1
|
Fairooz T, McNamee SE, Finlay D, Ng KY, McLaughlin J. Enhancing Sensitivity of Point-of-Care Thyroid Diagnosis via Computational Analysis of Lateral Flow Assay Images Using Novel Textural Features and Hybrid-AI Models. BIOSENSORS 2024; 14:611. [PMID: 39727875 DOI: 10.3390/bios14120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Lateral flow assays are widely used in point-of-care diagnostics but face challenges in sensitivity and accuracy when detecting low analyte concentrations, such as thyroid-stimulating hormone biomarkers. This study aims to enhance assay performance by leveraging textural features and hybrid artificial intelligence models. A modified Gray-Level Co-occurrence Matrix, termed the Averaged Horizontal Multiple Offsets Gray-Level Co-occurrence Matrix, was utilised to compute the textural features of the biosensor assay images. Significant textural features were selected for further analysis. A deep learning Convolutional Neural Network model was employed to extract features from these textural features. Both traditional machine learning models and hybrid artificial intelligence models, which combine Convolutional Neural Network features with traditional algorithms, were used to categorise these textural features based on the thyroid-stimulating hormone concentration levels. The proposed method achieved accuracy levels exceeding 95%. This pioneering study highlights the utility of textural aspects of assay images for accurate predictive disease modelling, offering promising advancements in diagnostics and management within biomedical research.
Collapse
Affiliation(s)
- Towfeeq Fairooz
- School of Engineering, Ulster University, Belfast BT15 1ED, UK
| | - Sara E McNamee
- School of Engineering, Ulster University, Belfast BT15 1ED, UK
| | - Dewar Finlay
- School of Engineering, Ulster University, Belfast BT15 1ED, UK
| | - Kok Yew Ng
- School of Engineering, Ulster University, Belfast BT15 1ED, UK
| | | |
Collapse
|
2
|
Skirda AM, Orlov AV, Malkerov JA, Znoyko SL, Rakitina AS, Nikitin PI. Enhanced Analytical Performance in CYFRA 21-1 Detection Using Lateral Flow Assay with Magnetic Bioconjugates: Integration and Comparison of Magnetic and Optical Registration. BIOSENSORS 2024; 14:607. [PMID: 39727872 DOI: 10.3390/bios14120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique. For the first time in LFA applications, the MPQ-based and colorimetry-based detection methods were compared side by side, and superior analytical performance was demonstrated. The limit of detection (LOD) of 0.9 pg/mL was achieved using MPQ, and 2.9 pg/mL with optical detection. This study has demonstrated that MPQ provides elimination of signal saturation, higher sensitivity (slope of the calibration curve), and a 19-fold wider dynamic range of detected signals. Both optical and magnetic detection results are comparable to the best laboratory-based tests with the added benefits of a 20-min assay duration and the LFA format convenience. The assay effectiveness was validated in human serum and artificial saliva, and high recovery rates were observed. The proposed approach offers rapid and reliable detection of molecular biomarkers and holds significant potential for point-of-care diagnostics, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Juri A Malkerov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Alexandra S Rakitina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
3
|
Fujiuchi K, Aoki N, Ohtake T, Iwashita T, Kawasaki H. Transitions in Immunoassay Leading to Next-Generation Lateral Flow Assays and Future Prospects. Biomedicines 2024; 12:2268. [PMID: 39457581 PMCID: PMC11504701 DOI: 10.3390/biomedicines12102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
In the field of clinical testing, the traditional focus has been on the development of large-scale analysis equipment designed to process high volumes of samples with fully automatic and high-sensitivity measurements. However, there has been a growing demand in recent years for the development of analytical reagents tailored to point-of-care testing (POCT), which does not necessitate a specific location or specialized operator. This trend is epitomized using the lateral flow assay (LFA), which became a cornerstone during the 2019 pandemic due to its simplicity, speed of delivering results-within about 10 min from minimal sample concentrations-and user-friendly design. LFAs, with their paper-based construction, combine cost-effectiveness with ease of disposal, addressing both budgetary and environmental concerns comprehensively. Despite their compact size, LFAs encapsulate a wealth of technological ingenuity, embodying years of research and development. Current research is dedicated to further evolving LFA technology, paving the way for the next generation of diagnostic devices. These advancements aim to redefine accessibility, empower individuals, and enhance responsiveness to public health challenges. The future of LFAs, now unfolding, promises even greater integration into routine health management and emergency responses, underscoring their critical role in the evolution of decentralized and patient-centric healthcare solutions. In this review, the historical development of LFA and several of the latest LFA technologies using catalytic amplification, surface-enhanced Raman scattering, heat detection, electron chemical detections, magnetoresistance, and detection of reflected electrons detection are introduced to inspire readers for future research and development.
Collapse
Affiliation(s)
- Koyu Fujiuchi
- NanoSuit Research Laboratory, Institute of Photonics Medicine, Division of Preeminent Bioimaging Research, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Noriko Aoki
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Tetsurou Ohtake
- Research and Development Department, TAUNS Laboratories, Inc., Izunokuni-shi 410-2325, Japan; (N.A.); (T.O.)
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
| | - Hideya Kawasaki
- NanoSuit Research Laboratory, Institute of Photonics Medicine, Division of Preeminent Bioimaging Research, Hamamatsu University School of Medicine, Hamamatsu 431-3125, Japan;
| |
Collapse
|
4
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
5
|
Fogaça MBT, Saavedra DP, Lopes-Luz L, Ribeiro BM, da Silva Pinto L, Nagata T, Conceição FR, Stefani MMDA, Buhrer-Sékula S. Development and evaluation of a Lateral flow immunoassay (LFIA) prototype for the detection of IgG anti-SARS-CoV-2 antibodies. Heliyon 2024; 10:e29938. [PMID: 38707409 PMCID: PMC11066624 DOI: 10.1016/j.heliyon.2024.e29938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Lateral flow immunoassays (LFIA) for antibody detection represent cost-effective and user-friendly tools for serology assessment. This study evaluated a new LFIA prototype developed with a recombinant chimeric antigen from the spike/S and nucleocapsid/N proteins to detect anti-SARS-CoV-2 IgG antibodies. The evaluation of LFIA sensitivity and specificity used 811 serum samples from 349 hospitalized, SARS-CoV-2 RT-qPCR positive COVID-19 patients, collected at different time points and 193 serum samples from healthy controls. The agreement between ELISA results with the S/N chimeric antigen and LFIA results was calculated. The LFIA prototype for SARS-CoV-2 using the chimeric S/N protein demonstrated 85 % sensitivity on the first week post symptoms onset, reaching 94 % in samples collected at the fourth week of disease. The agreement between LFIA and ELISA with the same antigen was 92.7 %, 0.827 kappa Cohen value (95 % CI [0.765-0.889]). Further improvements are needed to standardize the prototype for whole blood use. The inclusion of the novel chimeric S + N antigen in the COVID-19 IgG antibody LFIA demonstrated optimal agreement with results from a comparable ELISA, highlighting the prototype's potential for accurate large-scale serologic assessments in the field in a rapid and user-friendly format.
Collapse
Affiliation(s)
- Matheus Bernardes Torres Fogaça
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, 74690-900, Goiânia, GO, Brazil
| | - Djairo Pastor Saavedra
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, 74690-900, Goiânia, GO, Brazil
| | - Leonardo Lopes-Luz
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, 74690-900, Goiânia, GO, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Laboratório de Imunologia, Aplicada, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Laboratório de Imunologia, Aplicada, Universidade Federal de Pelotas, Pelotas, 96010-610, RS, Brazil
| | - Mariane Martins de Araújo Stefani
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, 74690-900, Goiânia, GO, Brazil
| | - Samira Buhrer-Sékula
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A. Alliance, 74690-900, Goiânia, GO, Brazil
| |
Collapse
|
6
|
Umrao S, Zheng M, Jin X, Yao S, Wang X. Net-Shaped DNA Nanostructure-Based Lateral Flow Assays for Rapid and Sensitive SARS-CoV-2 Detection. Anal Chem 2024; 96:3291-3299. [PMID: 38306661 PMCID: PMC10922791 DOI: 10.1021/acs.analchem.3c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Lateral flow assay (LFA)-based rapid antigen tests are experiencing extensive global uptake as an expeditious and highly effective modality for the screening of viral infections during the COVID-19 pandemic. While these devices have played a significant role in alleviating the burden on the public healthcare system, their specificity and sensitivity fall short compared with molecular tests. In this study, we endeavor to address both limitations through the utilization of DNA nanotechnology in LFA format, wherein we substitute the target-specific antibody with designer DNA nanostructure-based molecular probes for recognizing the SARS-CoV-2 virus via multivalent, pattern-matching interactions. We meticulously designed a Net-shaped DNA nanostructure and strategically arranged trimeric clusters of aptamers that specifically recognize the spike proteins of SARS-CoV-2. This approach has proven instrumental in bolstering virus-binding affinity on the LFAs. Our findings indicate high LFA sensitivity, enabling the detection of viral loads ranging from 103 to 108 viral copies/mL. This notable sensitivity is maintained across various SARS-CoV-2 viral strains, obviating the need for intricate sample preparation protocols. The significance of this heightened sensitivity lies in the crucial role played by the designer DNA nanostructure, which facilitates the detection of extremely low levels of viral loads. This not only enhances the overall reliability of self-testing but also reduces the likelihood of false-negative results, especially in cases of low viral load within patient samples.
