1
|
Niekerk LA, Gokul A, Basson G, Badiwe M, Nkomo M, Klein A, Keyster M. Heavy metal stress and mitogen activated kinase transcription factors in plants: Exploring heavy metal-ROS influences on plant signalling pathways. PLANT, CELL & ENVIRONMENT 2024; 47:2793-2810. [PMID: 38650576 DOI: 10.1111/pce.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Due to their stationary nature, plants are exposed to a diverse range of biotic and abiotic stresses, of which heavy metal (HM) stress poses one of the most detrimental abiotic stresses, targeting diverse plant processes. HMs instigate the overproduction of reactive oxygen species (ROS), and to mitigate the adverse effects of ROS, plants induce multiple defence mechanisms. Besides the negative implications of overproduction of ROS, these molecules play a multitude of signalling roles in plants, acting as a central player in the complex signalling network of cells. One of the ROS-associated signalling mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signalling pathway which transduces extracellular stimuli into intracellular responses. Plant MAPKs have been implicated in signalling involved in stress response, phytohormone regulation, and cell cycle cues. However, the influence of various HMs on MAPK activation has not been well documented. In this review, we address and summarise several aspects related to various HM-induced ROS signalling. Additionally, we touch on how these signals activate the MAPK cascade and the downstream transcription factors that influence plant responses to HMs. Moreover, we propose a workflow that could characterise genes associated with MAPKs and their roles during plant HM stress responses.
Collapse
Affiliation(s)
- Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthaditjhaba, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mihlali Badiwe
- Plant Pathology Department, AgriScience Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, KwaDlangezwa, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
2
|
Zhang A, Shang Q. Transcriptome Analysis of Early Lateral Root Formation in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1620. [PMID: 38931052 PMCID: PMC11207605 DOI: 10.3390/plants13121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Lateral roots (LRs) receive signals from the inter-root environment and absorb water and nutrients from the soil. Auxin regulates LR formation, but the mechanism in tomato remains largely unknown. In this study, 'Ailsa Craig' tomato LRs appeared on the third day and were unevenly distributed in primary roots. According to the location of LR occurrence, roots were divided into three equal parts: the shootward part of the root (RB), the middle part of the root (RM), and the tip part of the root (RT). Transverse sections of roots from days 1 to 6 revealed that the number of RB cells and the root diameter were significantly increased compared with RM and RT. Using roots from days 1 to 3, we carried out transcriptome sequencing analysis. Identified genes were classified into 16 co-expression clusters based on K-means, and genes in four associated clusters were highly expressed in RB. These four clusters (3, 5, 8, and 16) were enriched in cellulose metabolism, microtubule, and peptide metabolism pathways, all closely related to LR development. The four clusters contain numerous transcription factors linked to LR development including transcription factors of LATERAL ORGAN BOUNDRIES (LOB) and MADS-box families. Additionally, auxin-related genes GATA23, ARF7, LBD16, EXP, IAA4, IAA7, PIN1, PIN2, YUC3, and YUC4 were highly expressed in RB tissue. Free IAA content in 3 d RB was notably higher, reaching 3.3-5.5 ng/g, relative to RB in 1 d and 2 d. The LR number was promoted by 0.1 μM of exogenous IAA and inhibited by exogenous NPA. We analyzed the root cell state and auxin signaling module during LR formation. At a certain stage of pericycle cell development, LR initiation is regulated by auxin signaling modules IAA14-ARF7/ARF19-LBD16-CDKA1 and IAA14-ARF7/ARF19-MUS/MUL-XTR6/EXP. Furthermore, as a key regulatory factor, auxin regulates the process of LR initiation and LR primordia (LRP) through different auxin signaling pathway modules.
Collapse
Affiliation(s)
| | - Qingmao Shang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
3
|
Biswash MR, Li KW, Xu RK, Uwiringiyimana E, Guan P, Lu HL, Li JY, Jiang J, Hong ZN, Shi RY. Alteration of soil pH induced by submerging/drainage and application of peanut straw biochar and its impact on Cd(II) availability in an acidic soil to indica-japonica rice varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124361. [PMID: 38871167 DOI: 10.1016/j.envpol.2024.124361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The effects of soil pH variations induced by submergence/drainage and biochar application on soil cadmium (Cd) availability to different rice (Oryza sativa L.) varieties are not well understood. This study aims to investigate the possible reasons for available Cd(II) reduction in paddy soil as influenced by biochar and to determine Cd(II) absorption and translocation rates in different parts of various rice varieties. A pot experiment in a greenhouse using four japonica and four indica rice varieties was conducted in Cd(II) contaminated paddy soil with peanut straw biochar. The results indicated that the submerging led to an increase in soil pH due to the consumption of protons (H+) by the reduction reactions of iron/manganese (Fe/Mn) oxides and sulfate (SO42-) and thus the decrease in soil available Cd(II) contents. However, the drainage decreased soil pH due to the release of protons during the oxidation of Fe2+, Mn2+, and S2- and thus the increase in soil available Cd(II) contents. Application of the biochar increased soil pH during soil submerging and inhibited the decline in soil pH during soil drainage, and thus decreased soil available Cd(II) contents under both submerging and drainage conditions. The indica rice varieties absorbed more Cd(II) in their roots and accumulated higher amounts of Cd(II) in their shoots and grains than the japonica rice varieties. The Cd(II) sensitive varieties exhibited a greater absorption and translocation rate of Cd(II) compared to the tolerant varieties of both indica and japonica rice. Biochar inhibited the absorption and accumulation of Cd(II) in the rice varieties, which ultimately lowered the Cd(II) contents in rice grains below the national food safety limit (0.2 mg kg-1). Overall, planting japonica rice varieties in Cd(II) polluted paddy soils combined with the use of biochar can effectively reduce Cd(II) content in rice grains which protects human health against Cd(II) toxicity.
Collapse
Affiliation(s)
- Md Romel Biswash
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China; Adaptive Research Division (ARD), Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Bangladesh
| | - Ke-Wei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ernest Uwiringiyimana
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Guan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Long Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Neng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wu K, Wang L, Wu Z, Liu Z, Li Z, Shen J, Shi S, Liu H, Rensing C, Feng R. Selenite reduced cadmium uptake, interfered signal transduction of endogenous phytohormones, and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique, transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108107. [PMID: 38029613 DOI: 10.1016/j.plaphy.2023.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Selenium (Se) can reduce uptake and translocation of cadmium (Cd) in plants via plenty of ways, including regulation of root morphology. However, the underlying mechanisms on how Se will regulate root morphology under metal(loid) stresses are not fully illustrated. To fill up this knowledge gap, we investigated the effects of 0.5 mg L-1 selenite (Se(IV)) on root exudates, root morphology, root endogenous hormones, and Cd uptake efficiency of rice under the 1 mg L-1 Cd stress condition. The results showed that Se(IV) significantly reduced shoot and root Cd concentrations, and decreased Cd uptake efficiency via root hairs determined by a non-invasive micro-test (NMT) technology. When compared to the 1 mg L-1 Cd (Cd1) treatment, addition of 0.5 mg L-1 Se(IV) (1) significantly reduced root surface area and tip numbers, and non-significantly reduced root length, but significantly enhanced root diameter and root volume; (2) significantly enhanced concentrations of tartaric acid in the root exudate solution, root auxin (IAA) and root jasmonic acid (JA) via a UHPLC or a HPLC analysis; (3) significantly up-regulated metabolites correlated with synthesis of IAA, JA, gibberellin (GA), and salicylic acid, such as GA53, M-SA, (+/-)7-epi-JA, and derivatives of tryptophan and indole in the metabolome analysis. However, results of transcriptome analysis showed that (1) no upregulated differentially expressed genes (DEGs) were enriched in IAA synthesis; (2) some upregulated DEGs were found to be enriched in JA and GA53 synthesis pathways. In summary, although Se(IV) stimulated the synthesis of IAA, JA, and GA53, it significantly inhibited root growth mainly by 1) affecting signal transduction of IAA and GA; 2) altering IAA polar transport and homeostasis; and 3) regulating DEGs including SAUR32, SAUR36, SAUR76, OsSub33, OsEXPA8, OsEXPA18, and Os6bglu24.
