1
|
Liu H, Liu Z, Zhou Y, Qin A, Li C, Liu Y, Gao P, Zhao Q, Song X, Li M, Kong L, Xie Y, Yan L, Guo E, Sun X. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of quinoa salt bladders. STRESS BIOLOGY 2024; 4:47. [PMID: 39532803 PMCID: PMC11557854 DOI: 10.1007/s44154-024-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
Salt bladders, specialized structures on the surface of quinoa leaves, secrete Na+ to mitigate the effects of the plant from abiotic stresses, particularly salt exposure. Understanding the development of these structures is crucial for elucidating quinoa's salt tolerance mechanisms. In this study, we employed transmission electron microscopy to detail cellular differentiation across the developmental stages of quinoa salt bladders. To further explore the developmental trajectory and underlying molecular mechanisms, we conducted single-cell RNA sequencing on quinoa protoplasts derived from young leaves. This allowed us to construct a cellular atlas, identifying 13 distinct cell clusters. Through pseudotime analysis, we mapped the developmental pathways of salt bladders and identified regulatory factors involved in cell fate decisions. GO and KEGG enrichment analyses, as well as experimental results, revealed the impacts of salt stress and the deprivation of sulfur and nitrogen on the development of quinoa salt bladders. Analysis of the transcription factor interaction network in pre-stalk cells (pre-SC), stalk cells (SC), and epidermal bladder cells (EBCs) indicated that TCP5, YAB5, NAC078, SCL8, GT-3B, and T1P17.40 play crucial roles in EBC development. Based on our findings, we developed an informative model elucidating salt bladder formation. This study provides a vital resource for mapping quinoa leaf cells and contributes to our understanding of its salt tolerance mechanisms.
Collapse
Affiliation(s)
- Hao Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Zhixin Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yaping Zhou
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Aizhi Qin
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Chunyang Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yumeng Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Peibo Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Qianli Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiao Song
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Mengfan Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Luyao Kong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yajie Xie
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Lulu Yan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Enzhi Guo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
2
|
Zhou Y, Feng C, Wang Y, Yun C, Zou X, Cheng N, Zhang W, Jing Y, Li H. Understanding of Plant Salt Tolerance Mechanisms and Application to Molecular Breeding. Int J Mol Sci 2024; 25:10940. [PMID: 39456729 PMCID: PMC11507592 DOI: 10.3390/ijms252010940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is a widespread hindrance that endangers agricultural production and ecological security. High salt concentrations in saline soils are primarily caused by osmotic stress, ionic toxicity and oxidative stress, which have a negative impact on plant growth and development. In order to withstand salt stress, plants have developed a series of complicated physiological and molecular mechanisms, encompassing adaptive changes in the structure and function of various plant organs, as well as the intricate signal transduction networks enabling plants to survive in high-salinity environments. This review summarizes the recent advances in salt perception under different tissues, physiological responses and signaling regulations of plant tolerance to salt stress. We also examine the current knowledge of strategies for breeding salt-tolerant plants, including the applications of omics technologies and transgenic approaches, aiming to provide the basis for the cultivation of salt-tolerant crops through molecular breeding. Finally, future research on the application of wild germplasm resources and muti-omics technologies to discover new tolerant genes as well as investigation of crosstalk among plant hormone signaling pathways to uncover plant salt tolerance mechanisms are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (Y.Z.); (C.F.); (Y.W.); (C.Y.); (X.Z.); (N.C.); (W.Z.)
| |
Collapse
|
3
|
Mueller HM, Franzisky BL, Messerer M, Du B, Lux T, White PJ, Carpentier SC, Winkler JB, Schnitzler JP, El-Serehy HA, Al-Rasheid KAS, Al-Harbi N, Alfarraj S, Kudla J, Kangasjärvi J, Reichelt M, Mithöfer A, Mayer KFX, Rennenberg H, Ache P, Hedrich R, Geilfus CM. Integrative multi-omics analyses of date palm (Phoenix dactylifera) roots and leaves reveal how the halophyte land plant copes with sea water. THE PLANT GENOME 2024; 17:e20372. [PMID: 37518859 DOI: 10.1002/tpg2.20372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 08/01/2023]
Abstract
Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: "avoidance" by efficient sodium and chloride exclusion at the roots, and "acclimation" by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance.
Collapse
Affiliation(s)
- Heike M Mueller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, Würzburg, Germany
| | - Bastian L Franzisky
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany
| | | | - Sebastien Christian Carpentier
- Facility for SYstems BIOlogy based MAss Spectrometry, SYBIOMA, Proteomics Core Facility, KU Leuven, Leuven, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, KU Leuven, Leuven, Belgium
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Joerg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Hamed A El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Naif Al-Harbi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, Würzburg, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
4
|
Chandran AEJ, Finkler A, Hait TA, Kiere Y, David S, Pasmanik-Chor M, Shkolnik D. Calcium regulation of the Arabidopsis Na+/K+ transporter HKT1;1 improves seed germination under salt stress. PLANT PHYSIOLOGY 2024; 194:1834-1852. [PMID: 38057162 PMCID: PMC10904324 DOI: 10.1093/plphys/kiad651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.
Collapse
Affiliation(s)
- Ancy E J Chandran
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Aharon Hait
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sivan David
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Metsada Pasmanik-Chor
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Yang X, Hu R, Sun F, Shen S, Zhang M, Liu Y, Zhang Y, Du H, Lu K, Qu C, Yin N. Identification of the High-Affinity Potassium Transporter Gene Family (HKT) in Brassica U-Triangle Species and Its Potential Roles in Abiotic Stress in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3768. [PMID: 37960124 PMCID: PMC10649870 DOI: 10.3390/plants12213768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Members of the high-affinity potassium transporter (HKT) protein family regulate the uptake and homeostasis of sodium and potassium ions, but little research describes their roles in response to abiotic stresses in rapeseed (Brassica napus L.). In this study, we identified and characterized a total of 36 HKT genes from the species comprising the triangle of U model (U-triangle species): B. rapa, B. nigra, B. oleracea, B. juncea, B. napus, and B. carinata. We analyzed the phylogenetic relationships, gene structures, motif compositions, and chromosomal distributions of the HKT family members of rapeseed. Based on their phylogenetic relationships and assemblage of functional domains, we classified the HKT members into four subgroups, HKT1;1 to HKT1;4. Analysis of the nonsynonymous substitutions (Ka), synonymous substitutions (Ks), and the Ka/Ks ratios of HKT gene pairs suggested that these genes have experienced strong purifying selective pressure after duplication, with their evolutionary relationships supporting the U-triangle theory. Furthermore, the expression profiles of BnaHKT genes varies among potassium, phytohormone and heavy-metal treatment. Their repression provides resistance to heavy-metal stress, possibly by limiting uptake. Our results systematically reveal the characteristics of HKT family proteins and their encoding genes in six Brassica species and lay a foundation for further exploration of the role of HKT family genes in heavy-metal tolerance.
Collapse
Affiliation(s)
- Xiaoran Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ran Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yiwei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
6
|
Souid A, Bellani L, Tassi EL, Ben Hamed K, Longo V, Giorgetti L. Early Physiological, Cytological and Antioxidative Responses of the Edible Halophyte Chenopodium quinoa Exposed to Salt Stress. Antioxidants (Basel) 2023; 12:antiox12051060. [PMID: 37237926 DOI: 10.3390/antiox12051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a plant of South American origin recently valorized for its nutritional and nutraceutical properties in human diet. Quinoa is cultivated in many parts of the world, with a selection of varieties with good adaptability to extreme climatic conditions and salt stress. The variety Red Faro, native to southern Chile but harvested in Tunisia, was considered for salt stress resistance, considering its seed germination and 10-day seedling growth at increasing doses of NaCl (0, 100, 200 and 300 mM). Seedlings were spectrophotometrically analyzed for antioxidant secondary metabolites (polyphenols, flavonoids, flavonols and anthocyanins), antioxidant capacity (ORAC, oxygen radical absorbance capacity, DPPH*, 2,2-diphenyl-1-pic-rylhydrazyl), antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and catalase (CAT)) and mineral nutrient content in root and shoot tissues. Cytogenetic analysis of root tip was performed to check for meristematic activity and the possible presence of chromosomal abnormalities induced by salt stress. The results indicated a general increase in antioxidant molecules and antioxidant enzymes NaCl dose-dependent, no effects on seed germination but negative effects on seedling growth, and little effect on root meristems mitotic activity. These results indicated that stress conditions can induce an increase in biologically active molecules that could be used for nutraceutical purposes.