Collapse
Affiliation(s)
- Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengxi Zheng
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiaohe Jin
- Atom Bioworks Inc., Cary, North Carolina 27513, United States
| | - Sherwood Yao
- Atom Bioworks Inc., Cary, North Carolina 27513, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Schobesberger S, Thumfart H, Selinger F, Schlimp CJ, Zipperle J, Ertl P. Development of a Paper-based Hematocrit Test and a Lateral Flow Assay to Detect Critical Fibrinogen Concentrations Using a Bottom-Up Pyramid Workflow Approach. ACS OMEGA 2024; 9:8533-8542. [PMID: 38405462 PMCID: PMC10882670 DOI: 10.1021/acsomega.3c10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Fibrinogen is a coagulation factor in human blood and the first one to reach critical levels in major bleeding. Hypofibrinogenemia (a too low fibrinogen concentration in blood) poses great challenges to first responders, clinicians, and healthcare providers since it represents a risk factor for exsanguination and massive transfusion requirements. Thus, the rapid assessment of the fibrinogen concentration at the point of care has gained considerable importance in preventing and managing major blood loss. However, in whole blood measurements, hematocrit variations affect the amount (volume fraction) of plasma that passes the detection zone. In an attempt to accurately determine realistic critical levels of fibrinogen (<1.5 mg/mL) in patients needing immediate treatment and medical interventions, we have developed novel diagnostic systems capable of estimating hematocrit and critical fibrinogen concentrations. A lateral flow assay (LFA) for the detection of fibrinogen has been developed by establishing a workflow employing rapid characterization methods to streamline LFA development. The integration of two detection lines enables (i) the identification of fibrinogen (first line) present in the sample and (ii) the determination of the clinically critical fibrinogen concentrations below 1.5 mg/mL (second line). Furthermore, the paper-based separation of blood cells from plasma provides a semiquantitative estimate of the hematocrit by analyzing the fractions. Initial validation of the point-of-care (PoC) hematocrit test revealed good comparability to a standard laboratory method. The developed diagnostic systems have the ability to accelerate decision-making in cases with major bleeding.
Collapse
Affiliation(s)
| | - Helena Thumfart
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Florian Selinger
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoph J Schlimp
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
- Department of Anaesthesiology and Intensive Care, AUVA Trauma Center Linz, Garnisonstraße 7, 4010 Linz, Austria
| | - Johannes Zipperle
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
8
|
Mousseau F, Féraudet Tarisse C, Simon S, Gacoin T, Alexandrou A, Bouzigues CI. Multititration: The New Method for Implementing Ultrasensitive and Quantitative Multiplexed In-Field Immunoassays Despite Cross-Reactivity? Anal Chem 2023; 95:13509-13518. [PMID: 37639578 DOI: 10.1021/acs.analchem.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The accurate in-field titration of multiple pathogens is essential to efficiently describe and monitor environmental or biological contamination, isolate, act, and treat adequately. This underscores the requirement of portable, fast, quantitative, and multiplexed detection technologies, which, however, have not been properly developed so far, notably because it has been hindered by the phenomenon of cross-reactivity. In this work, we proposed a new analytical method based on the imaging through a portable device of lanthanide-based nanoparticles (YVO4:Eu) for spatially multiplexed detection, relying on a multiparameter analysis, i.e., a simultaneous analysis of all of the luminescence signals through the comparison to a calibration surface built in the presence of multiple analytes of interest. We then demonstrated the possibility to simultaneously quantify by multiplexed lateral flow assay (xLFA) the three enterotoxins SEG, SEH, and SEI in unknown mixtures, over two concentration decades (from a dozen of pg·mL-1 to few ng·mL-1). Assays were performed in less than an hour (25 min of strip migration followed by 30 min of drying at room temperature), the time during which the presence of the operator was not required for more than 5 min, in order to dip the strip and have it imaged by the reader. The concepts of nominal concentration recovery, coefficient of variation (CV), limit of blank (LOB), and limit of detection (LOD) were discussed in detail in the context of multiplexed assays. With our new definitions, quantitative results demonstrated a high recovery of the nominal concentrations (115%), reliability (CV = 20%), and sensitivity (LOBs of 3, 27, and 6 pg·mL-1 for SEG, SEH, and SEI respectively, and LODs of 6, 48, and 11 pg·mL-1 for SEG, SEH, and SEI, respectively). Based on this method, we observed an increase in sensitivity of 100 compared to the other multiplexed LFA labeled with gold particles and we approached the sensitivity of the simplex enzyme-linked immunosorbent assay (ELISA) performed with the same capture and detection antibodies. To conclude, our results, which are applicable to virtually any kind of multiplexed test, pave the way to the next generation of in-field analytical immunoassays by providing fast, quantitative, and highly sensitive multiplexed detection of biomarkers or pathogens.
Collapse
Affiliation(s)
- Fanny Mousseau
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| | - Cécile Féraudet Tarisse
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, Route de Saclay, 91128 Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| | - Cédric Ismael Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
9
|
Panferov VG, Zherdev AV, Dzantiev BB. Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review. BIOSENSORS 2023; 13:866. [PMID: 37754100 PMCID: PMC10526817 DOI: 10.3390/bios13090866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA's rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA's sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions.
Collapse
Affiliation(s)
- Vasily G. Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| |
Collapse
|
10
|
Tang L, Yang J, Wang Y, Deng R. Recent Advances in Cardiovascular Disease Biosensors and Monitoring Technologies. ACS Sens 2023; 8:956-973. [PMID: 36892106 DOI: 10.1021/acssensors.2c02311] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cardiovascular disease (CVD) causes significant mortality and remains the leading cause of death globally. Thus, to reduce mortality, early diagnosis by measurement of cardiac biomarkers and heartbeat signals presents fundamental importance. Traditional CVD examination requires bulky hospital instruments to conduct electrocardiography recording and immunoassay analysis, which are both time-consuming and inconvenient. Recently, development of biosensing technologies for rapid CVD marker screening attracted great attention. Thanks to the advancement in nanotechnology and bioelectronics, novel biosensor platforms are developed to achieve rapid detection, accurate quantification, and continuous monitoring throughout disease progression. A variety of sensing methodologies using chemical, electrochemical, optical, and electromechanical means are explored. This review first discusses the prevalence and common categories of CVD. Then, heartbeat signals and cardiac blood-based biomarkers that are widely employed in clinic, as well as their utilizations for disease prognosis, are summarized. Emerging CVD wearable and implantable biosensors and monitoring bioelectronics, allowing these cardiac markers to be continuously measured are introduced. Finally, comparisons of the pros and cons of these biosensing devices along with perspectives on future CVD biosensor research are presented.
Collapse
Affiliation(s)
- Lichao Tang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, Illinois, United States
| | - Jiyuan Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47906, Indiana, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
11
|
Nicollete DRP, Benedetti R, Valença BA, Kuniyoshi KK, de Jesus TCS, Gevaerd A, Santiago EB, de Almeida BMM, Júnior SRR, Figueredo MVM. Enhancing a SARS-CoV-2 nucleocapsid antigen test sensitivity with cost efficient strategy through a cotton intermembrane insertion. Sci Rep 2023; 13:4690. [PMID: 36949174 PMCID: PMC10031715 DOI: 10.1038/s41598-023-31641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Lateral flow antigen tests have been widely used in the Covid-19 pandemic, allowing faster diagnostic test results and preventing further viral spread through isolation of infected individuals. Accomplishment of this screening must be performed with tests that show satisfactory sensitivity in order to successfully detect the target protein and avoid false negatives. The aim of this study was to create a lateral flow test that could detect SARS-CoV-2 nucleocapsid protein in low concentrations that were comparable to the limits of detection claimed by existing tests from the market. To do so, several adjustments were necessary during research and development of the prototypes until they were consistent with these criteria. The proposed alternatives of increasing the test line antibody concentration and addition of an intermembrane between the conjugate pad and the nitrocellulose membrane were able to increase the sensitivity four-fold and generate a new rapid test prototype called "lateral flow intermembrane immunoassay test" (LFIIT). This prototype showed an adequate limit of detection (2.0 ng mL-1) while maintaining affordability and simplicity in manufacturing processes.
