 (CSDE1), K-homology domain splicing regulatory protein (KSRP), and CUG-BP1 and ETR3-like factors 1 (CELF1), bind to 3' regions of fetal liver transcripts. These data suggest that transitions among RBPs associated with fetal liver transcripts shift regulation from stabilization to decay, leading to a postnatal decrease in those fetal transcripts.
Collapse
|
42
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
43
|
Werner H, Sarfstein R, Nagaraj K, Laron Z. Laron Syndrome Research Paves the Way for New Insights in Oncological Investigation. Cells 2020; 9:cells9112446. [PMID: 33182502 PMCID: PMC7696416 DOI: 10.3390/cells9112446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Laron syndrome (LS) is a rare genetic endocrinopathy that results from mutation of the growth hormone receptor (GH-R) gene and is typically associated with dwarfism and obesity. LS is the best characterized entity under the spectrum of the congenital insulin-like growth factor-1 (IGF1) deficiencies. Epidemiological analyses have shown that LS patients do not develop cancer, whereas heterozygous family members have a cancer prevalence similar to the general population. To identify genes and signaling pathways differentially represented in LS that may help delineate a biochemical and molecular basis for cancer protection, we have recently conducted a genome-wide profiling of LS patients. Studies were based on our collection of Epstein–Barr virus (EBV)-immortalized lymphoblastoid cell lines derived from LS patients, relatives and healthy controls. Bioinformatic analyses identified differences in gene expression in several pathways, including apoptosis, metabolic control, cytokine biology, Jak-STAT and PI3K-AKT signaling, etc. Genes involved in the control of cell cycle, motility, growth and oncogenic transformation are, in general, down-regulated in LS. These genetic events seem to have a major impact on the biological properties of LS cells, including proliferation, apoptosis, response to oxidative stress, etc. Furthermore, genomic analyses allowed us to identify novel IGF1 downstream target genes that have not been previously linked to the IGF1 signaling pathway. In summary, by ‘mining’ genomic data from LS patients, we were able to generate clinically-relevant information in oncology and, potentially, related disciplines.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (K.N.)
- Shalom and Varda Yoran Institute for Human Genome Research, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (K.N.)
| | - Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (R.S.); (K.N.)
| | - Zvi Laron
- Endocrine and Diabetes Research Unit, Schneider Children’s Medical Center, Petah Tikva 49292, Israel;
| |
Collapse
|
44
|
Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells 2020; 9:cells9102276. [PMID: 33053840 PMCID: PMC7601145 DOI: 10.3390/cells9102276] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system regulates metabolic and mitogenic signaling through an intricate network of related receptors and hormones. IGF-II is one of several hormones within this system that primarily regulates mitogenic functions and is especially important during fetal growth and development. IGF-II is also found to be overexpressed in several cancer types, promoting growth and survival. It is also unique in the IGF system as it acts through both IGF-1R and insulin receptor isoform A (IR-A). Despite this, IGF-II is the least investigated ligand of the IGF system. This review will explore recent developments in IGF-II research including a structure of IGF-II bound to IGF-1R determined using cryo-electron microscopy (cryoEM). Comparisons are made with the structures of insulin and IGF-I bound to their cognate receptors. Finally discussed are outstanding questions in the mechanism of action of IGF-II with the goal of developing antagonists of IGF action in cancer.
Collapse
|
45
|
Xu Y, Kirk NS, Venugopal H, Margetts MB, Croll TI, Sandow JJ, Webb AI, Delaine CA, Forbes BE, Lawrence MC. How IGF-II Binds to the Human Type 1 Insulin-like Growth Factor Receptor. Structure 2020; 28:786-798.e6. [PMID: 32459985 PMCID: PMC7343240 DOI: 10.1016/j.str.2020.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Human type 1 insulin-like growth factor receptor (IGF-1R) signals chiefly in response to the binding of insulin-like growth factor I. Relatively little is known about the role of insulin-like growth factor II signaling via IGF-1R, despite the affinity of insulin-like growth factor II for IGF-1R being within an order of magnitude of that of insulin-like growth factor I. Here, we describe the cryoelectron microscopy structure of insulin-like growth factor II bound to a leucine-zipper-stabilized IGF-1R ectodomain, determined in two conformations to a maximum average resolution of 3.2 Å. The two conformations differ in the relative separation of their respective points of membrane entry, and comparison with the structure of insulin-like growth factor I bound to IGF-1R reveals long-suspected differences in the way in which the critical C domain of the respective growth factors interact with IGF-1R.
Collapse
Affiliation(s)
- Yibin Xu
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nicholas S Kirk
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Mai B Margetts
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Andrew I Webb
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Carlie A Delaine
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Briony E Forbes
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Michael C Lawrence
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
46
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
47
|
Melatonin and Mesenchymal Stem Cells as a Key for Functional Integrity for Liver Cancer Treatment. Int J Mol Sci 2020; 21:ijms21124521. [PMID: 32630505 PMCID: PMC7350224 DOI: 10.3390/ijms21124521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common hepatobiliary malignancy with limited therapeutic options. On the other hand, melatonin is an indoleamine that modulates a variety of potential therapeutic effects. In addition to its important role in the regulation of sleep–wake rhythms, several previous studies linked the biologic effects of melatonin to various substantial endocrine, neural, immune and antioxidant functions, among others. Furthermore, the effects of melatonin could be influenced through receptor dependent and receptor independent manner. Among the other numerous physiological and therapeutic effects of melatonin, controlling the survival and differentiation of mesenchymal stem cells (MSCs) has been recently discussed. Given its controversial interaction, several previous reports revealed the therapeutic potential of MSCs in controlling the hepatocellular carcinoma (HCC). Taken together, the intention of the present review is to highlight the effects of melatonin and mesenchymal stem cells as a key for functional integrity for liver cancer treatment. We hope to provide solid piece of information that may be helpful in designing novel drug targets to control HCC.