Collapse
Affiliation(s)
- Aymen Souid
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Lorenza Bellani
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Eliana Lanfranca Tassi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, 56124 Pisa, Italy
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Vincenzo Longo
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
| | - Lucia Giorgetti
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy
| |
Collapse
|
7
|
Tan L, Waqas M, Rehman A, Rashid MAR, Fiaz S, Manzoor H, Azeem F. Computational analysis and expression profiling of potassium transport-related gene families in mango ( Mangifera indica) indicate their role in stress response and fruit development. FRONTIERS IN PLANT SCIENCE 2023; 13:1102201. [PMID: 36756234 PMCID: PMC9899903 DOI: 10.3389/fpls.2022.1102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Mango (Mangifera indica) fruit is known for its taste, health benefits, and drought tolerance. Potassium (K+) is one of the most abundant ions in a plant cell. It is important for various biological functions related to plant growth, development, and flowering/fruiting. It significantly contributes to fruit yield, quality, and drought tolerance in plants. However, molecular mechanisms comprising K+ transport in mango are least known. In the present study, 37 members of K+ transport-related genes (PTGs) were identified in mango, which include 22 K+ transporters (16 HAKs, 1 HKT, and 6 KEAs) and 15 K+ channels (6 TPKs and 8 Shakers). All PTGs were predicted to be expressed at the plasma membrane and possess characteristic motifs and domains. Phylogenetic analysis identified a strong kinship of PTGs among Oryza sativa, Arabidopsis thaliana, Cicer arietinum, Malus domestica, and M. indica. The promoter analysis identified 60 types of cis-elements related to various biological processes. RNA-seq-based expression profiling identified that MiTPK1.2, MiHAK1, MiHAK2.1, HAK6.1, and MiAKT1.1 were most upregulated in roots and that MiKEA2, MiAKT2, and MiAKT1 were upregulated in leaves. Moreover, MiAKT6, MiHAK1.1, MiKAT2, MiKAT2.1, MiHKT1, MiTPK1.1, MiHAK7, and MiHAK12 were highly expressed during the five growth stages of mango fruit. The current study is the first comprehensive report on K+ transport system in tropical fruits. Therefore, it will provide the foundation knowledge for the functional characterization of K+ genes in mango and related plants.
Collapse
Affiliation(s)
- Lin Tan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Muhammad Waqas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdul Rehman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
8
|
Kumar R, Swapnil P, Meena M, Selpair S, Yadav BG. Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to Alleviate Abiotic Stresses for Enhancement of Growth and Development of Medicinal Plants. SUSTAINABILITY 2022; 14:15514. [DOI: 10.3390/su142315514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plants are constantly exposed to both biotic and abiotic stresses which limit their growth and development and reduce productivity. In order to tolerate them, plants initiate a multitude of stress-specific responses which modulate different physiological, molecular and cellular mechanisms. However, many times the natural methods employed by plants for overcoming the stresses are not sufficient and require external assistance from the rhizosphere. The microbial community in the rhizosphere (known as the rhizomicrobiome) undergoes intraspecific as well as interspecific interaction and signaling. The rhizomicrobiome, as biostimulants, play a pivotal role in stimulating the growth of plants and providing resilience against abiotic stress. Such rhizobacteria which promote the development of plants and increase their yield and immunity are known as PGPR (plant growth promoting rhizobacteria). On the basis of contact, they are classified into two categories, extracellular (in soil around root, root surface and cellular space) and intracellular (nitrogen-fixing bacteria). They show their effects on plant growth directly (i.e., in absence of pathogens) or indirectly. Generally, they make their niche in concentrated form around roots, as the latter exude several nutrients, such as amino acids, lipids, proteins, etc. Rhizobacteria build a special symbiotic relationship with the plant or a section of the plant’s inner tissues. There are free-living PGPRs with the potential to work as biofertilizers. Additionally, studies show that PGPRs can ameliorate the effect of abiotic stresses and help in enhanced growth and development of plants producing therapeutically important compounds. This review focuses on the various mechanisms which are employed by PGPRs to mitigate the effect of different stresses in medicinal plants and enhance tolerance against these stress conditions.
Collapse
|
9
|
Naz N, Fatima S, Hameed M, Ashraf M, Ahmad MSA, Ahmad F, Shah SMR, Islam F, Ahmad I, Ejaz F, Naseer M. Contribution of structural and functional adaptations of hyper-accumulator Suaeda vera Forssk. ex J.F. Gmel. for adaptability across salinity gradients in hot desert. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64077-64095. [PMID: 35469386 DOI: 10.1007/s11356-022-19167-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The role of ionic excretions and hyper-accumulation of salts through alterations of structural and functional traits in five populations of Suaeda vera Forssk. ex J.F. Gmel., a halophytic salt-indicator species of saline environments, was explored. Differently adapted populations of S. vera exhibited specific structural and functional responses for the survival in hyper-saline conditions. Better growth in population from moderately saline habitat (25-30 dS m-1) was linked to high shoot and root K+ and increased ion selectivity (K+/Na+ and Ca2+/Na+). Increased excretion of Na+ and Cl- with increasing salinity level was a critical mechanism in maintaining ionic balance. Drastic differences were observed for anatomical characteristics in populations inhabiting differentially salt-affected lands. The plants from highly saline sites were characterized by narrow metaxylem vessels, low proportion of cortical parenchyma, and reduced phloem area leading to stunted growth. Contrariwise, root area significantly increased due to high proportion of sclerified xylem tissue, which was associated with easier conduction of solutes and protection of roots from collapsing. Root sclerification particularly at the highest salinity regime was a key factor in the survival of this species in salt-affected compact soils. Leaf anatomical characteristics showed reduction with increasing salinity, but the leaf thickness responded otherwise. This contributed to increased leaf succulence because of high proportion of storage parenchyma in populations colonizing hyper-saline habitats. It was concluded that moderate salinity conditions were more suitable for the growth of S. vera, though some populations of this species were able to tolerate much higher salinity levels.
Collapse
Affiliation(s)
- Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sana Fatima
- Department of Botany, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | | | - Farooq Ahmad
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Faakeha Islam
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iftikhar Ahmad
- Department of Botany, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Farial Ejaz
- Department of Botany, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Mehwish Naseer
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
10
|
Analysis of the NAC Gene Family in Salix and the Identification of SpsNAC005 Gene Contributing to Salt and Drought Tolerance. FORESTS 2022. [DOI: 10.3390/f13070971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The NAC gene family is of great value for plant stress resistance and development. In this study, five NAC genes with a typical NAM domain were isolated from Salix psammophila, which is a stress-resistant willow endemic to western China. Two hundred sixty-two NAC genes from Salix psammophila, Salix purpurea, and Arabidopsis were used to construct the phylogenetic tree to examine the phylogenetic relationship. Five NAC genes in Salix psammophila were the focus of bioinformatics analysis and conserved structural domain analysis. The SpsNAC005 gene was overexpressed in Populus hopeiensis, and the transgenic lines were subjected to salt and simulated drought stress to analyze their phenotype changes and tolerance to stress. The results showed that transgenic poplar height and leaf area increased by 29.73% and 76.36%, respectively, compared with those of wild-type plants. Under stress treatment, the height growth rates and ground diameter growth rates of the transgenic lines were significantly higher than those of the wild-type, whereas their fresh weight and dry weight were decreased compared to those of the wild-type. The SOD activities, POD activities, and Pro contents of the transgenic plants were significantly increased, and the accumulation of MDA was significantly lower than that in the wild-type, and the transgenic lines showed clear tolerance to salt and drought. The expressions of the SOS1, MPK6, HKT1, and P5CS1 genes were downregulated in the transgenic lines. The expression of the PRODH1 gene was downregulated in the transgenic lines. These results indicate that overexpression of the SpsNAC005 gene in transgenic plants can promote plant growth and development and improve tolerance to salt and drought.
Collapse
|
11
|
Molecular Insights into Salinity Responsiveness in Contrasting Genotypes of Rice at the Seedling Stage. Int J Mol Sci 2022; 23:ijms23031624. [PMID: 35163547 PMCID: PMC8835730 DOI: 10.3390/ijms23031624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/31/2023] Open
Abstract
Salinity is one of the most common unfavorable environmental conditions that limits plant growth and development, ultimately reducing crop productivity. To investigate the underlying molecular mechanism involved in the salinity response in rice, we initially screened 238 rice cultivars after salt treatment at the seedling stage and identified two highly salt-tolerant cultivars determined by the relative damage rate parameter. The majority of cultivars (94.1%) were ranked as salt-sensitive and highly salt-sensitive. Transcriptome profiling was completed in highly salt-tolerant, moderately salt-tolerant, and salt-sensitive under water and salinity treatments at the seedling stage. Principal component analysis displayed a clear distinction among the three cultivars under control and salinity stress conditions. Several starch and sucrose metabolism-related genes were induced after salt treatment in all genotypes at the seedling stage. The results from the present study enable the identification of the ascorbate glutathione pathway, potentially participating in the process of plant response to salinity in the early growth stage. Our findings also highlight the significance of high-affinity K+ uptake transporters (HAKs) and high-affinity K+ transporters (HKTs) during salt stress responses in rice seedlings. Collectively, the cultivar-specific stress-responsive genes and pathways identified in the present study act as a useful resource for researchers interested in plant responses to salinity at the seedling stage.