Collapse
Affiliation(s)
| | - Rafael Benedetti
- Research and Development Department, Hilab, Hilab Campus, José A. Possebom, 800, Curitiba, Paraná, 81270-185, Brazil
| | - Beatriz Arruda Valença
- Research and Development Department, Hilab, Hilab Campus, José A. Possebom, 800, Curitiba, Paraná, 81270-185, Brazil
| | - Keyla Kaori Kuniyoshi
- Research and Development Department, Hilab, Hilab Campus, José A. Possebom, 800, Curitiba, Paraná, 81270-185, Brazil
| | | | - Ava Gevaerd
- Research and Development Department, Hilab, Hilab Campus, José A. Possebom, 800, Curitiba, Paraná, 81270-185, Brazil
| | - Erika Bergamo Santiago
- Research and Development Department, Hilab, Hilab Campus, José A. Possebom, 800, Curitiba, Paraná, 81270-185, Brazil
| | | | - Sérgio Renato Rogal Júnior
- Research and Development Department, Hilab, Hilab Campus, José A. Possebom, 800, Curitiba, Paraná, 81270-185, Brazil
| | | |
Collapse
|
12
|
Bradley Z, Coleman PA, Courtney MA, Fishlock S, McGrath J, Uniacke-Lowe T, Bhalla N, McLaughlin JA, Hogan J, Hanrahan JP, Yan KT, McKee P. Effect of Selenium Nanoparticle Size on IL-6 Detection Sensitivity in a Lateral Flow Device. ACS OMEGA 2023; 8:8407-8414. [PMID: 36910974 PMCID: PMC9996617 DOI: 10.1021/acsomega.2c07297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Sepsis is the body's response to an infection. Existing diagnostic testing equipment is not available in primary care settings and requires long waiting times. Lateral flow devices (LFDs) could be employed in point-of-care (POC) settings for sepsis detection; however, they currently lack the required sensitivity. Herein, LFDs are constructed using 150-310 nm sized selenium nanoparticles (SeNPs) and are compared to commercial 40 nm gold nanoparticles (AuNPs) for the detection of the sepsis biomarker interleukin-6 (IL-6). Both 310 and 150 nm SeNPs reported a lower limit of detection (LOD) than 40 nm AuNPs (0.1 ng/mL compared to 1 ng/mL), although at the cost of test line visual intensity. This is to our knowledge the first use of larger SeNPs (>100 nm) in LFDs and the first comparison of the effect of the size of SeNPs on assay sensitivity in this context. The results herein demonstrate that large SeNPs are viable alternatives to existing commercial labels, with the potential for higher sensitivity than standard 40 nm AuNPs.
Collapse
Affiliation(s)
- Zoe Bradley
- Biopanda
Reagents Ltd., Unit 14, Carrowreagh Business
Park, Carrowreagh Road, Belfast BT16 1QQ, United
Kingdom
- Nanotechnology
and Integrated Bioengineering Centre, School of Engineering, University of Ulster, Belfast BT15 1ED, United Kingdom
| | - Patrick A. Coleman
- Environmental
Research Institute, Glantreo Ltd., Cork T23 XE10, Ireland
- Department
of Chemistry, College of SEFS, University
College Cork, Kane Building, Cork T12 YN60, Ireland
| | | | - Sam Fishlock
- Nanotechnology
and Integrated Bioengineering Centre, School of Engineering, University of Ulster, Belfast BT15 1ED, United Kingdom
| | - Joseph McGrath
- Environmental
Research Institute, Glantreo Ltd., Cork T23 XE10, Ireland
| | - Therese Uniacke-Lowe
- Department
of Chemistry, School of Food and Nutritional Sciences, University College Cork, Level 2 Food Science Building, Cork T12 TP07, Ireland
| | - Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre, School of Engineering, University of Ulster, Belfast BT15 1ED, United Kingdom
- Healthcare
Technology Hub, School of Engineering, University
of Ulster, Belfast BT15 1ED, United
Kingdom
| | - James A. McLaughlin
- Nanotechnology
and Integrated Bioengineering Centre, School of Engineering, University of Ulster, Belfast BT15 1ED, United Kingdom
| | - John Hogan
- Environmental
Research Institute, Glantreo Ltd., Cork T23 XE10, Ireland
| | - John P. Hanrahan
- Environmental
Research Institute, Glantreo Ltd., Cork T23 XE10, Ireland
| | - Ke-Ting Yan
- Biopanda
Reagents Ltd., Unit 14, Carrowreagh Business
Park, Carrowreagh Road, Belfast BT16 1QQ, United
Kingdom
| | - Philip McKee
- Biopanda
Reagents Ltd., Unit 14, Carrowreagh Business
Park, Carrowreagh Road, Belfast BT16 1QQ, United
Kingdom
| |
Collapse
|
13
|
Tay DMY, Kim S, Hao Y, Yee EH, Jia H, Vleck SM, Chilekwa M, Voldman J, Sikes HD. Accelerating the optimization of vertical flow assay performance guided by a rational systematic model-based approach. Biosens Bioelectron 2023; 222:114977. [PMID: 36516633 DOI: 10.1016/j.bios.2022.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Rapid diagnostic tests (RDTs) have shown to be instrumental in healthcare and disease control. However, they have been plagued by many inefficiencies in the laborious empirical development and optimization process for the attainment of clinically relevant sensitivity. While various studies have sought to model paper-based RDTs, most have relied on continuum-based models that are not necessarily applicable to all operation regimes, and have solely focused on predicting the specific interactions between the antigen and binders. It is also unclear how the model predictions may be utilized for optimizing assay performance. Here, we propose a streamlined and simplified model-based framework, only relying on calibration with a minimal experimental dataset, for the acceleration of assay optimization. We show that our models are capable of recapitulating experimental data across different formats and antigen-binder-matrix combinations. By predicting signals due to both specific and background interactions, our facile approach enables the estimation of several pertinent assay performance metrics such as limit-of-detection, sensitivity, signal-to-noise ratio and difference. We believe that our proposed workflow would be a valuable addition to the toolset of any assay developer, regardless of the amount of resources they have in their arsenal, and aid assay optimization at any stage in their assay development process.
Collapse
Affiliation(s)
- Dousabel M Y Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seunghyeon Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yining Hao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emma H Yee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huan Jia
- Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Sydney M Vleck
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Makaya Chilekwa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Antimicrobial Resistance Integrated Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
14
|
Chabi M, Vu B, Brosamer K, Smith M, Chavan D, Conrad JC, Willson RC, Kourentzi K. Smartphone-read phage lateral flow assay for point-of-care detection of infection. Analyst 2023; 148:839-848. [PMID: 36645184 PMCID: PMC10503656 DOI: 10.1039/d2an01499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic has highlighted the urgent need for sensitive, affordable, and widely accessible testing at the point of care. Here we demonstrate a new, universal LFA platform technology using M13 phage conjugated with antibodies and HRP enzymes that offers high analytical sensitivity and excellent performance in a complex clinical matrix. We also report its complete integration into a sensitive chemiluminescence-based smartphone-readable lateral flow assay for the detection of SARS-CoV-2 nucleoprotein. We screened 84 anti-nucleoprotein monoclonal antibody pairs in phage LFA and identified an antibody pair that gave an LoD of 25 pg mL-1 nucleoprotein in nasal swab extract using a FluorChem gel documentation system and 100 pg mL-1 when the test was imaged and analyzed by an in-house-developed smartphone reader. The smartphone-read LFA signals for positive clinical samples tested (N = 15, with known Ct) were statistically different (p < 0.001) from signals for negative clinical samples (N = 11). The phage LFA technology combined with smartphone chemiluminescence imaging can enable the timely development of ultrasensitive, affordable point-of-care testing platforms for SARS-CoV-2 and beyond.
Collapse
Affiliation(s)
- Maede Chabi
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Binh Vu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Kristen Brosamer
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Maxwell Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Dimple Chavan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Richard C Willson
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey, Nuevo León 64710, Mexico
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
15
|
Alhammadi M, Yoo J, Sonwal S, Park SY, Umapathi R, Oh MH, Huh YS. A highly sensitive lateral flow immunoassay for the rapid and on-site detection of enrofloxacin in milk. Front Nutr 2022; 9:1036826. [PMID: 36352902 PMCID: PMC9637957 DOI: 10.3389/fnut.2022.1036826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Enrofloxacin (ENR) is a veterinary antibiotic used to treat bacterial infections in livestock. It chiefly persists in foods and dairy products, which in turn pose severe risks to human health. Hence it is very important to detect the ENR in foods and dairy products to safeguard human health. Herein, we attempted to develop a single-step detection lateral flow immunochromatographic assay (LFIA) using gold nanoparticles (AuNPs) for the rapid and on-site detection of ENR in milk samples. An anti-enrofloxacin monoclonal antibody (ENR-Ab) was conjugated with AuNPs for the specific detection of ENR in milk samples. For sensitivity improvement, many optimization steps were conducted on LFIA test strips. The visual limit of detection (vLOD) was found to be 20 ng/ml with a cut-off value of 50 ng/ml in the milk samples. The obtained LOD and cut-off value were within the safety limit guidelines of the Ministry of food and drug safety, South Korea. The test strip showed negligible cross-reactivity with ENR analogs, and other components of antibiotics, this indicates the high specificity of the LFIA test strip towards ENR. The designed test strip showed good reliability. The visual test results can be seen within 10 min without the need for special equipment. Therefore, the test strip can be employed as a potential detection strategy for the qualitative on-site detection of enrofloxacin in milk samples.
