1
|
Dagli MLZ, Nagamine MK, Ikeda TL, da Fonseca IIM, Kremer FS, Seixas FK, Hernandez CD, Leite JVP, Yasumaru CC, Massoco CO, Hsieh R, Lourenço SV, Collares TV. Identification of mutations in canine oral mucosal melanomas by exome sequencing and comparison with human melanomas. Sci Rep 2024; 14:24174. [PMID: 39406779 PMCID: PMC11480479 DOI: 10.1038/s41598-024-74748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Oral mucosal melanomas (OMMs) are aggressive neoplasms commonly found in dogs but rare in humans. Utilizing whole exome sequencing (WES), which focuses on protein-coding regions to reveal mutation profiles, we conducted a comparative analysis of canine OMM and human melanomas. This study involved DNA extraction, exome enrichment, and sequencing from three canine OMM cell lines (CMGD-2, CMGD-5, TLM-1), five canine OMM frozen samples, a human OMM cell line (MEMO), and a human commercial skin melanoma cell line (SK-MEL-28). The sequencing and subsequent analysis of FASTQ files yielded final variant files, leading to the identification of mutations. Our findings revealed a total of 500 mutated genes in canine OMM, including significant ones such as EP300, FAT4, JAK3, LRP1B, NCOR1, and NOTCH1. Notably, 82 shared mutations were identified between human melanomas and canine OMM genomes. These mutations were categorized based on the gene functions. The identification of these mutations provides critical insights that can pave the way for the development of novel therapeutic strategies for both canine and human OMM, offering hope for more effective treatments in the future.
Collapse
Affiliation(s)
- Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Márcia Kazumi Nagamine
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Tatícia Lieh Ikeda
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ivone Izabel Mackowiak da Fonseca
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - João Vitor Pereira Leite
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Cassia Correa Yasumaru
- Laboratory of Comparative Imuno-Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Cristina Oliveira Massoco
- Laboratory of Comparative Imuno-Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Hsieh
- School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Tiago Veiras Collares
- Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
2
|
He X, Gao Y, Deng Y, He J, Nolte I, Murua Escobar H, Yu F. The Comparative Oncology of Canine Malignant Melanoma in Targeted Therapy: A Systematic Review of In Vitro Experiments and Animal Model Reports. Int J Mol Sci 2024; 25:10387. [PMID: 39408717 PMCID: PMC11476434 DOI: 10.3390/ijms251910387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024] Open
Abstract
Canine malignant melanoma (CMM) is highly aggressive and mostly located in the oral cavity. CMM is the predominant type of canine oral malignancy and shows striking homologies with human mucosal melanoma. In comparative oncology, canine oral melanomas (COMs), as spontaneous tumor models, have the potential to acquire a unique value as a translational model of rare human melanoma subtypes. This review aims to provide a comprehensive summary of targeted therapies for canine malignant melanoma and to enrich the field of comparative oncology. Following the PRISMA guidelines, a comprehensive literature search was conducted across databases for studies from 1976 to April 2024. Studies were selected based on their relevance to targeted treatments. A total of 30 studies met the inclusion criteria. Based on the treatment approaches, the studies were further categorized into immunotherapies, small molecule signaling inhibitors, indirect kinase inhibitors, and other alternative strategies. Some treatments have been shown to result in stable disease or partial response, accounting for 29% (monoclonal antibody) and 76.5% (micro-RNA therapies) in clinical trials. Moreover, in vitro experiments of small molecule inhibitors, including cell signaling inhibitors and indirect kinase inhibitors, have shown the potential to be an effective treatment option for the development of therapeutic strategies in canine malignant melanoma. The observed response in in vitro experiments of CMM (particularly the oral and certain cutaneous subtypes) to drugs used in the treatment of human melanoma underlines the resemblance to human melanoma, therefore supporting the notion that CMM may be a valuable model for understanding rare human melanoma subtypes and exploring potential therapeutic avenues in preclinical trials. Finally, this literature review serves as a valuable resource for the development of therapeutic strategies for CMM and highlights the potential for translating these findings to human cancer treatment.
Collapse
Affiliation(s)
- Xiaohui He
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Yu Gao
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Yuqing Deng
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Junying He
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Feng Yu
- Department of Small Animal Medicine, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China
| |
Collapse
|
3
|
Lo Giudice A, Porcellato I, Giglia G, Sforna M, Lepri E, Mandara MT, Leonardi L, Mechelli L, Brachelente C. Exploring the Epidemiology of Melanocytic Tumors in Canine and Feline Populations: A Comprehensive Analysis of Diagnostic Records from a Single Pathology Institution in Italy. Vet Sci 2024; 11:435. [PMID: 39330814 PMCID: PMC11436034 DOI: 10.3390/vetsci11090435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
MTs are prevalent in dogs, representing the most frequent oral malignancy, compared to cats, in which ocular melanomas predominate. This study investigates the canine and feline MT epidemiology (2005-2024) of cases submitted to the Veterinary Pathology Service (University of Perugia). Among the canine neoplasms, 845 (4%) were melanocytic: 329 (39%) melanocytomas; 512 (61%) melanomas. Of these, 485 (57%) were cutaneous (4% of canine cutaneous neoplasms), 193 (23%) were oral (50% of oral canine neoplasms), and 104 (12%) were mucocutaneous. The average age of affected dogs was 10 years. Older dogs were more likely to have melanomas compared to melanocytomas (p < 0.001). There were 60 (1%) feline MTs: 6 (10%) melanocytomas; 53 (88%) melanomas. Of these, 29 (48%) were cutaneous (1% of feline cutaneous tumors), 18 (30%) were ocular, and 9 (15%) were oral (22% of feline oral tumors). The average age of affected cats was 11 years. In dogs, mucocutaneous melanomas were more common compared to cutaneous ones (p < 0.05); oral melanomas were more common compared to all other sites (p < 0.001). In cats, ocular melanomas were more common compared to cutaneous ones (p < 0.05). Our study provides the MT prevalence in a selected canine and feline population, revealing MT epidemiological patterns, highlighting species-specific differences in the tumor prevalence, localization, and age distribution.