Collapse
|
12
|
Paul A, Chatterjee A, Subrahmanya S, Shen G, Mishra N. NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:777884. [PMID: 34987532 PMCID: PMC8720784 DOI: 10.3389/fpls.2021.777884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.
Collapse
Affiliation(s)
| | | | | | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Neelam Mishra
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, India
| |
Collapse
|
13
|
Lefoulon C. The bare necessities of plant K+ channel regulation. PLANT PHYSIOLOGY 2021; 187:2092-2109. [PMID: 34618033 PMCID: PMC8644596 DOI: 10.1093/plphys/kiab266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
14
|
Naeem A, Aslam M, Mühling KH. Lithium: Perspectives of nutritional beneficence, dietary intake, biogeochemistry, and biofortification of vegetables and mushrooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149249. [PMID: 34329936 DOI: 10.1016/j.scitotenv.2021.149249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Although lithium (Li) is not an essential nutrient for humans, low Li intakes are associated with increased suicide and homicide rates, aggressive behaviors, unipolar/bipolar disorders, acute mania, etc. On the other hand, Li is one of the most effective psychopharmacological agents used for the treatment of these psycho-behavioral disorders. The beneficial normothymic effect of Li could be achieved at lower doses, therefore, modern psychiatry has called to consider Li biofortification of foods to improve its dietary intake. The concept of agronomic biofortification of crops with Li is juvenile and there exist a limited number of studies, mainly focused on vegetables or mushrooms. This review, first of its kind, discusses the nutritional beneficence and dietary intake of Li, its biogeochemistry, and opportunities and challenges in the Li biofortification of food crops. Literature showed that dietary intake of Li in many countries of the world is insufficient, compared to the provisional recommended dietary allowance (RDA) of 1.0 mg day-1 for a 70 kg adult. Lithium contents of soils are widely variable and the metal has high mobility in soils, making it more prone to leaching, and available for plant uptake. Biofortification studies reveal that plants can accumulate significant quantities of Li in their edible tissues without yield loss and quality associated negative effects. At lower application rates, Li tissue concentration could reach to the level that consuming 100-200 g of Li-biofortified fresh vegetables or mushrooms could support its RDA. It seems impossible to enrich the plants with Li to the levels that allow their application in psychiatric treatments, which requires the dosage of 600-1200 mg day-1. However, there is need to refine the methods of Li biofortification strategies to obtains plant specific concentration of Li in edible parts so that consuming a specific amount could provide the proposed dietary intake requirement.
Collapse
Affiliation(s)
- Asif Naeem
- Institute for Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118 Kiel, Germany; Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, 38000 Faisalabad, Pakistan
| | - Muhammad Aslam
- Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, 38000 Faisalabad, Pakistan
| | - Karl H Mühling
- Institute for Plant Nutrition and Soil Science, Kiel University, Hermann Rodewald Strasse 2, D-24118 Kiel, Germany.
| |
Collapse
|
15
|
Venkataraman G, Shabala S, Véry AA, Hariharan GN, Somasundaram S, Pulipati S, Sellamuthu G, Harikrishnan M, Kumari K, Shabala L, Zhou M, Chen ZH. To exclude or to accumulate? Revealing the role of the sodium HKT1;5 transporter in plant adaptive responses to varying soil salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:333-342. [PMID: 34837866 DOI: 10.1016/j.plaphy.2021.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Arid/semi-arid and coastal agricultural areas of the world are especially vulnerable to climate change-driven soil salinity. Salinity tolerance in plants is a complex trait, with salinity negatively affecting crop yield. Plants adopt a range of mechanisms to combat salinity, with many transporter genes being implicated in Na+-partitioning processes. Within these, the high-affinity K+ (HKT) family of transporters play a critical role in K+ and Na+ homeostasis in plants. Among HKT transporters, Type I transporters are Na+-specific. While Arabidopsis has only one Na + -specific HKT (AtHKT1;1), cereal crops have a multiplicity of Type I and II HKT transporters. AtHKT1; 1 (Arabidopsis thaliana) and HKT1; 5 (cereal crops) 'exclude' Na+ from the xylem into xylem parenchyma in the root, reducing shoot Na+ and hence, confer sodium tolerance. However, more recent data from Arabidopsis and crop species show that AtHKT1;1/HKT1;5 alleles have a strong genetic association with 'shoot sodium accumulation' and concomitant salt tolerance. The review tries to resolve these two seemingly contradictory effects of AtHKT1;1/HKT1;5 operation (shoot exclusion vs shoot accumulation), both conferring salinity tolerance and suggests that contrasting phenotypes are attributable to either hyper-functional or weak AtHKT1;1/HKT1;5 alleles/haplotypes and are under strong selection by soil salinity levels. It also suggests that opposite balancing mechanisms involving xylem ion loading in these contrasting phenotypes exist that require transporters such as SOS1 and CCC. While HKT1; 5 is a crucial but not sole determinant of salinity tolerance, investigation of the adaptive benefit(s) conferred by naturally occurring intermediate HKT1;5 alleles will be important under a climate change scenario.
Collapse
Affiliation(s)
- Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India.
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier Cedex 2, France.
| | - Gopalasamudram Neelakantan Hariharan
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Suji Somasundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600124, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India; Forest Molecular Entomology Laboratory, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CZU), Kamycka 129, Praha, 16500, Czech Republic
| | - Mohan Harikrishnan
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
16
|
Ukwatta J, Pabuayon ICM, Park J, Chen J, Chai X, Zhang H, Zhu JK, Xin Z, Shi H. Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. PLANTA 2021; 254:98. [PMID: 34657208 DOI: 10.1007/s00425-021-03750-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 05/27/2023]
Abstract
Mota Maradi is a sorghum line that exhibits holistic salinity tolerance mechanisms, making it a viable potential donor in breeding efforts for improved sorghum lines. High soil salinity is one of the global challenges for crop growth and productivity. Understanding the salinity tolerance mechanisms in crops is necessary for genetic breeding of salinity-tolerant crops. In this study, physiological and molecular mechanisms in sorghum were identified through a comparative analysis between a Nigerien salinity-tolerant sorghum landrace, Mota Maradi, and the reference sorghum line, BTx623. Significant differences on physiological performances were observed, particularly on growth and biomass gain, photosynthetic rate, and the accumulation of Na+, K+, proline, and sucrose. Transcriptome profiling of the leaves, leaf sheaths, stems, and roots revealed contrasting differentially expressed genes (DEGs) in Mota Maradi and BTx623 which supports the physiological observations from both lines. Among the DEGs, ion transporters such as HKT, NHX, AKT, HAK5, and KUP3 were likely responsible for the differences in Na+ and K+ accumulation. Meanwhile, DEGs involved in photosynthesis, cellular growth, signaling, and ROS scavenging were also identified between these two genotypes. Functional and pathway analysis of the DEGs has revealed that these processes work in concert and are crucial in elevated salinity tolerance in Mota Maradi. Our findings indicate how different complex processes work synergistically for salinity stress tolerance in sorghum. This study also highlights the unique adaptation of landraces toward their respective ecosystems, and their strong potential as genetic resources for future plant breeding endeavors.
Collapse
Affiliation(s)
- Jayan Ukwatta
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Jungjae Park
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415, USA
| | - Xiaoqiang Chai
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, 79415, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
17
|
Imran S, Tsuchiya Y, Tran STH, Katsuhara M. Identification and Characterization of Rice OsHKT1;3 Variants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102006. [PMID: 34685816 PMCID: PMC8537747 DOI: 10.3390/plants10102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 05/23/2023]
Abstract
In rice, the high-affinity K+ transporter, OsHKT1;3, functions as a Na+-selective transporter. mRNA variants of OsHKT1;3 have been reported previously, but their functions remain unknown. In this study, five OsHKT1;3 variants (V1-V5) were identified from japonica rice (Nipponbare) in addition to OsHKT1;3_FL. Absolute quantification qPCR analyses revealed that the transcript level of OsHKT1;3_FL was significantly higher than other variants in both the roots and shoots. Expression levels of OsHKT1;3_FL, and some variants, increased after 24 h of salt stress. Two electrode voltage clamp experiments in a heterologous expression system using Xenopus laevis oocytes revealed that oocytes expressing OsHKT1;3_FL and all of its variants exhibited smaller Na+ currents. The presented data, together with previous data, provide insights to understanding how OsHKT family members are involved in the mechanisms of ion homeostasis and salt tolerance in rice.
