1
|
Kennedy SS, Saber LB, Brown VM, Boehm RA, Olotu AA, Osei J, Pluznik JA, Riback LR, Sidibeh E, Jordan B, O'Donovan E, Mangla A, Nzokou C, Elam TL, Gubser J, Koutoujian PJ, Siddiqi KA, Wilensky S, Phillips VL, Wurcel AG, Zawitz CJ, Akiyama MJ, Spaulding AC. Four Models of Wastewater-Based Monitoring for SARS-CoV-2 Complementing Individual Screening in Jail Settings. Am J Public Health 2024; 114:1232-1241. [PMID: 39357007 PMCID: PMC11447785 DOI: 10.2105/ajph.2024.307785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 10/04/2024]
Abstract
Objectives. To describe 4 unique models of operationalizing wastewater-based surveillance (WBS) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in jails of graduated sizes and different architectural designs. Methods. We summarize how jails of Cook County, Illinois (average daily population [ADP] 6000); Fulton County, Georgia (ADP 3000); Middlesex County, Massachusetts (ADP 875); and Washington, DC (ADP 1600) initiated WBS between 2020 and 2023. Results. Positive signals for SARS-CoV-2 via WBS can herald a new onset of infections in previously uninfected jail housing units. Challenges implementing WBS included political will and realized value, funding, understanding the building architecture, and the need for details in the findings. Conclusions. WBS has been effective for detecting outbreaks of SARS-CoV-2 in different sized jails, those with both dorm- and cell-based architectural design. Public Health Implications. Given its effectiveness in monitoring SARS-CoV-2, WBS provides a model for population-based surveillance in carceral facilities for future infectious disease outbreaks. (Am J Public Health. 2024;114(11):1232-1241. https://doi.org/10.2105/AJPH.2024.307785).
Collapse
Affiliation(s)
- Shanika S Kennedy
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Lindsay B Saber
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Victoria M Brown
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Rachel A Boehm
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Amadin A Olotu
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Jeffery Osei
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Jacob A Pluznik
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Lindsey R Riback
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Ebrima Sidibeh
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Beth Jordan
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Eleni O'Donovan
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Anilkumar Mangla
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Christine Nzokou
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Tracey L Elam
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Jane Gubser
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Peter J Koutoujian
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Kashif A Siddiqi
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Steven Wilensky
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Victoria L Phillips
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Alysse G Wurcel
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Chad J Zawitz
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Matthew J Akiyama
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| | - Anne C Spaulding
- Shanika S. Kennedy, Lindsay B. Saber, Victoria M. Brown, Rachel A. Boehm, Amadin A. Olotu, Jeffery Osei, Jacob A. Pluznik, Ebrima Sidibeh, Victoria L. Phillips, and Anne C. Spaulding are with the Rollins School of Public Health, Emory University, Atlanta, GA. Lindsey R. Riback and Matthew J. Akiyama are with the Albert Einstein College of Medicine, New York, NY. Beth Jordan is with the DC Department of Corrections, Washington, DC. Eleni O'Donovan is with Unity Healthcare, Washington, DC. Anilkumar Mangla and Christine Nzokou are with the DC Department of Health, Washington, DC. Tracey L. Elam is with the Fulton County Sheriff's Office, Atlanta, GA. Jane Gubser, Steven Wilensky, and Chad J. Zawitz are with the Cook County Department of Corrections, Chicago, IL. Peter J. Koutoujian and Kashif A. Siddiqi are with the Middlesex Sheriff's Office, Billerica, MA. Alysse G. Wurcel is with Tufts Medicine, Boston, MA
| |
Collapse
|
2
|
Brenner KI, Walser B, Cooper J, Jiang S. Wastewater-Based Surveillance Reveals the Effectiveness of the First COVID-19 Vaccination Campaigns in Assisted Living Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1259. [PMID: 39338142 PMCID: PMC11431242 DOI: 10.3390/ijerph21091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The COVID-19 pandemic has disproportionately affected vulnerable populations, including residents of assisted living facilities (ALFs). This study investigates the impact of non-pharmaceutical interventions (NPIs) and mass vaccination campaigns on SARS-CoV-2 transmission dynamics within four ALFs in Maricopa County, Arizona, United States from January to April 2021. Initial observations reveal a significant SARS-CoV-2 prevalence in Maricopa County, with 7452 new COVID-19 cases reported on 4 January 2021. Wastewater surveillance indicates elevated viral loads within ALFs with peak concentrations reaching 1.35 × 107 genome copies/L at Facility 1 and 4.68 × 105 copies/L at Facility 2. The implementation of NPIs, including isolation protocols, resulted in a rapid decline in viral loads in wastewater. Following mass vaccination campaigns, viral loads reduced across all facilities, except Facility 4. Facility 1 demonstrated a mean viral load decrease from 1.65 × 106 copies/L to 1.04 × 103 copies/L post-vaccination, with a statistically significant U-statistic of 28.0 (p-value = 0.0027). Similar trends are observed in Facilities 2 and 3, albeit with varying degrees of statistical significance. In conclusion, this study provides evidence supporting the role of NPIs and vaccination campaigns in controlling SARS-CoV-2 transmission within ALFs.
Collapse
Affiliation(s)
- Katherine I Brenner
- Samueli School of Engineering, University of California, Irvine, CA 92617, USA
| | - Bryan Walser
- Pangolin LLC, 260 Southhampton Ave., Berkeley, CA 94707, USA
| | - Joseph Cooper
- Pangolin LLC, 260 Southhampton Ave., Berkeley, CA 94707, USA
| | - Sunny Jiang
- Samueli School of Engineering, University of California, Irvine, CA 92617, USA
| |
Collapse
|
3
|
Tateishi S, Hamada K, Emoto N, Abe K, Abe K, Kawasaki Y, Sunohara M, Moriya K, Katayama H, Tsutsumi T, Murakami Y, Suzuki Y, Yotsuyanagi H, Yanagimoto S. Facility wastewater monitoring as an effective tool for pandemic infection control: An experience in COVID-19 pandemic with long-term monitoring. J Infect Chemother 2024:S1341-321X(24)00231-9. [PMID: 39173741 DOI: 10.1016/j.jiac.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/17/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Since the first report of a novel coronavirus infection caused by SARS-CoV-2 in late 2019, the infection has spread rapidly and had a significant impact on our lives. In the early stages of the COVID-19 pandemic, there was no adequate testing system in place, despite an urgent need for infection control measures in student dormitories. METHODS We have been monitoring SARS-CoV-2 in wastewater as part of our infection control efforts in the university facilities since fall 2020. In the four dormitories, absorbent cotton was placed in the drains that the facility wastewater passed through, and samples were collected twice a week and processed by RT-PCR for SARS-CoV-2. The dormitory residents were informed of the monitoring results the next morning. RESULTS The positivity of residents in the dormitories was highly consistent with the positivity of wastewater. Wastewater was positive in 89 % of cases before any residents were tested and found positive. Facility wastewater monitoring showed sensitivities of 80.4 % and specificities of 87.6 %. No traceable resident-to-resident transmission of infection within the facility was confirmed during the study period. CONCLUSION Sampling a single wastewater outlet in a building for SARS-CoV-2 PCR can effectively indicate the presence or absence of COVID-19 cases and be very useful for infection control of a facility. This simple and effective monitoring is applicable to future outbreaks of both emerging and re-emerging infectious diseases.
Collapse
Affiliation(s)
- Shoko Tateishi
- Division for Health Service Promotion, University of Tokyo, Japan.
| | - Kensuke Hamada
- Division for Health Service Promotion, University of Tokyo, Japan.
| | - Noriko Emoto
- Division for Health Service Promotion, University of Tokyo, Japan.
| | - Kazumi Abe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Japan.
| | - Koichi Abe
- H.U. Group Research Institute G.K, Japan.
| | | | | | - Kyoji Moriya
- Division for Health Service Promotion, University of Tokyo, Japan; The Center for Education and Research of Infection Prevention and Control, Tokyo Healthcare University, Japan; Department of Infectious Diseases, University of Tokyo Hospital, Tokyo, Department of Infection Control and Prevention, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, University of Tokyo, Japan.
| | - Takeya Tsutsumi
- Department of Infectious Diseases, University of Tokyo Hospital, Tokyo, Department of Infection Control and Prevention, Japan.
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Japan.
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Japan.
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of the Institute of Medical Science, University of Tokyo, Japan.
| | | |
Collapse
|
4
|
Lehrer LW, Lewis AM, Tolliver S, Degen M, Singh R, Houser S, Rao J. An evaluation of a new rapid qPCR test for the detection of 2019-novel coronavirus nucleocapsid (N1) gene in wastewater in Roanoke and Salem VA sewersheds. JOURNAL OF WATER AND HEALTH 2024; 22:1419-1428. [PMID: 39212279 DOI: 10.2166/wh.2024.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The COVID-19 pandemic initiated public interest in wastewater-based epidemiology (WBE). Public and private entities responded to the need to produce timely and accurate data. LuminUltra and Hach partnered to provide a rapid, field-based quantitative polymerase chain reaction (qPCR) test for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. This study evaluates the Hach GeneCount SARS-CoV-2 Wastewater RT-qPCR Assay Kit and LuminUltra GeneCount® Q-16 RT-PCR instrument. The Hach LuminUltra methods were compared to the Promega Wizard® Enviro Total Nucleic Acid kit and Bio-Rad CFX Opus 96 Real-time PCR Detection System. Over a 12-week period, wastewater samples were collected weekly from seven locations in the Roanoke/Salem, VA sewersheds. Concentration and extraction of the viral RNA were followed by qPCR analysis. The target gene for detection was the nucleocapsid gene (N1) of the SARS-CoV-2 virus. Costs, ease of use, time to produce results, sample preparation, and data comparisons were considered. The comparison determined that the Hach LuminUltra method and instrument were more affordable, consumed less time, and required less technical expertise. While the new method was specific, it had low sensitivity. This evaluation suggests the Hach LuminUltra method should be reserved for limited situations requiring onsite field analysis where data accuracy is not essential.
Collapse
Affiliation(s)
- Lia Willow Lehrer
- Radford University Carilion (RUC), Roanoke, VA, USA; Equal first authors
| | - Anna Marie Lewis
- Radford University Carilion (RUC), Roanoke, VA, USA; Equal first authors
| | - Susan Tolliver
- Carilion Roanoke Community Hospital, Carilion Clinic Basic Science Research Lab (BSRL), Roanoke, VA, USA
| | - Marcia Degen
- Virginia Department of Health (VDH), Richmond, VA, USA
| | - Rekha Singh
- Virginia Department of Health (VDH), Richmond, VA, USA
| | - Sara Houser
- Radford University Carilion (RUC), Roanoke, VA, USA E-mail:
| | - Jayasimha Rao
- Carilion Roanoke Community Hospital, Carilion Clinic Basic Science Research Lab (BSRL), Roanoke, VA, USA; Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA; Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, USA
| |
Collapse
|
5
|
Schmiege D, Haselhoff T, Thomas A, Kraiselburd I, Meyer F, Moebus S. Small-scale wastewater-based epidemiology (WBE) for infectious diseases and antibiotic resistance: A scoping review. Int J Hyg Environ Health 2024; 259:114379. [PMID: 38626689 DOI: 10.1016/j.ijheh.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Wastewater analysis can serve as a source of public health information. In recent years, wastewater-based epidemiology (WBE) has emerged and proven useful for the detection of infectious diseases. However, insights from the wastewater treatment plant do not allow for the small-scale differentiation within the sewer system that is needed to analyze the target population under study in more detail. Small-scale WBE offers several advantages, but there has been no systematic overview of its application. The aim of this scoping review is to provide a comprehensive overview of the current state of knowledge on small-scale WBE for infectious diseases, including methodological considerations for its application. A systematic database search was conducted, considering only peer-reviewed articles. Data analyses included quantitative summary and qualitative narrative synthesis. Of 2130 articles, we included 278, most of which were published since 2020. The studies analyzed wastewater at the building level (n = 203), especially healthcare (n = 110) and educational facilities (n = 80), and at the neighborhood scale (n = 86). The main analytical parameters were viruses (n = 178), notably SARS-CoV-2 (n = 161), and antibiotic resistance (ABR) biomarkers (n = 99), often analyzed by polymerase chain reaction (PCR), with DNA sequencing techniques being less common. In terms of sampling techniques, active sampling dominated. The frequent lack of detailed information on the specification of selection criteria and the characterization of the small-scale sampling sites was identified as a concern. In conclusion, based on the large number of studies, we identified several methodological considerations and overarching strategic aspects for small-scale WBE. An enabling environment for small-scale WBE requires inter- and transdisciplinary knowledge sharing across countries. Promoting the adoption of small-scale WBE will benefit from a common international conceptualization of the approach, including standardized and internationally accepted terminology. In particular, the development of good WBE practices for different aspects of small-scale WBE is warranted. This includes the establishment of guidelines for a comprehensive characterization of the local sewer system and its sub-sewersheds, and transparent reporting to ensure comparability of small-scale WBE results.