Collapse
Affiliation(s)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.L.G.); (G.G.); (M.S.); (E.L.); (M.T.M.); (L.L.); (L.M.); (C.B.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cronise KE, Coy J, Dow S, Hauck ML, Regan DP. Immunohistochemical and transcriptomic characterization of T and myeloid cell infiltrates in canine malignant melanoma. Vet Comp Oncol 2024; 22:377-387. [PMID: 38752589 PMCID: PMC11323233 DOI: 10.1111/vco.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 08/16/2024]
Abstract
Immune checkpoint inhibitor therapy can provide significant clinical benefit in patients with certain cancer types including melanoma; however, objective responses are only observed for a subset of patients. Mucosal melanoma is a rare melanoma subtype associated with a poor prognosis and, compared with cutaneous melanoma, is significantly less responsive to immune checkpoint inhibitors. Spontaneous canine tumours have emerged as valuable models to inform human cancer studies. In contrast to human melanoma, most canine melanomas are mucosal-an incidence that may be leveraged to better understand the subtype in humans. However, a more comprehensive understanding of the immune landscape of the canine disease is required. Here, we quantify tumour infiltrative T and myeloid cells in canine mucosal (n = 13) and cutaneous (n = 5) melanomas using immunohistochemical analysis of CD3 and MAC387 expression, respectively. Gene expression analysis using the Canine IO NanoString panel was also performed to identify genes and pathways associated with immune cell infiltration. T and myeloid cell densities were variable with geometric means of 158.7 cells/mm2 and 166.7 cells/mm2, respectively. Elevated T cell infiltration was associated with increased expression of cytolytic genes as well as genes encoding the coinhibitory checkpoint molecules PD-1, CTLA-4, TIM-3 and TIGIT; whereas increased myeloid cell infiltration was associated with elevated expression of protumourigenic cytokines. These data provide a basic characterization of the tumour microenvironment of canine malignant melanoma and suggest that, like human melanoma, inherent variability in anti-tumour T cell responses exists and that a subset of canine melanomas may respond better to immunomodulation.
Collapse
Affiliation(s)
- Kathryn E Cronise
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jonathan Coy
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Dow
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Marlene L Hauck
- Global Innovation, Oncology, Boehringer Ingelheim Animal Health, Athens, Georgia, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Gola C, Maniscalco L, Iussich S, Morello E, Olimpo M, Martignani E, Accornero P, Giacobino D, Mazzone E, Modesto P, Varello K, Aresu L, De Maria R. Hypoxia-associated markers in the prognosis of oral canine melanoma. Vet Pathol 2024; 61:721-731. [PMID: 38613423 DOI: 10.1177/03009858241244853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Canine oral malignant melanoma (COMM) is the most common neoplasm in the oral cavity characterized by local invasiveness and high metastatic potential. Hypoxia represents a crucial feature of the solid tumor microenvironment promoting cancer progression and drug resistance. Hypoxia-inducible factor-1α (HIF-1α) and its downstream effectors, vascular endothelial growth factor A (VEGF-A), glucose transporter isoform 1 (GLUT1), C-X-C chemokine receptor type 4 (CXCR4), and carbonic anhydrase IX (CAIX), are the main regulators of the adaptive response to low oxygen availability. The prognostic value of these markers was evaluated in 36 COMMs using immunohistochemistry. In addition, the effects of cobalt chloride-mediated hypoxia were evaluated in 1 primary COMM cell line. HIF-1α expression was observed in the nucleus, and this localization correlated with the presence or enhanced expression of HIF-1α-regulated genes at the protein level. Multivariate analysis revealed that in dogs given chondroitin sulfate proteoglycan-4 (CSPG4) DNA vaccine, COMMs expressing HIF-1α, VEGF-A, and CXCR4 were associated with shorter disease-free intervals (DFI) compared with tumors that were negative for these markers (P = .03), suggesting hypoxia can influence immunotherapy response. Western blotting showed that, under chemically induced hypoxia, COMM cells accumulate HIF-1α and smaller amounts of CAIX. HIF-1α induction and stabilization triggered by hypoxia was corroborated by immunofluorescence, showing its nuclear translocation. These findings reinforce the role of an hypoxic microenvironment in tumor progression and patient outcome in COMM, as previously established in several human and canine cancers. In addition, hypoxic markers may represent promising prognostic markers, highlighting opportunities for their use in therapeutic strategies for COMMs.
Collapse
Affiliation(s)
- Cecilia Gola
- University of Surrey, Guildford, UK
- University of Turin, Grugliasco, Turin, Italy
| | | | | | | | | | | | | | | | | | - Paola Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Luca Aresu
- University of Turin, Grugliasco, Turin, Italy
| | | |
Collapse
|
6
|
Mucignat G, Montanucci L, Elgendy R, Giantin M, Laganga P, Pauletto M, Mutinelli F, Vascellari M, Leone VF, Dacasto M, Granato A. A Whole-Transcriptomic Analysis of Canine Oral Melanoma: A Chance to Disclose the Radiotherapy Effect and Outcome-Associated Gene Signature. Genes (Basel) 2024; 15:1065. [PMID: 39202425 PMCID: PMC11353338 DOI: 10.3390/genes15081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Oral melanoma (OM) is the most common malignant oral tumour among dogs and shares similarities with human mucosal melanoma (HMM), validating the role of canine species as an immunocompetent model for cancer research. In both humans and dogs, the prognosis is poor and radiotherapy (RT) represents a cornerstone in the management of this tumour, either as an adjuvant or a palliative treatment. In this study, by means of RNA-seq, the effect of RT weekly fractionated in 9 Gray (Gy), up to a total dose of 36 Gy (4 weeks), was evaluated in eight dogs affected by OM. Furthermore, possible transcriptomic differences in blood and biopsies that might be associated with a longer overall survival (OS) were investigated. The immune response, glycosylation, cell adhesion, and cell cycle were the most affected pathways by RT, while tumour microenvironment (TME) composition and canonical and non-canonical WNT pathways appeared to be modulated in association with OS. Taking these results as a whole, this study improved our understanding of the local and systemic effect of RT, reinforcing the pivotal role of anti-tumour immunity in the control of canine oral melanoma (COM).
Collapse
Affiliation(s)
- Greta Mucignat
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Ludovica Montanucci
- McGovern Medical School and Center for Neurogenomics, UTHealth, University of Texas Houston, Houston, TX 77030, USA;
| | - Ramy Elgendy
- Discovery Sciences, Centre for Genomics Research, AstraZeneca, 411 10 Gothenburg, Sweden;
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Paola Laganga
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Franco Mutinelli
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Marta Vascellari
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Vito Ferdinando Leone
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Anna Granato
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| |
Collapse
|
7
|
Hino Y, Arif M, Rahman MM, Husna AA, Hasan MDN, Miura N. Hypoxia-Mediated Long Non-Coding RNA Fragment Identified in Canine Oral Melanoma through Transcriptome Analysis. Vet Sci 2024; 11:361. [PMID: 39195815 PMCID: PMC11359073 DOI: 10.3390/vetsci11080361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Hypoxia contributes to tumor progression and metastasis, and hypoxically dysregulated RNA molecules may, thus, be implicated in poor outcomes. Canine oral melanoma (COM) has a particularly poor prognosis, and some hypoxia-mediated miRNAs are known to exist in this cancer; however, equivalent data on other hypoxically dysregulated non-coding RNAs (ncRNAs) are lacking. Accordingly, we aimed to elucidate non-miRNA ncRNAs that may be mediated by hypoxia, targeting primary-site and metastatic COM cell lines and clinical COM tissue samples in next-generation sequencing (NGS), with subsequent qPCR validation and quantification in COM primary and metastatic cells and plasma and extracellular vesicles (EVs) for any identified ncRNA of interest. The findings suggest that a number of non-miRNA ncRNA species are hypoxically up- or downregulated in COM. We identified one ncRNA, the long ncRNA fragment ENSCAFT00000084705.1, as a molecule of interest due to its consistent downregulation in COM tissues, hypoxically and normoxically cultured primary and metastatic cell lines, when compared to the oral tissues from healthy dogs. However, this molecule was undetectable in plasma and plasma EVs, suggesting that its expression may be tumor tissue-specific, and it has little potential as a biomarker. Here, we provide evidence of hypoxic transcriptional dysregulation for ncRNAs other than miRNA in COM for the first time and suggest that ncRNA ENSCAFT00000084705.1 is a molecule of interest for future research on the role of the transcriptome in the hypoxia-mediated progression of this aggressive cancer.