Collapse
Affiliation(s)
- Shahin Imran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
- Department of Agronomy, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Yoshiyuki Tsuchiya
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
| | - Sen Thi Huong Tran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
- Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue 530000, Vietnam
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan or (S.I.); (Y.T.); (S.T.H.T.)
| |
Collapse
|
18
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
19
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. One Hundred Candidate Genes and Their Roles in Drought and Salt Tolerance in Wheat. Int J Mol Sci 2021; 22:ijms22126378. [PMID: 34203629 PMCID: PMC8232269 DOI: 10.3390/ijms22126378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Drought and salinity are major constraints to agriculture. In this review, we present an overview of the global situation and the consequences of drought and salt stress connected to climatic changes. We provide a list of possible genetic resources as sources of resistance or tolerant traits, together with the previous studies that focused on transferring genes from the germplasm to cultivated varieties. We explained the morphological and physiological aspects connected to hydric stresses, described the mechanisms that induce tolerance, and discussed the results of the main studies. Finally, we described more than 100 genes associated with tolerance to hydric stresses in the Triticeae. These were divided in agreement with their main function into osmotic adjustment and ionic and redox homeostasis. The understanding of a given gene function and expression pattern according to hydric stress is particularly important for the efficient selection of new tolerant genotypes in classical breeding. For this reason, the current review provides a crucial reference for future studies on the mechanism involved in hydric stress tolerance and the use of these genes in mark assistance selection (MAS) to select the wheat germplasm to face the climatic changes.
Collapse
|
20
|
A single residue deletion in the barley HKT1;5 P189 variant restores plasma membrane localisation but not Na + conductance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183669. [PMID: 34139196 DOI: 10.1016/j.bbamem.2021.183669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Leaf Na+ exclusion, mediated by plasma membrane-localised Class 1 High-affinity potassium (K+) Transporters (HKTs), is a key mechanism contributing to salinity tolerance of several major crop plants. We determined previously that the leucine to proline residue substitution at position 189 (L189P) in barley HvHKT1;5 disrupts its characteristic plasma membrane localisation and Na+ conductance. Here, we focus on a surprising observation that a single residue deletion of methionine at position 372 (M372del) within the conserved VMMYL motif in plant HKTs, restores plasma membrane localisation but not Na+ conductance in HvHKT1;5 P189. To clarify why the singular M372 deletion regains plasma membrane localisation, we built 3D models and defined α-helical assembly pathways of the P189 M372del mutant, and compared these findings to the wild-type protein, and the HvHKT1;5 L189 variant and its M372del mutant. We find that α-helical association and assembly pathways in HvHKT1;5 proteins fall in two contrasting categories. Inspections of structural flexibility through molecular dynamics simulations revealed that the conformational states of HvHKT1;5 P189 diverge from those of the L189 variant and M372del mutants. We propose that M372del in HvHKT1;5 P189 instigates structural rearrangements allowing routing to the plasma membrane, while the restoration of conductance would require further interventions. We integrate the microscopy, electrophysiology, and biocomputational data and discuss how a profound structural change in HvHKT1;5 P189 M372del impacts its α-helical protein association pathway and flexibility, and how these features underlie a delicate balance leading to restoring plasma membrane localisation but not Na+ conductance.
Collapse
|
21
|
Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP. Plant mineral transport systems and the potential for crop improvement. PLANTA 2021; 253:45. [PMID: 33483879 DOI: 10.1007/s00425-020-03551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Nutrient transporter genes could be a potential candidate for improving crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. The world's food supply is nearing a crisis in meeting the demands of an ever-growing global population, and an increase in both yield and nutrient value of major crops is vitally necessary to meet the increased population demand. Nutrients play an important role in plant metabolism as well as growth and development, and nutrient deficiency results in retarded plant growth and leads to reduced crop yield. A variety of cellular processes govern crop plant nutrient absorption from the soil. Among these, nutrient membrane transporters play an important role in the acquisition of nutrients from soil and transport of these nutrients to their target sites. In addition, as excess nutrient delivery has toxic effects on plant growth, these membrane transporters also play a significant role in the removal of excess nutrients in the crop plant. The key function provided by membrane transporters is the ability to supply the crop plant with an adequate level of tolerance against environmental stresses, such as soil acidity, alkalinity, salinity, drought, and pathogen attack. Membrane transporter genes have been utilized for the improvement of crop plants, with enhanced nutrient uptake leading to increased crop yield by providing tolerance against different biotic and abiotic stresses. Further understanding of the basic mechanisms of nutrient transport in crop plants could facilitate the advanced design of engineered plant crops to achieve increased yield and improve nutrient quality through the use of genetic technologies as well as molecular breeding. This review is focused on nutrient toxicity and tolerance mechanisms in crop plants to aid in understanding and addressing the anticipated global food demand.
Collapse
Affiliation(s)
- Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shambhu Krishan Lal
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, CCS HAU, Hisar, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nitzan Shabek
- Department of Plant Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
22
|
Yolcu S, Alavilli H, Lee BH. Natural Genetic Resources from Diverse Plants to Improve Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:ijms21228567. [PMID: 33202909 PMCID: PMC7697984 DOI: 10.3390/ijms21228567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The current agricultural system is biased for the yield increase at the cost of biodiversity. However, due to the loss of precious genetic diversity during domestication and artificial selection, modern cultivars have lost the adaptability to cope with unfavorable environments. There are many reports on variations such as single nucleotide polymorphisms (SNPs) and indels in the stress-tolerant gene alleles that are associated with higher stress tolerance in wild progenitors, natural accessions, and extremophiles in comparison with domesticated crops or model plants. Therefore, to gain a better understanding of stress-tolerant traits in naturally stress-resistant plants, more comparative studies between the modern crops/model plants and crop progenitors/natural accessions/extremophiles are required. In this review, we discussed and summarized recent progress on natural variations associated with enhanced abiotic stress tolerance in various plants. By applying the recent biotechniques such as the CRISPR/Cas9 gene editing tool, natural genetic resources (i.e., stress-tolerant gene alleles) from diverse plants could be introduced to the modern crop in a non-genetically modified way to improve stress-tolerant traits.
Collapse
Affiliation(s)
- Seher Yolcu
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Byeong-ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea;
- Correspondence:
| |
Collapse
|
23
|
Xu B, Hrmova M, Gilliham M. High affinity Na + transport by wheat HKT1;5 is blocked by K . PLANT DIRECT 2020; 4:e00275. [PMID: 33103046 PMCID: PMC7576878 DOI: 10.1002/pld3.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 05/11/2023]
Abstract
The wheat sodium transporters TmHKT1;5-A and TaHKT1;5-D are encoded by genes underlying the major shoot Na+ exclusion loci Nax2 and Kna1 from Triticum monococcum (Tm) and Triticum aestivum (Ta), respectively. In contrast to HKT2 transporters that have been shown to exhibit high affinity K+-dependent Na+ transport, HKT1 proteins have, with one exception, only been shown to catalyze low affinity Na+ transport and no K+ transport. Here, using heterologous expression in Xenopus laevis oocytes we uncover a novel property of HKT1 proteins, that both TmHKT1;5-A and TaHKT1;5-D encode dual (high and low) affinity Na+-transporters with the high-affinity component being abolished when external K+ is in excess of external Na+. Three-dimensional structural modeling suggested that, compared to Na+, K+ is bound more tightly in the selectivity filter region by means of additional van der Waals forces, which is likely to explain the K+ block at the molecular level. The low-affinity component for Na+ transport of TmHKT1;5-A had a lower K m than that of TaHKT1;5-D and was less sensitive to external K+. We propose that these properties contribute towards the improvements in shoot Na+-exclusion and crop plant salt tolerance following the introgression of TmHKT1;5-A into diverse wheat backgrounds.
Collapse
Affiliation(s)
- Bo Xu
- Australian Research Council Centre of Excellence in Plant Energy BiologyUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Life ScienceHuaiyin Normal UniversityHuai’anChina
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy BiologyUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
- School of Agriculture, Food and Wine, and Waite Research InstituteUniversity of AdelaideWaite Research PrecinctGlen OsmondSAAustralia
| |
Collapse
|
24
|
Borjigin C, Schilling RK, Bose J, Hrmova M, Qiu J, Wege S, Situmorang A, Byrt C, Brien C, Berger B, Gilliham M, Pearson AS, Roy SJ. A single nucleotide substitution in TaHKT1;5-D controls shoot Na + accumulation in bread wheat. PLANT, CELL & ENVIRONMENT 2020; 43:2158-2171. [PMID: 32652543 PMCID: PMC7540593 DOI: 10.1111/pce.13841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 05/22/2023]
Abstract
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+ ) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.