Collapse
Affiliation(s)
- Dennis Schmiege
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130, Essen, Germany.
| | - Timo Haselhoff
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130, Essen, Germany
| | - Alexander Thomas
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131, Essen, Germany
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131, Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, University of Duisburg-Essen, 45131, Essen, Germany
| | - Susanne Moebus
- Institute for Urban Public Health (InUPH), University Hospital Essen, University of Duisburg-Essen, 45130, Essen, Germany
| |
Collapse
|
6
|
Gamage SD, Jinadatha C, Rizzo V, Chatterjee P, Choi H, Mayo L, Brackens E, Hwang M, Xu J, Bennett M, Kowalskyj O, Litvin EA, Minor L, McClarin J, Hofman R, Dulaney D, Roselle GA. Nursing home wastewater surveillance for early warning of SARS-CoV-2-positive occupants-Insights from a pilot project at 8 facilities. Am J Infect Control 2024; 52:701-706. [PMID: 38181902 DOI: 10.1016/j.ajic.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Wastewater surveillance for SARS-CoV-2 has been used widely in the United States for indication of community incidence during the COVID-19 pandemic, but less is known about the feasibility of its use on a building level in nursing homes to provide early warning and prevent transmission. METHODS A pilot study was conducted at 8 Department of Veterans Affairs nursing homes across the United States to examine operational feasibility. Wastewater from the participating facilities was sampled daily during the week for 6 months (January 11, 2021-July 2, 2021) and analyzed for SARS-CoV-2 genetic material. Wastewater results were compared to new SARS-CoV-2 infections in nursing home residents and employees to determine if wastewater surveillance could provide early warning of a COVID-19-positive occupant. RESULTS All 8 nursing homes had wastewater samples positive for SARS-CoV-2 and COVID-19-positive occupants. The sensitivity of wastewater surveillance for early warning of COVID-19-positive residents was 60% (3/5) and for COVID-19-positive employees was 46% (13/28). CONCLUSIONS Wastewater surveillance may provide additional information for reinforcing infection control practices and lead to preventing transmission in a setting with high-risk residents. The low sensitivity for early warning in this real-world pilot highlights limitations and insights for applicability in buildings.
Collapse
Affiliation(s)
- Shantini D Gamage
- National Infectious Diseases Service, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, DC; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Chetan Jinadatha
- Department of Medicine, Central Texas Veterans Health Care System, Temple, TX; Department of Medical Education, College of Medicine, Texas A & M University, Bryan, TX
| | - Vincent Rizzo
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Piyali Chatterjee
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Lynn Mayo
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Emma Brackens
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Jing Xu
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Morgan Bennett
- Department of Research, Central Texas Veterans Health Care System, Temple, TX
| | - Oleh Kowalskyj
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Edward A Litvin
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Lisa Minor
- Office of Geriatrics and Extended Care, Veterans Health Administration, VA, Washington, DC
| | - Jody McClarin
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Richard Hofman
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Douglas Dulaney
- Healthcare Environment and Facilities Program, Veterans Health Administration, VA, Washington, DC
| | - Gary A Roselle
- National Infectious Diseases Service, Veterans Health Administration, Department of Veterans Affairs (VA), Washington, DC; Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH; Medical Service, Cincinnati VA Medical Center, Cincinnati, OH
| |
Collapse
|
7
|
Porter AM, Hart JJ, Rediske RR, Szlag DC. SARS-CoV-2 wastewater surveillance at two university campuses: lessons learned and insights on intervention strategies for public health guidance. JOURNAL OF WATER AND HEALTH 2024; 22:811-824. [PMID: 38822461 DOI: 10.2166/wh.2024.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Wastewater surveillance has been a tool for public health officials throughout the COVID-19 pandemic. Universities established pandemic response committees to facilitate safe learning for students, faculty, and staff. These committees met to analyze both wastewater and clinical data to propose mitigation strategies to limit the spread of COVID-19. This paper reviews the initial efforts of utilizing campus data inclusive of wastewater surveillance for SARS-CoV-2 RNA concentrations, clinical case data from university response teams, and mitigation strategies from Grand Valley State University in West Michigan (population 21,648 students) and Oakland University in East Michigan (population 18,552 students) from November 2020 to April 2022. Wastewater positivity rates for both universities ranged from 32.8 to 46.8%. Peak viral signals for both universities directly corresponded to variant points of entry within the campus populations from 2021 to 2022. It was found that the organization of clinical case data and variability of wastewater testing data were large barriers for both universities to effectively understand disease dynamics within the university population. We review the initial efforts of onboarding wastewater surveillance and provide direction for structuring ongoing surveillance workflows and future epidemic response strategies based on those that led to reduced viral signals in campus wastewater.
Collapse
Affiliation(s)
- Alexis M Porter
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA E-mail:
| | - John J Hart
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA; Department of Chemistry, Oakland University, 146 Library Dr, Rochester, MI 48309, USA
| | - Richard R Rediske
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Department of Chemistry, Oakland University, 146 Library Dr, Rochester, MI 48309, USA
| |
Collapse
|
8
|
Bowes DA, Driver EM, Choi PM, Barcelo D, Beamer PI. Wastewater-based epidemiology to assess environmentally influenced disease. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:387-388. [PMID: 38760533 DOI: 10.1038/s41370-024-00683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Devin A Bowes
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC, 29208, USA.
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 McAllister Ave, Tempe, AZ, 85281, USA
| | - Phil M Choi
- Health Protection and Regulation Branch, Queensland Public Health and Scientific Services, Queensland Department of Health, Brisbane, QLD, 4006, Australia
| | - Damiá Barcelo
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Paloma I Beamer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, Tucson, AZ, 85724, USA
| |
Collapse
|
9
|
Perry WB, Chrispim MC, Barbosa MRF, de Souza Lauretto M, Razzolini MTP, Nardocci AC, Jones O, Jones DL, Weightman A, Sato MIZ, Montagner C, Durance I. Cross-continental comparative experiences of wastewater surveillance and a vision for the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170842. [PMID: 38340868 DOI: 10.1016/j.scitotenv.2024.170842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has brought the epidemiological value of monitoring wastewater into sharp focus. The challenges of implementing and optimising wastewater monitoring vary significantly from one region to another, often due to the array of different wastewater systems around the globe, as well as the availability of resources to undertake the required analyses (e.g. laboratory infrastructure and expertise). Here we reflect on the local and shared challenges of implementing a SARS-CoV-2 monitoring programme in two geographically and socio-economically distinct regions, São Paulo state (Brazil) and Wales (UK), focusing on design, laboratory methods and data analysis, and identifying potential guiding principles for wastewater surveillance fit for the 21st century. Our results highlight the historical nature of region-specific challenges to the implementation of wastewater surveillance, including previous experience of using wastewater surveillance, stakeholders involved, and nature of wastewater infrastructure. Building on those challenges, we then highlight what an ideal programme would look like if restrictions such as resource were not a constraint. Finally, we demonstrate the value of bringing multidisciplinary skills and international networks together for effective wastewater surveillance.
Collapse
Affiliation(s)
| | - Mariana Cardoso Chrispim
- Environmental and Biosciences Department, School of Business, Innovation and Sustainability, Halmstad University, Kristian IV:s väg 3, 30118 Halmstad, Sweden
| | - Mikaela Renata Funada Barbosa
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Marcelo de Souza Lauretto
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Arts, Sciences and Humanities, University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo CEP 03828-000, Brazil
| | - Maria Tereza Pepe Razzolini
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Adelaide Cassia Nardocci
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
| | - Davey L Jones
- Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| | | | - Maria Inês Zanoli Sato
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Cassiana Montagner
- Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083970, Brazil
| | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
10
|
Saber LB, Kennedy SS, Yang Y, Moore KN, Wang Y, Hilton SP, Chang TY, Liu P, Phillips VL, Akiyama MJ, Moe CL, Spaulding AC. Correlation of SARS-CoV-2 in Wastewater and Individual Testing Results in a Jail, Atlanta, Georgia, USA. Emerg Infect Dis 2024; 30:S21-S27. [PMID: 38561638 PMCID: PMC10986836 DOI: 10.3201/eid3013.230775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Institution-level wastewater-based surveillance was implemented during the COVID-19 pandemic, including in carceral facilities. We examined the relationship between COVID-19 diagnostic test results of residents in a jail in Atlanta, Georgia, USA (average population ≈2,700), and quantitative reverse transcription PCR signal for SARS-CoV-2 in weekly wastewater samples collected during October 2021‒May 2022. The jail offered residents rapid antigen testing at entry and periodic mass screenings by reverse transcription PCR of self-collected nasal swab specimens. We aggregated individual test data, calculated the Spearman correlation coefficient, and performed logistic regression to examine the relationship between strength of SARS-CoV-2 PCR signal (cycle threshold value) in wastewater and percentage of jail population that tested positive for COVID-19. Of 13,745 nasal specimens collected, 3.9% were COVID-positive (range 0%-29.5% per week). We observed a strong inverse correlation between diagnostic test positivity and cycle threshold value (r = -0.67; p<0.01). Wastewater-based surveillance represents an effective strategy for jailwide surveillance of COVID-19.
Collapse
|
11
|
Amirali A, Babler KM, Sharkey ME, Beaver CC, Boone MM, Comerford S, Cooper D, Currall BB, Goodman KW, Grills GS, Kobetz E, Kumar N, Laine J, Lamar WE, Mason CE, Reding BD, Roca MA, Ryon K, Schürer SC, Shukla BS, Solle NS, Stevenson M, Tallon JJ, Vidović D, Williams SL, Yin X, Solo-Gabriele HM. Wastewater based surveillance can be used to reduce clinical testing intensity on a university campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170452. [PMID: 38296085 PMCID: PMC10923133 DOI: 10.1016/j.scitotenv.2024.170452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Clinical testing has been a vital part of the response to and suppression of the COVID-19 pandemic; however, testing imposes significant burdens on a population. College students had to contend with clinical testing while simultaneously dealing with health risks and the academic pressures brought on by quarantines, changes to virtual platforms, and other disruptions to daily life. The objective of this study was to analyze whether wastewater surveillance can be used to decrease the intensity of clinical testing while maintaining reliable measurements of diseases incidence on campus. Twelve months of human health and wastewater surveillance data for eight residential buildings on a university campus were analyzed to establish how SARS-CoV-2 levels in the wastewater can be used to minimize clinical testing burden on students. Wastewater SARS-CoV-2 levels were used to create multiple scenarios, each with differing levels of testing intensity, which were compared to the actual testing volumes implemented by the university. We found that scenarios in which testing intensity fluctuations matched rise and falls in SARS-CoV-2 wastewater levels had stronger correlations between SARS-CoV-2 levels and recorded clinical positives. In addition to stronger correlations, most scenarios resulted in overall fewer weekly clinical tests performed. We suggest the use of wastewater surveillance to guide COVID-19 testing as it can significantly increase the efficacy of COVID-19 surveillance while reducing the burden placed on college students during a pandemic. Future efforts should be made to integrate wastewater surveillance into clinical testing strategies implemented on college campuses.
Collapse
Affiliation(s)
- Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Kristina M Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mark E Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136, FL, USA
| | - Cynthia C Beaver
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melinda M Boone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samuel Comerford
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136, FL, USA
| | | | - Benjamin B Currall
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kenneth W Goodman
- Frost Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146, USA; Institute for Bioethics and Health Policy, University of Miami Miller School of Medicine, Miami, 33136, FL, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erin Kobetz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136, FL, USA
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Walter E Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian D Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Matthew A Roca
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146, USA
| | - Bhavarth S Shukla
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136, FL, USA
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL 33146, USA
| | - Dušica Vidović
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Sion L Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue Yin
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
12
|
Keck JW, Adatorwovor R, Liversedge M, Mijotavich B, Olsson C, Strike WD, Amirsoleimani A, Noble A, Torabi S, Rockward A, Banadaki MD, Smith T, Lacy P, Berry SM. Wastewater Surveillance for Identifying SARS-CoV-2 Infections in Long-Term Care Facilities, Kentucky, USA, 2021-2022. Emerg Infect Dis 2024; 30:530-538. [PMID: 38407144 PMCID: PMC10902530 DOI: 10.3201/eid3003.230888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Persons living in long-term care facilities (LTCFs) were disproportionately affected by COVID-19. We used wastewater surveillance to detect SARS-CoV-2 infection in this setting by collecting and testing 24-hour composite wastewater samples 2-4 times weekly at 6 LTCFs in Kentucky, USA, during March 2021-February 2022. The LTCFs routinely tested staff and symptomatic and exposed residents for SARS-CoV-2 using rapid antigen tests. Of 780 wastewater samples analyzed, 22% (n = 173) had detectable SARS-CoV-2 RNA. The LTCFs reported 161 positive (of 16,905) SARS-CoV-2 clinical tests. The wastewater SARS-CoV-2 signal showed variable correlation with clinical test data; we observed the strongest correlations in the LTCFs with the most positive clinical tests (n = 45 and n = 58). Wastewater surveillance was 48% sensitive and 80% specific in identifying SARS-CoV-2 infections found on clinical testing, which was limited by frequency, coverage, and rapid antigen test performance.