Collapse
Affiliation(s)
- Yasunori Hino
- United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-0841, Japan
| | - Mohammad Arif
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (M.A.)
| | - Md Mahfuzur Rahman
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Al Asmaul Husna
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - MD Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (M.A.)
| | - Naoki Miura
- United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-0841, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (M.A.)
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
8
|
Albertini MR, Zuleger CL, Ranheim EA, Shiyanbola O, Sondel PM, Morris ZS, Eickhoff J, Newton MA, Ong IM, Schwartz RW, Hayim R, Kurzman ID, Turek M, Vail DM. Administration of intratumoral GD2-directed interleukin-2 immunocytokine and local radiation therapy to activate immune rejection of spontaneous canine melanoma. Melanoma Res 2024; 34:307-318. [PMID: 38768442 PMCID: PMC11444423 DOI: 10.1097/cmr.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Canine malignant melanoma provides a clinically relevant, large animal parallel patient population to study the GD2-reactive hu14.18-IL-2 immunocytokine as it is similar to human melanoma and expresses GD2. The objectives of this study were to evaluate safety, radiation fractionation, and identify informative biomarkers of an in-situ tumor vaccine involving local radiation therapy plus intratumoral-immunocytokine in melanoma tumor-bearing dogs. Twelve dogs (six dogs/arm) with locally advanced or metastatic melanoma were randomized to receive a single 8 Gy fraction (arm A) or three 8 Gy fractions over 1 week (arm B) to the primary site and regional lymph nodes (when clinically involved) with the single or last fraction 5 days before intratumoral-immunocytokine at 12 mg/m 2 on 3 consecutive days. Serial tumor biopsies were obtained. All 12 dogs completed protocol treatment, and none experienced significant or unexpected adverse events. Evidence of antitumor activity includes one dog with a complete response at day 60, one dog with a partial response at day 60, and four dogs with mixed responses. Histology of serial biopsies shows a variably timed increase in intratumoral lymphocytic inflammation in some dogs. Canine NanoString analyses of serial biopsies identified changes in gene signatures of innate and adaptive cell types versus baseline. There were no significant differences in NanoString results between arm A and arm B. We conclude that intratumoral-immunocytokine in combination with local radiation therapy in canine melanoma is well tolerated and has antitumor activity with the potential to inform clinical development in melanoma patients.
Collapse
Affiliation(s)
- Mark R. Albertini
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Medicine, University of Wisconsin School of Veterinary Medicine
- Department of Dermatology, University of Wisconsin School of Veterinary Medicine
- The Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Cindy L. Zuleger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Medicine, University of Wisconsin School of Veterinary Medicine
| | - Erik A. Ranheim
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Veterinary Medicine
| | - Oyewale Shiyanbola
- Stanford University School of Medicine, Department of Pathology, Stanford, California
| | - Paul M. Sondel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Pediatrics, University of Wisconsin School of Veterinary Medicine
- Department of Human Oncology, University of Wisconsin School of Veterinary Medicine
| | - Zachary S. Morris
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Human Oncology, University of Wisconsin School of Veterinary Medicine
| | - Jens Eickhoff
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Biostatistics & Medical Informatics, University of Wisconsin School of Veterinary Medicine
| | - Michael A. Newton
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Biostatistics & Medical Informatics, University of Wisconsin School of Veterinary Medicine
| | - Irene M. Ong
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Biostatistics & Medical Informatics, University of Wisconsin School of Veterinary Medicine
- Department of Obstetrics & Gynecology, University of Wisconsin School of Veterinary Medicine
| | - Rene Welch Schwartz
- Department of Biostatistics & Medical Informatics, University of Wisconsin School of Veterinary Medicine
| | - Rubi Hayim
- Department of Medical Sciences, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Ilene D. Kurzman
- Department of Medical Sciences, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Michelle Turek
- Department of Surgical Sciences, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - David M. Vail
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health
- Department of Medical Sciences, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
9
|
Lo Giudice A, Porcellato I, Pellegrini M, Rottenberg S, He C, Dentini A, Moretti G, Cagiola M, Mechelli L, Chiaradia E, Brachelente C. Establishment of Primary Cell Cultures from Canine Oral Melanomas via Fine-Needle Aspiration: A Novel Tool for Tumorigenesis and Cancer Progression Studies. Animals (Basel) 2024; 14:1948. [PMID: 38998060 PMCID: PMC11240394 DOI: 10.3390/ani14131948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oral melanomas are the most common oral malignancies in dogs and are characterized by an aggressive nature, invasiveness, and poor prognosis. With biological and genetic similarities to human oral melanomas, they serve as a valuable spontaneous comparative model. Primary cell cultures are widely used in human medicine and, more recently, in veterinary medicine to study tumorigenesis, cancer progression, and innovative therapeutic approaches. This study aims to establish two- and three-dimensional primary cell lines from oral canine melanomas using fine-needle aspiration as a minimally invasive sampling method. For this study, samples were collected from six dogs, represented by four primary oral melanomas and five lymph nodal metastases. The cells were digested to obtain single-cell suspensions, seeded in flasks, or processed with Matrigel® to form organoids. The cell cultures were characterized through flow cytometry using antibodies against Melan-A, PNL2, and Sox-10. This technique offers a minimally invasive means to obtain cell samples, particularly beneficial for patients that are ineligible for surgical procedures, and enables the establishment of in vitro models crucial for comparative studies in mucosal melanoma oncology. To the best of our knowledge, this is the first work establishing neoplastic primary cell cultures via fine-needle aspiration in dogs.
Collapse
Affiliation(s)
- Adriana Lo Giudice
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Martina Pellegrini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (M.P.); (M.C.)