Collapse
Affiliation(s)
- Munirah Alhammadi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Jingon Yoo
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Sonam Sonwal
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - So Young Park
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Reddicherla Umapathi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- *Correspondence: Reddicherla Umapathi,
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
- Mi-Hwa Oh,
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- Yun Suk Huh,
| |
Collapse
|
16
|
Agarwal P, Toley BJ. Unreacted Labeled PCR Primers Inhibit the Signal in a Nucleic Acid Lateral Flow Assay as Elucidated by a Transport Reaction Model. ACS MEASUREMENT SCIENCE AU 2022; 2:317-324. [PMID: 36785570 PMCID: PMC9885946 DOI: 10.1021/acsmeasuresciau.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Factors that affect the performance of the nucleic acid lateral flow assay (NALFA) have not been well studied. In this work, we identify two important phenomena that negatively affect signal intensities during the detection of PCR products using NALFA: (i) the presence of unreacted PCR primers, and (ii) the presence of excess PCR amplicons. This is the first report that highlights the negative effect of unreacted PCR primers on NALFA. The negative effect of excess amplicons, while not explicitly reported for NALFAs, emanates from an identical phenomenon in lateral flow immunoassays known as the "hook effect". We show that the above effects may be alleviated by increasing the concentration of capture antibodies at the test line and the concentration of reporter moieties (gold nanoparticles). To demonstrate these, we utilized a PCR assay in which both primers were end-labeled, to generate dually end-labeled (bi-labeled) PCR amplicons of 230 bp length. To provide mechanistic understanding of these phenomena, we present the first transport-reaction model of NALFA, the results of which qualitatively matched all observed phenomena. Based on these results, we provide recommendations for the optimal design of PCR for NALFA detection.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Department
of Chemical Engineering, Indian Institute
of Science, Bengaluru, Karnataka 560012, India
| | - Bhushan J. Toley
- Department
of Chemical Engineering, Indian Institute
of Science, Bengaluru, Karnataka 560012, India
- Center
for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
17
|
Hu L, Calucho E, Fuentes-Chust C, Parolo C, Idili A, Álvarez-Diduk R, Rivas L, Merkoçi A. Selection and characterisation of bioreceptors to develop nanoparticle-based lateral-flow immunoassays in the context of the SARS-CoV-2 outbreak. LAB ON A CHIP 2022; 22:2938-2943. [PMID: 35903978 DOI: 10.1039/d2lc00486k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This manuscript aims at raising the attention of the scientific community to the need for better characterised bioreceptors for fast development of point-of-care diagnostic devices able to support mass frequency testing. Particularly, we present the difficulties encountered in finding suitable antibodies for the development of a lateral flow assay for detecting the nucleoprotein of SARS-CoV-2.
Collapse
Affiliation(s)
- Liming Hu
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Celia Fuentes-Chust
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Claudio Parolo
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic (Department of International Health), Universitat de Barcelona, Barcelona, Spain
| | - Andrea Idili
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Lourdes Rivas
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
18
|
Rainbow latex microspheres lateral flow immunoassay with smartphone-based device for simultaneous detection of three mycotoxins in cereals. Anal Chim Acta 2022; 1221:340138. [DOI: 10.1016/j.aca.2022.340138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
|
19
|
Baker AN, Hawker-Bond GW, Georgiou PG, Dedola S, Field RA, Gibson MI. Glycosylated gold nanoparticles in point of care diagnostics: from aggregation to lateral flow. Chem Soc Rev 2022; 51:7238-7259. [PMID: 35894819 PMCID: PMC9377422 DOI: 10.1039/d2cs00267a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current point-of-care lateral flow immunoassays, such as the home pregnancy test, rely on proteins as detection units (e.g. antibodies) to sense for analytes. Glycans play a fundamental role in biological signalling and recognition events such as pathogen adhesion and hence they are promising future alternatives to antibody-based biosensing and diagnostics. Here we introduce the potential of glycans coupled to gold nanoparticles as recognition agents for lateral flow diagnostics. We first introduce the concept of lateral flow, including a case study of lateral flow use in the field compared to other diagnostic tools. We then introduce glycosylated materials, the affinity gains achieved by the cluster glycoside effect and the current use of these in aggregation based assays. Finally, the potential role of glycans in lateral flow are explained, and examples of their successful use given. Antibody-based lateral flow (immune) assays are well established, but here the emerging concept and potential of using glycans as the detection agents is reviewed.![]()
Collapse
Affiliation(s)
- Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - George W Hawker-Bond
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital Oxford, Oxford, OX3 9DU, UK
| | - Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | | | - Robert A Field
- Iceni Glycoscience Ltd, Norwich, NR4 7GJ, UK.,Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. .,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
20
|
Chen X, Zhou Q, Tan Y, Wang R, Wu X, Liu J, Liu R, Wang S, Dong S. Nanoparticle-Based Lateral Flow Biosensor Integrated With Loop-Mediated Isothermal Amplification for Rapid and Visual Identification of Chlamydia trachomatis for Point-of-Care Use. Front Microbiol 2022; 13:914620. [PMID: 35903464 PMCID: PMC9318599 DOI: 10.3389/fmicb.2022.914620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydial infection, caused by Chlamydia trachomatis, is the most common bacterial sexually transmitted infection and remains a major public health problem worldwide, particularly in underdeveloped regions. Developing a rapid and sensitive point-of-care (POC) testing for accurate screening of C. trachomatis infection is critical for earlier treatment to prevent transmission. In this study, a novel diagnostic assay, loop-mediated isothermal amplification integrated with gold nanoparticle-based lateral flow biosensor (LAMP-LFB), was devised and applied for diagnosis of C. trachomatis in clinical samples. A set of LAMP primers based on the ompA gene from 14 C. trachomatis serological variants (serovar A-K, L1, L2, L3) was successfully designed and used for the development of C. trachomatis-LAMP-LFB assay. The optimal reaction system can be performed at a constant temperature of 67°C for 35 min. The total assay process, including genomic DNA extraction (~15 min), LAMP reaction (35 min), and LFB readout (~2 min), could be finished within 60 min. The C. trachomatis-LAMP-LFB could detect down to 50 copies/ml, and the specificity was 100%, no cross-reactions with other pathogens were observed. Hence, our C. trachomatis-LAMP-LFB was a rapid, reliable, sensitive, cost-effective, and easy-to-operate assay, which could offer an attractive POC testing tool for chlamydial infection screening, especially in resource starvation settings.
Collapse
|
21
|
Newsham EI, Phillips EA, Ma H, Chang MM, Wereley ST, Linnes JC. Characterization of wax valving and μPIV analysis of microscale flow in paper-fluidic devices for improved modeling and design. LAB ON A CHIP 2022; 22:2741-2752. [PMID: 35762978 PMCID: PMC9362854 DOI: 10.1039/d2lc00297c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Paper-fluidic devices are a popular platform for point-of-care diagnostics due to their low cost, ease of use, and equipment-free detection of target molecules. They are limited, however, by their lack of sensitivity and inability to incorporate more complex processes, such as nucleic acid amplification or enzymatic signal enhancement. To address these limitations, various valves have previously been implemented in paper-fluidic devices to control fluid obstruction and release. However, incorporation of valves into new devices is a highly iterative, time-intensive process due to limited experimental data describing the microscale flow that drives the biophysical reactions in the assay. In this paper, we tested and modeled different geometries of thermally actuated valves to investigate how they can be more easily implemented in an LFIA with precise control of actuation time, flow rate, and flow pattern. We demonstrate that bulk flow measurements alone cannot estimate the highly variable microscale properties and effects on LFIA signal development. To further quantify the microfluidic properties of paper-fluidic devices, micro-particle image velocimetry was used to quantify fluorescent nanoparticle flow through the membranes and demonstrated divergent properties from bulk flow that may explain additional variability in LFIA signal generation. Altogether, we demonstrate that a more robust characterization of paper-fluidic devices can permit fine-tuning of parameters for precise automation of multi-step assays and inform analytical models for more efficient design.
Collapse
Affiliation(s)
- Emilie I Newsham
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Elizabeth A Phillips
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hui Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Megan M Chang
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
22
|
Yi M, He P, Li J, Zhang J, Lin L, Wang L, Zhao L. A portable toolbox based on time-resolved fluoroimmunoassay and immunomagnetic separation for Cronobacter sakazakii on-site detection in dairy. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Okada K, Horikoshi Y, Nishimura N, Ishii S, Nogami H, Motomura C, Miyairi I, Tsumura N, Mori T, Ito K, Honma S, Nagai K, Tanaka H, Hayakawa T, Abe C, Ouchi K. Clinical evaluation of a new rapid immunochromatographic test for detection of Bordetella pertussis antigen. Sci Rep 2022; 12:8069. [PMID: 35577904 PMCID: PMC9109659 DOI: 10.1038/s41598-022-11933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
A more rapid and less complicated test to diagnose pertussis is required in clinical settings. We need to detect Bordetella pertussis, which mainly causes pertussis, as early as possible, because pertussis is more likely to become severe in infants, and people around them can easily become a source of infection due to its strong infectivity. Nevertheless, methods that can detect B. pertussis rapidly and efficiently are lacking. Therefore, we developed a new immunochromatographic antigen kit (ICkit) for the early diagnosis of pertussis. The ICkit detects B. pertussis antigens in a nasopharyngeal swab without equipment and provides the result in about 15 min with a simple procedure. Additionally, a prospective study to evaluate the ICkit was conducted in 11 medical institutions, involving 195 cases with suspected pertussis. Compared with the real-time polymerase chain reaction (rPCR), the sensitivity and specificity of the ICkit were 86.4% (19/22) and 97.1% (168/173), respectively. The ICkit detected the antigen in both children and adults. Furthermore, the ICkit detected the antigen until the 25th day from the onset of cough, when rPCR detected the antigen. Thus, the ICkit demonstrated a high correlation with rPCR and would help diagnose pertussis more rapidly and efficiently.