Collapse
Affiliation(s)
| | - Reuben Adatorwovor
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | | | - Blazan Mijotavich
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Cullen Olsson
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - William D. Strike
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Atena Amirsoleimani
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Ann Noble
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Soroosh Torabi
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Alexus Rockward
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Mohammad Dehghan Banadaki
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Ted Smith
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Parker Lacy
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| | - Scott M. Berry
- University of Kentucky, Lexington, Kentucky, USA (J.W. Keck, R. Adatorwovor, M. Liversedge, C. Olsson, W.D. Strike, A. Amirsoleimani, A. Noble, S. Torabi, A. Rockward, M. Dehghan Banadaki, S.M. Berry)
- University of Louisville, Louisville, Kentucky, USA (T. Smith)
- Trilogy Health Services, LLC, Louisville (P. Lacy)
| |
Collapse
|
13
|
Germano ER, Flores T, Freed GS, Kim K, Tulinsky GH, Yang A, Rose OJ, Ray CA, Autry A, Catallozzi M, Mailloux BJ, Miranda JJL. Building-level wastewater surveillance localizes interseasonal influenza variation. mSphere 2024; 9:e0060023. [PMID: 38168676 PMCID: PMC10826355 DOI: 10.1128/msphere.00600-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza virus poses a recurring threat to public health and infects many populations in annual waves of generally unpredictable magnitude and timing. We aimed to detect the arrival and estimate the case magnitude of seasonal influenza A in urban New York City college dormitory buildings. Our wastewater-based surveillance (WBS) program measured viral RNA in the sewage outflow of three dormitories at Barnard College in 2021 and 2022. Wastewater test positivity strongly correlated with New York County clinical cases (Kendall's τ = 0.58). Positive wastewater samples are also associated with campus clinical cases. The 2022 data stand in stark contrast to the 2021 results by revealing the more frequent and earlier presence of influenza A. The increase in positive tests is significant (P < 0.01). It is further noteworthy that positive samples were not evenly distributed among buildings. Surveillance additionally identified the influenza A H3 subtype but did not detect any influenza B. We also systematically analyzed our viral purification protocol to identify in which fraction influenza can be found. While virus can be found in solid fractions, a substantial quantity remains in the final liquid fraction. Our work focuses on individual buildings rather than larger sewersheds because buildings may localize interseasonal influenza variation to specific subpopulations. Our results highlight the potential value of building-level WBS in measuring influenza incidence to help guide public health intervention.IMPORTANCESeasonal influenza remains a major public health burden. We monitored influenza A in dormitory wastewater of a New York City college in 2021 and 2022. Longitudinal samples acquired over consecutive years allowed measurement of individual buildings between seasons. We uncovered building-level changes in the magnitude and timing of test positivity concordant with clinical cases. Surveillance also localized the heterogeneity of influenza variation during the large 2022 seasonal surge. The ability to detect such changes could be leveraged as part of a public health response.
Collapse
Affiliation(s)
- Emma R. Germano
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Tiffany Flores
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Grace S. Freed
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Kang Kim
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Grace H. Tulinsky
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Annie Yang
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Oliver J. Rose
- Office of Facilities Services, Barnard College, Columbia University, New York, New York, USA
| | - Caroline A. Ray
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
| | - April Autry
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marina Catallozzi
- Office of Health and Wellness, Barnard College, Columbia University, New York, New York, USA
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Brian J. Mailloux
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - JJ L. Miranda
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
14
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
15
|
Oghuan J, Chavarria C, Vanderwal SR, Gitter A, Ojaruega AA, Monserrat C, Bauer CX, Brown EL, Cregeen SJ, Deegan J, Hanson BM, Tisza M, Ocaranza HI, Balliew J, Maresso AW, Rios J, Boerwinkle E, Mena KD, Wu F. Wastewater analysis of Mpox virus in a city with low prevalence of Mpox disease: an environmental surveillance study. LANCET REGIONAL HEALTH. AMERICAS 2023; 28:100639. [PMID: 38076410 PMCID: PMC10701415 DOI: 10.1016/j.lana.2023.100639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/18/2024]
Abstract
Background Tracking infectious diseases at the community level is challenging due to asymptomatic infections and the logistical complexities of mass surveillance. Wastewater surveillance has emerged as a valuable tool for monitoring infectious disease agents including SARS-CoV-2 and Mpox virus. However, detecting the Mpox virus in wastewater is particularly challenging due to its relatively low prevalence in the community. In this study, we aim to characterize three molecular assays for detecting and tracking the Mpox virus in wastewater from El Paso, Texas, during February and March 2023. Methods In this study, a combined approach utilizing three real-time PCR assays targeting the C22L, F3L, and F8L genes and sequencing was employed to detect and track the Mpox virus in wastewater samples. The samples were collected from four sewersheds in the City of El Paso, Texas, during February and March 2023. Wastewater data was compared with reported clinical case data in the city. Findings Mpox virus DNA was detected in wastewater from all the four sewersheds, whereas only one Mpox case was reported during the sampling period. Positive signals were still observed in multiple sewersheds after the Mpox case was identified. Higher viral concentrations were found in the pellet than in the supernatant of wastewater. Notably, an increasing trend in viral concentration was observed approximately 1-2 weeks before the reporting of the Mpox case. Further sequencing and epidemiological analysis provided supporting evidence for unreported Mpox infections in the city. Interpretation Our analysis suggests that the Mpox cases in the community is underestimated. The findings emphasize the value of wastewater surveillance as a public health tool for monitoring infectious diseases even in low-prevalence areas, and the need for heightened vigilance to mitigate the spread of Mpox disease for safeguarding global health. Funding Center of Infectious Diseases at UTHealth, the University of Texas System, and the Texas Epidemic Public Health Institute. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of these funding organizations.
Collapse
Affiliation(s)
- Jeremiah Oghuan
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Carlos Chavarria
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Scout R. Vanderwal
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Anna Gitter
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Akpevwe Amanda Ojaruega
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Carlos Monserrat
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Cici X. Bauer
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Center of Spatial-temporal Modeling of Applications in Population Sciences, Houston, TX, USA
| | - Eric L. Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Sara Javornik Cregeen
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Deegan
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Blake M. Hanson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Michael Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Anthony W. Maresso
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- TAILOR Labs, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Janelle Rios
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Kristina D. Mena
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| | - Fuqing Wu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, USA
- Texas Epidemic Public Health Institute (TEPHI), UTHealth Houston, Houston, TX, USA
| |
Collapse
|
16
|
Lin T, Karthikeyan S, Satterlund A, Schooley R, Knight R, De Gruttola V, Martin N, Zou J. Optimizing campus-wide COVID-19 test notifications with interpretable wastewater time-series features using machine learning models. Sci Rep 2023; 13:20670. [PMID: 38001346 PMCID: PMC10673837 DOI: 10.1038/s41598-023-47859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
During the COVID-19 pandemic, wastewater surveillance of the SARS CoV-2 virus has been demonstrated to be effective for population surveillance at the county level down to the building level. At the University of California, San Diego, daily high-resolution wastewater surveillance conducted at the building level is being used to identify potential undiagnosed infections and trigger notification of residents and responsive testing, but the optimal determinants for notifications are unknown. To fill this gap, we propose a pipeline for data processing and identifying features of a series of wastewater test results that can predict the presence of COVID-19 in residences associated with the test sites. Using time series of wastewater results and individual testing results during periods of routine asymptomatic testing among UCSD students from 11/2020 to 11/2021, we develop hierarchical classification/decision tree models to select the most informative wastewater features (patterns of results) which predict individual infections. We find that the best predictor of positive individual level tests in residence buildings is whether or not the wastewater samples were positive in at least 3 of the past 7 days. We also demonstrate that the tree models outperform a wide range of other statistical and machine models in predicting the individual COVID-19 infections while preserving interpretability. Results of this study have been used to refine campus-wide guidelines and email notification systems to alert residents of potential infections.
Collapse
Affiliation(s)
- Tuo Lin
- Department of Biostatistics, University of Florida, Gainesville, FL, 32608, USA
| | - Smruthi Karthikeyan
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alysson Satterlund
- Student Affairs, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert Schooley
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Victor De Gruttola
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Natasha Martin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jingjing Zou
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Williams BB, Newborn A, Karamat A, Zamcho F, Salerno JL, Gillevet PM, Farris D, Wintermeyer SF, Van Aken B. Detection of SARS-CoV-2 RNA in wastewater from dormitory buildings in a university campus: comparison with individual testing results. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2364-2377. [PMID: 37966188 PMCID: wst_2023_348 DOI: 10.2166/wst.2023.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Wastewater-based epidemiology (WBE) for monitoring COVID-19 has been largely used to detect the spread of the disease at the community level. From February to December 2022, we collected 24-h composite sewage samples from dormitory buildings in George Mason University (Fairfax, Virginia, USA) housing approximately 5,200 resident students. SARS-CoV-2 RNA extraction was achieved using an automated system based on magnetic nanoparticles. Analysis of SARS-CoV-2 RNA was performed using reverse transcription quantitative PCR based on the Centers for Disease Control and Prevention (CDC) N1 and N2 assays. From the 362 samples collected, 86% showed positive detection of SARS-CoV-2 RNA. Wastewater monitoring was able to detect SARS-CoV-2 RNA in 96% of the samples from buildings housing students with COVID-19. Over the period of study, we observed significant correlations between the SARS-CoV-2 concentration (copy number mL-1) in wastewater and the number of positive cases on campus based on individual saliva testing. Although several reports have been published on the wastewater monitoring of COVID-19 in university campuses, our study is one of the very few that provides results that were obtained during the last phase of the pandemic (roughly the year 2022), when the large majority of students were vaccinated and back on campus.
Collapse
Affiliation(s)
- Brandi B Williams
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA E-mail:
| | - Aaron Newborn
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Ayesha Karamat
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | - Fanella Zamcho
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Jennifer L Salerno
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | | | - David Farris
- Environmental Health and Safety, George Mason University, Fairfax, Virginia, USA
| | | | - Benoit Van Aken
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
18
|
Keck JW, Lindner J, Liversedge M, Mijatovic B, Olsson C, Strike W, Noble A, Adatorwovor R, Lacy P, Smith T, Berry SM. Wastewater Surveillance for SARS-CoV-2 at Long-Term Care Facilities: Mixed Methods Evaluation. JMIR Public Health Surveill 2023; 9:e44657. [PMID: 37643001 PMCID: PMC10467632 DOI: 10.2196/44657] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Wastewater surveillance provided early indication of COVID-19 in US municipalities. Residents of long-term care facilities (LTCFs) experienced disproportionate morbidity and mortality early in the COVID-19 pandemic. We implemented LTCF building-level wastewater surveillance for SARS-CoV-2 at 6 facilities in Kentucky to provide early warning of SARS-CoV-2 in populations considered vulnerable. OBJECTIVE This study aims to evaluate the performance of wastewater surveillance for SARS-CoV-2 at LTCFs in Kentucky. METHODS We conducted a mixed methods evaluation of wastewater surveillance following Centers for Disease Control and Prevention (CDC) guidelines for evaluating public health surveillance systems. Evaluation steps in the CDC guidelines were engaging stakeholders, describing the surveillance system, focusing the evaluation design, gathering credible evidence, and generating conclusions and recommendations. We purposively recruited stakeholders for semistructured interviews and undertook thematic content analysis of interview data. We integrated wastewater, clinical testing, and process data to characterize or calculate 7 surveillance system performance attributes (simplicity, flexibility, data quality, sensitivity and positive predictive value [PPV], timeliness, representativeness, and stability). RESULTS We conducted 8 stakeholder interviews. The surveillance system collected wastewater samples (N=811) 2 to 4 times weekly at 6 LTCFs in Kentucky from March 2021 to February 2022. Synthesis of credible evidence indicated variable surveillance performance. Regarding simplicity, surveillance implementation required moderate human resource and technical capacity. Regarding flexibility, the system efficiently adjusted surveillance frequency and demonstrated the ability to detect additional pathogens of interest. Regarding data quality, software identified errors in wastewater sample metadata entry (110/3120, 3.53% of fields), technicians identified polymerase chain reaction data issues (140/7734, 1.81% of reactions), and staff entered all data corrections into a log. Regarding sensitivity and PPV, using routine LTCF SARS-CoV-2 clinical testing results as the gold standard, a wastewater SARS-CoV-2 signal of >0 RNA copies/mL was 30.6% (95% CI 24.4%-36.8%) sensitive and 79.7% (95% CI 76.4%-82.9%) specific for a positive clinical test at the LTCF. The PPV of the wastewater signal was 34.8% (95% CI 27.9%-41.7%) at >0 RNA copies/mL and increased to 75% (95% CI 60%-90%) at >250 copies/mL. Regarding timeliness, stakeholders received surveillance data 24 to 72 hours after sample collection, with delayed reporting because of the lack of weekend laboratory staff. Regarding representativeness, stakeholders identified challenges delineating the population contributing to LTCF wastewater because of visitors, unknown staff toileting habits, and the use of adult briefs by some residents preventing their waste from entering the sewer system. Regarding stability, the reoccurring cost to conduct 1 day of wastewater surveillance at 1 facility was approximately US $144.50, which included transportation, labor, and materials expenses. CONCLUSIONS The LTCF wastewater surveillance system demonstrated mixed performance per CDC criteria. Stakeholders found surveillance feasible and expressed optimism regarding its potential while also recognizing challenges in interpreting and acting on surveillance data.
Collapse
Affiliation(s)
- James W Keck
- Department of Family & Community Medicine, University of Kentucky, Lexington, KY, United States
| | - Jess Lindner
- College of Medicine - Northern Kentucky Campus, University of Kentucky, Highland Heights, KY, United States
| | - Matthew Liversedge
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY, United States
| | - Blazan Mijatovic
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY, United States
| | - Cullen Olsson
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY, United States
| | - William Strike
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Anni Noble
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States
| | - Reuben Adatorwovor
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Parker Lacy
- Trilogy Health Services, Louisville, KY, United States
| | - Ted Smith
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Scott M Berry
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
19
|
Kennedy S, Spaulding AC. Four Models of Wastewater-Based Surveillance for SARS-CoV-2 in Jail Settings: How Monitoring Wastewater Complements Individual Screening. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.04.23293152. [PMID: 37609187 PMCID: PMC10441506 DOI: 10.1101/2023.08.04.23293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Objective To describe four unique models of implementing Wastewater Based Surveillance (WBS) for SARS-CoV-2 in jails of graduated sizes and differing architectural designs. Methods This study summarizes how jails of Cook County (Illinois, average daily population [ADP] 6000), Fulton County (Georgia, ADP 3000, Washington DC (ADP 1600) and Middlesex County (Massachusetts, ADP 875) initiated WBS between 2020 and 2023. Results Positive signal for SARS-CoV-2 via WBS can herald new onset of infection in a previously uninfected housing unit of a jail. Challenges in implementing WBS included political will and realized value, funding, understanding of the building architecture, and the need for granularity in the findings. Conclusions WBS has been effective for detecting outbreaks of SARS-CoV-2 in differing sized jails, both those with dorm-based and cell-based architectural design. Policy implications Given its effectiveness in monitoring SARS-CoV-2, WBS provides a model for population-based surveillance in carceral facilities for future infectious disease outbreaks.