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (S.R.); (C.H.)
| | - Chang He
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (S.R.); (C.H.)
| | - Alfredo Dentini
- Clinica Veterinaria Tyrus, Strada delle Campore 30L, 05100 Terni, Italy;
| | - Giulia Moretti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (M.P.); (M.C.)
| | - Luca Mechelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| |
Collapse
|
10
|
Li S, Liu Z, Lv J, Lv D, Xu H, Shi H, Liu G, Lin D, Jin Y. Establishment of Canine Oral Mucosal Melanoma Cell Lines and Their Xenogeneic Animal Models. Cells 2024; 13:992. [PMID: 38891124 PMCID: PMC11171988 DOI: 10.3390/cells13110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Canine oral melanoma is the most prevalent malignant tumor in dogs and has a poor prognosis due to its high aggressiveness and high metastasis and recurrence rates. More research is needed into its treatment and to understand its pathogenic factors. In this study, we isolated a canine oral mucosal melanoma (COMM) cell line designated as COMM6605, which has now been stably passaged for more than 100 generations, with a successful monoclonal assay and a cell multiplication time of 22.2 h. G-banded karyotype analysis of the COMM6605 cell line revealed an abnormal chromosome count ranging from 45 to 74, with the identification of a double-armed chromosome as the characteristic marker chromosome of this cell line. The oral intralingual and dorsal subcutaneous implantation models of BALB/c-nu mice were successfully established; Melan-A (MLANA), S100 beta protein (S100β), PNL2, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) were stably expressed positively in the canine oral tumor sections, tumor cell lines, and tumor sections of tumor-bearing mice. Sublines COMM6605-Luc-EGFP and COMM6605-Cherry were established through lentiviral transfection, with COMM6605-Luc-EGFP co-expressing firefly luciferase (Luc) and enhanced green fluorescent protein (EGFP) and COMM6605-Cherry expressing the Cherry fluorescent protein gene. The COMM6605-Luc-EGFP fluorescent cell subline was injected via the tail vein and caused lung and lymph node metastasis, as detected by mouse live imaging, which can be used as an animal model to simulate the latter steps of hematogenous spread during tumor metastasis. The canine oral melanoma cell line COMM6605 and two sublines isolated and characterized in this study can offer a valuable model for studying mucosal melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing 100193, China; (S.L.); (Z.L.); (J.L.); (D.L.); (H.X.); (H.S.); (G.L.); (D.L.)
| |
Collapse
|
11
|
Contel IJ, Fonseca-Alves CE, Ferrari HF, Laufer-Amorim R, Xavier-Júnior JCC. Review of the comparative pathological and immunohistochemical features of human and canine cutaneous melanocytic neoplasms. J Comp Pathol 2024; 211:26-35. [PMID: 38761560 DOI: 10.1016/j.jcpa.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 04/14/2024] [Indexed: 05/20/2024]
Abstract
Melanocytic neoplasms originate from melanocytes and melanoma, the malignant form, is a common canine neoplasm and the most aggressive human skin cancer. Despite many similarities between these neoplasms in both species, only a limited number of studies have approached these entities in a comparative manner. Therefore, this review compares benign and malignant melanocytic neoplasms in dogs and humans, exclusively those arising in the haired skin, with regard to their clinicopathological, immunohistochemical and molecular aspects. Shared features include spontaneous occurrence, macroscopic features and microscopic findings when comparing human skin melanoma in the advanced/invasive stage and canine cutaneous melanoma, immunohistochemical markers and several histopathological prognostic factors. Differences include the apparent absence of active mutations in the BRAF gene in canine cutaneous melanoma and less aggressive clinical behaviour in dogs than in humans. Further studies are required to elucidate the aetiology and genetic development pathways of canine cutaneous melanocytic neoplasms. Evaluation of the applicability of histopathological prognostic parameters commonly used in humans for dogs are also needed. The similarities between the species and the recent findings regarding genetic mutations in canine cutaneous melanomas suggest the potential utility of dogs as a natural model for human melanomas that are not related to ultraviolet radiation.
Collapse
Affiliation(s)
- Isabeli J Contel
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil
| | - Carlos E Fonseca-Alves
- Institute of Health Sciences, Paulista University, Rua Luiz Levorato, 140, Jardim Marabá, 17048-290, Bauru, SP, Brazil
| | - Heitor F Ferrari
- University Center of Adamantina, Rua Nove de Julho, 730, Centro, 17800-057, Adamantina, SP, Brazil
| | - Renee Laufer-Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University, Rua Prof. Doutor Walter Mauricio Correa, s/n, Campus de Botucatu, 18618-681, Botucatu, SP, Brazil
| | - José C C Xavier-Júnior
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil; Salesian Catholic University Center Auxilium, Medical School, Rod. Sen. Teotônio Vilela, 3821, Jardim Alvorada, 16016-500, Araçatuba, SP, Brazil.
| |
Collapse
|
12
|
Chon E, Hendricks W, White M, Rodrigues L, Haworth D, Post G. Precision Medicine in Veterinary Science. Vet Clin North Am Small Anim Pract 2024; 54:501-521. [PMID: 38212188 DOI: 10.1016/j.cvsm.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Precision medicine focuses on the clinical management of the individual patient, not on population-based findings. Successes from human precision medicine inform veterinary oncology. Early evidence of success for canines shows how precision medicine can be integrated into practice. Decreasing genomic profiling costs will allow increased utilization and subsequent improvement of knowledge base from which to make better informed decisions. Utility of precision medicine in canine oncology will only increase for improved cancer characterization, enhanced therapy selection, and overall more successful management of canine cancer. As such, practitioners are called to interpret and leverage precision medicine reports for their patients.
Collapse
Affiliation(s)
- Esther Chon
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - William Hendricks
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Michelle White
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - Lucas Rodrigues
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA
| | - David Haworth
- Vidium Animal Health, 7201 East Henkel Way, Suite 210, Scottsdale, AZ 85255, USA
| | - Gerald Post
- OneHealthCompany, Inc, 530 Lytton Avenue, 2nd Floor, Palo Alto, CA 94301, USA.
| |
Collapse
|
13
|
Babu S, Chen J, Robitschek E, Baron CS, McConnell A, Wu C, Dedeilia A, Sade-Feldman M, Modhurima R, Manos MP, Chen KY, Cox AM, Ludwig CG, Yang J, Kellis M, Buchbinder EI, Hacohen N, Boland GM, Abraham BJ, Liu D, Zon LI, Insco ML. Specific oncogene activation of the cell of origin in mucosal melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590595. [PMID: 38712250 PMCID: PMC11071392 DOI: 10.1101/2024.04.22.590595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mucosal melanoma (MM) is a deadly cancer derived from mucosal melanocytes. To test the consequences of MM genetics, we developed a zebrafish model in which all melanocytes experienced CCND1 expression and loss of PTEN and TP53. Surprisingly, melanoma only developed from melanocytes lining internal organs, analogous to the location of patient MM. We found that zebrafish MMs had a unique chromatin landscape from cutaneous melanoma. Internal melanocytes could be labeled using a MM-specific transcriptional enhancer. Normal zebrafish internal melanocytes shared a gene expression signature with MMs. Patient and zebrafish MMs have increased migratory neural crest gene and decreased antigen presentation gene expression, consistent with the increased metastatic behavior and decreased immunotherapy sensitivity of MM. Our work suggests the cell state of the originating melanocyte influences the behavior of derived melanomas. Our animal model phenotypically and transcriptionally mimics patient tumors, allowing this model to be used for MM therapeutic discovery.