Collapse
Affiliation(s)
- KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ShengJie Shi
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Munir R, Yasin MU, Afzal M, Jan M, Muhammad S, Jan N, Nana C, Munir F, Iqbal H, Tawab F, Gan Y. Melatonin alleviated cadmium accumulation and toxicity by modulating phytohormonal balance and antioxidant metabolism in rice. CHEMOSPHERE 2024; 346:140590. [PMID: 37914045 DOI: 10.1016/j.chemosphere.2023.140590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Cadmium (Cd) contamination is an eminent dilemma that jeopardizes global food safety and security, especially through its phytotoxicity in rice; one of the most edible crops. Melatonin (MET) has emerged as a protective phytohormone in stress conditions, but the defensive role and underlying mechanisms of MET against Cd toxicity in rice still remain unclear. To fulfill this knowledge gap, the present study is to uncover the key mechanisms for MET-mediated Cd-stress tolerance in rice. Cd toxicity significantly reduced growth by hindering the process of photosynthesis, cellular redox homeostasis, phytohormonal imbalance, and ultrastructural damages. Contrarily, MET supplementation considerably improved growth attributes, photosynthetic efficiency, and cellular ultrastructure as measured by gas exchange elements, chlorophyll content, reduced Cd accumulation, and ultrastructural analysis via transmission electron microscopy (TEM). MET treatment significantly reduced Cd accumulation (39.25%/31.58%), MDA (25.87%/19.45%), H2O2 (17.93%/9.56%), and O2 (29.11%/27.14%) levels in shoot/root tissues, respectively, when compared with Cd treatment. More importantly, MET manifested association with stress responsive phytohormones (ABA and IAA) and boosted the defense mechanisms of plant by enhancing the activities of ROS-scavenging antioxidant enzymes (SOD; superoxide dismutase, POD; peroxidase, CAT; catalase, APX; ascorbate peroxidase) and as well as regulating the key stress-responsive genes (OsSOD1, OsPOD1, OsCAT2, OsAPX1), thereby reinstate cellular membrane integrity and confer tolerance to ultrastructural damages under Cd-induced phytotoxicity. Overall, our findings emphasized the potential of MET as a long-term and cost-effective approach to Cd remediation in paddy soils, which can pave the way for a healthier and more environmentally conscious agricultural sector.
Collapse
Affiliation(s)
- Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Afzal
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nazia Jan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Hamza Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Pakistan
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108210. [PMID: 38006792 DOI: 10.1016/j.plaphy.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.
Collapse
Affiliation(s)
- Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Li E, Tang J, Liu J, Zhang Z, Hua B, Jiang J, Miao M. The Roles of Hormone Signals Involved in Rhizosphere Pressure Response Induce Corm Expansion in Sagittaria trifolia. Int J Mol Sci 2023; 24:12345. [PMID: 37569720 PMCID: PMC10419225 DOI: 10.3390/ijms241512345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Soil is the base for conventional plant growth. The rhizosphere pressure generated from soil compaction shows a dual effect on plant growth in agricultural production. Compacted soil leads to root growth stagnation and causes bending or thickening, thus affecting the growth of aboveground parts of plants. In arrowhead (Sagittaria trifolia L.), the corms derived from the expanded tips of underground stolons are its storage organ. We found that the formation of corms was significantly delayed under hydroponic conditions without rhizosphere pressure originating from soil/sand. In the initial stage of corm expansion, the anatomic structure of arrowhead corm-forming parts harvested from hydroponics and sand culture was observed, and we found that the corm expansion was derived from cell enlargement and starch accumulation. Comparative transcriptome analysis indicated that the corm expansion was closely related to the change in endogenous hormone levels. Endogenous abscisic acid and salicylic acid concentrations were significantly increased in sand-cultured corms. Higher ethylene and jasmonic acid contents were also detected in all arrowhead samples, demonstrating that these hormones may play potential roles in the rhizosphere pressure response and corm expansion. The expression of genes participating in hormone signaling could explain the rising accumulation of certain hormones. Our current results draw an extensive model to reveal the potential regulation mechanism of arrowhead corm expansion promoted by rhizosphere pressure, which will provide important references for further studying the molecular mechanism of rhizosphere pressure modulating the development of underground storage organs in other plants.
Collapse
Affiliation(s)
- Enjiao Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jing Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiezeng Jiang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics, the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
9
|
Iven V, Vanbuel I, Hendrix S, Cuypers A. The glutathione-dependent alarm triggers signalling responses involved in plant acclimation to cadmium. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3300-3312. [PMID: 36882948 DOI: 10.1093/jxb/erad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) uptake from polluted soils inhibits plant growth and disturbs physiological processes, at least partly due to disturbances in the cellular redox environment. Although the sulfur-containing antioxidant glutathione is important in maintaining redox homeostasis, its role as an antioxidant can be overruled by its involvement in Cd chelation as a phytochelatin precursor. Following Cd exposure, plants rapidly invest in phytochelatin production, thereby disturbing the redox environment by transiently depleting glutathione concentrations. Consequently, a network of signalling responses is initiated, in which the phytohormone ethylene is an important player involved in the recovery of glutathione levels. Furthermore, these responses are intricately connected to organellar stress signalling and autophagy, and contribute to cell fate determination. In general, this may pave the way for acclimation (e.g. restoration of glutathione levels and organellar homeostasis) and plant tolerance in the case of mild stress conditions. This review addresses connections between these players and discusses the possible involvement of the gasotransmitter hydrogen sulfide in plant acclimation to Cd exposure.
Collapse
Affiliation(s)
- Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Munir R, Jan M, Muhammad S, Afzal M, Jan N, Yasin MU, Munir I, Iqbal A, Yang S, Zhou W, Gan Y. Detrimental effects of Cd and temperature on rice and functions of microbial community in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121371. [PMID: 36878274 DOI: 10.1016/j.envpol.2023.121371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/30/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal (HM) contamination and high environmental temperature (HT) are caused by anthropogenic activities that negatively impact soil microbial communities and agricultural productivity. Although HM contaminations have deleterious effects on microbes and plants; there are hardly any reports on the combined effects of HM and HT. Here, we reported that HT coupled with cadmium (Cd) accumulation in soil and irrigated water could seriously affect crop growth and productivity, alternatively influencing the microbial community and nutrient cycles of paddy soils in rice fields. We analyzed different mechanisms of plants and microflora in the rhizospheric region, such as plant rhizospheric nitrification, endophytes colonization, nutrient uptake, and physiology of temperature-sensitive (IR64) and temperature-resistant Huanghuazhan (HZ) rice cultivars against different Cd levels (2, 5 and 10 mg kg-1) with rice plants grown under 25 °C and 40 °C temperatures. Consequently, an increment in Cd accumulation was observed with rising temperature leading to enhanced expression of OsNTRs. In contrast, a greater decline in the microbial community was detected in IR64 cultivar than HZ. Similarly, ammonium oxidation, root-IAA, shoot-ABA production, and 16S rRNA gene abundance in the rhizosphere and endosphere were significantly influenced by HT and Cd levels, resulting in a significant decrease in the colonization of endophytes and the surface area of roots, leading to a decreased N uptake from the soil. Overall, the outcomes of this study unveiled the novel effects of Cd, temperature, and their combined effect on rice growth and functions of the microbial community. These results provide effective strategies to overcome Cd-phytotoxicity on the health of endophytes and rhizospheric bacteria in Cd-contaminated soil by using temperature-tolerant rice cultivars.