Collapse
|
20
|
Hassard F, Vu M, Rahimzadeh S, Castro-Gutierrez V, Stanton I, Burczynska B, Wildeboer D, Baio G, Brown MR, Garelick H, Hofman J, Kasprzyk-Hordern B, Majeed A, Priest S, Denise H, Khalifa M, Bassano I, Wade MJ, Grimsley J, Lundy L, Singer AC, Di Cesare M. Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year. PLoS One 2023; 18:e0286259. [PMID: 37252922 PMCID: PMC10228768 DOI: 10.1371/journal.pone.0286259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases.
Collapse
Affiliation(s)
- Francis Hassard
- Cranfield University, Bedfordshire, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
| | - Milan Vu
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Shadi Rahimzadeh
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Victor Castro-Gutierrez
- Cranfield University, Bedfordshire, United Kingdom
- Environmental Pollution Research Centre (CICA), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Isobel Stanton
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Beata Burczynska
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Dirk Wildeboer
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Gianluca Baio
- Department of Statistical Science, University College London, London, United Kingdom
| | - Mathew R. Brown
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Hemda Garelick
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Jan Hofman
- Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Barbara Kasprzyk-Hordern
- Water Innovation & Research Centre, Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Azeem Majeed
- Department of Primary Care & Public Health, Imperial College Faculty of Medicine, London, United Kingdom
| | - Sally Priest
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Hubert Denise
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Mohammad Khalifa
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Irene Bassano
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Matthew J. Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Jasmine Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Lian Lundy
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Mariachiara Di Cesare
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
- Institute of Public Health and Wellbeing, University of Essex, Colchester, United Kingdom
| |
Collapse
|
21
|
Harris-Lovett S, Nelson KL, Kantor R, Korfmacher KS. Wastewater Surveillance to Inform Public Health Decision Making in Residential Institutions. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2023; 29:317-321. [PMID: 36214654 PMCID: PMC10038809 DOI: 10.1097/phh.0000000000001636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Testing sewage (wastewater-based surveillance, or WBS) for pathogens is an increasingly important tool for monitoring the health of populations. During the COVID-19 pandemic, some residential institutions including colleges, prisons, and skilled nursing facilities used facility-level wastewater data to inform their pandemic responses. To understand how these early adopters used WBS data in decision making, we conducted in-depth, semistructured interviews with multiple decision makers at 6 residential institutions in the United States (universities, prisons, and nursing homes) encompassing a total of more than 70 000 residents and staff about interpretation, uses, and limitations of these data. We found that WBS data were used in extremely diverse ways. WBS combined with clinical surveillance informed a wide range of public health actions at residential institutions, including transmission reduction measures, public health communications, and allocation of resources. WBS also served other institutional purposes, such as maintaining relationships with external stakeholders and helping alleviate decision makers' pervasive stress. Recognizing these diverse ways of using WBS data can inform expansion of this practice among institutions as well as development of community-scale systems.
Collapse
Affiliation(s)
- Sasha Harris-Lovett
- Berkeley Water Center (Dr Harris-Lovett) and Department of Civil and Environmental Engineering (Drs Nelson and Kantor), University of California Berkeley, Berkeley, California; and Department of Environmental Medicine, University of Rochester, Rochester, New York (Dr Korfmacher)
| | - Kara L. Nelson
- Berkeley Water Center (Dr Harris-Lovett) and Department of Civil and Environmental Engineering (Drs Nelson and Kantor), University of California Berkeley, Berkeley, California; and Department of Environmental Medicine, University of Rochester, Rochester, New York (Dr Korfmacher)
| | - Rose Kantor
- Berkeley Water Center (Dr Harris-Lovett) and Department of Civil and Environmental Engineering (Drs Nelson and Kantor), University of California Berkeley, Berkeley, California; and Department of Environmental Medicine, University of Rochester, Rochester, New York (Dr Korfmacher)
| | - Katrina Smith Korfmacher
- Berkeley Water Center (Dr Harris-Lovett) and Department of Civil and Environmental Engineering (Drs Nelson and Kantor), University of California Berkeley, Berkeley, California; and Department of Environmental Medicine, University of Rochester, Rochester, New York (Dr Korfmacher)
| |
Collapse
|
22
|
Hart JJ, Jamison MN, McNair JN, Szlag DC. Frequency and degradation of SARS-CoV-2 markers N1, N2, and E in sewage. JOURNAL OF WATER AND HEALTH 2023; 21:514-524. [PMID: 37119151 DOI: 10.2166/wh.2023.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that is mainly spread through aerosolized droplets containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is excreted in feces by infected individuals. Sewage surveillance has been applied widely to obtain data on the prevalence of COVID-19 in whole communities. We used SARS-CoV-2 gene targets N1, N2, and E to determine the prevalence of COVID-19 at both municipal and building levels. Frequency analysis of wastewater testing indicated that single markers detected only 85% or less of samples that were detected as positive for SARS-CoV-2 with the three markers combined, indicating the necessity of pairing markers to lower the false-negative rate. The best pair of markers in both municipal and building level monitoring was N1 and N2, which correctly identified 98% of positive samples detected with the three markers combined. The degradation rates of all three targets were assessed at two different temperatures (25 and 35 °C) as a possible explanation for observed differences between markers in frequency. Results indicated that all three RNA targets degrade at nearly the same rate, indicating that differences in degradation rate are not responsible for the observed differences in marker frequency.
Collapse
Affiliation(s)
- John J Hart
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail:
| |
Collapse
|
23
|
Rondeau NC, Rose OJ, Alt ER, Ariyan LA, Elikan AB, Everard JL, Schreier AR, Tessler ME, Tulinsky GH, Vo JR, Ray CA, Yang CY, Miranda JJL, Mailloux BJ. Building-Level Detection Threshold of SARS-CoV-2 in Wastewater. Microbiol Spectr 2023; 11:e0292922. [PMID: 36975999 PMCID: PMC10100851 DOI: 10.1128/spectrum.02929-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
We established wastewater surveillance of SARS-CoV-2 in a small, residential, urban college as part of an integrated public health response during the COVID-19 pandemic. Students returned to campus in spring 2021. During the semester, students were required to perform nasal PCR tests twice weekly. At the same time, wastewater monitoring was established in 3 campus dormitory buildings. Two were dedicated dormitories with populations of 188 and 138 students; 1 was an isolation building where students were moved within 2 h of receiving positive test results. Analysis of wastewater from isolation indicated that the amount of viral shedding was highly variable and that viral concentration could not be used to estimate the number of cases at the building level. However, rapid movement of students to isolation enabled determination of predictive power, specificity, and sensitivity from instances in which generally one positive case at a time occurred in a building. Our assay yields effective results with an ~60% positive predictive power, ~90% negative predictive power, and ~90% specificity. Sensitivity, however, is low at ~40%. Detection is improved in the few instances of 2 simultaneous positive cases, with sensitivity of 1 case versus 2 cases increasing from ~20% to 100%. We also measured the appearance of a variant of concern on campus and noted a similarity in timeline with increased prevalence in surrounding New York City. Monitoring SARS-CoV-2 in the sewage outflow of individual buildings can be used with a realistic goal of containing outbreak clusters but not necessarily single cases. IMPORTANCE Diagnostic testing of sewage can detect levels of circulating viruses to help inform public health. Wastewater-based epidemiology has been particularly active during the COVID-19 pandemic to measure the prevalence of SARS-CoV-2. Understanding the technical limitations of diagnostic testing for individual buildings would help inform future surveillance programs. We report our diagnostic and clinical data monitoring of buildings on a college campus in New York City during the spring 2021 semester. Frequent nasal testing, mitigation measures, and public health protocols provided a context in which to study the effectiveness of wastewater-based epidemiology. Our efforts could not consistently detect individual positive COVID-19 cases, but sensitivity is significantly improved in detecting two simultaneous cases. We therefore contend that wastewater surveillance may be more practically suited for the mitigation of outbreak clusters.
Collapse
Affiliation(s)
- Nicole C. Rondeau
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Oliver J. Rose
- Office of Facilities Services, Barnard College, Columbia University, New York, New York, USA
| | - Ellen R. Alt
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Lina A. Ariyan
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Annabelle B. Elikan
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Jenna L. Everard
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Abigail R. Schreier
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Maya E. Tessler
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Grace H. Tulinsky
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Janet R. Vo
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| | - Caroline A. Ray
- President’s Office, Barnard College, Columbia University, New York, New York, USA
| | - Cynthia Y. Yang
- President’s Office, Barnard College, Columbia University, New York, New York, USA
| | - JJ L. Miranda
- Department of Biology, Barnard College, Columbia University, New York, New York, USA
| | - Brian J. Mailloux
- Environmental Science Department, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
24
|
Ash KT, Li Y, Alamilla I, Joyner DC, Williams DE, McKay PJ, Green BM, Iler C, DeBlander SE, North CM, Kara-Murdoch F, Swift CM, Hazen TC. SARS-CoV-2 raw wastewater surveillance from student residences on an urban university campus. Front Microbiol 2023; 14:1101205. [PMID: 36846780 PMCID: PMC9948028 DOI: 10.3389/fmicb.2023.1101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The COVID-19 pandemic brought about an urgent need to monitor the community prevalence of infection and detect the presence of SARS-CoV-2. Testing individual people is the most reliable method to measure the spread of the virus in any given community, but it is also the most expensive and time-consuming. Wastewater-based epidemiology (WBE) has been used since the 1960s when scientists implemented monitoring to measure the effectiveness of the Polio vaccine. Since then, WBE has been used to monitor populations for various pathogens, drugs, and pollutants. In August 2020, the University of Tennessee-Knoxville implemented a SARS-CoV-2 surveillance program that began with raw wastewater surveillance of the student residence buildings on campus, the results of which were shared with another lab group on campus that oversaw the pooled saliva testing of students. Sample collection began at 8 am, and the final RT-qPCR results were obtained by midnight. The previous day's results were presented to the campus administrators and the Student Health Center at 8 am the following morning. The buildings surveyed included all campus dormitories, fraternities, and sororities, 46 buildings in all representing an on-campus community of over 8,000 students. The WBE surveillance relied upon early morning "grab" samples and 24-h composite sampling. Because we only had three Hach AS950 Portable Peristaltic Sampler units, we reserved 24-h composite sampling for the dormitories with the highest population of students. Samples were pasteurized, and heavy sediment was centrifuged and filtered out, followed by a virus concentration step before RNA extraction. Each sample was tested by RT-qPCR for the presence of SARS-CoV-2, using the CDC primers for N Capsid targets N1 and N3. The subsequent pooled saliva tests from sections of each building allowed lower costs and minimized the total number of individual verification tests that needed to be analyzed by the Student Health Center. Our WBE results matched the trend of the on-campus cases reported by the student health center. The highest concentration of genomic copies detected in one sample was 5.06 × 107 copies/L. Raw wastewater-based epidemiology is an efficient, economical, fast, and non-invasive method to monitor a large community for a single pathogen or multiple pathogen targets.
Collapse
Affiliation(s)
- K. T. Ash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Y. Li
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - I. Alamilla
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - D. C. Joyner
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - D. E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - P. J. McKay
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - B. M. Green
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - C. Iler
- Facilities Services Department, University of Tennessee, Knoxville, TN, United States
| | - S. E. DeBlander
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - C. M. North
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - F. Kara-Murdoch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
- Battelle Memorial Institute, Columbus, OH, United States
| | - C. M. Swift
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - T. C. Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
25
|
Nauta M, McManus O, Træholt Franck K, Lindberg Marving E, Dam Rasmussen L, Raith Richter S, Ethelberg S. Early detection of local SARS-CoV-2 outbreaks by wastewater surveillance: a feasibility study. Epidemiol Infect 2023; 151:e28. [PMID: 36722251 PMCID: PMC9990400 DOI: 10.1017/s0950268823000146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/01/2022] [Accepted: 01/26/2023] [Indexed: 02/02/2023] Open
Abstract
Wastewater surveillance and quantitative analysis of SARS-CoV-2 RNA are increasingly used to monitor the spread of COVID-19 in the community. We studied the feasibility of applying the surveillance data for early detection of local outbreaks. A Monte Carlo simulation model was constructed, applying data on reported variation in RNA gene copy concentration in faeces and faecal masses shed. It showed that, even with a constant number of SARS-CoV-2 RNA shedders, the variation in concentrations found in wastewater samples will be large, and that it will be challenging to translate viral concentrations into incidence estimates, especially when the number of shedders is low. Potential signals for early detection of hypothetical outbreaks were analysed for their performance in terms of sensitivity and specificity of the signals. The results suggest that a sudden increase in incidence is not easily identified on the basis of wastewater surveillance data, especially in small sampling areas and in low-incidence situations. However, with a high number of shedders and when combining data from multiple consecutive tests, the performance of wastewater sampling is expected to improve considerably. The developed modelling approach can increase our understanding of the results from wastewater surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Maarten Nauta
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - Oliver McManus
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Gustav III:s Boulevard 40, 16973 Solna, Sweden
| | - Kristina Træholt Franck
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - Ellinor Lindberg Marving
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - Lasse Dam Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - Stine Raith Richter
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark
- Department of Public Health, Global Health Section, University of Copenhagen, Øster Farimagsgade 5, 1014 København K, Denmark
| |
Collapse
|
26
|
Solo-Gabriele HM, Kumar S, Abelson S, Penso J, Contreras J, Babler KM, Sharkey ME, Mantero AMA, Lamar WE, Tallon JJ, Kobetz E, Solle NS, Shukla BS, Kenney RJ, Mason CE, Schürer SC, Vidovic D, Williams SL, Grills GS, Jayaweera DT, Mirsaeidi M, Kumar N. Predicting COVID-19 cases using SARS-CoV-2 RNA in air, surface swab and wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159188. [PMID: 36202365 PMCID: PMC9529341 DOI: 10.1016/j.scitotenv.2022.159188] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 05/08/2023]
Abstract
Genomic footprints of pathogens shed by infected individuals can be traced in environmental samples, which can serve as a noninvasive method of infectious disease surveillance. The research evaluates the efficacy of environmental monitoring of SARS-CoV-2 RNA in air, surface swabs and wastewater to predict COVID-19 cases. Using a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory housing roughly 500 students from March to May 2021 at the University of Miami, Coral Gables, FL. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 concentration in environmental samples was quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and COVID-19 cases. SARS-CoV-2 was detected in air, surface swab and wastewater samples on 52 (63.4 %), 40 (50.0 %) and 57 (68.6 %) days, respectively. On 19 (24 %) of 78 days SARS-CoV-2 was detected in all three sample types. COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100 %), 9 (81.8 %) and 8 (72.7 %) days in air, surface swab and wastewater samples, respectively. SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases and a 3-day lead indicator for a potential outbreak at the dormitory building scale. Proactive environmental surveillance of SARS-CoV-2 or other pathogens in multiple environmental media has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks within communities.