Collapse
Affiliation(s)
- Swathy Babu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jiajia Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Emily Robitschek
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Chloé S Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Alicia McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Constance Wu
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | | | - Moshe Sade-Feldman
- Massachusetts General Hospital (MGH) Cancer Center, Boston, MA, 02114, USA
| | - Rodsy Modhurima
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Michael P Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kevin Y Chen
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Anna M Cox
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Calvin G Ludwig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Jiekun Yang
- Broad Institute of Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA
| | - Manolis Kellis
- Broad Institute of Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, 02139, USA
| | | | - Nir Hacohen
- Massachusetts General Hospital (MGH) Cancer Center, Boston, MA, 02114, USA
- Broad Institute of Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA
- Harvard Medical School (HMS), Boston, MA, USA; Department of Immunology, HMS, Boston, MA, 02115, USA
| | - Genevieve M Boland
- Massachusetts General Hospital (MGH) Cancer Center, Boston, MA, 02114, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Megan L Insco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Razmara AM, Farley LE, Harris RM, Judge SJ, Lammers M, Iranpur KR, Johnson EG, Dunai C, Murphy WJ, Brown CT, Rebhun RB, Kent MS, Canter RJ. Preclinical evaluation and first-in-dog clinical trials of PBMC-expanded natural killer cells for adoptive immunotherapy in dogs with cancer. J Immunother Cancer 2024; 12:e007963. [PMID: 38631708 PMCID: PMC11029326 DOI: 10.1136/jitc-2023-007963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are cytotoxic cells capable of recognizing heterogeneous cancer targets without prior sensitization, making them promising prospects for use in cellular immunotherapy. Companion dogs develop spontaneous cancers in the context of an intact immune system, representing a valid cancer immunotherapy model. Previously, CD5 depletion of peripheral blood mononuclear cells (PBMCs) was used in dogs to isolate a CD5dim-expressing NK subset prior to co-culture with an irradiated feeder line, but this can limit the yield of the final NK product. This study aimed to assess NK activation, expansion, and preliminary clinical activity in first-in-dog clinical trials using a novel system with unmanipulated PBMCs to generate our NK cell product. METHODS Starting populations of CD5-depleted cells and PBMCs from healthy beagle donors were co-cultured for 14 days, phenotype, cytotoxicity, and cytokine secretion were measured, and samples were sequenced using the 3'-Tag-RNA-Seq protocol. Co-cultured human PBMCs and NK-isolated cells were also sequenced for comparative analysis. In addition, two first-in-dog clinical trials were performed in dogs with melanoma and osteosarcoma using autologous and allogeneic NK cells, respectively, to establish safety and proof-of-concept of this manufacturing approach. RESULTS Calculated cell counts, viability, killing, and cytokine secretion were equivalent or higher in expanded NK cells from canine PBMCs versus CD5-depleted cells, and immune phenotyping confirmed a CD3-NKp46+ product from PBMC-expanded cells at day 14. Transcriptomic analysis of expanded cell populations confirmed upregulation of NK activation genes and related pathways, and human NK cells using well-characterized NK markers closely mirrored canine gene expression patterns. Autologous and allogeneic PBMC-derived NK cells were successfully expanded for use in first-in-dog clinical trials, resulting in no serious adverse events and preliminary efficacy data. RNA sequencing of PBMCs from dogs receiving allogeneic NK transfer showed patient-unique gene signatures with NK gene expression trends in response to treatment. CONCLUSIONS Overall, the use of unmanipulated PBMCs appears safe and potentially effective for canine NK immunotherapy with equivalent to superior results to CD5 depletion in NK expansion, activation, and cytotoxicity. Our preclinical and clinical data support further evaluation of this technique as a novel platform for optimizing NK immunotherapy in dogs.
Collapse
Affiliation(s)
- Aryana M Razmara
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Lauren E Farley
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Rayna M Harris
- Department Population Health and Reproduction, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Sean J Judge
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Marshall Lammers
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Khurshid R Iranpur
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - C Titus Brown
- Department Population Health and Reproduction, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Robert J Canter
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
15
|
Polton G, Borrego JF, Clemente-Vicario F, Clifford CA, Jagielski D, Kessler M, Kobayashi T, Lanore D, Queiroga FL, Rowe AT, Vajdovich P, Bergman PJ. Melanoma of the dog and cat: consensus and guidelines. Front Vet Sci 2024; 11:1359426. [PMID: 38645640 PMCID: PMC11026649 DOI: 10.3389/fvets.2024.1359426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
Melanoma of the dog and cat poses a clinical challenge to veterinary practitioners across the globe. As knowledge evolves, so too do clinical practices. However, there remain uncertainties and controversies. There is value for the veterinary community at large in the generation of a contemporary wide-ranging guideline document. The aim of this project was therefore to assimilate the available published knowledge into a single accessible referenced resource and to provide expert clinical guidance to support professional colleagues as they navigate current melanoma challenges and controversies. Melanocytic tumors are common in dogs but rare in cats. The history and clinical signs relate to the anatomic site of the melanoma. Oral and subungual malignant melanomas are the most common malignant types in dogs. While many melanocytic tumors are heavily pigmented, making diagnosis relatively straightforward, melanin pigmentation is variable. A validated clinical stage scheme has been defined for canine oral melanoma. For all other locations and for feline melanoma, TNM-based staging applies. Certain histological characteristics have been shown to bear prognostic significance and can thus prove instructive in clinical decision making. Surgical resection using wide margins is currently the mainstay of therapy for the local control of melanomas, regardless of primary location. Radiotherapy forms an integral part of the management of canine oral melanomas, both as a primary and an adjuvant therapy. Adjuvant immunotherapy or chemotherapy is offered to patients at high risk of developing distant metastasis. Location is the major prognostic factor, although it is not completely predictive of local invasiveness and metastatic potential. There are no specific guidelines regarding referral considerations for dogs with melanoma, as this is likely based on a multitude of factors. The ultimate goal is to provide the best options for patients to extend quality of life and survival, either within the primary care or referral hospital setting.
Collapse
Affiliation(s)
- Gerry Polton
- North Downs Specialist Referrals, Bletchingley, United Kingdom
| | - Juan F. Borrego
- Hospital Aúna Especialidades Veterinarias IVC Evidensia, Paterna, Spain
| | | | | | - Dariusz Jagielski
- Veterinary Institute, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Martin Kessler
- Department of Clinical Oncology, Tierklinik Hofheim, Hofheim, Germany
| | | | | | | | | | - Péter Vajdovich
- Department of Physiology and Oncology, University of Veterinary Medicine, Budapest, Hungary
| | - Philip J. Bergman
- VCA Clinical Studies, Katonah-Bedford Veterinary Center, Bedford Hills, NY, United States
| |
Collapse
|
16
|
Nosalova N, Huniadi M, Horňáková Ľ, Valenčáková A, Horňák S, Nagoos K, Vozar J, Cizkova D. Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies. Int J Mol Sci 2024; 25:2891. [PMID: 38474142 DOI: 10.3390/ijms25052891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, many studies have focused their attention on the dog as a proper animal model for human cancer. In dogs, mammary tumors develop spontaneously, involving a complex interplay between tumor cells and the immune system and revealing several molecular and clinical similarities to human breast cancer. In this review, we summarized the major features of canine mammary tumor, risk factors, and the most important biomarkers used for diagnosis and treatment. Traditional therapy of mammary tumors in dogs includes surgery, which is the first choice, followed by chemotherapy, radiotherapy, or hormonal therapy. However, these therapeutic strategies may not always be sufficient on their own; advancements in understanding cancer mechanisms and the development of innovative treatments offer hope for improved outcomes for oncologic patients. There is still a growing interest in the use of personalized medicine, which should play an irreplaceable role in the research not only in human cancer therapy, but also in veterinary oncology. Moreover, immunotherapy may represent a novel and promising therapeutic option in canine mammary cancers. The study of novel therapeutic approaches is essential for future research in both human and veterinary oncology.