Collapse
Affiliation(s)
- Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Afzal
- Institute of Soil and Water Resources and Environmental Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nazia Jan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Wang W, Liu H, Xie Y, King GJ, White PJ, Zou J, Xu F, Shi L. Rapid identification of a major locus qPRL-C06 affecting primary root length in Brassica napus by QTL-seq. ANNALS OF BOTANY 2023; 131:569-583. [PMID: 36181516 PMCID: PMC10147330 DOI: 10.1093/aob/mcac123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Brassica napus is one of the most important oilseed crops worldwide. Seed yield of B. napus significantly correlates with the primary root length (PRL). The aims of this study were to identify quantitative trait loci (QTLs) for PRL in B. napus. METHODS QTL-seq and conventional QTL mapping were jointly used to detect QTLs associated with PRL in a B. napus double haploid (DH) population derived from a cross between 'Tapidor' and 'Ningyou 7'. The identified major locus was confirmed and resolved by an association panel of B. napus and an advanced backcross population. RNA-seq analysis of two long-PRL lines (Tapidor and TN20) and two short-PRL lines (Ningyou 7 and TN77) was performed to identify differentially expressed genes in the primary root underlying the target QTLs. KEY RESULTS A total of 20 QTLs impacting PRL in B. napus grown at a low phosphorus (P) supply were found by QTL-seq. Eight out of ten QTLs affecting PRL at a low P supply discovered by conventional QTL mapping could be detected by QTL-seq. The locus qPRL-C06 identified by QTL-seq was repeatedly detected at both an optimal P supply and a low P supply by conventional QTL mapping. This major constitutive QTL was further confirmed by regional association mapping. qPRL-C06 was delimited to a 0.77 Mb genomic region on chromosome C06 using an advanced backcross population. A total of 36 candidate genes within qPRL-C06 were identified that showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in primary root between the long-PRL and short-PRL lines, including five genes involved in phytohormone biosynthesis and signaling. CONCLUSIONS These results both demonstrate the power of the QTL-seq in rapid QTL detection for root traits and will contribute to marker-assisted selective breeding of B. napus cultivars with increased PRL.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Graham John King
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Philip John White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Li B, Wang S, You X, Wen Z, Huang G, Huang C, Li Q, Chen K, Zhao Y, Gu M, Li X, Wei Y, Qin Y. Effect of Foliar Spraying of Gibberellins and Brassinolide on Cadmium Accumulation in Rice. TOXICS 2023; 11:364. [PMID: 37112591 PMCID: PMC10145392 DOI: 10.3390/toxics11040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is one of the heavy metals that contaminate rice cultivation, and reducing Cd contamination in rice through agronomic measures is a hot research topic. In this study, foliar sprays of gibberellins (GA) and brassinolide (BR) were applied to rice under Cd stress in hydroponic and pot experiments. After foliar spraying of GR and BR, the biomass of rice plants grown in either hydroponics or soil culture was significantly higher or even exceeded that in the absence of Cd stress. In addition, photosynthetic parameters (maximum fluorescence values), root length and root surface area, and CAT, SOD and POD activities were significantly improved. The MDA content decreased in the shoots, suggesting that the application of GR and BA may have enhanced photosynthesis and antioxidant function to alleviate Cd stress. Furthermore, the BR and GA treatments decreased the Cd content of rice roots, shoots and grains as well as the Cd transfer coefficient. Cd chemical morphology analysis of rice roots and shoots showed that the proportion of soluble Cd (Ethanol-Cd and Water-Cd) decreased, whereas the proportion of NaCl-Cd increased. Analysis of the subcellular distribution of Cd in rice roots and above ground showed that the proportion of Cd in the cell wall increased after foliar spraying of GA and BR. The results indicate that after foliar application of GA and BR, more of the Cd in rice was transformed into immobile forms and was fixed in the cell wall, thus reducing the amount in the seeds. In summary, foliar sprays of GA and BR can reduce the toxic effects of Cd on rice plants and reduce the Cd content in rice grains, with GA being more effective.
Collapse
Affiliation(s)
- Bei Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Song Wang
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China
| | - Xiaoshuang You
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenzhou Wen
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Guirong Huang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Caicheng Huang
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiaoxian Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kuiyuan Chen
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yihan Zhao
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Minghua Gu
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaofeng Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yan Qin
- Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Wu Y, An T, Gao Y, Kuang Q, Liu S, Liang L, Xu B, Zhang S, Deng X, Chen Y. Genotypic variation in the tolerance to moderate cadmium toxicity among 20 maize genotypes with contrasting root systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2618-2630. [PMID: 36321249 DOI: 10.1002/jsfa.12303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cadmium (Cd) contamination in farmland is a serious environmental and safety issue affecting plant growth, crop productivity, and human health. This study aimed to investigate genotypic variation in root morphology and Cd accumulations under moderate Cd stress among diverse maize genotypes. Twenty maize genotypes with contrasting root systems were assessed for Cd tolerance 39 days after transplanting (V6, six-leaf stage) under 20 μmol L-1 CdCl2 using a semi-hydroponic phenotyping platform in a glasshouse. RESULTS Cadmium stress significantly inhibited plant growth across all genotypes. Genotypic variation in response to Cd toxicity was apparent: shoot dry weight varied from 0.13 (genotype NS2020) to 0.35 g plant-1 (Dongke301) with deductions up to 63% compared with non-Cd treatment (CK). Root dry weight of 20 genotypes ranged from 0.06 (NS2020) to 0.18 g plant-1 (Dongke301) with a deduction up to 56%. Root length ranged from 2.21 (NS590b) to 9.22 m (Dongke301) with a maximal decline of 76%. Cadmium-treated genotypes generally had thicker roots and average diameter increased by 34% compared with CK. Genotypes had up to 3.25 and 3.50 times differences in shoot and root Cd concentrations, respectively. Principal component and cluster analyses assigned the 20 genotypes into Cd-tolerant (five genotypes) and Cd-sensitive (15 genotypes) groups. CONCLUSIONS Maize genotypes varied significantly in response to moderate Cd stress. Cadmium-tolerant genotypes optimized root morphology and Cd accumulation and distribution. This study could assist in the selection and breeding of new cultivars with improved adaptation to Cd-contaminated soil for food and feed or land remediation purposes. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Tingting An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yamin Gao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Qiqiang Kuang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Shuo Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Resources and Environment, Northwest A&F University, Yangling, China
| | - Liyan Liang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| |
Collapse
|
14
|
Niu K, Zhu R, Wang Y, Zhao C, Ma H. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114460. [PMID: 38321679 DOI: 10.1016/j.ecoenv.2022.114460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/08/2024]
Abstract
The application of phytohormones is a viable technique to increase the efficiency of phytoremediation in heavy metal-contaminated soils. The objective of this study was to determine how the application of 24-epibrassinolide (EBR), a brassinosteroid analog, could regulate root growth and tolerance to cadmium (Cd) stress in Kentucky bluegrass. As a result, the number of lateral root primordia and total root length in the Cd-treated seedlings decreased by 33.1 % and 56.5 %, respectively. After the application of EBR, Cd accumulation in roots and leaves, and the negative effect of Cd on root growth were reduced under Cd stress. Additionally, the expression of the brassinosteroid signaling gene PpBRI1 was significantly upregulated by exogenous EBR. Moreover, exogenous EBR upregulated the expression of genes encoding antioxidant enzymes and improved the activity of antioxidant enzymes, thereby reduced oxidative stress in roots. Finally, targeted hormonomics analysis highlighted the utility of the application of EBR to alleviate the effect of Cd on the reduction in auxin (IAA) content and the increase in ethylene (ACC) content. These were known to be associated with the upregulation in the expression of auxin biosynthesis gene PpYUCCA1 and downregulation in the expression of ethylene biosynthesis gene PpACO1 in the roots treated with Cd stress. Overall, the application of EBR alleviated Cd-induced oxidative stress in addition to improving root elongation and lateral root growth crosstalk with auxin and ethylene in Kentucky bluegrass subjected to Cd stress. This study further highlights the potential role of brassinosteroids in improving the efficiency of phytoremediation for Cd-contaminated soils.