Collapse
Affiliation(s)
- Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, United States of America
| | - Shelja Kumar
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| | - Samantha Abelson
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| | - Johnathon Penso
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| | - Julio Contreras
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| | - Kristina M Babler
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, United States of America
| | - Mark E Sharkey
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Alejandro M A Mantero
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| | - Walter E Lamar
- Facilities Safety & Compliance, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL, United States of America
| | - Erin Kobetz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Natasha Schaefer Solle
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Bhavarth S Shukla
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Richard J Kenney
- Department of Housing & Residential Life, University of Miami, Coral Gables, FL, United States of America
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY, United States of America
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States of America; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, United States of America; Department of Molecular & Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Dusica Vidovic
- Department of Molecular & Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Sion L Williams
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - George S Grills
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Dushyantha T Jayaweera
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, United States of America
| | - Naresh Kumar
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America.
| |
Collapse
|
27
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
28
|
Armas F, Chandra F, Lee WL, Gu X, Chen H, Xiao A, Leifels M, Wuertz S, Alm EJ, Thompson J. Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. ENVIRONMENT INTERNATIONAL 2023; 171:107718. [PMID: 36584425 PMCID: PMC9783150 DOI: 10.1016/j.envint.2022.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 wastewater-based surveillance (WBS) offers a tool for cost-effective oversight of a population's infections. In the past two years, WBS has proven to be crucial for managing the pandemic across different geographical regions. However, the changing context of the pandemic due to high levels of COVID-19 vaccination warrants a closer examination of its implication towards SARS-CoV-2 WBS. Two main questions were raised: 1) Does vaccination cause shedding of viral signatures without infection? 2) Does vaccination affect the relationship between wastewater and clinical data? To answer, we review historical reports of shedding from viral vaccines in use prior to the COVID-19 pandemic including for polio, rotavirus, influenza and measles infection and provide a perspective on the implications of different COVID-19 vaccination strategies with regard to the potential shedding of viral signatures into the sewershed. Additionally, we reviewed studies that looked into the relationship between wastewater and clinical data and how vaccination campaigns could have affected the relationship. Finally, analyzing wastewater and clinical data from the Netherlands, we observed changes in the relationship concomitant with increasing vaccination coverage and switches in dominant variants of concern. First, that no vaccine-derived shedding is expected from the current commercial pipeline of COVID-19 vaccines that may confound interpretation of WBS data. Secondly, that breakthrough infections from vaccinated individuals contribute significantly to wastewater signals and must be interpreted in light of the changing dynamics of shedding from new variants of concern.
Collapse
Affiliation(s)
- Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Amy Xiao
- Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore.
| |
Collapse
|
29
|
Mangwana N, Archer E, Muller CJF, Preiser W, Wolfaardt G, Kasprzyk-Hordern B, Carstens A, Brocker L, Webster C, McCarthy D, Street R, Mathee A, Louw J, Mdhluli M, Johnson R. Sewage surveillance of SARS-CoV-2 at student campus residences in the Western Cape, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158028. [PMID: 35973539 PMCID: PMC9375247 DOI: 10.1016/j.scitotenv.2022.158028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic capacity is limited in defined communities, posing a challenge in tracking and tracing new infections. Monitoring student residences, which are considered infection hotspots, with targeted wastewater surveillance is crucial. This study evaluated the efficacy of SARS-CoV-2 targeted wastewater surveillance for outbreak mitigation at Stellenbosch University's student residences in South Africa. Using torpedo-style passive sampling devices, wastewater samples were collected biweekly from manholes at twelve Stellenbosch University Tygerberg (SUT) campus and Stellenbosch University-Main (SUM) campus student residences. The surveillance led to an early warning detection of SARS-CoV-2 presence on campus, followed by an informed management strategy leading to restriction of student activities on campus and a delay in the onset of the third wave that was experienced throughout the country. Moreover, the study highlighted the extent of possible infections at defined locations even when a low number of confirmed coronavirus disease 2019 (COVID-19) cases were reported. The study also tracked the surge of the Delta and Omicron variants in the student residences using the Thermo Fisher TaqMan® RT-qPCR genotyping assay.
Collapse
Affiliation(s)
- Noluxabiso Mangwana
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Edward Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Centre for Cardiometabolic Research in Africa, Stellenbosch University, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa; National Health Laboratory Services, Tygerberg Hospital, Tygerberg, Cape Town 7505, South Africa
| | - Gideon Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Alno Carstens
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ludwig Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Candice Webster
- Environment and Health Research Unit, South African Medical Research Council (SAMRC), Johannesburg, South Africa
| | - David McCarthy
- Environmental and Public Health Microbiology Lab (EPHM LAB), Monash Infrastructure Institute, Department of Civil Engineering, Monash University, Clayton 3800, Australia
| | - Renee Street
- Environment and Health Research Unit, South African Medical Research Council (SAMRC), Durban, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council (SAMRC), Johannesburg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Mongezi Mdhluli
- Chief Research Operations Office, South African Medical Research Council, Tygerberg 7050, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Centre for Cardiometabolic Research in Africa, Stellenbosch University, South Africa.
| |
Collapse
|
30
|
Petros BA, Paull JS, Tomkins-Tinch CH, Loftness BC, DeRuff KC, Nair P, Gionet GL, Benz A, Brock-Fisher T, Hughes M, Yurkovetskiy L, Mulaudzi S, Leenerman E, Nyalile T, Moreno GK, Specht I, Sani K, Adams G, Babet SV, Baron E, Blank JT, Boehm C, Botti-Lodovico Y, Brown J, Buisker AR, Burcham T, Chylek L, Cronan P, Dauphin A, Desreumaux V, Doss M, Flynn B, Gladden-Young A, Glennon O, Harmon HD, Hook TV, Kary A, King C, Loreth C, Marrs L, McQuade KJ, Milton TT, Mulford JM, Oba K, Pearlman L, Schifferli M, Schmidt MJ, Tandus GM, Tyler A, Vodzak ME, Krohn Bevill K, Colubri A, MacInnis BL, Ozsoy AZ, Parrie E, Sholtes K, Siddle KJ, Fry B, Luban J, Park DJ, Marshall J, Bronson A, Schaffner SF, Sabeti PC. Multimodal surveillance of SARS-CoV-2 at a university enables development of a robust outbreak response framework. MED 2022; 3:883-900.e13. [PMID: 36198312 PMCID: PMC9482833 DOI: 10.1016/j.medj.2022.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Universities are vulnerable to infectious disease outbreaks, making them ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures. Here, we analyze multimodal COVID-19-associated data collected during the 2020-2021 academic year at Colorado Mesa University and introduce a SARS-CoV-2 surveillance and response framework. METHODS We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and WiFi-based co-location data) alongside pathogen surveillance data (wastewater and diagnostic testing, and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy. We applied relative risk, multiple linear regression, and social network assortativity to identify attributes or behaviors associated with contracting SARS-CoV-2. To characterize SARS-CoV-2 transmission, we used viral sequencing, phylogenomic tools, and functional assays. FINDINGS Athletes, particularly those on high-contact teams, had the highest risk of testing positive. On average, individuals who tested positive had more contacts and longer interaction durations than individuals who never tested positive. The distribution of contacts per individual was overdispersed, although not as overdispersed as the distribution of phylogenomic descendants. Corroboration via technical replicates was essential for identification of wastewater mutations. CONCLUSIONS Based on our findings, we formulate a framework that combines tools into an integrated disease surveillance program that can be implemented in other congregate settings with limited resources. FUNDING This work was supported by the National Science Foundation, the Hertz Foundation, the National Institutes of Health, the Centers for Disease Control and Prevention, the Massachusetts Consortium on Pathogen Readiness, the Howard Hughes Medical Institute, the Flu Lab, and the Audacious Project.
Collapse
Affiliation(s)
- Brittany A Petros
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA 02115, USA; Systems, Synthetic, and Quantitative Biology PhD Program, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jillian S Paull
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Systems, Synthetic, and Quantitative Biology PhD Program, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Christopher H Tomkins-Tinch
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Bryn C Loftness
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Computer Science and Engineering, Colorado Mesa University, Grand Junction, CO 81501, USA; Complex Systems and Data Science PhD Program, University of Vermont, Burlington, VT 05405, USA; Vermont Complex Systems Center, University of Vermont, Burlington, VT 05405, USA.
| | | | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Aaron Benz
- Degree Analytics, Inc., Austin, TX 78758, USA
| | | | | | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Shandukani Mulaudzi
- Harvard Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Thomas Nyalile
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Gage K Moreno
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ivan Specht
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kian Sani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gordon Adams
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Simone V Babet
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Emily Baron
- COVIDCheck Colorado, LLC, Denver, CO 80202, USA
| | - Jesse T Blank
- Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Chloe Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Princeton University Molecular Biology Department, Princeton, NJ 08544, USA
| | | | - Jeremy Brown
- Colorado Mesa University, Grand Junction, CO 81501, USA
| | | | | | - Lily Chylek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paul Cronan
- Fathom Information Design, Boston, MA 02114, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Valentine Desreumaux
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Megan Doss
- Warrior Diagnostics, Inc., Loveland, CO 80538, USA
| | - Belinda Flynn
- Colorado Mesa University, Grand Junction, CO 81501, USA
| | | | | | | | - Thomas V Hook
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Anton Kary
- Department of Biological Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Clay King
- Department of Mathematics and Statistics, Colorado Mesa University, Grand Junction, CO 81501, USA
| | | | - Libby Marrs
- Fathom Information Design, Boston, MA 02114, USA
| | - Kyle J McQuade
- Department of Biological Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Thorsen T Milton
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Jada M Mulford
- Department of Biological Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Kyle Oba
- Fathom Information Design, Boston, MA 02114, USA
| | - Leah Pearlman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Grace M Tandus
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Andy Tyler
- Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Megan E Vodzak
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kelly Krohn Bevill
- Department of Computer Science and Engineering, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Andres Colubri
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - A Zeynep Ozsoy
- Department of Biological Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Eric Parrie
- COVIDCheck Colorado, LLC, Denver, CO 80202, USA
| | - Kari Sholtes
- Department of Computer Science and Engineering, Colorado Mesa University, Grand Junction, CO 81501, USA; Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Katherine J Siddle
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ben Fry
- Fathom Information Design, Boston, MA 02114, USA
| | - Jeremy Luban
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Daniel J Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John Marshall
- Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Amy Bronson
- Physician Assistant Program, Department of Kinesiology, Colorado Mesa University, Grand Junction, CO 81501, USA
| | | | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
31
|
Hoar C, McClary-Gutierrez J, Wolfe MK, Bivins A, Bibby K, Silverman AI, McLellan SL. Looking Forward: The Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125002. [PMID: 36580023 PMCID: PMC9799055 DOI: 10.1289/ehp11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In just over 2 years, tracking the COVID-19 pandemic through wastewater surveillance advanced from early reports of successful SARS-CoV-2 RNA detection in untreated wastewater to implementation of programs in at least 60 countries. Early wastewater monitoring efforts primarily originated in research laboratories and are now transitioning into more formal surveillance programs run in commercial and public health laboratories. A major challenge in this progression has been to simultaneously optimize methods and build scientific consensus while implementing surveillance programs, particularly during the rapidly changing landscape of the pandemic. Translating wastewater surveillance results for effective use by public health agencies also remains a key objective for the field. OBJECTIVES We examined the evolution of wastewater surveillance to identify model collaborations and effective partnerships that have created rapid and sustained success. We propose needed areas of research and key roles academic researchers can play in the framework of wastewater surveillance to aid in the transition from early monitoring efforts to more formalized programs within the public health system. DISCUSSION Although wastewater surveillance has rapidly developed as a useful public health tool for tracking COVID-19, there remain technical challenges and open scientific questions that academic researchers are equipped to address. This includes validating methodology and backfilling important knowledge gaps, such as fate and transport of surveillance targets and epidemiological links to wastewater concentrations. Our experience in initiating and implementing wastewater surveillance programs in the United States has allowed us to reflect on key barriers and draw useful lessons on how to promote synergy between different areas of expertise. As wastewater surveillance programs are formalized, the working relationships developed between academic researchers, commercial and public health laboratories, and data users should promote knowledge co-development. We believe active involvement of academic researchers will contribute to building robust surveillance programs that will ultimately provide new insights into population health. https://doi.org/10.1289/EHP11519.