Collapse
Affiliation(s)
- Chana Borjigin
- Australian Centre for Plant Functional Genomics, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Rhiannon K. Schilling
- Australian Centre for Plant Functional Genomics, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Jayakumar Bose
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life Sciences, Huaiyin Normal UniversityHuai'anChina
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Stefanie Wege
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Apriadi Situmorang
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Caitlin Byrt
- Division of Plant SciencesResearch School of Biology, Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Chris Brien
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- Australian Plant Phenomics FacilityThe Plant Accelerator, The University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Bettina Berger
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- Australian Plant Phenomics FacilityThe Plant Accelerator, The University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Allison S. Pearson
- Australian Centre for Plant Functional Genomics, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- ARC Centre of Excellence in Plant Energy BiologyThe University of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Stuart J. Roy
- Australian Centre for Plant Functional Genomics, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Agriculture, Food and Wine, The University of AdelaideGlen OsmondSouth AustraliaAustralia
- ARC Industrial Transformation Research Hub for Wheat in a Hot Dry Climate, The University of AdelaideGlen OsmondSouth AustraliaAustralia
| |
Collapse
|
25
|
Borjigin C, Schilling RK, Bose J, Hrmova M, Qiu J, Wege S, Situmorang A, Byrt C, Brien C, Berger B, Gilliham M, Pearson AS, Roy SJ. A single nucleotide substitution in TaHKT1;5-D controls shoot Na + accumulation in bread wheat. PLANT, CELL & ENVIRONMENT 2020; 43:2158-2171. [PMID: 32652543 DOI: 10.1101/2020.01.21.909887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 05/28/2023]
Abstract
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+ ) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.
Collapse
Affiliation(s)
- Chana Borjigin
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Glen Osmond, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Glen Osmond, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Jayakumar Bose
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Glen Osmond, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stefanie Wege
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Apriadi Situmorang
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Caitlin Byrt
- Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Chris Brien
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Allison S Pearson
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Glen Osmond, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Glen Osmond, South Australia, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot Dry Climate, The University of Adelaide, Glen Osmond, South Australia, Australia
| |
Collapse
|
26
|
Alnayef M, Solis C, Shabala L, Ogura T, Chen Z, Bose J, Maathuis FJM, Venkataraman G, Tanoi K, Yu M, Zhou M, Horie T, Shabala S. Changes in Expression Level of OsHKT1;5 Alters Activity of Membrane Transporters Involved in K + and Ca 2+ Acquisition and Homeostasis in Salinized Rice Roots. Int J Mol Sci 2020; 21:E4882. [PMID: 32664377 PMCID: PMC7402344 DOI: 10.3390/ijms21144882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023] Open
Abstract
In rice, the OsHKT1;5 gene has been reported to be a critical determinant of salt tolerance. This gene is harbored by the SKC1 locus, and its role was attributed to Na+ unloading from the xylem. No direct evidence, however, was provided in previous studies. Also, the reported function of SKC1 on the loading and delivery of K+ to the shoot remains to be explained. In this work, we used an electrophysiological approach to compare the kinetics of Na+ uptake by root xylem parenchyma cells using wild type (WT) and NIL(SKC1) plants. Our data showed that Na+ reabsorption was observed in WT, but not NIL(SKC1) plants, thus questioning the functional role of HKT1;5 as a transporter operating in the direct Na+ removal from the xylem. Instead, changes in the expression level of HKT1;5 altered the activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in the rice epidermis and stele, explaining the observed phenotype. We conclude that the role of HKT1;5 in plant salinity tolerance cannot be attributed to merely reducing Na+ concentration in the xylem sap but triggers a complex feedback regulation of activities of other transporters involved in the maintenance of plant ionic homeostasis and signaling under stress conditions.
Collapse
Affiliation(s)
- Mohammad Alnayef
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
| | - Celymar Solis
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| | - Takaaki Ogura
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan;
| | - Zhonghua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia;
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jayakumar Bose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai 600113, India;
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan;
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan;
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia; (M.A.); (C.S.); (L.S.); (T.O.); (J.B.); (M.Z.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| |
Collapse
|
27
|
Huang L, Wu DZ, Zhang GP. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. J Zhejiang Univ Sci B 2020; 21:426-441. [PMID: 32478490 PMCID: PMC7306632 DOI: 10.1631/jzus.b1900510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022]
Abstract
Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na+/K+ homeostasis regulation through controlling Na+ uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.
Collapse
|
28
|
Abstract
In bacteria, K+ is used to maintain cell volume and osmotic potential. Homeostasis normally involves a network of constitutively expressed transport systems, but in K+ deficient environments, the KdpFABC complex uses ATP to pump K+ into the cell. This complex appears to be a hybrid of two types of transporters, with KdpA descending from the superfamily of K+ transporters and KdpB belonging to the superfamily of P-type ATPases. Studies of enzymatic activity documented a catalytic cycle with hallmarks of classical P-type ATPases and studies of ion transport indicated that K+ import into the cytosol occurred in the second half of this cycle in conjunction with hydrolysis of an aspartyl phosphate intermediate. Atomic structures of the KdpFABC complex from X-ray crystallography and cryo-EM have recently revealed conformations before and after formation of this aspartyl phosphate that appear to contradict the functional studies. Specifically, structural comparisons with the archetypal P-type ATPase, SERCA, suggest that K+ transport occurs in the first half of the cycle, accompanying formation of the aspartyl phosphate. Further controversy has arisen regarding the path by which K+ crosses the membrane. The X-ray structure supports the conventional view that KdpA provides the conduit, whereas cryo-EM structures suggest that K+ moves from KdpA through a long, intramembrane tunnel to reach canonical ion binding sites in KdpB from which they are released to the cytosol. This review discusses evidence supporting these contradictory models and identifies key experiments needed to resolve discrepancies and produce a unified model for this fascinating mechanistic hybrid.
Collapse
Affiliation(s)
- Bjørn P Pedersen
- a Department of Molecular Biology and Genetics, Aarhus University , Aarhus C , Denmark
| | - David L Stokes
- b Department of Cell Biology, New York University School of Medicine, Skirball Institute , New York , NY , USA
| | - Hans-Jürgen Apell
- c Department of Biology, University of Konstanz , Konstanz , Germany
| |
Collapse
|
29
|
Houston K, Qiu J, Wege S, Hrmova M, Oakey H, Qu Y, Smith P, Situmorang A, Macaulay M, Flis P, Bayer M, Roy S, Halpin C, Russell J, Schreiber M, Byrt C, Gilliham M, Salt DE, Waugh R. Barley sodium content is regulated by natural variants of the Na + transporter HvHKT1;5. Commun Biol 2020; 3:258. [PMID: 32444849 PMCID: PMC7244711 DOI: 10.1038/s42003-020-0990-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/04/2022] Open
Abstract
During plant growth, sodium (Na+) in the soil is transported via the xylem from the root to the shoot. While excess Na+ is toxic to most plants, non-toxic concentrations have been shown to improve crop yields under certain conditions, such as when soil K+ is low. We quantified grain Na+ across a barley genome-wide association study panel grown under non-saline conditions and identified variants of a Class 1 HIGH-AFFINITY-POTASSIUM-TRANSPORTER (HvHKT1;5)-encoding gene responsible for Na+ content variation under these conditions. A leucine to proline substitution at position 189 (L189P) in HvHKT1;5 disturbs its characteristic plasma membrane localisation and disrupts Na+ transport. Under low and moderate soil Na+, genotypes containing HvHKT1:5P189 accumulate high concentrations of Na+ but exhibit no evidence of toxicity. As the frequency of HvHKT1:5P189 increases significantly in cultivated European germplasm, we cautiously speculate that this non-functional variant may enhance yield potential in non-saline environments, possibly by offsetting limitations of low available K+.
Collapse
Affiliation(s)
- Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Stefanie Wege
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Maria Hrmova
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Life Science, Huaiyin Normal University, 223300, Huaian, China
| | - Helena Oakey
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Yue Qu
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Pauline Smith
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Micha Bayer
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Stuart Roy
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- ARC Industrial Transformation Research Hub for Wheat in a Hot Dry Climate, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Claire Halpin
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Caitlin Byrt
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- Research School of Biology, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT, 2601, Australia
| | - Matt Gilliham
- ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Errol Road Invergowrie, Dundee, DD2 5DA, Scotland, UK.