Collapse
|
48
|
Crespi BJ. Why and How Imprinted Genes Drive Fetal Programming. Front Endocrinol (Lausanne) 2020; 10:940. [PMID: 32117048 PMCID: PMC7025584 DOI: 10.3389/fendo.2019.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Imprinted genes mediate fetal and childhood growth and development, and early growth patterns drive fetal programming effects. However, predictions and evidence from the kinship theory of imprinting have yet to be directly integrated with data on fetal programming and risks of metabolic disease. I first define paternal-gene and maternal-gene optima with regard to early human growth and development. Next, I review salient evidence with regard to imprinted gene effects on birth weight, body composition, trajectories of feeding and growth, and timing of developmental stages, to evaluate why and how imprinted gene expression influences risks of metabolic disease in later life. I find that metabolic disease risks derive primarily from maternal gene biases that lead to reduced placental efficacy, low birth weight, low relative muscle mass, high relative white fat, increased abdominal adiposity, reduced pancreatic β-cell mass that promotes insulin resistance, reduced appetite and infant sucking efficacy, catch-up fat deposition from family foods after weaning, and early puberty. Paternal gene biases, by contrast, may contribute to metabolic disease via lower rates of brown fat thermiogenesis, and through favoring more rapid postnatal catch-up growth after intrauterine growth restriction from environmental causes. These disease risks can be alleviated through dietary and pharmacological alterations that selectively target imprinted gene expression and relevant metabolic pathways. The kinship theory of imprinting, and mother-offspring conflict more generally, provide a clear predictive framework for guiding future research on fetal programming and metabolic disease.
Collapse
Affiliation(s)
- Bernard J. Crespi
- Department of Biological Sciences and Human Evolutionary Studies Program, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
49
|
Chen B, Li J, Chi D, Sahnoune I, Calin S, Girnita L, Calin GA. Non-Coding RNAs in IGF-1R Signaling Regulation: The Underlying Pathophysiological Link between Diabetes and Cancer. Cells 2019; 8:cells8121638. [PMID: 31847392 PMCID: PMC6953109 DOI: 10.3390/cells8121638] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
The intricate molecular network shared between diabetes mellitus (DM) and cancer has been broadly understood. DM has been associated with several hormone-dependent malignancies, including breast, pancreatic, and colorectal cancer (CRC). Insulin resistance, hyperglycemia, and inflammation are the main pathophysiological mechanisms linking DM to cancer. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are widely appreciated as pervasive regulators of gene expression, governing the evolution of metabolic disorders, including DM and cancer. The ways ncRNAs affect the development of DM complicated with cancer have only started to be revealed in recent years. Insulin-like growth factor 1 receptor (IGF-1R) signaling is a master regulator of pathophysiological processes directing DM and cancer. In this review, we briefly summarize a number of well-known miRNAs and lncRNAs that regulate the IGF-1R in DM and cancer, respectively, and further discuss the potential underlying molecular pathogenesis of this disease association.
Collapse
Affiliation(s)
- Baoqing Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Correspondence: (B.C.); (G.A.C.)
| | - Junyan Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Dongmei Chi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Iman Sahnoune
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Steliana Calin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, 17164 Stockholm, Sweden;
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: (B.C.); (G.A.C.)
| |
Collapse
|
50
|
Crudden C, Song D, Cismas S, Trocmé E, Pasca S, Calin GA, Girnita A, Girnita L. Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells 2019; 8:cells8101223. [PMID: 31600876 PMCID: PMC6829878 DOI: 10.3390/cells8101223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ligand-activated plasma membrane receptors follow pathways of endocytosis through the endosomal sorting apparatus. Receptors cluster in clathrin-coated pits that bud inwards and enter the cell as clathrin-coated vesicles. These vesicles travel through the acidic endosome whereby receptors and ligands are sorted to be either recycled or degraded. The traditional paradigm postulated that the endocytosis role lay in signal termination through the removal of the receptor from the cell surface. It is now becoming clear that the internalization process governs more than receptor signal cessation and instead reigns over the entire spatial and temporal wiring of receptor signaling. Governing the localization, the post-translational modifications, and the scaffolding of receptors and downstream signal components established the endosomal platform as the master regulator of receptor function. Confinement of components within or between distinct organelles means that the endosome instructs the cell on how to interpret and translate the signal emanating from any given receptor complex into biological effects. This review explores this emerging paradigm with respect to the cancer-relevant insulin-like growth factor type 1 receptor (IGF-1R) and discusses how this perspective could inform future targeting strategies.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Department of Pathology, Cancer Centre Amsterdam, Amsterdam UMC, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands.
| | - Dawei Song
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Sonia Cismas
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Eric Trocmé
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- St. Erik Eye Hospital, 11282 Stockholm, Sweden.
| | - Sylvya Pasca
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Ada Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Dermatology Department, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| |
Collapse
|