Collapse
Affiliation(s)
- Kenji Okada
- Division of Basic Nursing, Fukuoka Nursing College, Fukuoka, Japan
| | - Yuho Horikoshi
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Naoko Nishimura
- Department of Pediatrics, Konan Kosei Hospital, Aichi, Japan
| | - Shigeki Ishii
- Department of Pediatrics, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Hiroko Nogami
- Department of Respiratory Medicine, National Hospital Organization Fukuoka National Hospital, Fukuoka, Japan
| | - Chikako Motomura
- Department of Pediatrics, National Hospital Organization Fukuoka National Hospital, Fukuoka, Japan
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | | | - Toshihiko Mori
- Department of Pediatrics, NTT East Sapporo Hospital, Hokkaido, Japan
| | - Kenta Ito
- Department of General Pediatrics, Aichi Children's Health and Medical Center, Aichi, Japan
| | | | | | - Hiroshi Tanaka
- Sapporo Cough Asthma and Allergy Center, Hokkaido, Japan
| | - Toru Hayakawa
- Diagnostics Department, Asahi Kasei Pharma Corporation, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan.
| | - Chiharu Abe
- Diagnostics Department, Asahi Kasei Pharma Corporation, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Kazunobu Ouchi
- Department of Medical Welfare for Children, Kawasaki University of Medical Welfare, Okayama, Japan
| |
Collapse
|
24
|
Zherdev AV, Dzantiev BB. Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Automated liquid handling robot for rapid lateral flow assay development. Anal Bioanal Chem 2022; 414:2607-2618. [PMID: 35091761 PMCID: PMC8799445 DOI: 10.1007/s00216-022-03897-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/01/2022]
Abstract
AbstractThe lateral flow assay (LFA) is one of the most popular technologies on the point-of-care diagnostics market due to its low cost and ease of use, with applications ranging from pregnancy to environmental toxins to infectious disease. While the use of these tests is relatively straightforward, significant development time and effort are required to create tests that are both sensitive and specific. Workflows to guide the LFA development process exist but moving from target selection to an LFA that is ready for field testing can be labor intensive, resource heavy, and time consuming. To reduce the cost and the duration of the LFA development process, we introduce a novel development platform centered on the flexibility, speed, and throughput of an automated robotic liquid handling system. The system comprises LFA-specific hardware and software that enable large optimization experiments with discrete and continuous variables such as antibody pair selection or reagent concentration. Initial validation of the platform was demonstrated during development of a malaria LFA but was readily expanded to encompass development of SARS-CoV-2 and Mycobacterium tuberculosis LFAs. The validity of the platform, where optimization experiments are run directly on LFAs rather than in solution, was based on a direct comparison between the robotic system and a more traditional ELISA-like method. By minimizing hands-on time, maximizing experiment size, and enabling improved reproducibility, the robotic system improved the quality and quantity of LFA assay development efforts.
Graphical abstract
Collapse
|
26
|
Li N, Xi X, Zhu J, Wu X, Zhang X, Wang S, Wen W. High sensitivity and rapid detection of hepatitis B virus DNA using lateral flow biosensors based on Au@Pt nanorods in the absence of hydrogen peroxide. Analyst 2022; 147:423-429. [DOI: 10.1039/d1an02084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au@Pt nanorods with enhanced oxidase-like activity were designed and used as signal probes to construct LFBs for the high sensitivity detection of hepatitis B virus DNA (HBV-DNA).
Collapse
Affiliation(s)
- Niu Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiaoxue Xi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Junlun Zhu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiaowei Wu
- Departemnt of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
27
|
Harpaldas H, Arumugam S, Campillo Rodriguez C, Kumar BA, Shi V, Sia SK. Point-of-care diagnostics: recent developments in a pandemic age. LAB ON A CHIP 2021; 21:4517-4548. [PMID: 34778896 PMCID: PMC8860149 DOI: 10.1039/d1lc00627d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we provide an overview of developments in point-of-care (POC) diagnostics during the COVID-19 pandemic. We review these advances within the framework of a holistic POC ecosystem, focusing on points of interest - both technological and non-technological - to POC researchers and test developers. Technologically, we review design choices in assay chemistry, microfluidics, and instrumentation towards nucleic acid and protein detection for severe acute respiratory coronavirus 2 (SARS-CoV-2), and away from the lab bench, developments that supported the unprecedented rapid development, scale up, and deployment of POC devices. We describe common features in the POC technologies that obtained Emergency Use Authorization (EUA) for nucleic acid, antigen, and antibody tests, and how these tests fit into four distinct POC use cases. We conclude with implications for future pandemics, infectious disease monitoring, and digital health.
Collapse
Affiliation(s)
- Harshit Harpaldas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | - Bhoomika Ajay Kumar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Vivian Shi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
28
|
Development of an accurate lateral flow immunoassay for PEDV detection in swine fecal samples with a filter pad design. ANIMAL DISEASES 2021; 1:27. [PMID: 34778887 PMCID: PMC8572657 DOI: 10.1186/s44149-021-00029-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), as the main causative pathogen of viral diarrhea in pigs, has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to the swine industry. Rapid diagnosis methods are essential for preventing outbreaks and transmission of this disease. In this study, a paper-based lateral flow immunoassay for the rapid diagnosis of PEDV in swine fecal samples was developed using stable color-rich latex beads as the label. Under optimal conditions, the newly developed latex bead-based lateral flow immunoassay (LBs-LFIA) attained a limit of detection (LOD) as low as 103.60 TCID50/mL and no cross-reactivity with other related swine viruses. To solve swine feces impurity interference, by adding a filtration unit design of LFIA without an additional pretreatment procedure, the LBs-LFIA gave good agreement (92.59%) with RT-PCR results in the analysis of clinical swine fecal samples (n = 108), which was more accurate than previously reported colloidal gold LFIA (74.07%) and fluorescent LFIA (86.67%). Moreover, LBs-LFIA showed sufficient accuracy (coefficient of variance [CV] < 15%) and stable (room temperature storage life > 56 days) performance for PEDV detection, which is promising for on-site analysis and user-driven testing in pig production system.
Collapse
|
29
|
Pollard C, Hudson M, McDonnell JM, Royall PG, Wolff K. Development of a point-of-care test for the detection of MDMA in latent fingerprints using surface plasmon resonance and lateral flow technology. Drug Test Anal 2021; 14:613-621. [PMID: 34766468 DOI: 10.1002/dta.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022]
Abstract
To date, a specific point-of-care test (POCT) for 3,4-methylenedioxymethamphetamine (MDMA, ecstasy, 'E') in latent fingerprints (LFPs) has not been explored. Other POCTs identify MDMA in sweat by detecting the drug as a cross-reactant rather than target analyte, thus decreasing the test's sensitivity. The study's aim was to design a sensitive POCT for the detection of MDMA in LFPs using surface plasmon resonance (SPR) and lateral flow immunoassay (LFA) technology. A high-affinity antibody binding pair was identified using the former technique, deeming the pair suitable for a LFA. Titrations of fluorescently labelled antibody and antigen concentrations were tested to identify a sharp drop-in signal upon the addition of MDMA to allow a clear distinction between negative and positive outcomes. We trialled the LFA by producing dose response curves with MDMA and a group of drugs that share a similar chemical structure to MDMA. These were generated through spiking the LFA with increasing levels of drug (0-400 pg/10 μl of MDMA; 0-10,000 pg/10 μl of cross-reactant). Fluorescent test signals were measured using a cartridge reader. The cut-off (threshold) 60 pg/10 μl calculated better cartridge performance (1.00 sensitivity, 0.95 specificity and 0.98 accuracy), when compared with 40 pg/10 μl. The biggest cross-reactant was PMMA (250%), followed by MDEA (183%), MBDB (167%), MDA (16%) and methamphetamine (16%). A sensitive LFP screening tool requiring no sample preparation was successfully designed.
Collapse
Affiliation(s)
- Caroline Pollard
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, Franklin-Wilkins Building, King's College London, 150 Stamford St, London, United Kingdom, SE1 9NH, UK
| | | | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Paul G Royall
- Institute of Pharmaceutical Science, Franklin-Wilkins Building, King's College London, London, UK
| | - Kim Wolff
- King's Forensics, Department of Analytical, Environmental & Forensic Sciences, Franklin-Wilkins Building, King's College London, 150 Stamford St, London, United Kingdom, SE1 9NH, UK
| |
Collapse
|
30
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
31
|
Kight EC, Hussain I, Bowden AK, Haselton FR. Recurrence monitoring for ovarian cancer using a cell phone-integrated paper device to measure the ovarian cancer biomarker HE4/CRE ratio in urine. Sci Rep 2021; 11:21945. [PMID: 34754053 PMCID: PMC8578327 DOI: 10.1038/s41598-021-01544-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer has a poor cure rate and rates of relapse are high. Current recurrence detection is limited by non-specific methods such as blood testing and ultrasound. Based on reports that human epididymis four (HE4) / creatinine (CRE) ratios found in urine are elevated in ovarian cancers, we have developed a paper-based device that combines lateral flow technology and cell phone analysis to quantitatively measure HE4/CRE. Surrogate samples were used to test the performance over clinically expected HE4/CRE ratios. For HE4/CRE ratios of 2 to 47, the percent error was found to be 16.0% on average whether measured by a flatbed scanner or cell phone. There was not a significant difference between the results from the cell phone or scanner. Based on published studies, error in this method was less than the difference required to detect recurrence. This promising new tool, with further development, could be used at home or in low-resource settings to provide timely detection of ovarian cancer recurrence.