Collapse
Affiliation(s)
- Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ruiting Zhu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunxu Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
15
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
16
|
Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2021; 12:43. [PMID: 35053191 PMCID: PMC8774178 DOI: 10.3390/biom12010043] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Heavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism. Particularly, inhibition of photosynthesis has been reported under HM toxicity because HMs trigger the degradation of chlorophyll molecules by enhancing the chlorophyllase activity and by replacing the central Mg ion in the porphyrin ring which affects overall plant growth and yield. Consequently, plants utilize various strategies to mitigate the negative impact of HM toxicity by limiting the uptake of these HMs and their sequestration into the vacuoles with the help of various molecules including proteins such as phytochelatins, metallothionein, compatible solutes, and secondary metabolites. In this comprehensive review, we provided insights towards a wider aspect of HM toxicity, ranging from their negative impact on plant growth to the mechanisms employed by the plants to alleviate the HM toxicity and presented the molecular mechanism of HMs toxicity and sequestration in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Science, Plant Protection Institute, Szent István University, 2100 Godollo, Hungary;
| | - Bushra Ejaz
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - M. Iqbal R. Khan
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University, Seoul 10326, Korea;
| | - Pramod W. Ramteke
- Department of Life Sciences, Mandsaur University, Mandsaur 458001, India;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
17
|
Gomez Mansur NM, Pena LB, Bossio AE, Lewi DM, Beznec AY, Blumwald E, Arbona V, Gómez-Cadenas A, Benavides MP, Gallego SM. An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment and a differential metabolite profile under Cd stress. PHYSIOLOGIA PLANTARUM 2021; 173:223-234. [PMID: 33629739 DOI: 10.1111/ppl.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK ::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 μM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK ::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity.
Collapse
Affiliation(s)
- Nabila M Gomez Mansur
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Liliana B Pena
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Adrián E Bossio
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Dalia M Lewi
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Ailin Y Beznec
- Instituto de Genética E. A. Favret, CICVyA, INTA. N. Repetto y de los Reseros s/n, Hurlingham, Argentina
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, California, USA
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, Castelló de la Plana, Spain
| | - María P Benavides
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Susana M Gallego
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
18
|
Kaur R, Das S, Bansal S, Singh G, Sardar S, Dhar H, Ram H. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. PHYSIOLOGIA PLANTARUM 2021; 173:430-448. [PMID: 34227684 DOI: 10.1111/ppl.13491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination of agricultural fields has become a global concern as it causes a direct impact on human health. Rice is the major food crop for almost half of the world population and is grown under diverse environmental conditions, including heavy metal-contaminated soil. In recent years, the impact of heavy metal contamination on rice yield and grain quality has been shown through multiple approaches. In this review article, different aspects of heavy metal stress, that is uptake, transport, signaling and tolerance mechanisms, are comprehensively discussed with special emphasis on rice. For uptake, some of the transporters have specificity to one or two metal ions, whereas many other transporters are able to transport many different ions. After uptake, the intercellular signaling is mediated through different signaling pathways involving the regulation of various hormones, alteration of calcium levels, and the activation of mitogen-activated protein kinases. Heavy metal stress signals from various intermediate molecules activate various transcription factors, which triggers the expression of various antioxidant enzymes. Activated antioxidant enzymes then scavenge various reactive oxygen species, which eventually leads to stress tolerance in plants. Non-enzymatic antioxidants, such as ascorbate, metalloids, and even metal-binding peptides (metallothionein and phytochelatin) can also help to reduce metal toxicity in plants. Genetic engineering has been successfully used in rice and many other crops to increase metal tolerance and reduce heavy metals accumulation. A comprehensive understanding of uptake, transport, signaling, and tolerance mechanisms will help to grow rice plants in agricultural fields with less heavy metal accumulation in grains.
Collapse
Affiliation(s)
- Ravneet Kaur
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Sakshi Bansal
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Gurbir Singh
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shaswati Sardar
- Lab 202, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Hena Dhar
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Hasthi Ram
- Lab 202, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
19
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
20
|
Clavero-León C, Ruiz D, Cillero J, Orlando J, González B. The multi metal-resistant bacterium Cupriavidus metallidurans CH34 affects growth and metal mobilization in Arabidopsis thaliana plants exposed to copper. PeerJ 2021; 9:e11373. [PMID: 34040892 PMCID: PMC8127957 DOI: 10.7717/peerj.11373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Copper (Cu) is important for plant growth, but high concentrations can lead to detrimental effects such as primary root length inhibition, vegetative tissue chlorosis, and even plant death. The interaction between plant-soil microbiota and roots can potentially affect metal mobility and availability, and, therefore, overall plant metal concentration. Cupriavidus metallidurans CH34 is a multi metal-resistant bacterial model that alters metal mobility and bioavailability through ion pumping, metal complexation, and reduction processes. The interactions between strain CH34 and plants may affect the growth, metal uptake, and translocation of Arabidopsis thaliana plants that are exposed to or not exposed to Cu. In this study, we looked also at the specific gene expression changes in C. metallidurans when co-cultured with Cu-exposed A. thaliana. We found that A. thaliana’s rosette area, primary and secondary root growth, and dry weight were affected by strain CH34, and that beneficial or detrimental effects depended on Cu concentration. An increase in some plant growth parameters was observed at copper concentrations lower than 50 µM and significant detrimental effects were found at concentrations higher than 50 µM Cu. We also observed up to a 90% increase and 60% decrease in metal accumulation and mobilization in inoculated A. thaliana. In turn, copper-stressed A. thaliana altered C. metallidurans colonization, and cop genes that encoded copper resistance in strain CH34 were induced by the combination of A. thaliana and Cu. These results reveal the complexity of the plant-bacteria-metal triad and will contribute to our understanding of their applications in plant growth promotion, protection, and phytoremediation strategies.