Collapse
Affiliation(s)
- Catherine Hoar
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Jill McClary-Gutierrez
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marlene K. Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Indiana, USA
| | - Andrea I. Silverman
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
32
|
Sellers SC, Gosnell E, Bryant D, Belmonte S, Self S, McCarter MSJ, Kennedy K, Norman RS. Building-level wastewater surveillance of SARS-CoV-2 is associated with transmission and variant trends in a university setting. ENVIRONMENTAL RESEARCH 2022; 215:114277. [PMID: 36084672 PMCID: PMC9448636 DOI: 10.1016/j.envres.2022.114277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 05/31/2023]
Abstract
The University of South Carolina (UofSC) was among the first universities to include building-level wastewater surveillance of SARS-CoV-2 to complement clinical testing during its reopening in the Fall 2020 semester. In the Spring 2021 semester, 24h composite wastewater samples were collected twice per week from 10 residence halls and the on-campus student isolation and quarantine building. The isolation and quarantine building served as a positive control site. The wastewater was analyzed using RT-ddPCR for the quantification of nucleocapsid genes (N1 and N2) to identify viral transmission trends within residence halls. Log10 SARS-CoV-2 RNA concentrations were compared to both new clinical cases identified in the days following wastewater collection and recovered cases returning to sites during the days preceding sample collection to test temporal and spatial associations. There was a statistically significant positive relationship between the number of cases reported from the sites during the seven-day period following wastewater sampling and the log10 viral RNA copies/L (overall IRR 1.08 (1.02, 1.16) p-value 0.0126). Additionally, a statistically significant positive relationship was identified between the number of cases returning to the residence halls after completing isolation during the seven-day period preceding wastewater sampling and the log10 viral RNA copies/L (overall 1.09 (1.01, 1.17) p-value 0.0222). The statistical significance of both identified cases and recovered return cases on log10 viral RNA copies/L in wastewater indicates the importance of including both types of clinical data in wastewater-based epidemiology (WBE) research. Genetic mutations associated with variants of concern (VOCs) were also monitored. The emergence of the Alpha variant on campus was identified, which contributed to the second wave of COVID-19 cases at UofSC. The study was able to identify sub-community transmission hotspots for targeted intervention in real-time, making WBE cost-effective and creating less of a burden on the general public compared to repeated individual testing methods.
Collapse
Affiliation(s)
- Sarah C Sellers
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Emily Gosnell
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Dillon Bryant
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Stefano Belmonte
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Stella Self
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Green Street, Columbia, SC, USA
| | - Maggie S J McCarter
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Green Street, Columbia, SC, USA
| | - Kirsten Kennedy
- Student Housing and Sustainability, Division of Student Affairs and Academic Support, University of South Carolina, 1520 Devine Street, Columbia, SC, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA.
| |
Collapse
|
33
|
Bitter LC, Kibbee R, Jiménez GC, Örmeci B. Wastewater Surveillance of SARS-CoV-2 at a Canadian University Campus and the Impact of Wastewater Characteristics on Viral RNA Detection. ACS ES&T WATER 2022; 2:2034-2046. [PMID: 37552746 PMCID: PMC9128010 DOI: 10.1021/acsestwater.2c00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 05/28/2023]
Abstract
Because of the increased population density, high-risk behavior of young students, and lower vaccination rates, university campuses are considered hot spots for COVID-19 transmission. This study monitored the SARS-CoV-2 RNA levels in the wastewater of a Canadian university campus for a year to provide actionable information to safely manage COVID-19 on campus. Wastewater samples were collected from the campus sewer and residence buildings to identify changes, peaks, and hotspots and search for associations with campus events, social gatherings, long weekends, and holidays. Furthermore, the impact of wastewater parameters (total solids, volatile solids, temperature, pH, turbidity, and UV absorbance) on SARS-CoV-2 detection was investigated, and the efficiency of ultrafiltration and centrifugation concentration methods were compared. RT-qPCR was used for detecting SARS-CoV-2 RNA. Wastewater signals largely correlated positively with the clinically confirmed COVID-19 cases on campus. Long weekends and holidays were often followed by increased viral signals, and the implementation of lockdowns quickly decreased the case numbers. In spite of online teaching and restricted access to campus, the university represented a microcosm of the city and mirrored the same trends. Results indicated that the centrifugation concentration method was more sensitive for wastewater with high solids content and that the ultrafiltration concentration method was more sensitive for wastewater with low solids content. Wastewater characteristics collected from the buildings and the campus sewer were different. Statistical analysis was performed to manifest the observations. Overall, wastewater surveillance provided actionable information and was also able to bring high-risk factors and events to the attention of decision-makers, enabling timely corrective measures.
Collapse
Affiliation(s)
- Lena Carolin Bitter
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| | - Richard Kibbee
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| | - Gabriela C. Jiménez
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| | - Banu Örmeci
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| |
Collapse
|
34
|
Mendoza Grijalva L, Brown B, Cauble A, Tarpeh WA. Diurnal Variability of SARS-CoV-2 RNA Concentrations in Hourly Grab Samples of Wastewater Influent during Low COVID-19 Incidence. ACS ES&T WATER 2022; 2:2125-2133. [PMID: 37552729 PMCID: PMC9063989 DOI: 10.1021/acsestwater.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
Wastewater-based epidemiology (WBE) has been widely deployed during the COVID-19 pandemic, but with limited evaluation of the utility of discrete sampling for large sewersheds and low COVID-19 incidence. In this study, SARS-CoV-2 RNA was measured in 72 consecutive hourly influent grab samples collected at a wastewater treatment plant serving nearly 500 000 residents when incidence was low (approximately 20 cases per 100 000). We characterized diurnal variability and relationships between SARS-CoV-2 RNA detection and physicochemical covariates [flow rate, total ammonia nitrogen (TAN), and total solids (TS)]. The highest detection rate observed was 82% during the first peak flow, which occurred in the early afternoon (14:00). Higher detection rates were also observed when sampling above median TAN concentrations (71%; p < 0.01; median = 40.26 mg of NH4/L). SARS-CoV-2 RNA concentrations were weakly correlated with flow rate (Kendall's τ = 0.16; p < 0.01), TAN (τ = 0.19; p < 0.05), and TS (τ = 0.18; p < 0.01), suggesting generally low RNA sewer discharges as expected at low incidence. Our results elucidated sensible adjustments to maximize detection rates, including using multiple gene targets, collecting duplicate samples, and sampling during higher flow and TAN discharges. Optimizing the lower-incidence bounds of WBE can help assess its suitability for verifying COVID-19 reemergence or eradication.
Collapse
Affiliation(s)
- Lorelay Mendoza Grijalva
- Department of Civil and Environmental Engineering,
Stanford University, Stanford, California 94305,
United States
| | - Blake Brown
- Central Contra Costa Sanitary
District, Martinez, California 94553, United
States
| | - Amanda Cauble
- Central Contra Costa Sanitary
District, Martinez, California 94553, United
States
| | - William A. Tarpeh
- Department of Civil and Environmental Engineering,
Stanford University, Stanford, California 94305,
United States
- Department of Chemical Engineering,
Stanford University, Stanford, California 94305,
United States
| |
Collapse
|
35
|
Rocha AY, Verbyla ME, Sant KE, Mladenov N. Detection, Quantification, and Simplified Wastewater Surveillance Model of SARS-CoV-2 RNA in the Tijuana River. ACS ES&T WATER 2022; 2:2134-2143. [PMID: 36398132 PMCID: PMC9063987 DOI: 10.1021/acsestwater.2c00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The COVID-19 pandemic and the detection of SARS-CoV-2 RNA in sewage has expanded global interest in wastewater surveillance. However, many underserved communities throughout the world lack improved sanitation and use informal combined sanitary and storm sewer systems. Sewage is transported via open channels, ditches, and rivers, where it mixes with surface water and/or stormwater. There is a need to develop better methods for the surveillance of pathogens such as SARS-CoV-2 RNA in this context. We developed a simplified surveillance system and monitored flow rates and concentrations of SARS-CoV-2 RNA in the Tijuana River at two locations downstream of the United States-Mexico border in California, United States. SARS-CoV-2 RNA was detected in the upstream location on six out of eight occasions, two of which were at concentrations as high as those reported in untreated wastewater from California sanitary sewer systems. The virus was not detected in any of the eight samples collected at the downstream (estuarine) sampling location, despite the consistent detection of PMMoV RNA. Synchrony was observed between the number of cases reported in Tijuana and the SARS-CoV-2 RNA concentrations measured with the CDC N1 assay when the latter were normalized by the reported flow rates in the river.
Collapse
Affiliation(s)
- Alma Y. Rocha
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Matthew E. Verbyla
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Karilyn E. Sant
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Natalie Mladenov
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
36
|
Duvallet C, Wu F, McElroy KA, Imakaev M, Endo N, Xiao A, Zhang J, Floyd-O’Sullivan R, Powell MM, Mendola S, Wilson ST, Cruz F, Melman T, Sathyanarayana CL, Olesen SW, Erickson TB, Ghaeli N, Chai P, Alm EJ, Matus M. Nationwide Trends in COVID-19 Cases and SARS-CoV-2 RNA Wastewater Concentrations in the United States. ACS ES&T WATER 2022; 2:1899-1909. [PMID: 36380771 PMCID: PMC9092192 DOI: 10.1021/acsestwater.1c00434] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wastewater-based epidemiology has emerged as a promising technology for population-level surveillance of COVID-19. In this study, we present results of a large nationwide SARS-CoV-2 wastewater monitoring system in the United States. We profile 55 locations with at least six months of sampling from April 2020 to May 2021. These locations represent more than 12 million individuals across 19 states. Samples were collected approximately weekly by wastewater treatment utilities as part of a regular wastewater surveillance service and analyzed for SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA concentrations were normalized to pepper mild mottle virus, an indicator of fecal matter in wastewater. We show that wastewater data reflect temporal and geographic trends in clinical COVID-19 cases and investigate the impact of normalization on correlations with case data within and across locations. We also provide key lessons learned from our broad-scale implementation of wastewater-based epidemiology, which can be used to inform wastewater-based epidemiology approaches for future emerging diseases. This work demonstrates that wastewater surveillance is a feasible approach for nationwide population-level monitoring of COVID-19 disease. With an evolving epidemic and effective vaccines against SARS-CoV-2, wastewater-based epidemiology can serve as a passive surveillance approach for detecting changing dynamics or resurgences of the virus.
Collapse
Affiliation(s)
- Claire Duvallet
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Fuqing Wu
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Kyle A. McElroy
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Maxim Imakaev
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Noriko Endo
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Amy Xiao
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jianbo Zhang
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
| | | | - Morgan M. Powell
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel Mendola
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Shane T. Wilson
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Francis Cruz
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Tamar Melman
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Scott W. Olesen
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Timothy B. Erickson
- Department
of Emergency Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division
of Medical Toxicology, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Humanitarian Initiative, Cambridge, Massachusetts 02138, United States
| | - Newsha Ghaeli
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Peter Chai
- Division
of Medical Toxicology, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- The
Fenway Institute, Boston, Massachusetts 02215, United States
- The
Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Eric J. Alm
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mariana Matus
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Nguyen Quoc B, Saingam P, RedCorn R, Carter JA, Jain T, Candry P, Gattuso M, Huang MLW, Greninger AL, Meschke JS, Bryan A, Winkler MKH. Case Study: Impact of Diurnal Variations and Stormwater Dilution on SARS-CoV-2 RNA Signal Intensity at Neighborhood Scale Wastewater Pumping Stations. ACS ES&T WATER 2022; 2:1964-1975. [PMID: 37552740 PMCID: PMC9261832 DOI: 10.1021/acsestwater.2c00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a tool to track the spread of SARS-CoV-2. However, sampling at wastewater treatment plants (WWTPs) cannot identify transmission hotspots within a city. Here, we sought to understand the diurnal variations (24 h) in SARS-CoV-2 RNA titers at the neighborhood level, using pump stations that serve vulnerable communities (e.g., essential workers, more diverse communities). Hourly composite samples were collected from wastewater pump stations located in (i) a residential area and (ii) a shopping district. In the residential area, SARS-CoV-2 RNA concentration (N1, N2, and E assays) varied by up to 42-fold within a 24 h period. The highest viral load was observed between 5 and 7 am, when viral RNA was not diluted by stormwater. Normalizing peak concentrations during this time window with nutrient concentrations (N and P) enabled correcting for rainfall to connect sewage to clinical cases reported in the sewershed. Data from the shopping district pump station were inconsistent, probably due to the fluctuation of customers shopping at the mall. This work indicates pump stations serving the residential area offer a narrow time period of high signal intensity that could improve the sensitivity of WBE, and tracer compounds (N, P concentration) can be used to normalize SARS-CoV-2 signals during rainfall.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Prakit Saingam
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Raymond RedCorn
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - John A. Carter
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Tanisha Jain
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Pieter Candry
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| | - Meghan Gattuso
- Seattle Public Utilities,
Seattle, Washington 98124, United States
| | - Meei-Li W. Huang
- Dept of Laboratory Medicine and Pathology,
University of Washington, Seattle, Washington 98105,
United States
| | - Alexander L. Greninger
- Dept of Laboratory Medicine and Pathology,
University of Washington, Seattle, Washington 98105,
United States
| | - John Scott Meschke
- Department of Environmental & Occupational Health
Sciences, University of Washington, Seattle, Washington 98105,
United States
| | - Andrew Bryan
- Dept of Laboratory Medicine and Pathology,
University of Washington, Seattle, Washington 98105,
United States
| | - Mari K. H. Winkler
- Department of Civil and Environmental Engineering,
University of Washington, Seattle, Washington 98105,
United States
| |
Collapse
|
38
|
Cohen A, Maile-Moskowitz A, Grubb C, Gonzalez RA, Ceci A, Darling A, Hungerford L, Fricker R, Finkielstein CV, Pruden A, Vikesland PJ. Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data. ACS ES&T WATER 2022; 2:2047-2059. [PMID: 37552724 PMCID: PMC9128018 DOI: 10.1021/acsestwater.2c00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 08/10/2023]
Abstract
To evaluate the use of wastewater-based surveillance and epidemiology to monitor and predict SARS-CoV-2 virus trends, over the 2020-2021 academic year we collected wastewater samples twice weekly from 17 manholes across Virginia Tech's main campus. We used data from external door swipe card readers and student isolation/quarantine status to estimate building-specific occupancy and COVID-19 case counts at a daily resolution. After analyzing 673 wastewater samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), we reanalyzed 329 samples from isolation and nonisolation dormitories and the campus sewage outflow using reverse transcription digital droplet polymerase chain reaction (RT-ddPCR). Population-adjusted viral copy means from isolation dormitory wastewater were 48% and 66% higher than unadjusted viral copy means for N and E genes (1846/100 mL to 2733/100 mL/100 people and 2312/100 mL to 3828/100 mL/100 people, respectively; n = 46). Prespecified analyses with random-effects Poisson regression and dormitory/cluster-robust standard errors showed that the detection of N and E genes were associated with increases of 85% and 99% in the likelihood of COVID-19 cases 8 days later (incident-rate ratio (IRR) = 1.845, p = 0.013 and IRR = 1.994, p = 0.007, respectively; n = 215), and one-log increases in swipe card normalized viral copies (copies/100 mL/100 people) for N and E were associated with increases of 21% and 27% in the likelihood of observing COVID-19 cases 8 days following sample collection (IRR = 1.206, p < 0.001, n = 211 for N; IRR = 1.265, p < 0.001, n = 211 for E). One-log increases in swipe normalized copies were also associated with 40% and 43% increases in the likelihood of observing COVID-19 cases 5 days after sample collection (IRR = 1.403, p = 0.002, n = 212 for N; IRR = 1.426, p < 0.001, n = 212 for E). Our findings highlight the use of building-specific occupancy data and add to the evidence for the potential of wastewater-based epidemiology to predict COVID-19 trends at subsewershed scales.