Collapse
Affiliation(s)
- Emily C Kight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Iftak Hussain
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.,Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Audrey K Bowden
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.,Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37232, USA
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
32
|
Li J, Ding J, Liu XL, Tang B, Bai X, Wang Y, Qiao WD, Liu MY, Wang XL. Upconverting phosphor technology-based lateral flow assay for the rapid and sensitive detection of anti-Trichinella spiralis IgG antibodies in pig serum. Parasit Vectors 2021; 14:487. [PMID: 34551787 PMCID: PMC8456594 DOI: 10.1186/s13071-021-04949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 01/31/2023] Open
Abstract
Background Trichinella spiralis is a zoonotic food-borne parasite. A disease caused by infection with T. spiralis is called trichinellosis in humans. It is important to investigate the epidemic situation and the surveillance of herds and then prevent infection in humans. Therefore, this study is to develop a rapid and sensitive diagnostic method for on-site test in domestic and wild animals. Methods Upconverting phosphor nanoparticles (UCNPs), an excellent optical label, were conjugated with the excretory-secretory (ES) antigens from T. spiralis muscle larvae (ML) or goat anti-rabbit IgG, and a lateral flow (LF) assay based on these probes (UCNPs-ES/goat anti-rabbit IgG) was developed for the rapid and sensitive detection of anti-T. spiralis IgG antibodies in pig serum. The assay is named the UPT-LF-ES assay. In addition, the probes were characterized, and the assay was optimized. A cut-off threshold of the assay was also identified by using 169 known negative pig samples. Performance of the assay to T. spiralis with different infective numbers, cross-reactivity with other parasitic infections, the single-blinded experiment, and coincidence were evaluated with the assay. Results The UPT-LF-ES assay was successfully constructed and optimized based on the probes of UCNPs-ES/goat anti-rabbit IgG. In the pigs infected with 100, 1000, and 10,000 ML, positive results were first presented at 35 days post-infection (dpi), 30 dpi, and 25 dpi, respectively. The assay had no cross-reaction with other parasitic infections. A single-blinded experiment indicated that the sensitivity and specificity of the UPT-LF-ES assay were 100% and 100%, respectively, the area under the receiver operating characteristic (ROC) curve was 1.000. In addition, the value detected by the UPT-LF-ES assay was significantly different between positive and negative samples. Moreover, compared with the “gold standard” magnetic stirrer method, the coincidence rate of the UPT-LF-ES assay was 87.27%, and the kappa (K) coefficient was 0.7454, showing a substantial agreement. Conclusions The UPT-LF-ES assay is a useful point-of-care test (POCT) with T. spiralis in the detection of pig, which contributes to preventing human trichinellosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04949-2.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xiao-Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Wei-Dong Qiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xue-Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, OIE Collaborating Center On Foodborne Parasites in the Asian-Pacific Region, Changchun, China.
| |
Collapse
|
33
|
Srivastav S, Dankov A, Adanalic M, Grzeschik R, Tran V, Pagel-Wieder S, Gessler F, Spreitzer I, Scholz T, Schnierle B, Anastasiou OE, Dittmer U, Schlücker S. Rapid and Sensitive SERS-Based Lateral Flow Test for SARS-CoV2-Specific IgM/IgG Antibodies. Anal Chem 2021; 93:12391-12399. [PMID: 34468139 DOI: 10.1021/acs.analchem.1c02305] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an immune response to COVID-19 infection, patients develop SARS-CoV-2-specific IgM/IgG antibodies. Here, we compare the performance of a conventional lateral flow assay (LFA) with a surface-enhanced Raman scattering (SERS)-based LFA test for the detection of SARS-CoV-2-specific IgM/IgG in sera of COVID-19 patients. Sensitive detection of IgM might enable early serological diagnosis of acute infections. Rapid detection in serum using a custom-built SERS reader is at least an order of magnitude more sensitive than the conventional LFAs with naked-eye detection. For absolute quantification and the determination of the limit of detection (LOD), a set of reference measurements using purified (total) IgM in buffer was performed. In this purified system, the sensitivity of SERS detection is even 7 orders of magnitude higher: the LOD for SERS was ca. 100 fg/mL compared to ca. 1 μg/mL for the naked-eye detection. This outlines the high potential of SERS-based LFAs in point-of-care testing once the interference of serum components with the gold conjugates and the nitrocellulose membrane is minimized.
Collapse
Affiliation(s)
- Supriya Srivastav
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Asen Dankov
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Mujo Adanalic
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Roland Grzeschik
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Vi Tran
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sibylle Pagel-Wieder
- Miprolab-Gesellschaft für mikrobiologische Diagnostik mbH, 37079 Göttingen, Germany
| | - Frank Gessler
- Miprolab-Gesellschaft für mikrobiologische Diagnostik mbH, 37079 Göttingen, Germany
| | - Ingo Spreitzer
- Paul-Ehrlich Institut, Department of Microbiology, 63225 Langen, Germany
| | - Tatjana Scholz
- Paul-Ehrlich Institut, Department of Virology, 63225 Langen, Germany
| | - Barbara Schnierle
- Paul-Ehrlich Institut, Department of Virology, 63225 Langen, Germany
| | - Olympia E Anastasiou
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry and CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
34
|
Ranjan S, Jain S, Bhargava A, Shandilya R, Srivastava RK, Mishra PK. Lateral flow assay-based detection of long non-coding RNAs: A point-of-care platform for cancer diagnosis. J Pharm Biomed Anal 2021; 204:114285. [PMID: 34333453 DOI: 10.1016/j.jpba.2021.114285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assay (LFA) is a flexible, simple, low-costpoint-of-care platform for rapid detection of disease-specific biomarkers. Importantly, the ability of the assay to capture the circulating bio-molecules has gained significant attention, as it offers a potential minimal invasive system for early disease diagnosis and prognosis. In the present article, we review an innovative concept of LFA-based detection of circulating long non-coding RNAs (lncRNAs), one of the key regulators of fundamental biological processes. In addition, their disease-specific expression pattern and presence in biological fluids at differential levels make them excellent biomarker candidates for cancer detection. Our article also provides an update on the requirements for developing and improving such systems and discusses the key aspects of material selection, operational concepts, principles and conceptual design. We assume that the reviewed points will be helpful to improve the diagnostic applicability of LFA based lncRNA detection in cancer diagnosis.
Collapse
Affiliation(s)
- Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Jain
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
35
|
Antibody- and nucleic acid-based lateral flow immunoassay for Listeria monocytogenes detection. Anal Bioanal Chem 2021; 413:4161-4180. [PMID: 34041576 DOI: 10.1007/s00216-021-03402-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Listeria monocytogenes is an invasive opportunistic foodborne pathogen and its routine surveillance is critical for protecting the food supply and public health. The traditional detection methods are time-consuming and require trained personnel. Lateral flow immunoassay (LFIA), on the other hand, is an easy-to-perform, rapid point-of-care test and has been widely used as an inexpensive surveillance tool. In recent times, nucleic acid-based lateral flow immunoassays (NALFIA) are also developed to improve sensitivity and specificity. A significant improvement in lateral flow-based assays has been reported in recent years, especially the ligands (antibodies, nucleic acids, aptamers, bacteriophage), labeling molecules, and overall assay configurations to improve detection sensitivity, specificity, and automated interpretation of results. In most commercial applications, LFIA has been used with enriched food/environmental samples to ensure detection of live cells thus prolonging the assay time to 24-48 h; however, with the recent improvement in LFIA sensitivity, results can be obtained in less than 8 h with shortened and improved enrichment practices. Incorporation of surface-enhanced Raman spectroscopy and/or immunomagnetic separation could significantly improve LFIA sensitivity for near-real-time point-of-care detection of L. monocytogenes for food safety and public health applications.
Collapse
|
36
|
Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Anal Bioanal Chem 2021; 413:4111-4117. [PMID: 34036400 DOI: 10.1007/s00216-021-03421-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Nanoparticle (NP)-based lateral flow assay (LFA) technology has outstanding characteristics that make it ideal for point-of-care bioanalytical applications. However, LFAs still have important limitations, especially related to sensitivity, which is in general worse than that of other well-established bioassays such as ELISA or PCR. Many efforts have been made for enhancing the sensitivity of LFAs, mainly actuating on the nanoparticle labels and on alternative optical detection modes. However, strip pads modification for such a purpose is an incipient vast field of research. This article gives a brief overview on the recent advances proposed for signal amplification actuating on different pads and the general architecture of the LFA strips. Such strategies offer universal tools that can be adapted to any LFA, independently of the kind of sample, analyte, and label. The principles of the different strategies developed to achieve novel signal amplification and sensitive detection are discussed, and some examples of relevant approaches are highlighted, together with future prospects and challenges.