Collapse
Affiliation(s)
- Claudia Clavero-León
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Daniela Ruiz
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Javier Cillero
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.,(CAPES), Center of Applied Ecology and Sustainability, Santiago, Chile
| |
Collapse
|
21
|
Malicka M, Magurno F, Piotrowska-Seget Z, Chmura D. Arbuscular mycorrhizal and microbial profiles of an aged phenol-polynuclear aromatic hydrocarbon-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110299. [PMID: 32058165 DOI: 10.1016/j.ecoenv.2020.110299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous, obligatory plant symbionts that have a beneficial influence on plants in contaminated environments. This study focused on evaluating the biomass and biodiversity of the AMF and microbial communities associated with Poa trivialis and Phragmites australis plants sampled at an aged site contaminated with phenol and polynuclear aromatic hydrocarbons (PAHs) and an uncontaminated control site. We analyzed the soil phospholipid fatty acid profile to describe the general structure of microbial communities. PCR-denaturing gradient gel electrophoresis with primers targeting the 18S ribosomal RNA gene was used to characterize the biodiversity of the AMF communities and identify dominant AMF species associated with the host plants in the polluted and control environments. The root mycorrhizal colonization and AMF biomass in the soil were negatively affected by the presence of PAHs and phenol, with no significant differences between the studied plant species, whereas the biodiversity of the AMF communities were influenced by the soil contamination and plant species. Soil contamination was more detrimental to the biodiversity of AMF communities associated with Ph. australis, compared to P. trivialis. Both species favored the development of different AMF species, which might be related to the specific features of their different root systems and soil microbial communities. The contaminated site was dominated by AMF generalists like Funneliformis and Rhizophagus, whereas in the control site Dominikia, Archaeospora, Claroideoglomus, Glomus, and Diversispora were also detected.
Collapse
Affiliation(s)
- Monika Malicka
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland.
| | - Franco Magurno
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Zofia Piotrowska-Seget
- Institute of Biology Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28 Street, 40-032, Katowice, Poland
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, 2 Willowa Street, 43-309 Bielsko-Biała, Poland
| |
Collapse
|
22
|
Dahmani MA, Desrut A, Moumen B, Verdon J, Mermouri L, Kacem M, Coutos-Thévenot P, Kaid-Harche M, Bergès T, Vriet C. Unearthing the Plant Growth-Promoting Traits of Bacillus megaterium RmBm31, an Endophytic Bacterium Isolated From Root Nodules of Retama monosperma. FRONTIERS IN PLANT SCIENCE 2020; 11:124. [PMID: 32174934 PMCID: PMC7055178 DOI: 10.3389/fpls.2020.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 05/27/2023]
Abstract
Plants live in association with complex populations of microorganisms, including Plant Growth-Promoting Rhizobacteria (PGPR) that confer to plants an improved growth and enhanced stress tolerance. This large and diverse group includes endophytic bacteria that are able to colonize the internal tissues of plants. In the present study, we have isolated a nonrhizobial species from surface sterilized root nodules of Retama monosperma, a perennial leguminous species growing in poor and high salinity soils. Sequencing of its genome reveals this endophytic bacterium is a Bacillus megaterium strain (RmBm31) that possesses a wide range of genomic features linked to plant growth promotion. Furthermore, we show that RmBm31 is able to increase the biomass and positively modify the root architecture of seedlings of the model plant species Arabidopsis thaliana both in physical contact with its roots and via the production of volatile organic compounds. Lastly, we investigated the molecular mechanisms implicated in RmBm31 plant beneficial effects by carrying out a transcriptional analysis on a comprehensive set of phytohormone-responsive marker genes. Altogether, our results demonstrate that RmBm31 displays plant growth-promoting traits of potential interest for agricultural applications.
Collapse
Affiliation(s)
- Malika Affaf Dahmani
- Laboratoire des Productions, Valorisation végétales et microbiennes (LP2VM), Département de biotechnologies, Faculté SNV, Université des Sciences et de la Technologie d’Oran-Mohammed BOUDIAF (USTO M.B), Oran, Algéria
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS EA7349, Université de Poitiers, Poitiers, France
| | - Antoine Desrut
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Verdon
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Lamia Mermouri
- Laboratoire des Productions, Valorisation végétales et microbiennes (LP2VM), Département de biotechnologies, Faculté SNV, Université des Sciences et de la Technologie d’Oran-Mohammed BOUDIAF (USTO M.B), Oran, Algéria
| | - Mourad Kacem
- Département de Biotechnologie, Faculté SNV, Université d’Oran Ahmed Ben Bella, Oran, Algéria
| | - Pierre Coutos-Thévenot
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Meriem Kaid-Harche
- Laboratoire des Productions, Valorisation végétales et microbiennes (LP2VM), Département de biotechnologies, Faculté SNV, Université des Sciences et de la Technologie d’Oran-Mohammed BOUDIAF (USTO M.B), Oran, Algéria
| | - Thierry Bergès
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS EA7349, Université de Poitiers, Poitiers, France
| | - Cécile Vriet
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
23
|
Ma X, Liang X, Lv S, Guan T, Jiang T, Cheng Y. Histone deacetylase gene PtHDT902 modifies adventitious root formation and negatively regulates salt stress tolerance in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110301. [PMID: 31779889 DOI: 10.1016/j.plantsci.2019.110301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 05/24/2023]
Abstract
Histone deacetylases (HDACs) regulate gene transcription, and play a critical role in plant growth, development and stress responses. HD2 proteins are plant specific histone deacetylases. In woody plants, functions of HD2s are not known. In this study, we cloned an HD2 gene PtHDT902 from Populus trichocarpa and investigated its sequence, expression, subcellular localization, and functions in root development and salt stress responses. Our findings indicated that PtHDT902 was a nuclear protein and its expression was regulated by abiotic stresses. The over-expression of PtHDT902 in both Arabidopsis and poplar increased the expression levels of gibberellin (GA) biosynthetic genes. The expression of PtHDT902 in Arabidopsis enhanced primary root growth, and its over-expression in poplar inhibited adventitious root formation. These phenotypes resulted from over-expression of PtHDT902 were consistent with the GA-overproduction phenotypes. In addition, the poplar plants over-expressing PtHDT902 exhibited lower tolerance to salt than non-transgenic plants. These findings indicated that PtHDT902 worked as an important regulator in adventitious root formation and salt stress tolerance in poplar.
Collapse
Affiliation(s)
- Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Xueying Liang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Shibo Lv
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Tao Guan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
24
|
Gu L, Zhao M, Ge M, Zhu S, Cheng B, Li X. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109744. [PMID: 31627093 DOI: 10.1016/j.ecoenv.2019.109744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 05/12/2023]
Abstract
Biological strategy of utilization of plants-microbe's interactions to remediate cadmium (Cd) contaminated soils is effective and practical. However, limited evidence at transcriptome level is available about how microbes work with host plants to alleviate Cd stress. In the present study, comparative transcriptomic analysis was performed between maize seedlings inoculated with arbuscular mycorrhizal (AM) fungi and non-AM fungi inoculation under distinct concentrations of CdCl2 (0, 25, and 50 mg per kg soil). Significantly higher levels of Cd were found in root tissues of maize colonized by AM fungi, whereas, Cd content was reduced as much as 50% in leaf tissues when compared to non-AM seedlings, indicating that symbiosis between AM fungi and maize seedlings can significantly block translocation of Cd from roots to leaf tissues. Moreover, a total of 5827 differentially expressed genes (DEG) were determined and approximately 68.54% DEGs were downregulated when roots were exposed to high Cd stress. In contrast, 67.16% (595) DEGs were significantly up-regulated when seedlings were colonized by AM fungi under 0 mg CdCl2. Based on hierarchical clustering analysis, global expression profiles were split into eight distinct clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that hundreds of genes functioning in plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling pathway and glutathione metabolism were enriched. Furthermore, MapMan pathway analysis indicated a more comprehensive overview response, including hormone metabolism, especially in JA, glutathione metabolism, transcription factors and secondary metabolites, to Cd stress in mycorrhizal maize seedlings. These results provide an overview, at the transcriptome level, of how inoculation of maize seedlings by AM fungi could facilitate the relief of Cd stress.