Collapse
Affiliation(s)
- Natalia Nosalova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Slavomir Horňák
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Kamil Nagoos
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
17
|
Vanhaezebrouck IF, Bakhle KM, Mendez-Valenzuela CR, Lyle LT, Konradt K, Scarpelli ML. Single institution study of the immune landscape for canine oral melanoma based on transcriptome analysis of the primary tumor. Front Vet Sci 2024; 10:1285909. [PMID: 38260202 PMCID: PMC10800815 DOI: 10.3389/fvets.2023.1285909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Understanding a tumor's immune context is paramount in the fight against cancer. Oral melanoma in dogs serves as an excellent translational model for human immunotherapy. However, additional study is necessary to comprehend the immune landscape of dog oral melanomas, including their similarity to human melanomas in this context. Methods This retrospective study utilizes formalin-fixed paraffin-embedded (FFPE) tissue samples to analyze RNA sequences associated with oral melanoma in dogs. Nanostring Technologies was used for conducting RNA sequencing. The focus is on understanding the differences between melanoma tumors restricted to the oral cavity (OL) and the same primary oral tumors with a history of metastasis to the lymph nodes or other organs (OM). Normal buccal mucosa samples are also included as a normal tissue reference. Results In the OM patient group, gene signatures exhibit significant changes relative to the OL patient group, including significantly decreased expression of S100, BRAF, CEACAM1, BCL2, ANXA1, and tumor suppressor genes (TP63). Relative to the OL tumors, the OM tumors had significantly increased expression of hypoxia-related genes (VEGFA expression), cell mobility genes (MCAM), and PTGS2 (COX2). The analysis of the immune landscape in the OM group indicates a shift from a possible "hot" tumor suppressed by immune checkpoints (PDL1) to significantly heightened expression not only of those checkpoints but also the inclusion of other immune blockades such as PD1 and IDO2. In addition, the OM group had significantly reduced expression of Toll-like receptors (TLR4) and IL-18 relative to the OL group, contributing to the tumor's immune escape. Additionally, signs of immune cell exhaustion are evident in both the OM and OL groups through significantly increased expression of TIGIT relative to normal tissue. Both the OM and OL groups had significantly increased expression of the immune cell marker CD4 expression relative to normal tissue. Further, CD4 expression significantly decreased in OM relative to OL; however, this study cannot determine the specific cell types expressing CD4 in OM and OL tumors. Discussion This preliminary study reports significant changes in gene expression for oral melanoma between canine patients with localized disease relative to those with metastatic disease. In the future, a more in-depth investigation involving immunohistochemistry analysis and single-cell RNA expression is necessary to confirm our findings.
Collapse
Affiliation(s)
- Isabelle F. Vanhaezebrouck
- Radiation Oncology, Small Animal Medicine, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - Kimaya M. Bakhle
- College of Veterinary Medicine, Cornell University, New York, NY, United States
| | - Carlos R. Mendez-Valenzuela
- Radiation Oncology, Small Animal Medicine, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - L. Tiffany Lyle
- Pathology Cook Research Inc., West Lafayette, IN, United States
| | - Kristoph Konradt
- Comparative Pathology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
18
|
Shinada M, Kato D, Motegi T, Tsuboi M, Ikeda N, Aoki S, Iguchi T, Li T, Kodera Y, Ota R, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kato Y, Nishimura R, Nakagawa T. Podoplanin Drives Amoeboid Invasion in Canine and Human Mucosal Melanoma. Mol Cancer Res 2023; 21:1205-1219. [PMID: 37493578 DOI: 10.1158/1541-7786.mcr-22-0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Mucosal melanoma metastasizes at an early stage of the disease in human and dog. We revealed that overexpression of podoplanin in tumor invasion fronts (IF) was related to poor prognosis of dogs with mucosal melanoma. Moreover, podoplanin expressed in canine mucosal melanoma cells promotes proliferation and aggressive amoeboid invasion by activating Rho-associated kinase (ROCK)-myosin light chain 2 (MLC2) signaling. PDPN-ROCK-MLC2 signaling plays a role in cell-cycle arrest and cellular senescence escape as a mechanism for regulating proliferation. Podoplanin induces amoeboid invasion in the IFs of mouse xenografted tumor tissues, similar to canine mucosal melanoma clinical samples. We further identified that podoplanin expression was related to poor prognosis of human patients with mucosal melanoma, and human mucosal melanoma with podoplanin-high expression enriched gene signatures related to amoeboid invasion, similar to canine mucosal melanoma. Overall, we propose that podoplanin promotes canine and human mucosal melanoma metastasis by inducing aggressive amoeboid invasion and naturally occurring canine mucosal melanoma can be a novel research model for podoplanin expressing human mucosal melanoma. IMPLICATIONS Podoplanin could be a new therapeutic target to restrict the metastatic dissemination of canine and human mucosal melanoma.
Collapse
Affiliation(s)
- Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoki Motegi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Susumu Aoki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaaki Iguchi
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Li
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Kodera
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Ota
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Yosuke Takahashi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Hambly JN, Ruby CE, Mourich DV, Bracha S, Dolan BP. Potential Promises and Perils of Human Biological Treatments for Immunotherapy in Veterinary Oncology. Vet Sci 2023; 10:336. [PMID: 37235419 PMCID: PMC10224056 DOI: 10.3390/vetsci10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of immunotherapy for the treatment of human cancers has heralded a new era in oncology, one that is making its way into the veterinary clinic. As the immune system of many animal species commonly seen by veterinarians is similar to humans, there is great hope for the translation of human therapies into veterinary oncology. The simplest approach for veterinarians would be to adopt existing reagents that have been developed for human medicine, due to the potential of reduced cost and the time it takes to develop a new drug. However, this strategy may not always prove to be effective and safe with regard to certain drug platforms. Here, we review current therapeutic strategies that could exploit human reagents in veterinary medicine and also those therapies which may prove detrimental when human-specific biological molecules are used in veterinary oncology. In keeping with a One Health framework, we also discuss the potential use of single-domain antibodies (sdAbs) derived from camelid species (also known as Nanobodies™) for therapies targeting multiple veterinary animal patients without the need for species-specific reformulation. Such reagents would not only benefit the health of our veterinary species but could also guide human medicine by studying the effects of outbred animals that develop spontaneous tumors, a more relevant model of human diseases compared to traditional laboratory rodent models.