Collapse
|
37
|
Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47:647-666. [PMID: 33896354 DOI: 10.1080/1040841x.2021.1911930] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge. In contrast, immunological approaches are faster, simpler, and user-friendly alternatives and have been developed for the detection of L. monocytogenes in food, environmental, and clinical samples. These techniques are dependent on the constitutive expression of L. monocytogenes antigens and the specificity of the antibodies used. Here, updated knowledge on pathogenesis and the key immunogenic virulence determinants of L. monocytogenes that are used for the generation of monoclonal and polyclonal antibodies for the serological assay development are summarised. In addition, immunological approaches based on enzyme-linked immunosorbent assay, immunofluorescence, lateral flow immunochromatographic assays, and immunosensors with relevant improvements are highlighted. Though the sensitivity and specificity of the assays were improved significantly, methods still face many challenges that require further validation before use.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns, Brasil
| | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
38
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally as a severe pandemic. SARS-CoV-2 infection stimulates antigen-specific antibody responses. Multiple serologic tests have been developed for SARS-CoV-2. However, which antigens are most suitable for serological testing remains poorly understood. Specifically, which antigens have the highest sensitivity and specificity for serological testing and which have the least cross-reactivity with other coronaviruses are currently unknown. Previous studies have shown that the S1 domain of the spike (S) protein has very low cross-reactivity between epidemic coronaviruses and common human coronaviruses, whereas the S2 domain of the S protein and the nucleocapsid protein (N protein) show low-level cross-reactivity. Therefore, S1 is considered more specific than the native homotrimer of the S protein, and the receptor-binding domain as an antigen to test patient antibodies is more sensitive than the native N protein. In addition, an increasing number of studies have used multiantigen protein arrays to screen serum from convalescent patients with COVID-19. Antigen combinations demonstrated improved performance compared to each individual antigen. For rapid antigen detection, the sensitivity of the test is higher in the first week of onset of the disease with high viral loads. Highly sensitive and specific immunological diagnostic methods for antibodies or those that directly detect viral antigens in clinical samples would be beneficial for the rapid and accurate diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
39
|
Nucleic Acid-Based Lateral Flow Biosensor for Salmonella Typhi and Salmonella Paratyphi: A Detection in Stool Samples of Suspected Carriers. Diagnostics (Basel) 2021; 11:diagnostics11040700. [PMID: 33919817 PMCID: PMC8070779 DOI: 10.3390/diagnostics11040700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022] Open
Abstract
A multiplex rapid detection system, based on a PCR-lateral flow biosensor (mPCR-LFB) was developed to identify Salmonella Typhi and Salmonella Paratyphi A from suspected carriers. The lower detection limit for S. Typhi and S. Paratyphi A was 0.16 and 0.08 ng DNA equivalent to 10 and 102 CFU/mL, respectively. Lateral flow biosensor was used for visual detection of mPCR amplicons (stgA, SPAint, ompC, internal amplification control) by labeling forward primers with fluorescein-isothiocyanate (FITC), Texas Red, dinitrophenol (DNP) and digoxigenin (DIG) and reverse primers with biotin. Binding of streptavidin-colloidal gold conjugate with the amplicons resulted in formation of a red color dots on the strip after 15-20 min of sample exposure. The nucleic acid lateral flow analysis of the mPCR-LFB was better in sensitivity and more rapid than the conventional agarose gel electrophoresis. Moreover, the mPCR-LFB showed 100% sensitivity and specificity when evaluated with stools spiked with 100 isolates of Salmonella genus and other bacteria. A prospective cohort study on stool samples of 1176 food handlers in outbreak areas (suspected carriers) resulted in 23 (2%) positive for S. Typhi. The developed assay has potential to be used for rapid detection of typhoid carriers in surveillance program.
Collapse
|
40
|
Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS NANO 2021; 15:3593-3611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lateral flow assays (LFAs) are paper-based point-of-care (POC) diagnostic tools that are widely used because of their low cost, ease of use, and rapid format. Unfortunately, traditional commercial LFAs have significantly poorer sensitivities (μM) and specificities than standard laboratory tests (enzyme-linked immunosorbent assay, ELISA: pM-fM; polymerase chain reaction, PCR: aM), thus limiting their impact in disease control. In this Perspective, we review the evolving efforts to increase the sensitivity and specificity of LFAs. Recent work to improve the sensitivity through assay improvement includes optimization of the assay kinetics and signal amplification by either reader systems or additional reagents. Together, these efforts have produced LFAs with ELISA-level sensitivities (pM-fM). In addition, sample preamplification can be applied to both nucleic acids (direct amplification) and other analytes (indirect amplification) prior to LFA testing, which can lead to PCR-level (aM) sensitivity. However, these amplification strategies also increase the detection time and assay complexity, which inhibits the large-scale POC use of LFAs. Perspectives to achieve future rapid (<30 min), ultrasensitive (PCR-level), and "sample-to-answer" POC diagnostics are also provided. In the case of LFA specificity, recent research efforts have focused on high-affinity molecules and assay optimization to reduce nonspecific binding. Furthermore, novel highly specific molecules, such as CRISPR/Cas systems, can be integrated into diagnosis with LFAs to produce not only ultrasensitive but also highly specific POC diagnostics. In summary, with continuing improvements, LFAs may soon offer performance at the POC that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Li Zhan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080 United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - James Sackrison
- 3984 Hunters Hill Way, Minnetonka, Minnesota 55345, United States
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Director, Institute of Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
41
|
Pohanka M. Glycated Hemoglobin and Methods for Its Point of Care Testing. BIOSENSORS 2021; 11:70. [PMID: 33806493 PMCID: PMC8000313 DOI: 10.3390/bios11030070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
Glycated hemoglobin (HbA1c) is a product of the spontaneous reaction between hemoglobin and elevated glucose levels in the blood. It is included among the so-called advanced glycation end products, of which is the most important for the clinical diagnosis of diabetes mellitus, and it can serve as an alternative to glycemia measurement. Compared to the diagnosis of diabetes mellitus by glycemia, the HbA1c level is less influenced by a short-term problem with diabetes compensation. Mass spectroscopy and chromatographic techniques are among the standard methods of HbA1c level measurement. Compared to glycemia measurement, there is lack of simple methods for diabetes mellitus diagnosis by means of the HbA1c assay using a point-of-care test. This review article is focused on the surveying of facts about HbA1c and its importance in diabetes mellitus diagnosis, and surveying standard methods and new methods suitable for the HbA1c assay under point-of-care conditions. Various bioassays and biosensors are mentioned and their specifications are discussed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
42
|
Ernst E, Wolfe P, Stahura C, Edwards KA. Technical considerations to development of serological tests for SARS-CoV-2. Talanta 2021; 224:121883. [PMID: 33379092 PMCID: PMC7654332 DOI: 10.1016/j.talanta.2020.121883] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
The COVID-19 pandemic has had a devastating impact worldwide and has brought clinical assays both for acute diagnosis and prior exposure determination to the forefront. Serological testing intended for point-of-care or laboratory use can be used to determine more accurate individual and population assessments of prior exposure to SARS-CoV-2; improve our understanding of the degree to which immunity is conveyed to subsequent exposures; and quantify immune response to future vaccines. In response to this pandemic, initially more than 90 companies deployed serology assays to the U.S. market, many of which made overstated claims for their accuracy, regulatory approval status, and utility for intended purpose. The U.S. Food and Drug Administration subsequently instituted an Emergency Use Authorization (EUA) procedure requiring that manufacturers submit validation data, but allowing newly developed serological tests to be marketed without the usual approval process during this crisis. Although this rapid deployment was intended to benefit public health, the incomplete understanding of immune response to the virus and lack of assay vetting resulted in quality issues with some of these tests, and thus many were withdrawn after submission. Common assay platforms include lateral flow assays which can serve an important niche of low cost, rapid turnaround, and increased accessibility whereas established laboratory-based platforms based on ELISAs and chemiluminescence expand existing technologies to SARS-CoV-2 and can provide throughput and quantification capabilities. While most of the currently EUA assays rely on these well-established platforms, despite their apparent technical simplicity, there are numerous practical challenges both for manufacturers in developing and for end-users in running and interpreting such assays. Within are discussed technical challenges to serology development for SARS-CoV-2, with an emphasis on lateral flow assay technology.
Collapse
Affiliation(s)
- Emilie Ernst
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences Binghamton University, Johnson City, NY, 13790, USA.
| | - Patricia Wolfe
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences Binghamton University, Johnson City, NY, 13790, USA.
| | - Corrine Stahura
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences Binghamton University, Johnson City, NY, 13790, USA.
| | - Katie A Edwards
- Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences Binghamton University, Johnson City, NY, 13790, USA.
| |
Collapse
|
43
|
Andryukov BG, Lyapun IN, Bynina MP, Matosova EV. Simplified formats of modern biosensors: 60 years of using immunochromatographic test systems in laboratory diagnostics. Klin Lab Diagn 2021; 65:611-618. [PMID: 33245650 DOI: 10.18821/0869-2084-2020-65-10-611-618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunochromatographic test systems known to foreign laboratory diagnostic experts as lateral flow immunoassay (LFIA) are simplified tape formats of modern biosensors. For 60 years, they have been widely used for the rapid detection of target molecules (ligands) in biosubstrates and the diagnosis of many diseases and conditions. The growing popularity of these test systems for providing medical care or diagnostics in developing countries, medical facilities, in emergency situations, as well as for individual home use by patients while monitoring their health are the main factors contributing to the continuous development and improvement of these methods, the emergence of a new generation of formats. The attractiveness and popularity of these fast, easy-to-use, inexpensive and portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as the ease of interpretation of the results. These qualities have passed the test of time, and today LFIA test systems are fully consistent with the modern world concept of «point-of-care testing», finding wide application not only in medicine, but also in ecology, veterinary medicine, and agriculture. This review will highlight the modern principles of designing the most widely used formats of immunochromatographic test systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as current achievements and prospects of LFIA technology. Modern innovations aimed at improving the analytical characteristics of LFIA technology are interesting, promising and can bring additional benefits to immunochromatographic platforms that have gained popularity and attractiveness for six decades.