Collapse
Affiliation(s)
- Alasdair Cohen
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Ayella Maile-Moskowitz
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Christopher Grubb
- Department of Statistics, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Raul A. Gonzalez
- Hampton Roads Sanitation
District, Virginia Beach, Virginia 23455, United
States
| | - Alessandro Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical
Research Institute, Virginia Tech, Roanoke, Virginia 24016,
United States
| | - Amanda Darling
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Laura Hungerford
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Ronald
D. Fricker
- Department of Statistics, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Carla V. Finkielstein
- Molecular Diagnostics Laboratory, Fralin Biomedical
Research Institute, Virginia Tech, Roanoke, Virginia 24016,
United States
- Integrated Cellular Responses Laboratory, Fralin
Biomedical Research Institute at VTC, Roanoke, Virginia 24016,
United States
- Department of Biological Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Amy Pruden
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| |
Collapse
|
39
|
Langan LM, O’Brien M, Rundell ZC, Back JA, Ryan BJ, Chambliss CK, Norman RS, Brooks BW. Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T WATER 2022; 2:1929-1943. [PMID: 37552714 PMCID: PMC9063990 DOI: 10.1021/acsestwater.1c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) provides an early warning and trend analysis approach for determining the presence of COVID-19 in a community and complements clinical testing in assessing the population level, even as viral loads fluctuate. Here, we evaluate combinations of two wastewater concentration methods (i.e., ultrafiltration and composite supernatant-solid), four pre-RNA extraction modifications, and three nucleic acid extraction kits using two different wastewater sampling locations. These consisted of a quarantine facility containing clinically confirmed COVID-19-positive inhabitants and a university residence hall. Of the combinations examined, composite supernatant-solid with pre-RNA extraction consisting of water concentration and RNA/DNA shield performed the best in terms of speed and sensitivity. Further, of the three nucleic acid extraction kits examined, the most variability was associated with the Qiagen kit. Focusing on the quarantine facility, viral concentrations measured in wastewater were generally significantly related to positive clinical cases, with the relationship dependent on method, modification, kit, target, and normalization, although results were variable-dependent on individual time points (Kendall's Tau-b (τ) = 0.17 to 0.6) or cumulatively (Kendall's Tau-b (τ) = -0.048 to 1). These observations can support laboratories establishing protocols to perform wastewater surveillance and monitoring efforts for COVID-19.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Zach C. Rundell
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Jeffrey A. Back
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Benjamin J. Ryan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Chemistry and Biochemistry,
Baylor University, One Bear Place #97348, Waco, Texas 76798,
United States
| | - R. Sean Norman
- Environmental Health Sciences, Arnold
School of Public Health, South Carolina, 921 Assembly Street, Columbia,
South Carolina 29208, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Institute of Biomedical Studies, Baylor
University, One Bear Place #97224, Waco, Texas 76798, United
States
| |
Collapse
|
40
|
Duvallet C, Wu F, McElroy KA, Imakaev M, Endo N, Xiao A, Zhang J, Floyd-O'Sullivan R, Powell MM, Mendola S, Wilson ST, Cruz F, Melman T, Sathyanarayana CL, Olesen SW, Erickson TB, Ghaeli N, Chai P, Alm EJ, Matus M. Nationwide Trends in COVID-19 Cases and SARS-CoV-2 RNA Wastewater Concentrations in the United States. ACS ES&T WATER 2022; 2:1899-1909. [PMID: 36380771 DOI: 10.1101/2021.09.08.21263283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wastewater-based epidemiology has emerged as a promising technology for population-level surveillance of COVID-19. In this study, we present results of a large nationwide SARS-CoV-2 wastewater monitoring system in the United States. We profile 55 locations with at least six months of sampling from April 2020 to May 2021. These locations represent more than 12 million individuals across 19 states. Samples were collected approximately weekly by wastewater treatment utilities as part of a regular wastewater surveillance service and analyzed for SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA concentrations were normalized to pepper mild mottle virus, an indicator of fecal matter in wastewater. We show that wastewater data reflect temporal and geographic trends in clinical COVID-19 cases and investigate the impact of normalization on correlations with case data within and across locations. We also provide key lessons learned from our broad-scale implementation of wastewater-based epidemiology, which can be used to inform wastewater-based epidemiology approaches for future emerging diseases. This work demonstrates that wastewater surveillance is a feasible approach for nationwide population-level monitoring of COVID-19 disease. With an evolving epidemic and effective vaccines against SARS-CoV-2, wastewater-based epidemiology can serve as a passive surveillance approach for detecting changing dynamics or resurgences of the virus.
Collapse
Affiliation(s)
- Claire Duvallet
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Fuqing Wu
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Kyle A McElroy
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Maxim Imakaev
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Noriko Endo
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Amy Xiao
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jianbo Zhang
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | | | - Morgan M Powell
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel Mendola
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Shane T Wilson
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Francis Cruz
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Tamar Melman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Scott W Olesen
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Timothy B Erickson
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Harvard Humanitarian Initiative, Cambridge, Massachusetts 02138, United States
| | - Newsha Ghaeli
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Peter Chai
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- The Fenway Institute, Boston, Massachusetts 02215, United States
- The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Eric J Alm
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mariana Matus
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
de Llanos R, Cejudo-Marín R, Barneo M, Pérez-Cataluña A, Barberá-Riera M, Rebagliato M, Bellido-Blasco J, Sánchez G, Hernández F, Bijlsma L. Monitoring the evolution of SARS-CoV-2 on a Spanish university campus through wastewater analysis: A pilot project for the reopening strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157370. [PMID: 35842154 PMCID: PMC9278994 DOI: 10.1016/j.scitotenv.2022.157370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 06/03/2023]
Abstract
Wastewater surveillance is a fast and cost-effective tool that enables tracing of both symptomatic and asymptomatic transmission of SARS-CoV-2. In this paper, a pilot program carried out at the University Jaume I for monitoring the trends of the presence of SARS-CoV-2 in wastewater. To the best of our knowledge, this is the first such project conducted on a university campus in Spain. Wastewater samples (n = 838) were collected when students returned to campus, from October 2020 until August 2021, at a confluence sewer point and at the building level including different academic departments and services, the library, administration offices and the university student residence. It has been observed that the probability of SARS-CoV-2 RNA detection in wastewater depended on COVID-19 incidence on campus and visitors/occupants of the buildings i.e., high-, or low-traffic buildings with high or low frequency of potential contacts. Moreover, the third wave in Spain (after Christmas 2020) and an outbreak that occurred at the university student's residence could be carefully followed, allowing confirmation of the end of the outbreak. In addition, viral variants (i.e., mutations and linages) from selected time points were detected by sequencing and gave an indication of the evolution of the virus over time. The results illustrate the potential of wastewater-based epidemiology to provide an early warning for SARS-CoV-2 within the university, especially in buildings with low traffic and more defined populations, like the student residence. The strategy and experience gathered in this study will allow for implementation of improvements for reliable monitoring in the future.
Collapse
Affiliation(s)
- Rosa de Llanos
- Faculty of Health Sciences, University Jaume I, Castellón, Spain.
| | | | - Manuela Barneo
- Faculty of Health Sciences, University Jaume I, Castellón, Spain
| | - Alba Pérez-Cataluña
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - María Barberá-Riera
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; Epidemiology and Public Health Center of Castellón, Spain
| | - Marisa Rebagliato
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Bellido-Blasco
- Faculty of Health Sciences, University Jaume I, Castellón, Spain; Epidemiology and Public Health Center of Castellón, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain.
| |
Collapse
|
42
|
Wartell BA, Proano C, Bakalian L, Kaya D, Croft K, McCreary M, Lichtenstein N, Miske V, Arcellana P, Boyer J, Benschoten IV, Anderson M, Crabb A, Gilson S, Gourley A, Wheeler T, Trest B, Bowman G, Kjellerup BV. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10807. [PMID: 36372781 PMCID: PMC9827968 DOI: 10.1002/wer.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Wastewater surveillance, also known as wastewater-based epidemiology (WBE), has been successfully used to detect SARS-CoV-2 and other viruses in sewage in many locations in the United States and globally. This includes implementation of the surveillance on college and university campuses. A two-phase study was conducted during the 2020-2021 academic year to test the feasibility of a WBE system on campus and to supplement the clinical COVID-19 testing performed for the student, staff, and faculty body. The primary objective during the Fall 2020 semester was to monitor a large portion of the on-campus population and to obtain an understanding of the spreading of the SARS-CoV-2 virus. The Spring 2021 objective was focused on selected residence halls and groups of residents on campus, as this was more efficient and relevant for an effective follow-up response. Logistical problems and planning oversights initially occurred but were corrected with improved communication and experience. Many lessons were learned, including effective mapping, site planning, communication, personnel organization, and equipment management, and obtained along the way, thereby paving an opportune guide for future planning efforts. PRACTITIONER POINTS: WBE was successful in the detection of many SARS-CoV-2 variants incl. Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron. Careful planning and contingencies were essential for a successful implementation of a SARS-CoV-2 monitoring program. A surveillance program may be important for detection and monitoring of other public health relevant targets in wastewater incl. bacteria, viruses, fungi and viruses. Diverse lessons were learned incl. effective mapping, site planning, communication, personnel organization, and equipment management, thereby providing a guide for future planning efforts.
Collapse
Affiliation(s)
- Brian A. Wartell
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Camila Proano
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Lena Bakalian
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Devrim Kaya
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Kristen Croft
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Michael McCreary
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Naomi Lichtenstein
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Victoria Miske
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Patricia Arcellana
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Jessica Boyer
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Isabelle Van Benschoten
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Marya Anderson
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Andrea Crabb
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Susan Gilson
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Anthony Gourley
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Tim Wheeler
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Brian Trest
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Glynnis Bowman
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| |
Collapse
|
43
|
Yaglom HD, Maurer M, Collins B, Hojnacki J, Monroy-Nieto J, Bowers JR, Packard S, Erickson DE, Barrand ZA, Simmons KM, Brock BN, Lim ES, Smith S, Hepp CM, Engelthaler DM. One health genomic surveillance and response to a university-based outbreak of the SARS-CoV-2 Delta AY.25 lineage, Arizona, 2021. PLoS One 2022; 17:e0272830. [PMID: 36315517 PMCID: PMC9621446 DOI: 10.1371/journal.pone.0272830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Genomic surveillance and wastewater tracking strategies were used to strengthen the public health response to an outbreak of the SARS-CoV-2 Delta AY.25 lineage associated with a university campus in Arizona. Epidemiologic and clinical data routinely gathered through contact tracing were matched to SARS-CoV-2 genomes belonging to an outbreak of AY.25 identified through ongoing phylogenomic analyses. Continued phylogenetic analyses were conducted to further describe the AY.25 outbreak. Wastewater collected twice weekly from sites across campus was tested for SARS-CoV-2 by RT-qPCR, and subsequently sequenced to identify variants. The AY.25 outbreak was defined by a single mutation (C18804T) and comprised 379 genomes from SARS-CoV-2 positive cases associated with the university and community. Several undergraduate student gatherings and congregate living settings on campus likely contributed to the rapid spread of COVID-19 across the university with secondary transmission into the community. The clade defining mutation was also found in wastewater samples collected from around student dormitories a week before the semester began, and 9 days before cases were identified. Genomic, epidemiologic, and wastewater surveillance provided evidence that an AY.25 clone was likely imported into the university setting just prior to the onset of the Fall 2021 semester, rapidly spread through a subset of the student population, and then subsequent spillover occurred in the surrounding community. The university and local public health department worked closely together to facilitate timely reporting of cases, identification of close contacts, and other necessary response and mitigation strategies. The emergence of new SARS-CoV-2 variants and potential threat of other infectious disease outbreaks on university campuses presents an opportunity for future comprehensive One Health genomic data driven, targeted interventions.