Collapse
Affiliation(s)
- Jeilene N. Hambly
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carl E. Ruby
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Dan V. Mourich
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Biotesserae Inc., Corvallis, OR 97331, USA
| | - Shay Bracha
- Biotesserae Inc., Corvallis, OR 97331, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
Pinto C, Aluai-Cunha C, Santos A. The human and animals' malignant melanoma: comparative tumor models and the role of microbiome in dogs and humans. Melanoma Res 2023; 33:87-103. [PMID: 36662668 DOI: 10.1097/cmr.0000000000000880] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, the most progressively occurring incident cancer is melanoma. The mouse is the most popular model in human melanoma research given its various benefits as a laboratory animal. Nevertheless, unlike humans, mice do not develop melanoma spontaneously, so they need to be genetically manipulated. In opposition, there are several reports of other animals, ranging from wild to domesticated animals, that spontaneously develop melanoma and that have cancer pathways that are similar to those of humans. The influence of the gut microbiome on health and disease is being the aim of many recent studies. It has been proven that the microbiome is a determinant of the host's immune status and disease prevention. In human medicine, there is increasing evidence that changes in the microbiome influences malignant melanoma progression and response to therapy. There are several similarities between some animals and human melanoma, especially between canine and human oral malignant melanoma as well as between the gut microbiome of both species. However, microbiome studies are scarce in veterinary medicine, especially in the oncology field. Future studies need to address the relevance of gut and tissue microbiome for canine malignant melanoma development, which results will certainly benefit both species in the context of translational medicine.
Collapse
Affiliation(s)
- Catarina Pinto
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Andreia Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
- Animal Science and Study Centre (CECA), Food and Agragrian Sciences and Technologies Institute (ICETA), Apartado, Porto, Portugal
| |
Collapse
|
21
|
Oh JH, Cho JY. Comparative oncology: overcoming human cancer through companion animal studies. Exp Mol Med 2023; 55:725-734. [PMID: 37009802 PMCID: PMC10167357 DOI: 10.1038/s12276-023-00977-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/04/2023] Open
Abstract
Comparative oncology is a field of study that has been recently adopted for studying cancer and developing cancer therapies. Companion animals such as dogs can be used to evaluate novel biomarkers or anticancer targets before clinical translation. Thus, the value of canine models is increasing, and numerous studies have been conducted to analyze similarities and differences between many types of spontaneously occurring cancers in canines and humans. A growing number of canine cancer models as well as research-grade reagents for these models are becoming available, leading to substantial growth in comparative oncology research spanning from basic science to clinical trials. In this review, we summarize comparative oncology studies that have been conducted on the molecular landscape of various canine cancers and highlight the importance of the integration of comparative biology into cancer research.
Collapse
Affiliation(s)
- Ji Hoon Oh
- Department of Biochemistry, Brain Korea 21 Project and Research Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, Brain Korea 21 Project and Research Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Koo K, Wuenschmann A, Rendahl A, Song KY, Forster C, Wolf-Ringwall A, Borgatti A, Giubellino A. Expression and Prognostic Evaluation of the Receptor Tyrosine Kinase MET in Canine Malignant Melanoma. Vet Sci 2023; 10:vetsci10040249. [PMID: 37104404 PMCID: PMC10144085 DOI: 10.3390/vetsci10040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The overexpression and activation of the MET receptor tyrosine kinase has been identified in many human malignancies, but its role in canine cancer has only been minimally investigated. In this study we evaluated the expression of MET in two canine malignant melanoma (CMM) cell lines as well as in 30 CMM tissue samples that were collected from the clinical service at our institution. We were able to confirm the expression of the MET protein in both melanoma cell lines, and we demonstrated MET activation by its ligand, HGF, through phosphorylation, in Western blot analysis. We were also able to demonstrate, by immunohistochemistry, the expression of MET in 63% of the tumor tissue samples analyzed, with the majority demonstrating a relatively low expression profile. We then evaluated the association of MET expression scores with histologic parameters, metastasis, and survival. While statistically significant associations were not found across these parameters, an inverse relationship between MET expression levels and time to lymph node versus distant metastasis was suggested in our cohort. These findings may require assessment in a larger group of specimens to further evaluate the role of MET expression in the homing of metastasis in lymph nodes versus that in distant organs.
Collapse
|
23
|
Porcellato I, Orlandi M, Lo Giudice A, Sforna M, Mechelli L, Brachelente C. Canine melanocytes: Immunohistochemical expression of melanocytic markers in different somatic areas. Vet Dermatol 2023. [PMID: 36808650 DOI: 10.1111/vde.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Melanoblasts originate in the neural crest from where they migrate to peripheral tissues and differentiate into melanocytes. Alteration during melanocyte development and life can cause different diseases, ranging from pigmentary disorders and decreased visual and auditory functions, to tumours such as melanoma. Location and phenotypical features of melanocytes have been characterised in different species, yet data on dogs are lacking. OBJECTIVE This study investigates the expression of melanocytic markers Melan A, PNL2, TRP1, TRP2, SOX-10 and MITF in melanocytes of selected cutaneous and mucosal surfaces of dogs. ANIMALS At necropsy, samples from five dogs were harvested from oral mucosa, mucocutaneous junction, eyelid, nose and haired skin (abdomen, back, pinna, head). MATERIALS AND METHODS Immunohistochemical and immunofluorescence analyses were performed to assess marker expression. RESULTS Results showed variable expression of melanocytic markers in different anatomical sites, particularly within epidermis of haired skin and dermal melanocytes. Melan A and SOX-10 were the most specific and sensitive melanocytic markers. PNL2 was less sensitive, while TRP1 and TRP2 were seldomly expressed by intraepidermal melanocytes in haired skin. MITF had a good sensitivity, yet the expression often was weak. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate a variable expression of melanocytic markers in different sites, suggesting the presence of subpopulations of melanocytes. These preliminary results pave the way to understanding the pathogenetic mechanisms involved in degenerative melanocytic disorders and melanoma. Furthermore, the possible different expression of melanocyte markers in different anatomical sites could influence their sensitivity and specificity when used for diagnostic purposes.
Collapse
Affiliation(s)
- Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Margherita Orlandi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Adriana Lo Giudice
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Luca Mechelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States,Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States,*Correspondence: William R. Huckle ✉
| |
Collapse
|
25
|
Interleukin-1β triggers matrix metalloprotease-3 expression through p65/RelA activation in melanoma cells. PLoS One 2022; 17:e0278220. [PMID: 36445856 PMCID: PMC9707762 DOI: 10.1371/journal.pone.0278220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Melanoma shows highly aggressive behavior (i.e., local invasion and metastasis). Matrix metalloprotease-3 (MMP-3), a zinc-dependent endopeptidase, degrades several extracellular substrates and contributes to local invasion by creating a microenvironment suitable for tumor development. Here, we report that interleukin-1β (IL-1β) triggers the MMP-3 expression in canine melanoma cells. The activity of MMP-3 in the culture supernatant was increased in IL-1β-treated melanoma cells. IL-1β time- and dose-dependently provoked the mRNA expression of MMP-3. IL-1β induced the migration of melanoma cells; however, this migration was attenuated by UK356618, an MMP-3 inhibitor. When the cells were treated with the nuclear factor-κB (NF-κB) inhibitor TPCA-1, the inhibition of MMP-3 expression was observed. In IL-1β-treated cells, the phosphorylation both of p65/RelA and p105 was detected, indicating NF-κB pathway activation. In p65/RelA-depleted melanoma cells, IL-1β-mediated mRNA expression of MMP-3 was inhibited, whereas this reduction was not observed in p105-depleted cells. These findings suggest that MMP-3 expression in melanoma cells is regulated through IL-1β-mediated p65/RelA activation, which is involved in melanoma cell migration.