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
30
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
31
|
Wu Y, Henderson SW, Wege S, Zheng F, Walker AR, Walker RR, Gilliham M. The grapevine NaE sodium exclusion locus encodes sodium transporters with diverse transport properties and localisation. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153113. [PMID: 32044673 DOI: 10.1016/j.jplph.2020.153113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/22/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Grapevine (Vitis vinifera L.) is a valuable crop for human consumption and wine production, and is prone to suffering from salinity stress in arid regions or when exposed to low quality irrigation water. A previous study identified a quantitative trait locus (QTL) NaE, containing six High-affinity Potassium Transporter 1 genes, that was associated with shoot Na+ exclusion in grapevine. While HKT1;1 was predicted to be the most likely gene within this QTL to encode for this important salinity tolerance sub-trait, four other HKTs within the QTL remained uncharacterised; VviHKT1;2 encodes a truncated transcript unlikely to form a functional transporter. In this study, two allelic variants for each of VviHKT1;6, VviHKT1;7 and VviHKT1;8 from the heterozygous grapevine variety Cabernet Sauvignon were functionally characterised. Using the Xenopus laevis oocyte heterologous expression system, as well as transient expression in tobacco leaves, we found that the VviHKT1;6 and VviHKT1;7 alleles encoded plasma membrane localised proteins that facilitated significant non-rectifying Na+ transport. Conversely, proteins encoded by the VviHKT1;8 alleles were inwardly-rectifying, weak Na+ transporters that localised to intracellular organelles. Mining of previous RNA-seq gene expression data suggested that VviHKT1;6-8 are weakly expressed in grapevine roots, flower buds, and seeds under normal conditions and different nutrient regimes. We propose that VviHKT1;6 and VviHKT1;7 are likely to have a less significant role in grapevine leaf Na+ exclusion than VviHKT1;1, and that VviHKT1;8 is involved in endomembrane Na+ transport.
Collapse
Affiliation(s)
- Yue Wu
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, 5064, Australia
| | - Sam W Henderson
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, 5064, Australia
| | - Stefanie Wege
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, 5064, Australia
| | - Fei Zheng
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, 5064, Australia
| | - Amanda R Walker
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, 5064, Australia
| | - Rob R Walker
- CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, 5064, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, 5064, Australia; ARC Industrial Transformation Training Centre for Innovative Wine Production, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, 5064, Australia.
| |
Collapse
|
32
|
Park YC, Lim SD, Moon JC, Jang CS. A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. PLANT, CELL & ENVIRONMENT 2019; 42:3061-3076. [PMID: 31325169 DOI: 10.1111/pce.13619] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2-type E3 ligase, OsSIRH2-14 (previously named OsRFPH2-14), which plays a positive role in salinity tolerance by regulating salt-related proteins including an HKT-type Na+ transporter (OsHKT2;1). OsSIRH2-14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2-14-EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull-down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2-14 interacts with salt-related proteins, including OsHKT2;1. OsSIRH2-14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2-14-overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2-14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt-related proteins.
Collapse
Affiliation(s)
- Yong Chan Park
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung Don Lim
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Cheol Moon
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
33
|
David R, Byrt CS, Tyerman SD, Gilliham M, Wege S. Roles of membrane transporters: connecting the dots from sequence to phenotype. ANNALS OF BOTANY 2019; 124:201-208. [PMID: 31162525 PMCID: PMC6758574 DOI: 10.1093/aob/mcz066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/06/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant membrane transporters are involved in diverse cellular processes underpinning plant physiology, such as nutrient acquisition, hormone movement, resource allocation, exclusion or sequestration of various solutes from cells and tissues, and environmental and developmental signalling. A comprehensive characterization of transporter function is therefore key to understanding and improving plant performance. SCOPE AND CONCLUSIONS In this review, we focus on the complexities involved in characterizing transporter function and the impact that this has on current genomic annotations. Specific examples are provided that demonstrate why sequence homology alone cannot be relied upon to annotate and classify transporter function, and to show how even single amino acid residue variations can influence transporter activity and specificity. Misleading nomenclature of transporters is often a source of confusion in transporter characterization, especially for people new to or outside the field. Here, to aid researchers dealing with interpretation of large data sets that include transporter proteins, we provide examples of transporters that have been assigned names that misrepresent their cellular functions. Finally, we discuss the challenges in connecting transporter function at the molecular level with physiological data, and propose a solution through the creation of new databases. Further fundamental in-depth research on specific transport (and other) proteins is still required; without it, significant deficiencies in large-scale data sets and systems biology approaches will persist. Reliable characterization of transporter function requires integration of data at multiple levels, from amino acid residue sequence annotation to more in-depth biochemical, structural and physiological studies.
Collapse
Affiliation(s)
- Rakesh David
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Stefanie Wege
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
- For correspondence. E-mail
| |
Collapse
|
34
|
|
35
|
Hrmova M, Gilliham M. Plants fighting back: to transport or not to transport, this is a structural question. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:68-76. [PMID: 30138844 DOI: 10.1016/j.pbi.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Membrane-embedded transport proteins are fundamental to life; their co-ordinated action controls the movement and distribution of solutes into, around and out of cells for signalling, metabolism, nutrition, stress tolerance and development. Here we outline two case studies of transport systems that plants use to tolerate soil elemental toxicity, demonstrating how iterative studies of protein structure and function result in unparalleled insights into transport mechanics. Further, we propose that integrative platforms of biological, biochemical and biophysical tools can provide quantitative data on substrate specificity and transport rates, which are important in understanding transporter evolution and their roles in cell biology and whole plant physiology. Such knowledge equips biotechnologists and breeders with the power to deliver improvements in crop yields in sub-optimal soils.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China.
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
36
|
Zhang Y, Lv Y, Jahan N, Chen G, Ren D, Guo L. Sensing of Abiotic Stress and Ionic Stress Responses in Plants. Int J Mol Sci 2018; 19:E3298. [PMID: 30352959 PMCID: PMC6275032 DOI: 10.3390/ijms19113298] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023] Open
Abstract
Plants need to cope with complex environments throughout their life cycle. Abiotic stresses, including drought, cold, salt and heat, can cause a reduction in plant growth and loss of crop yield. Plants sensing stress signals and adapting to adverse environments are fundamental biological problems. We review the stress sensors in stress sensing and the responses, and then discuss ionic stress signaling and the responses. During ionic stress, the calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CBL-CIPK) complex is identified as a primary element of the calcium sensor for perceiving environmental signals. The CBL-CIPK system shows specificity and variety in its response to different stresses. Obtaining a deeper understanding of stress signaling and the responses will mitigate or solve crop yield crises in extreme environments with fast-growing populations.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yang Lv
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Noushin Jahan
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guang Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
37
|
Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang G. A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. PLANT & CELL PHYSIOLOGY 2018; 59:1976-1989. [PMID: 29917153 DOI: 10.1093/pcp/pcy116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/10/2018] [Indexed: 05/21/2023]
Abstract
Our previous studies showed that high salt tolerance in Tibetan wild barley accessions was associated with HvHKT1;1, a member of the high-affinity potassium transporter family. However, molecular mechanisms of HvHKT1;1 for salt tolerance and its roles in K+/Na+ homeostasis remain to be elucidated. Functional characterization of HvHKT1;1 was conducted in the present study. NaCl-induced transcripts of HvHKT1;1 were significantly higher in the roots of Tibetan wild barley XZ16 relative to other genotypes, being closely associated with its higher biomass and lower tissue Na+ content under salt stress. Heterologous expression of HvHKT1;1 in Saccharomyces cerevisiae (yeast) and Xenopus laevis oocytes showed that HvHKT1;1 had higher selectivity for Na+ over K+ and other monovalent cations. HvHKT1;1 was found to be localized at the cell plasma membrane of root stele and epidermis. Knock-down of HvHKT1;1 in barley led to higher Na+ accumulation in both roots and leaves, while overexpression of HvHKT1;1 in salt-sensitive Arabidopsis hkt1-4 and sos1-12 loss-of-function lines resulted in significantly less shoot and root Na+ accumulation. Additionally, microelectrode ion flux measurements and root elongation assay revealed that the transgenic Arabidopsis plants exhibited a remarkable capacity for regulation of Na+, K+, Ca2+ and H+ homeostasis under salt stress. These results indicate that HvHKT1;1 is critical in radial root Na+ transport, which eventually reduces shoot Na+ accumulation. Additionally, HvHKT1;1 may be indirectly involved in retention of K+ and Ca2+ in root cells, which also improves plant salt tolerance.
Collapse
Affiliation(s)
- Yong Han
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shuya Yin
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Huang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xuelong Wu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianbin Zeng
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaohui Liu
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Long Qiu
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rana Munns
- Australian Research Council Centre of Excellence in Plant Energy Biology and School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Zhong-Hua Chen
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Guoping Zhang
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Overexpression of PeHKT1;1 Improves Salt Tolerance in Populus. Genes (Basel) 2018; 9:genes9100475. [PMID: 30274294 PMCID: PMC6210203 DOI: 10.3390/genes9100475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 02/03/2023] Open
Abstract
Soil salinization is an increasingly serious threat that limits plant growth and development. Class I transporters of the high-affinity K+ transporter (HKT) family have been demonstrated to be involved in salt tolerance by contributing to Na+ exclusion from roots and shoots. Here, we isolated the PeHKT1;1 gene from hybrid poplar based on the sequences of the Populus trichocarpa genome. The full-length PeHKT1;1 gene was 2173 bp, including a 1608 bp open reading frame (ORF) encoding 535 amino acids and containing eight distinct transmembrane domains. Multiple sequence alignment and phylogenetic analysis suggested that the PeHKT1;1 protein had a typical S–G–G–G signature for the P-loop domains and belonged to class I of HKT transporters. PeHKT1;1 transcripts were mainly detected in stem and root, and were remarkably induced by salt stress treatment. In further characterization of its functions, overexpression of PeHKT1;1 in Populus davidiana × Populus bolleana resulted in a better relative growth rate in phenotypic analysis, including root and plant height, and exhibited higher catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities than non-transgenic poplar under salt stress conditions. These observations indicated that PeHKT1;1 may enhance salt tolerance by improving the efficiency of antioxidant systems. Together, these data suggest that PeHKT1;1 plays an important role in response to salt stress in Populus.