Collapse
Affiliation(s)
- Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, China
| | - Manli Zhao
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Min Ge
- Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Schools of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Anhui Province Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
25
|
Zhao C, Zhang L, Zhang X, Xu Y, Wei Z, Sun B, Liang M, Li H, Hu F, Xu L. Regulation of endogenous phytohormones alters the fluoranthene content in Arabidopsis thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:935-943. [PMID: 31726575 DOI: 10.1016/j.scitotenv.2019.06.384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Phytohormones are crucial endogenous modulators that regulate and integrate plant growth and responses to various environmental pollutants, including the uptake of pollutants into the plant. However, possible links between endogenous phytohormone pathways and pollutant accumulation are unclear. Here we describe the fluoranthene uptake, plant growth, and superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST) activities in relation to different endogenous phytohormones and different levels in Arabidopsis thaliana. Three phytohormone inhibitors-N-1-naphthyl-phthalamic acid (NPA), daminozide (DZ), and silver nitrate (SN)-were used to regulate endogenous auxin, gibberellin, and ethylene levels, respectively. Fluoranthene inhibited plant growth and root proliferation while increasing GST and SOD activity. The three inhibitors reduced fluoranthene levels in Arabidopsis by either affecting plant growth or modulating antioxidant enzyme activity. NPA reduced plant growth and increased CAT activity. SN promoted plant growth and increased POD and CAT activity, whereas DZ increased POD activity.
Collapse
Affiliation(s)
- Chenyu Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Lihao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xuhui Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yuanzhou Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhimin Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Bin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingxiang Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| |
Collapse
|
26
|
Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S. Cadmium and Plant Development: An Agony from Seed to Seed. Int J Mol Sci 2019; 20:ijms20163971. [PMID: 31443183 PMCID: PMC6718997 DOI: 10.3390/ijms20163971] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic pollution of agricultural soils with cadmium (Cd) should receive adequate attention as Cd accumulation in crops endangers human health. When Cd is present in the soil, plants are exposed to it throughout their entire life cycle. As it is a non-essential element, no specific Cd uptake mechanisms are present. Therefore, Cd enters the plant through transporters for essential elements and consequently disturbs plant growth and development. In this review, we will focus on the effects of Cd on the most important events of a plant's life cycle covering seed germination, the vegetative phase and the reproduction phase. Within the vegetative phase, the disturbance of the cell cycle by Cd is highlighted with special emphasis on endoreduplication, DNA damage and its relation to cell death. Furthermore, we will discuss the cell wall as an important structure in retaining Cd and the ability of plants to actively modify the cell wall to increase Cd tolerance. As Cd is known to affect concentrations of reactive oxygen species (ROS) and phytohormones, special emphasis is put on the involvement of these compounds in plant developmental processes. Lastly, possible future research areas are put forward and a general conclusion is drawn, revealing that Cd is agonizing for all stages of plant development.
Collapse
Affiliation(s)
- Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Jana Deckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Marijke Jozefczak
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
27
|
Qin H, He L, Huang R. The Coordination of Ethylene and Other Hormones in Primary Root Development. FRONTIERS IN PLANT SCIENCE 2019; 10:874. [PMID: 31354757 PMCID: PMC6635467 DOI: 10.3389/fpls.2019.00874] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/19/2019] [Indexed: 05/11/2023]
Abstract
The primary root is the basic component of root systems, initiates during embryogenesis and develops shortly after germination, and plays a key role in early seedling growth and survival. The phytohormone ethylene shows significant inhibition of the growth of primary roots. Recent findings have revealed that the inhibition of ethylene in primary root elongation is mediated via interactions with phytohormones, such as auxin, abscisic acid, gibberellin, cytokinins, jasmonic acid, and brassinosteroids. Considering that Arabidopsis and rice are the model plants of dicots and monocots, as well as the fact that hormonal crosstalk in primary root growth has been extensively investigated in Arabidopsis and rice, a better understanding of the mechanisms in Arabidopsis and rice will increase potential applications in other species. Therefore, we focus our interest on the emerging studies in the research of ethylene and hormone crosstalk in primary root development in Arabidopsis and rice.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Lina He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Rongfeng Huang,
| |
Collapse
|
28
|
Vaičiukynė M, Žiauka J, Žūkienė R, Vertelkaitė L, Kuusienė S. Abscisic acid promotes root system development in birch tissue culture: a comparison to aspen culture and conventional rooting-related growth regulators. PHYSIOLOGIA PLANTARUM 2019; 165:114-122. [PMID: 30367696 DOI: 10.1111/ppl.12860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 05/16/2023]
Abstract
The research aim was to assess the effects of the plant hormone abscisic acid (ABA) and the growth regulator paclobutrazol (PBZ) on root system development during the in vitro culture of different birch and aspen genotypes. The studied genotypes involved two aspen (Populus tremula and Populus tremuloides × P. tremula) and two silver birch (Betula pendula) trees, with one of the birches characterized by its inability to root in vitro. For experiments, apical shoot segments were cultured on nutrient medium enriched with either ABA or PBZ. Additionally, the analysis of the endogenous hormones in shoots developed on hormone-free medium was conducted by high-performance liquid chromatography. The endogenous concentration of auxin indole-3-acetic acid was much higher in the aspens than that in the birches, while the highest concentration of ABA was found in the root-forming birch. The culturing of this birch genotype on medium enriched with ABA resulted in an increased root length and a higher number of lateral roots without any negative effect on either shoot growth or adventitious root (AR) formation, although these two processes were largely inhibited by ABA in the aspens. Meanwhile, PBZ promoted AR formation in both aspen and birch cultures but impaired secondary root formation and shoot growth in birches. These results suggest the use of ABA for the in vitro rooting of birches and PBZ for the rooting of aspens.
Collapse
Affiliation(s)
- Miglė Vaičiukynė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Jonas Žiauka
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Rasa Žūkienė
- Department of Biochemistry, Vytautas Magnus University, Vileikos str. 8, Kaunas, LT-44404, Lithuania
| | - Lidija Vertelkaitė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Sigutė Kuusienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| |
Collapse
|
29
|
Hong L, Zhang L, Liu M, Wang S, He L, Yang W, Li J, Yu Q, Li QQ, Zhou K. Heavy metal rich stone-processing wastewater inhibits the growth and development of plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 21:479-486. [PMID: 30560684 DOI: 10.1080/15226514.2018.1537241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large amounts of wastewater are generated from stone processing, which are toxic and cause serious environmental and health risks. To quantify the content of stone processing wastewater and estimate its effects on plant growth, we collected water samples from sewage outfall of four stone processing factories and nearby water bodies. The concentration of potential toxic metals were much higher in the wastewater than background controls. Wastewater inhibited plant primary root elongation, lateral root formation, and growth of aerial part. Seedlings treated with the effluents were unhealthy with deep purple leaves and usually died before flowering. Chlorophyll a/b contents and chloroplast number were reduced in those abnormal mesophyll cells. Transcriptional levels were decreased for chloroplast formation genes, but increased for those participated in chloroplast degradation and catabolism. Six out of nine tested senescence-associated genes were up-regulated. Furthermore, our results show that endogenous toxic metal levels indeed increased after wastewater treatment. Altogether, these results indicated that the potential toxic metals rich wastewater had significant inhibition on plant growth and led to senescence-associated program cell death, which could be helpful for the government and enterprises to understand the environmental risks and formulate reasonable wastewater emission standards for the stone processing industry.