Collapse
Affiliation(s)
- Boris Georgievich Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science.,Far Eastern Federal University of the Ministry of Education and Science of Russia
| | - I N Lyapun
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - M P Bynina
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - E V Matosova
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| |
Collapse
|
44
|
Weihs F, Anderson A, Trowell S, Caron K. Resonance Energy Transfer-Based Biosensors for Point-of-Need Diagnosis-Progress and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:660. [PMID: 33477883 PMCID: PMC7833371 DOI: 10.3390/s21020660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The demand for point-of-need (PON) diagnostics for clinical and other applications is continuing to grow. Much of this demand is currently serviced by biosensors, which combine a bioanalytical sensing element with a transducing device that reports results to the user. Ideally, such devices are easy to use and do not require special skills of the end user. Application-dependent, PON devices may need to be capable of measuring low levels of analytes very rapidly, and it is often helpful if they are also portable. To date, only two transduction modalities, colorimetric lateral flow immunoassays (LFIs) and electrochemical assays, fully meet these requirements and have been widely adopted at the point-of-need. These modalities are either non-quantitative (LFIs) or highly analyte-specific (electrochemical glucose meters), therefore requiring considerable modification if they are to be co-opted for measuring other biomarkers. Förster Resonance Energy Transfer (RET)-based biosensors incorporate a quantitative and highly versatile transduction modality that has been extensively used in biomedical research laboratories. RET-biosensors have not yet been applied at the point-of-need despite its advantages over other established techniques. In this review, we explore and discuss recent developments in the translation of RET-biosensors for PON diagnoses, including their potential benefits and drawbacks.
Collapse
Affiliation(s)
- Felix Weihs
- CSIRO Health & Biosecurity, Parkville, 343 Royal Parade, Melbourne, VIC 3030, Australia;
| | - Alisha Anderson
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia;
| | - Stephen Trowell
- PPB Technology Pty Ltd., Centre for Entrepreneurial Agri-Technology, Australian National University, Canberra, ACT 2601, Australia;
| | - Karine Caron
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia;
| |
Collapse
|
45
|
Rho D, Kim S. Demonstration of a Label-Free and Low-Cost Optical Cavity-Based Biosensor Using Streptavidin and C-Reactive Protein. BIOSENSORS-BASEL 2020; 11:bios11010004. [PMID: 33374119 PMCID: PMC7824430 DOI: 10.3390/bios11010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.
Collapse
|
46
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
47
|
Zamora-Ledezma C, C. DFC, Medina E, Sinche F, Santiago Vispo N, Dahoumane SA, Alexis F. Biomedical Science to Tackle the COVID-19 Pandemic: Current Status and Future Perspectives. Molecules 2020; 25:E4620. [PMID: 33050601 PMCID: PMC7587204 DOI: 10.3390/molecules25204620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
The coronavirus infectious disease (COVID-19) pandemic emerged at the end of 2019, and was caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in an unprecedented health and economic crisis worldwide. One key aspect, compared to other recent pandemics, is the level of urgency, which has started a race for finding adequate answers. Solutions for efficient prevention approaches, rapid, reliable, and high throughput diagnostics, monitoring, and safe therapies are needed. Research across the world has been directed to fight against COVID-19. Biomedical science has been presented as a possible area for combating the SARS-CoV-2 virus due to the unique challenges raised by the pandemic, as reported by epidemiologists, immunologists, and medical doctors, including COVID-19's survival, symptoms, protein surface composition, and infection mechanisms. While the current knowledge about the SARS-CoV-2 virus is still limited, various (old and new) biomedical approaches have been developed and tested. Here, we review the current status and future perspectives of biomedical science in the context of COVID-19, including nanotechnology, prevention through vaccine engineering, diagnostic, monitoring, and therapy. This review is aimed at discussing the current impact of biomedical science in healthcare for the management of COVID-19, as well as some challenges to be addressed.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100650, Ecuador;
| | - David F. Clavijo C.
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Ernesto Medina
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100650, Ecuador;
| | - Federico Sinche
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100650, Ecuador; (D.F.C.C.); (F.S.); (N.S.V.); (F.A.)
| |
Collapse
|
48
|
In vitro validation of the tear matrix metalloproteinase 9 in-situ immunoassay. Sci Rep 2020; 10:15126. [PMID: 32934302 PMCID: PMC7492475 DOI: 10.1038/s41598-020-71977-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/23/2020] [Indexed: 12/21/2022] Open
Abstract
We aimed to validate a tear MMP-9 in-situ immunoassay (InflammaDry) and to identify factors that could affect results or interpretation. Three factors were examined: sample concentration, volume, and time. Recombinant human (rh) MMP-9 (10 or 20 μl; 0, 12.5, 25, 50, 100, 200, 500, and 1,000 ng/ml) was applied to the kit and the detection limit and assay reproducibility were examined. At a rhMMP-9 volume of 10 μl (≥ 50 ng/ml), all positive results were identified by densitometry at 10 and 20 min; however, after 20 min, more than half of the nine ophthalmologists interpreted a positive result. At a rhMMP-9 volume of 20 μl (≥ 25 ng/ml), ophthalmologists and densitometry identified almost all test lines at 10 and 20 min. At 10 μl, densitometry showed a linear dose–response pattern. At 20 μl, densitometry showed a linear dose–response pattern at concentrations up to 500 ng/ml; however, full saturation was achieved at concentrations ≥ 500 ng/ml. When the same amount of rhMMP-9 was applied, the density result increased significantly upon doubling of the solvent volume (i.e., by adding the same volume of PBS to a sample). InflammaDry showed a high inter- and intra-assay coefficient of variation at 10 min (28.4% and 24.7%, respectively). The results of the MMP-9 in-situ immunoassay varied significantly depending on sample volume. Therefore, when interpreting the results, careful attention must be paid to tear volume.
Collapse
|
49
|
Andryukov BG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 2020; 6:280-304. [PMID: 33134745 PMCID: PMC7595842 DOI: 10.3934/microbiol.2020018] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Technologies based on lateral flow immunoassay (LFIA), known in some countries of the world as immunochromatographic tests, have been successfully used for the last six decades in diagnostics of many diseases and conditions as they allow rapid detection of molecular ligands in biosubstrates. The popularity of these diagnostic platforms is constantly increasing in healthcare facilities, particularly those facing limited budgets and time, as well as in household use for individual health monitoring. The advantages of these low-cost devices over modern laboratory-based analyzers come from their availability, opportunity of rapid detection, and ease of use. The attractiveness of these portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as with the easy visual readout of results. These qualities explain the growing popularity of LFIA in developing countries, when applied at small hospitals, in emergency situations where screening and monitoring health condition is crucially important, and as well as for self-testing of patients. These tools have passed the test of time, and now LFIA test systems are fully consistent with the world's modern concept of ‘point-of-care testing’, finding a wide range of applications not only in human medicine, but also in ecology, veterinary medicine, and agriculture. The extensive opportunities provided by LFIA contribute to the continuous development and improvement of this technology and to the creation of new-generation formats. This review will highlight the modern principles of design of the most widely used formats of test-systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as the current achievements and prospects of the LFIA technology. The latest innovations are aimed at improving the analytical performance of LFIA platforms for the diagnosis of bacterial and viral infections, including COVID-19.
Collapse
Affiliation(s)
- Boris G Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation.,Far Eastern Federal University (FEFU), Vladivostok, Russian Federation
| |
Collapse
|
50
|
Pohanka M. Colorimetric hand-held sensors and biosensors with a small digital camera as signal recorder, a review. REVIEWS IN ANALYTICAL CHEMISTRY 2020; 39:20-30. [DOI: 10.1515/revac-2020-0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Abstract
Sensors, biosensors, lateral flow immunoassays, portable thin-layer chromatography and similar devices for hand-held assay are tools suitable for field or out of laboratories assays of various analytes. The assays frequently exert a limit of detection and sensitivity close to more expensive and elaborative analytical methods. In recent years, huge progress has been made in the field of optical instruments where digital cameras or light sensitive chips serve for the measurement of color density. General availability of cameras, a decrease of prices and their integration into wide spectrum phones, tablets and computers give the promise of easy application of analytical methods where such cameras will be employed. This review summarizes research on hand-held assays where small cameras like the ones integrated into smartphones are used. Discussion about such assays, their practical applicability and relevant specifications are also written here.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense , Trebesska 1575 , Hradec Kralove CZ-50001 , Czech Republic
| |
Collapse
|