Collapse
|
39
|
Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu JK, Hedrich R. Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Curr Biol 2018; 28:3075-3085.e7. [PMID: 30245105 DOI: 10.1016/j.cub.2018.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 08/01/2018] [Indexed: 02/03/2023]
Abstract
Soil salinity is destroying arable land and is considered to be one of the major threats to global food security in the 21st century. Therefore, the ability of naturally salt-tolerant halophyte plants to sequester large quantities of salt in external structures, such as epidermal bladder cells (EBCs), is of great interest. Using Chenopodium quinoa, a pseudo-cereal halophyte of great economic potential, we have shown previously that, upon removal of salt bladders, quinoa becomes salt sensitive. In this work, we analyzed the molecular mechanism underlying the unique salt dumping capabilities of bladder cells in quinoa. The transporters differentially expressed in the EBC transcriptome and functional electrophysiological testing of key EBC transporters in Xenopus oocytes revealed that loading of Na+ and Cl- into EBCs is mediated by a set of tailored plasma and vacuole membrane-based sodium-selective channel and chloride-permeable transporter.
Collapse
Affiliation(s)
- Jennifer Böhm
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Heike M Müller
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Joachim Scholz-Starke
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Antonella Gradogna
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Nadia Bazihizina
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia; Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Viale delle Idee 30, 50019 Sesto Fiorentino, Florence, Italy
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia; Department of Horticulture, Foshan University, Foshan 528000, PRC
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences, 3888 Chenhua Road, Shanghai 201602, China; Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany.
| |
Collapse
|
40
|
Heydarian Z, Yu M, Gruber M, Coutu C, Robinson SJ, Hegedus DD. Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Sci Rep 2018; 8:9804. [PMID: 29955098 PMCID: PMC6023900 DOI: 10.1038/s41598-018-28204-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The response of Camelina sativa to salt stress was examined. Salt reduced shoot, but not root length. Root and shoot weight were affected by salt, as was photosynthetic capacity. Salt did not alter micro-element concentration in shoots, but increased macro-element (Ca and Mg) levels. Gene expression patterns in shoots indicated that salt stress may have led to shuttling of Na+ from the cytoplasm to the tonoplast and to an increase in K+ and Ca+2 import into the cytoplasm. In roots, gene expression patterns indicated that Na+ was exported from the cytoplasm by the SOS pathway and that K+ was imported in response to salt. Genes involved in chelation and storage were up-regulated in shoots, while metal detoxification appeared to involve various export mechanisms in roots. In shoots, genes involved in secondary metabolism leading to lignin, anthocyanin and wax production were up-regulated. Partial genome partitioning was observed in roots and shoots based on the expression of homeologous genes from the three C. sativa sub-genomes. Sub-genome I and II were involved in the response to salinity stress to about the same degree, while about 10% more differentially-expressed genes were associated with sub-genome III.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
- Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Min Yu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Margaret Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
41
|
Xu B, Waters S, Byrt CS, Plett D, Tyerman SD, Tester M, Munns R, Hrmova M, Gilliham M. Structural variations in wheat HKT1;5 underpin differences in Na + transport capacity. Cell Mol Life Sci 2018; 75:1133-1144. [PMID: 29177534 PMCID: PMC11105589 DOI: 10.1007/s00018-017-2716-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 12/01/2022]
Abstract
An important trait associated with the salt tolerance of wheat is the exclusion of sodium ions (Na+) from the shoot. We have previously shown that the sodium transporters TmHKT1;5-A and TaHKT1;5-D, from Triticum monoccocum (Tm) and Triticum aestivum (Ta), are encoded by genes underlying the major shoot Na+-exclusion loci Nax1 and Kna1, respectively. Here, using heterologous expression, we show that the affinity (K m) for the Na+ transport of TmHKT1;5-A, at 2.66 mM, is higher than that of TaHKT1;5-D at 7.50 mM. Through 3D structural modelling, we identify residues D471/a gap and D474/G473 that contribute to this property. We identify four additional mutations in amino acid residues that inhibit the transport activity of TmHKT1;5-A, which are predicted to be the result of an occlusion of the pore. We propose that the underlying transport properties of TmHKT1;5-A and TaHKT1;5-D contribute to their unique ability to improve Na+ exclusion in wheat that leads to an improved salinity tolerance in the field.
Collapse
Affiliation(s)
- Bo Xu
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Shane Waters
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Darren Plett
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, 4700, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rana Munns
- School of Agriculture and Environment, and ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, 6009, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
42
|
Henderson SW, Dunlevy JD, Wu Y, Blackmore DH, Walker RR, Edwards EJ, Gilliham M, Walker AR. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na + exclusion in grapevine rootstocks. THE NEW PHYTOLOGIST 2018; 217:1113-1127. [PMID: 29160564 DOI: 10.1111/nph.14888] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/09/2017] [Indexed: 05/20/2023]
Abstract
Under salinity, Vitis spp. rootstocks can mediate salt (NaCl) exclusion from grafted V. vinifera scions enabling higher grapevine yields and production of superior wines with lower salt content. Until now, the genetic and mechanistic elements controlling sodium (Na+ ) exclusion in grapevine were unknown. Using a cross between two Vitis interspecific hybrid rootstocks, we mapped a dominant quantitative trait locus (QTL) associated with leaf Na+ exclusion (NaE) under salinity stress. The NaE locus encodes six high-affinity potassium transporters (HKT). Transcript profiling and functional characterization in heterologous systems identified VisHKT1;1 as the best candidate gene for controlling leaf Na+ exclusion. We characterized four proteins encoded by unique VisHKT1;1 alleles from the parents, and revealed that the dominant HKT variants exhibit greater Na+ conductance with less rectification than the recessive variants. Mutagenesis of VisHKT1;1 and TaHKT1.5-D from bread wheat, demonstrated that charged amino acid residues in the eighth predicted transmembrane domain of HKT proteins reduces inward Na+ conductance, and causes inward rectification of Na+ transport. The origin of the recessive VisHKT1;1 alleles was traced to V. champinii and V. rupestris. We propose that the genetic and functional data presented here will assist with breeding Na+ -tolerant grapevine rootstocks.
Collapse
Affiliation(s)
- Sam W Henderson
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Jake D Dunlevy
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Yue Wu
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Deidre H Blackmore
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Rob R Walker
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Everard J Edwards
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Amanda R Walker
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
43
|
Omisun T, Sahoo S, Saha B, Panda SK. Relative salinity tolerance of rice cultivars native to North East India: a physiological, biochemical and molecular perspective. PROTOPLASMA 2018; 255:193-202. [PMID: 28718009 DOI: 10.1007/s00709-017-1142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 07/04/2017] [Indexed: 05/24/2023]
Abstract
Salinity is the second most prevalent abiotic stress faced by plants, and rice is not an exception. Through this study, it has been tried upon, to study the relative salinity tolerance of eight local varieties of North East India. Preliminary screening was based on their dose- and time-dependent physiological responses to salinity stress. Among the cultivars, Tampha was found to be relatively more tolerant, whereas MSE9 the most sensitive. To further ascertain their tolerance capacity, MDA and H2O2 content was determined, which also confirmed the tolerance level of the two cultivars. Histochemical assays for root plasma membrane integrity and leaf and root H2O2 and O2- content also showed more damage in Tampha in comparison to MSE9. Finally, gene expression analysis for Na+/K+ co-transporters, OsHKT2;1, OsHKT2;3 and OsHKT2;4, was performed to observe how the expression level of these transporters varies with the tolerance capacity of these two cultivars in leaves and roots under different time frames. The study reveals Tampha to be the most tolerant and MSE9 the most sensitive when compared to the other six screened cultivars for salinity stress.