Collapse
Affiliation(s)
- Liwei Hong
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Liangjie Zhang
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Meiling Liu
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Shengjie Wang
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Linjun He
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Wanyu Yang
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Jingli Li
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Qiaojie Yu
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Qingshun Q Li
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
- b Graduate College , Western University of Health Science , Pomona , CA , USA
| | - Kefu Zhou
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| |
Collapse
|
30
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
31
|
Ziv C, Zhao Z, Gao YG, Xia Y. Multifunctional Roles of Plant Cuticle During Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1088. [PMID: 30090108 PMCID: PMC6068277 DOI: 10.3389/fpls.2018.01088] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 05/18/2023]
Abstract
In land plants the cuticle is the outermost layer interacting with the environment. This lipophilic layer comprises the polyester cutin embedded in cuticular wax; and it forms a physical barrier to protect plants from desiccation as well as from diverse biotic and abiotic stresses. However, the cuticle is not merely a passive, mechanical shield. The increasing research on plant leaves has addressed the active roles of the plant cuticle in both local and systemic resistance against a variety of plant pathogens. Moreover, the fruit cuticle also serves as an important determinant of fruit defense and quality. It shares features with those of vegetative organs, but also exhibits specific characteristics, the functions of which gain increasing attention in recent years. This review describes multiple roles of plant cuticle during plant-pathogen interactions and its responses to both leaf and fruit pathogens. These include the dynamic changes of plant cuticle during pathogen infection; the crosstalk of cuticle with plant cell wall and diverse hormone signaling pathways for plant disease resistance; and the major biochemical, molecular, and cellular mechanisms that underlie the roles of cuticle during plant-pathogen interactions. Although research developments in the field have greatly advanced our understanding of the roles of plant cuticle in plant defense, there still remain large gaps in our knowledge. Therefore, the challenges thus presented, and future directions of research also are discussed in this review.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization – the Volcani Center, Rishon LeZion, Israel
| | - Zhenzhen Zhao
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Yu G. Gao
- The Ohio State University South Centers, Piketon, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Ye Xia
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
- *Correspondence: Ye Xia,
| |
Collapse
|
32
|
Sofo A, Bochicchio R, Amato M, Rendina N, Vitti A, Nuzzaci M, Altamura MM, Falasca G, Rovere FD, Scopa A. Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium- and zinc-enriched media. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:174-180. [PMID: 28704702 DOI: 10.1016/j.jplph.2017.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
A screening strategy using micropropagation glass tubes with a gradient of distances between germinating seeds and a metal-contaminated medium was used for studying alterations in root architecture and morphology of Arabidopsis thaliana treated with cadmium (Cd) and zinc (Zn) at the concentration of 10-20μM and 100-200μM, respectively. Metal concentrations in plant shoots and roots were measured by quadrupole inductively coupled plasma mass spectrometry. After 21days from germination, all plants in the tubes were scanned at high resolution and the root systems analyzed. The localization of indole-3-acetic acid (IAA) in the primary root and lateral root apices was monitored using DR5:GUS, LAX3:GUS and AUX1:GUS Arabidopsis transgenic lines. Total phenol content in leaves was measured spectrophotometrically. Shoot and root dry weight and leaf area did not change in Zn-exposed plants and significantly decreased in Cd-exposed plants, compared to control plants. Cadmium induced a reduction of root length, of mean number of roots and of total root surface. Both Cd- and Zn-exposed plants showed a reduced specific root length. This morphological behavior, together with an observed increase in root diameter in metal-exposed plants could be interpreted as compensatory growth, and the observed thicker roots could act as a barrier to protect root from the metals. In comparison with the apical localization of the IAA signal in the control plants, Zn generally reinforced the intensity of IAA signal, without affecting its localization. In Cd-exposed plants, IAA localization remained apical but weaker compared to control plants. Total phenols decreased in plants exposed to Zn and Cd. Therefore, we propose that the remodelling of the root architecture and the production of some secondary metabolites, such as IAA and phenols could be two responses of plants subjected to metal stress. This knowledge can open the way to future phytoremediation strategies of contaminated sites.
Collapse
Affiliation(s)
- Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - Rocco Bochicchio
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - Mariana Amato
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - Nunzia Rendina
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| | - Maria Maddalena Altamura
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale A. Moro 5, I-00185 Rome, Italy.
| | - Giuseppina Falasca
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale A. Moro 5, I-00185 Rome, Italy.
| | - Federica Della Rovere
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale A. Moro 5, I-00185 Rome, Italy.
| | - Antonio Scopa
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100, Potenza, Italy.
| |
Collapse
|
33
|
Avramova Z. The jasmonic acid-signalling and abscisic acid-signalling pathways cross talk during one, but not repeated, dehydration stress: a non-specific 'panicky' or a meaningful response? PLANT, CELL & ENVIRONMENT 2017; 40:1704-1710. [PMID: 28447364 DOI: 10.1111/pce.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Experiencing diverse and recurring biotic and abiotic stresses throughout life, plants have evolved mechanisms to respond, survive and, eventually, adapt to changing habitats. The initial response to drought involves a large number of genes that are involved also in response to other stresses. According to current models, this initial response is non-specific, becoming stress-specific only at later time points. The question, then, is whether non-specific activation of various stress-signalling systems leading to the expression of numerous stress-regulated genes is a false-alarm (panicky) response or whether it has biologically relevant consequences for the plant. Here, it is argued that the initial activation of genes associated other stresses reflects an important event during which stress-specific mechanisms are generated to prevent subsequent activation of non-drought signalling pathways. How plants discriminate between a first and a repeated dehydration stress and how repression of non-drought specific genes is achieved will be discussed on the example of jasmonic acid-associated Arabidopsis genes activated by a first, but not subsequent, dehydration stresses. Revealing how expression of various biotic/abiotic stress responding genes is prevented under recurring drought spells may be critical for our understanding of how plants respond to dynamically changing environments.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
34
|
Royer M, Cohen D, Aubry N, Vendramin V, Scalabrin S, Cattonaro F, Bogeat-Triboulot MB, Hummel I. The build-up of osmotic stress responses within the growing root apex using kinematics and RNA-sequencing. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5961-5973. [PMID: 27702994 PMCID: PMC5100013 DOI: 10.1093/jxb/erw350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular regulation of growth must include spatial and temporal coupling of cell production and cell expansion. The underlying mechanisms, especially under environmental challenge, remain obscure. Spatial patterns of cell processes make the root apex well suited to deciphering stress signaling pathways, and to investigating both processes. Kinematics and RNA-sequencing were used to analyze the immediate growth response of hydroponically grown Populus nigra cuttings submitted to osmotic stress. About 7400 genes and unannotated transcriptionally active regions were differentially expressed between the division and elongation zones. Following the onset of stress, growth decreased sharply, probably due to mechanical effects, before recovering partially. Stress impaired cell expansion over the apex, progressively shortened the elongation zone, and reduced the cell production rate. Changes in gene expression revealed that growth reduction was mediated by a shift in hormone homeostasis. Osmotic stress rapidly elicited auxin, ethylene, and abscisic acid. When growth restabilized, transcriptome remodeling became complex and zone specific, with the deployment of hormone signaling cascades, transcriptional regulators, and stress-responsive genes. Most transcriptional regulations fit growth reduction, but stress also promoted expression of some growth effectors, including aquaporins and expansins Together, osmotic stress interfered with growth by activating regulatory proteins rather than by repressing the machinery of expansive growth.