Collapse
Affiliation(s)
- Hayley D. Yaglom
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- * E-mail:
| | - Matthew Maurer
- Coconino County Health and Human Services, Flagstaff, Arizona, United States of America
| | - Brooke Collins
- Coconino County Health and Human Services, Flagstaff, Arizona, United States of America
| | - Jacob Hojnacki
- Coconino County Health and Human Services, Flagstaff, Arizona, United States of America
| | - Juan Monroy-Nieto
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Jolene R. Bowers
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Samuel Packard
- Coconino County Health and Human Services, Flagstaff, Arizona, United States of America
| | - Daryn E. Erickson
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Zachary A. Barrand
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kyle M. Simmons
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Breezy N. Brock
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Efrem S. Lim
- Arizona State University, Tempe, Arizona, United States of America
| | - Sandra Smith
- Campus Health Services, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Crystal M. Hepp
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Engelthaler
- Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| |
Collapse
|
44
|
Kim K, Ban MJ, Kim S, Park MH, Stenstrom MK, Kang JH. Optimal allocation and operation of sewer monitoring sites for wastewater-based disease surveillance: A methodological proposal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115806. [PMID: 35926387 PMCID: PMC9342910 DOI: 10.1016/j.jenvman.2022.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Wastewater-based epidemiology (WBE) is drawing increasing attention as a promising tool for an early warning of emerging infectious diseases such as COVID-19. This study demonstrated the utility of a spatial bisection method (SBM) and a global optimization algorithm (i.e., genetic algorithm, GA), to support better designing and operating a WBE program for disease surveillance and source identification. The performances of SBM and GA were compared in determining the optimal locations of sewer monitoring manholes to minimize the difference among the effective spatial monitoring scales of the selected manholes. While GA was more flexible in determining the spatial resolution of the monitoring areas, SBM allows stepwise selection of optimal sampling manholes with equiareal subcatchments and lowers computational cost. Upon detecting disease outbreaks at a regular sewer monitoring site, additional manholes within the catchment can be selected and monitored to identify source areas with a required spatial resolution. SBM offered an efficient method for rapidly searching for the optimal locations of additional sampling manholes to identify the source areas. This study provides strategic and technical elements of WBE including sampling site selection with required spatial resolution and a source identification method.
Collapse
Affiliation(s)
- Keugtae Kim
- Department of Environmental and Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 18323, Republic of Korea
| | - Min Jeong Ban
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, 30, Pildong-ro 1gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Sungpyo Kim
- Department of Environmental Engineering, Korea University-Sejong, 2 511, Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Mi-Hyun Park
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Michael K Stenstrom
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90096, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, 30, Pildong-ro 1gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
45
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
46
|
Lu E, Ai Y, Davis A, Straathof J, Halloran K, Hull N, Winston R, Weir MH, Soller J, Bohrerova Z, Oglesbee M, Lee J. Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. ENVIRONMENTAL RESEARCH 2022; 212:113580. [PMID: 35671797 PMCID: PMC9167806 DOI: 10.1016/j.envres.2022.113580] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology is an effective tool for monitoring infectious disease spread or illicit drug use within communities. At the Ohio State University, we conducted a SARS-CoV-2 wastewater surveillance program in the 2020-2021 academic year and compared results with the university-required weekly COVID-19 saliva testing to monitor COVID-19 infection prevalence in the on-campus residential communities. The objectives of the study were to rapidly track trends in the wastewater SARS-CoV-2 gene concentrations, analyze the relationship between case numbers and wastewater signals when adjusted using human fecal viral indicator concentrations (PMMoV, crAssphage) in wastewater, and investigate the relationship of the SARS-CoV-2 gene concentrations with wastewater parameters. SARS-CoV-2 nucleocapsid and envelope (N1, N2, and E) gene concentrations, determined with reverse transcription droplet digital PCR, were used to track SARS-CoV-2 viral loads in dormitory wastewater once a week at 6 sampling sites across the campus during the fall semester in 2020. During the following spring semester, research was focused on SARS-CoV2 N2 gene concentrations at 5 sites sampled twice a week. Spearman correlations both with and without adjusting using human fecal viral indicators showed a significant correlation (p < 0.05) between human COVID-19 positive case counts and wastewater SARS-CoV-2 gene concentrations. Spearman correlations showed significant relationships between N1 gene concentrations and both TSS and turbidity, and between E gene concentrations and both pH and turbidity. These results suggest that wastewater signal increases with the census of infected individuals, in which the majority are asymptomatic, with a statistically significant (p-value <0.05) temporal correlation. The study design can be utilized as a platform for rapid trend tracking of SARS-CoV-2 variants and other diseases circulating in various communities.
Collapse
Affiliation(s)
- Emily Lu
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Judith Straathof
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Kent Halloran
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Facilities Operations and Development, Environmental Health and Safety, The Ohio State University, Columbus, OH, USA
| | - Natalie Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Mark H Weir
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | | | - Zuzana Bohrerova
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
47
|
Hill DT, Cousins H, Dandaraw B, Faruolo C, Godinez A, Run S, Smith S, Willkens M, Zirath S, Larsen DA. Wastewater treatment plant operators report high capacity to support wastewater surveillance for COVID-19 across New York State, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155664. [PMID: 35526635 PMCID: PMC9072752 DOI: 10.1016/j.scitotenv.2022.155664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 05/28/2023]
Abstract
Wastewater surveillance for infectious disease expanded greatly during the COVID-19 pandemic. As a collaboration between sanitation engineers and scientists, the most cost-effective deployment of wastewater surveillance routinely tests wastewater samples from wastewater treatment plants. To evaluate the capacity of treatment plants of different sizes and characteristics to participate in surveillance efforts, we developed and distributed a survey to New York State municipal treatment plant supervisors in the summer and fall of 2021. The goal of the survey was to assess the knowledge, capacity, and attitudes toward wastewater surveillance as a public health tool. Our objectives were to: (1) determine what treatment plant operators know about wastewater surveillance for public health; (2) assess how plant operators feel about the affordability and benefits of wastewater surveillance; and (3) determine how frequently plant personnel can take and ship samples using existing resources. Results show that 62% of respondents report capacity to take grab samples twice weekly. Knowledge about wastewater surveillance was mixed with most supervisors knowing that COVID-19 can be tracked via wastewater but having less knowledge about surveillance for other public health issues such as opioids. We found that attitudes toward wastewater testing for public health were directly associated with differences in self-reported capacity of the plant to take samples. Further, findings suggest a diverse capacity for sampling across sewer systems with larger treatment plants reporting greater capacity for more frequent sampling. Findings provide guidance for outreach activities as well as important insight into treatment plant sampling capacity as it is connected to internal factors such as size and resource availability. These may help public health departments understand the limitations and ability of wastewater surveillance for public health benefit.
Collapse
Affiliation(s)
- Dustin T Hill
- Department of Public Health, Syracuse University, Syracuse, NY 13244, United States of America.
| | - Hannah Cousins
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Bryan Dandaraw
- Department of Environmental Science, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States of America
| | - Catherine Faruolo
- Department of Public Health, Syracuse University, Syracuse, NY 13244, United States of America
| | - Alex Godinez
- Department of Public Health, Syracuse University, Syracuse, NY 13244, United States of America
| | - Sythong Run
- Department of Public Health, Syracuse University, Syracuse, NY 13244, United States of America
| | - Simon Smith
- Department of Public Health, Syracuse University, Syracuse, NY 13244, United States of America
| | - Megan Willkens
- Department of Public Health, Syracuse University, Syracuse, NY 13244, United States of America
| | - Shruti Zirath
- Department of Environmental Science, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States of America
| | - David A Larsen
- Department of Public Health, Syracuse University, Syracuse, NY 13244, United States of America
| |
Collapse
|
48
|
Mac Mahon J, Criado Monleon AJ, Gill LW, O'Sullivan JJ, Meijer WG. Wastewater-based epidemiology (WBE) for SARS-CoV-2 - A review focussing on the significance of the sewer network using a Dublin city catchment case study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1402-1425. [PMID: 36178814 DOI: 10.2166/wst.2022.278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) has been employed by many countries globally since the beginning of the COVID-19 pandemic in order to assess the benefits of this surveillance tool in the context of informing public health measures. WBE has been successfully employed to detect SARS-CoV-2 at wastewater treatment plants for community-wide surveillance, as well as in smaller catchments and institutions for targeted surveillance of COVID-19. In addition, WBE has been successfully used to detect new variants, identify areas of high infection levels, as well as to detect new infection outbreaks. However, due to to the large number of inherent uncertainties in the WBE process, including the inherent intricacies of the sewer network, decay of the virus en route to a monitoring point, levels of recovery from sampling and quantification methods, levels of faecal shedding among the infected population, as well as population normalisation methods, the usefulness of wastewater samples as a means of accurately quantifying SARS-CoV-2 infection levels among a population remains less clear. The current WBE programmes in place globally will help to identify new areas of research aimed at reducing the levels of uncertainty in the WBE process, thus improving WBE as a public health monitoring tool for future pandemics. In the meantime, such programmes can provide valuable comparisons to clinical testing data and other public health metrics, as well being an effective early warning tool for new variants and new infection outbreaks. This review includes a case study of sampled wastewater from the sewer network in Dublin, Ireland, during a peak infection period of COVID-19 in the city, which evaluates the different uncertainties in the WBE process.
Collapse
Affiliation(s)
| | | | | | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin
| | - Wim G Meijer
- UCD School of Biomolecular & Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin
| |
Collapse
|
49
|
Welling CM, Singleton DR, Haase SB, Browning CH, Stoner BR, Gunsch CK, Grego S. Predictive values of time-dense SARS-CoV-2 wastewater analysis in university campus buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155401. [PMID: 35469858 PMCID: PMC9026951 DOI: 10.1016/j.scitotenv.2022.155401] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 05/14/2023]
Abstract
Wastewater-based SARS-CoV-2 surveillance on college campuses has the ability to detect individual clinical COVID-19 cases at the building-level. High concordance of wastewater results and clinical cases has been observed when calculated over a time window of four days or longer and in settings with high incidence of infection. At Duke University, twice a week clinical surveillance of all resident undergraduates was carried out in the spring 2021 semester. We conducted simultaneous wastewater surveillance with daily frequency on selected residence halls to assess wastewater as an early warning tool during times of low transmission with the hope of scaling down clinical test frequency. We evaluated the temporal relationship of the two time-dense data sets, wastewater and clinical, and sought a strategy to achieve the highest wastewater predictive values using the shortest time window to enable timely intervention. There were 11 days with clinical cases in the residence halls (80-120 occupants) under wastewater surveillance with 5 instances of a single clinical case and 3 instances of two clinical cases which also corresponded to a positive wastewater SARS-CoV-2 signal. While the majority (71%) of our wastewater samples were negative for SARS-CoV-2, 29% resulted in at least one positive PCR signal, some of which did not correlate with an identified clinical case. Using a criteria of two consecutive days of positive wastewater signals, we obtained a positive predictive value (PPV) of 75% and a negative predictive value of 87% using a short 2 day time window for agreement. A conventional concordance over a much longer 4 day time window resulted in PPV of only 60%. Our data indicated that daily wastewater collection and using a criteria of two consecutive days of positive wastewater signals was the most predictive approach to timely early warning of COVID-19 cases at the building level.
Collapse
Affiliation(s)
- Claire M Welling
- Center for Water, Sanitation, Hygiene and Infectious Disease (WASH-AID), Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
| | - David R Singleton
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America
| | - Steven B Haase
- Departments of Biology and Medicine, Duke University, Durham, NC, United States of America
| | - Christian H Browning
- Office of Information Technology, Duke University, Durham, NC, United States of America
| | - Brian R Stoner
- Center for Water, Sanitation, Hygiene and Infectious Disease (WASH-AID), Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
| | - Claudia K Gunsch
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, United States of America
| | - Sonia Grego
- Center for Water, Sanitation, Hygiene and Infectious Disease (WASH-AID), Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America.
| |
Collapse
|
50
|
Bivins A, Kaya D, Ahmed W, Brown J, Butler C, Greaves J, Leal R, Maas K, Rao G, Sherchan S, Sills D, Sinclair R, Wheeler RT, Mansfeldt C. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155347. [PMID: 35460780 PMCID: PMC9020839 DOI: 10.1016/j.scitotenv.2022.155347] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 05/09/2023]
Abstract
Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.
Collapse
Affiliation(s)
- Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Rd., Amherst, MA 01003, USA
| | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Raeann Leal
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Kendra Maas
- Microbial Analyses, Resources, and Services Facility, University of Connecticut, Storrs, CT 06269, USA
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA; Center for Climate and Health, Morgan State University, Baltimore, MD 21251, USA
| | - Deborah Sills
- Bucknell University, Department of Civil and Environmental Engineering, Lewisburg, PA 17837, USA
| | - Ryan Sinclair
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, USA
| |
Collapse
|