Collapse
Affiliation(s)
- Takhellambam Omisun
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Smita Sahoo
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Bedabrata Saha
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
44
|
Nishijima T, Furuhashi M, Sakaoka S, Morikami A, Tsukagoshi H. Ectopic expression of Mesembryanthemum crystallinum sodium transporter McHKT2 provides salt stress tolerance in Arabidopsis thaliana. Biosci Biotechnol Biochem 2017; 81:2139-2144. [PMID: 29017432 DOI: 10.1080/09168451.2017.1383847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most plants do not tolerate highly saline environments; the development of salt stress tolerance is crucial for improving crop yield. An efficient way of finding genes involved in salt tolerance is to study and use data from halophytes. In this study, we used the Mesembryanthemum crystallinum (ice plant) expression data-set and selected for further study the gene McHKT2, which encodes for the Arabidopsis sodium transporter ortholog AtHKT1. In comparison with the HKT1 amino acid sequences from other plants, McHKT2 has several unique features. It seems to be localized to the plasma membrane, and its overexpression confers strong salt tolerance in Arabidopsis thaliana. Our results indicate that McHKT2 is a suitable candidate protein that can induce salt tolerance in non-halophytes. Like McHKT2, using transcriptome data-sets from halophytes such as ice plant give us an efficiency way to obtain new gene resources that might involve in plant salt tolerance.
Collapse
Affiliation(s)
- Taiga Nishijima
- a Faculty of Agriculture , Meijo University , Tempaku-ku, Nagoya , Japan
| | - Megumi Furuhashi
- a Faculty of Agriculture , Meijo University , Tempaku-ku, Nagoya , Japan
| | - Satomi Sakaoka
- a Faculty of Agriculture , Meijo University , Tempaku-ku, Nagoya , Japan
| | - Atsushi Morikami
- a Faculty of Agriculture , Meijo University , Tempaku-ku, Nagoya , Japan
| | | |
Collapse
|
45
|
Kumar S, Beena AS, Awana M, Singh A. Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat ( Triticum aestivum) Genotypes with Contrasting Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1151. [PMID: 28713411 PMCID: PMC5491648 DOI: 10.3389/fpls.2017.01151] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/15/2017] [Indexed: 05/03/2023]
Abstract
Abiotic stress exerts significant impact on plant's growth, development, and productivity. Productivity of crop plants under salt stress is lagging behind because of our limited knowledge about physiological, biochemical, epigenetic, and molecular mechanisms of salt tolerance in plants. This study aimed to investigate physio-biochemical, molecular indices and defense responses of selected wheat cultivars to identify the most contrasting salt-responsive genotypes and the mechanisms associated with their differential responses. Physio-biochemical traits specifically membrane stability index, antioxidant potential, osmoprotectants and chlorophyll contents, measured at vegetative stage, were used for multivariate analysis to identify the most contrasting genotypes. Genetic and epigenetic analyses indicated the possible mechanisms associated with differential response of the wheat genotypes under salt stress. Better antioxidant potential, membrane stability, increased accumulation of osmolytes/phytophenolics, and higher K+/Na+ ratio under 200 mM NaCl stress identified Kharchia-65 to be the most salt-tolerant cultivar. By contrast, increased MDA level, reduced soluble sugar, proline, total chlorophyll, total phenolics contents, and lower antioxidant potential in HD-2329 marked it to be sensitive to the stress. Genetic and bioinformatics analyses of HKT1;4 of contrasting genotypes (Kharchia-65 and HD-2329) revealed deletions, transitions, and transversions resulting into altered structure, loss of conserved motifs (Ser-Gly-Gly-Gly and Gly-Arg) and function in salt-sensitive (HD-2329) genotype. Expression analysis of HKTs rationalized the observed responses. Epigenetic variations in cytosine methylation explained tissue- and genotype-specific differential expression of HKT2;1 and HKT2;3.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | | | | | | |
Collapse
|
46
|
Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2016.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Ali A, Yun DJ. Differential selection of sodium and potassium ions by TsHKT1;2. PLANT SIGNALING & BEHAVIOR 2016; 11:e1206169. [PMID: 27380309 PMCID: PMC5022409 DOI: 10.1080/15592324.2016.1206169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/23/2023]
Abstract
Among abiotic stresses, soil salinity is a major threat to agriculture. To address and control the effects of high salinity on plants, it is important to understand their responses to salt stress that disturbs the homeostatic equilibrium at cellular and molecular levels. To deal and control effects of high salinity on plants, it is important to understand their responses to salt stress that disturbs the homeostatic equilibrium at cellular and molecular levels. In this regard, halophytes (salt tolerant plants) can provide superior models for the study of salt stress defense parameters compared to glycophytes (salt sensitive species). TsHKT1;2 one of the 3 copies of HKT1 in the Arabidopsis relative halophyte, Thellungiella salsuginea acts as a potassium transporter, even under salt stress. TsHKT1;2 includes a conserved Asp (D) residue in the 2(nd) pore-loop domain. Most other HKT1 sequences, including AtHKT1, contain Asn (N) in this position. We found that athkt1-1 plants complemented by TsHKT1;2 under native AtHKT1 promoter were more tolerant to salt stress, while substitution of Asp (D207) by Asn (N) significantly reduced resistance to salinity. We suggest that the presence of Asn or Asp is the essential feature that defines and establishes cation selectivity in dicot HKT1-type transporters.
Collapse
Affiliation(s)
- Akhtar Ali
- Division of Applied Life Science (BK21plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
48
|
Böhm J, Scherzer S, Shabala S, Krol E, Neher E, Mueller TD, Hedrich R. Venus Flytrap HKT1-Type Channel Provides for Prey Sodium Uptake into Carnivorous Plant Without Conflicting with Electrical Excitability. MOLECULAR PLANT 2016; 9:428-436. [PMID: 26455461 PMCID: PMC4791408 DOI: 10.1016/j.molp.2015.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/24/2015] [Accepted: 09/24/2015] [Indexed: 05/05/2023]
Abstract
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na(+)- and K(+)-permeable mutants function as ion channels rather than K(+) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na(+)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.
Collapse
Affiliation(s)
- J Böhm
- Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - S Scherzer
- Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - S Shabala
- School of Land and Food, University of Tasmania, Hobart TAS 7001, Australia
| | - E Krol
- Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - E Neher
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Department for Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - T D Mueller
- Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| | - R Hedrich
- Julius-von-Sachs Institute, Department for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
49
|
Li B, Byrt C, Qiu J, Baumann U, Hrmova M, Evrard A, Johnson AAT, Birnbaum KD, Mayo GM, Jha D, Henderson SW, Tester M, Gilliham M, Roy SJ. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1014-29. [PMID: 26662602 PMCID: PMC4734554 DOI: 10.1104/pp.15.01163] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/04/2015] [Indexed: 05/18/2023]
Abstract
Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl(-)) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl(-) xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl(-) efflux out of cells and was much less permeable to NO3(-). Shoot Cl(-) accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl(-) in plants, playing a role in the loading and the regulation of Cl(-) loading into the xylem of Arabidopsis roots during salinity stress.
Collapse
Affiliation(s)
- Bo Li
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Caitlin Byrt
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Jiaen Qiu
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Ute Baumann
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Aurelie Evrard
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Alexander A T Johnson
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Kenneth D Birnbaum
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Gwenda M Mayo
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Deepa Jha
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Sam W Henderson
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Mark Tester
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Mathew Gilliham
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics (B.L., J.Q., U.B., M.H., A.E., D.J., M.T., S.J.R.), School of Agriculture, Food, and Wine (B.L., C.B., J.Q., U.B., M.H., A.E., G.M.M., D.J., S.W.H., M.T., M.G., S.J.R.), and ARC Centre of Excellence in Plant Energy Biology (C.B., J.Q., S.W.H., M.G.), University of Adelaide, SA 5064, Australia;Centre for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (B.L., M.T.);School of BioSciences, University of Melbourne, Parkville, Vic 3010, Australia (A.A.T.J.); and Centre for Genomics and Systems Biology, New York University, New York 10003 (K.D.B.)
| |
Collapse
|
50
|
Li J, Jia H, Han X, Zhang J, Sun P, Lu M, Hu J. Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila. FRONTIERS IN PLANT SCIENCE 2016; 7:1505. [PMID: 27761137 PMCID: PMC5050224 DOI: 10.3389/fpls.2016.01505] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/22/2016] [Indexed: 05/11/2023]
Abstract
Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were EF1α (Elongation factor-1 alpha) and OTU (OTU-like cysteine protease family protein) for different tissue types, UBC (Ubiquitin-conjugating enzyme E2) and LTA4H (Leukotriene A-4 hydrolase homolog) for heat treatment, HIS (Histone superfamily protein H3) and ARF2 (ADP-ribosylation factor 2) for cold treatment, OTU and ACT7 (Actin 7) for salt treatment, UBC and LTA4H for drought treatment. The expression of UBC, ARF2, and VHAC (V-type proton ATPase subunit C) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene WOX1a (WUSCHEL-related homeobox 1a), and four stress-inducible genes, including Hsf-A2 (Heat shock transcription factors A2), CBF3 (C-repeat binding factor 3), HKT1 (High-Affinity K+ Transporter 1), and GST (Glutathione S-transferase), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in S. psammophila.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Jianjun Hu,
| |
Collapse
|