Collapse
Affiliation(s)
- Mathilde Royer
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | - David Cohen
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | - Nathalie Aubry
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | | | | | | | | | - Irène Hummel
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| |
Collapse
|
35
|
Liu N, Staswick PE, Avramova Z. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress. PLANT, CELL & ENVIRONMENT 2016; 39:2515-2529. [PMID: 27451106 DOI: 10.1111/pce.12806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 05/22/2023]
Abstract
Dehydration stress activates numerous genes co-regulated by diverse signaling pathways. Upon repeated exposures, however, a subset of these genes does not respond maintaining instead transcription at their initial pre-stressed levels ('revised-response' genes). Most of these genes are involved in jasmonic acid (JA) biosynthesis, JA-signaling and JA-mediated stress responses. How these JA-associated genes are regulated to provide different responses to similar dehydration stresses is an enigma. Here, we investigate molecular mechanisms that contribute to this transcriptional behavior. The memory-mechanism is stress-specific: one exposure to dehydration stress or to abscisic acid (ABA) is required to prevent transcription in the second. Both ABA-mediated and JA-mediated pathways are critical for the activation of these genes, but the two signaling pathways interact differently during a single or multiple encounters with dehydration stress. Synthesis of JA during the first (S1) but not the second dehydration stress (S2) accounts for the altered transcriptional responses. We propose a model for these memory responses, wherein lack of MYC2 and of JA synthesis in S2 is responsible for the lack of expression of downstream genes. The similar length of the memory displayed by different memory-type genes suggests biological relevance for transcriptional memory as a gene-regulating mechanism during recurring bouts of drought.
Collapse
Affiliation(s)
- Ning Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
36
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kolbert Z. Implication of nitric oxide (NO) in excess element-induced morphogenic responses of the root system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:149-161. [PMID: 26895428 DOI: 10.1016/j.plaphy.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 05/20/2023]
Abstract
Extremes of metal and non-metal elements in the soils create a stressful environment and plants exposed to sub-lethal abiotic stress conditions show a broad range of morphogenic responses designated as stress-induced morphogenic response (SIMR). Being the first plant organ directly contacting with elevated doses of elements, the root system shows remarkable symptoms and deserves special attention. In the signalling of root SIMR, the involvement of phytohormones (especially auxin) and reactive oxygen species (ROS) has been earlier suggested. Emerging evidence supports that nitric oxide (NO) and related molecules (reactive nitrogen species, RNS) are integral signals of root system development, and they are active components of heavy metal-induced stress responses as well. Based on these, the main scope of this review is to demonstrate the contribution of NO/RNS to the emergence of excess element-induced root morphogenic responses. The SIMR-like root system of lead-treated Arabidopsis thaliana contained elevated NO levels compared to the root not showing SIMR. In NO-deficient nia1nia2 plants, the degree of selenium-induced root SIMR was, in some characteristics altered compared to the wild-type. Moreover, among the molecular elements of SIMR several potential candidates of NO-dependent S-nitrosylation or tyrosine nitration have been found using computational prediction. The demonstrated literature data together with own experimental results strongly outline that NO/RNS are regulating signals in the development of root SIMR in case of excess metal and non-metal elements. This also reveals a new role of NO in acclimation emphasizing its importance in defence mechanisms against abiotic stresses.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Hungary.
| |
Collapse
|
38
|
Li G, Kronzucker HJ, Shi W. The Response of the Root Apex in Plant Adaptation to Iron Heterogeneity in Soil. FRONTIERS IN PLANT SCIENCE 2016; 7:344. [PMID: 27047521 PMCID: PMC4800179 DOI: 10.3389/fpls.2016.00344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 05/30/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, and is frequently limiting. By contrast, over-accumulation of Fe in plant tissues leads to toxicity. In soils, the distribution of Fe is highly heterogeneous. To cope with this heterogeneity, plant roots engage an array of adaptive responses to adjust their morphology and physiology. In this article, we review root morphological and physiological changes in response to low- and high-Fe conditions and highlight differences between these responses. We especially focus on the role of the root apex in dealing with the stresses resulting from Fe shortage and excess.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| |
Collapse
|
39
|
Liu N, Avramova Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis. Epigenetics Chromatin 2016; 9:8. [PMID: 26918031 PMCID: PMC4766709 DOI: 10.1186/s13072-016-0057-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant genes that provide a different response to a similar dehydration stress illustrate the concept of transcriptional 'dehydration stress memory'. Pre-exposing a plant to a biotic stress or a stress-signaling hormone may increase transcription from response genes in a future stress, a phenomenon known as 'gene priming'. Although known that primed transcription is preceded by accumulation of H3K4me3 marks at primed genes, what mechanism provides for their appearance before the transcription was unclear. How augmented transcription is achieved, whether/how the two memory phenomena are connected at the transcriptional level, and whether similar molecular and/or epigenetic mechanisms regulate them are fundamental questions about the molecular mechanisms regulating gene expression. RESULTS Although the stress hormone jasmonic acid (JA) was unable to induce transcription of tested dehydration stress response genes, it strongly potentiated transcription from specific ABA-dependent 'memory' genes. We elucidate the molecular mechanism causing their priming, demonstrate that stalled RNA polymerase II and H3K4me3 accumulate as epigenetic marks at the JA-primed ABA-dependent genes before actual transcription, and describe how these events occur mechanistically. The transcription factor MYC2 binds to the genes in response to both dehydration stress and to JA and determines the specificity of the priming. The MEDIATOR subunit MED25 links JA-priming with dehydration stress response pathways at the transcriptional level. Possible biological relevance of primed enhanced transcription from the specific memory genes is discussed. CONCLUSIONS The biotic stress hormone JA potentiated transcription from a specific subset of ABA-response genes, revealing a novel aspect of the JA- and ABA-signaling pathways' interactions. H3K4me3 functions as an epigenetic mark at JA-primed dehydration stress response genes before transcription. We emphasize that histone and epigenetic marks are not synonymous and argue that distinguishing between them is important for understanding the role of chromatin marks in genes' transcriptional performance. JA-priming, specifically of dehydration stress memory genes encoding cell/membrane protective functions, suggests it is an adaptational response to two different environmental stresses.
Collapse
Affiliation(s)
- Ning Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
40
|
Dun X, Tao Z, Wang J, Wang X, Liu G, Wang H. Comparative Transcriptome Analysis of Primary Roots of Brassica napus Seedlings with Extremely Different Primary Root Lengths Using RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1238. [PMID: 27594860 PMCID: PMC4990598 DOI: 10.3389/fpls.2016.01238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/04/2016] [Indexed: 05/18/2023]
Abstract
Primary root (PR) development is a crucial developmental process that is essential for plant survival. The elucidation of the PR transcriptome provides insight into the genetic mechanism controlling PR development in crops. In this study, we performed a comparative transcriptome analysis to investigate the genome-wide gene expression profiles of the seedling PRs of four Brassica napus genotypes that were divided into two groups, short group (D43 and D61), and long group (D69 and D72), according to their extremely different primary root lengths (PRLs). The results generated 55,341,366-64,631,336 clean reads aligned to 62,562 genes (61.9% of the current annotated genes) in the B. napus genome. We provide evidence that at least 44,986 genes are actively expressed in the B. napus PR. The majority of the genes that were expressed during seedling PR development were associated with metabolism, cellular processes, response to stimulus, biological regulation, and signaling. Using a pairwise comparison approach, 509 differentially expressed genes (DEGs; absolute value of log2 fold-change ≥1 and p ≤ 0.05) between the long and short groups were revealed, including phytohormone-related genes, protein kinases and phosphatases, oxygenase, cytochrome P450 proteins, etc. Combining GO functional category, KEGG, and MapMan pathway analyses indicated that the DEGs involved in cell wall metabolism, carbohydrate metabolism, lipid metabolism, secondary metabolism, protein modification and degradation, hormone pathways and signaling pathways were the main causes of the observed PRL differences. We also identified 16 differentially expressed transcription factors (TFs) involved in PR development. Taken together, these transcriptomic datasets may serve as a foundation for the identification of candidate genes and may provide valuable information for understanding the molecular and cellular events related to PR development.
Collapse
|
41
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|