Collapse
|
26
|
Lin CT, Lin CF, Wu JT, Tsai HP, Cheng SY, Liao HJ, Lin TC, Wu CH, Lin YC, Wang JH, Chang GR. Effects of Para-Toluenesulfonamide on Canine Melanoma Xenotransplants in a BALB/c Nude Mouse Model. Animals (Basel) 2022; 12:2272. [PMID: 36077992 PMCID: PMC9454485 DOI: 10.3390/ani12172272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The pharmacological pathway of para-toluenesulfonamide (PTS) restricts the kinase activity of the mammalian target of rapamycin, potentially leading to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical effect on tumorigenesis. We aimed to examine the antitumor effect of PTS or PTS combined with cisplatin on canine melanoma implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. The mice were randomly divided into four groups: control, cisplatin, PTS, and PTS combined with cisplatin. Mice treated with PTS or PTS combined with cisplatin had retarded tumor growth and increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase phosphorylation, decreased inflammatory cytokine levels, reduced inflammation-related factors, enhanced anti-inflammation-related factors, and inhibition of metastasis-related factors. Mice treated with PTS combined with cisplatin exhibited significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with those treated with cisplatin or PTS alone. PTS or PTS combined with cisplatin could retard canine melanoma growth and inhibit tumorigenesis. PTS and cisplatin were found to have an obvious synergistic tumor-inhibiting effect on canine melanoma. PTS alone and PTS combined with cisplatin may be antitumor agents for canine melanoma treatment.
Collapse
Affiliation(s)
- Chien-Teng Lin
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan
| | - Jui-Te Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Hsiao-Pei Tsai
- Ph.D. Program of Agriculture Science, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Shu-Ying Cheng
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Chao-Hsuan Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Yu-Chin Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
- Department of Pet Medicine, Gongwin Biopharma Co., Ltd., 1 Section, 80 Jianguo North Road, Zhongshan District, Taipei 104001, Taiwan
| | - Jiann-Hsiung Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan
| |
Collapse
|
27
|
Allende JB, Finocchiaro LME, Glikin GC. Therapeutic potential of the cytosine deaminase::uracil phosphoribosyl transferase/5-fluorocytosine suicide system for canine melanoma. Vet Comp Oncol 2022; 20:372-380. [PMID: 34724324 DOI: 10.1111/vco.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
We tested the efficacy of a yeast cytosine deaminase::uracil phosphoribosyl transferase/5-fluorocytosine (CDU/5-FC) non-viral suicide system on eight established canine melanoma cell lines. Albeit with different degree of sensitivity 5 days after lipofection, this system was significantly efficient killing melanoma cells, being four cell lines highly, two fairly and two not very sensitive to CDU/5-FC (their respective IC50 ranging from 0.20 to 800 μM 5-FC). Considering the relatively low lipofection efficiencies, a very strong bystander effect was verified in the eight cell lines: depending on the cell line, this effect accounted for most of the induced cell death (from 70% to 95%). In our assay conditions, we did not find useful interactions either with the herpes simplex thymidine kinase/ganciclovir suicide system (in sequential or simultaneous modality) or with cisplatin and bleomycin chemotherapeutic drugs. Furthermore, only two cell lines displayed limited useful interactions of the CDU/5-FC either with interferon-β gene transfer or the proteasome inhibitor bortezomib respectively. These results would preclude a wide use of these combinations. However, the fact that all the tested cells were significantly sensitive to the CDU/5-FC system encourages further research as a gene therapy tool for local control of canine melanoma.
Collapse
Affiliation(s)
- Jesica B Allende
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Rebhun RB, York D, Cruz SM, Judge SJ, Razmara AM, Farley LE, Brady RV, Johnson EG, Burton JH, Willcox J, Wittenburg LA, Woolard K, Dunai C, Stewart SL, Sparger EE, Withers SS, Gingrich AA, Skorupski KA, Al-Nadaf S, LeJeune AT, Culp WT, Murphy WJ, Kent MS, Canter RJ. Inhaled recombinant human IL-15 in dogs with naturally occurring pulmonary metastases from osteosarcoma or melanoma: a phase 1 study of clinical activity and correlates of response. J Immunother Cancer 2022; 10:e004493. [PMID: 35680383 PMCID: PMC9174838 DOI: 10.1136/jitc-2022-004493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Although recombinant human interleukin-15 (rhIL-15) has generated much excitement as an immunotherapeutic agent for cancer, activity in human clinical trials has been modest to date, in part due to the risks of toxicity with significant dose escalation. Since pulmonary metastases are a major site of distant failure in human and dog cancers, we sought to investigate inhaled rhIL-15 in dogs with naturally occurring lung metastases from osteosarcoma (OSA) or melanoma. We hypothesized a favorable benefit/risk profile given the concentrated delivery to the lungs with decreased systemic exposure. EXPERIMENTAL DESIGN We performed a phase I trial of inhaled rhIL-15 in dogs with gross pulmonary metastases using a traditional 3+3 cohort design. A starting dose of 10 µg twice daily × 14 days was used based on human, non-human primate, and murine studies. Safety, dose-limiting toxicities (DLT), and maximum tolerated dose (MTD) were the primary objectives, while response rates, progression-free and overall survival (OS), and pharmacokinetic and immune correlative analyses were secondary. RESULTS From October 2018 to December 2020, we enrolled 21 dogs with 18 dogs reaching the 28-day response assessment to be evaluable. At dose level 5 (70 μg), we observed two DLTs, thereby establishing 50 µg twice daily × 14 days as the MTD and recommended phase 2 dose. Among 18 evaluable dogs, we observed one complete response >1 year, one partial response with resolution of multiple target lesions, and five stable disease for an overall clinical benefit rate of 39%. Plasma rhIL-15 quantitation revealed detectable and sustained rhIL-15 concentrations between 1-hour and 6 hour postnebulization. Decreased pretreatment lymphocyte counts were significantly associated with clinical benefit. Cytotoxicity assays of banked peripheral blood mononuclear cells revealed significant increases in peak cytotoxicity against canine melanoma and OSA targets that correlated with OS. CONCLUSIONS In this first-in-dog clinical trial of inhaled rhIL-15 in dogs with advanced metastatic disease, we observed promising clinical activity when administered as a monotherapy for only 14 days. These data have significant clinical and biological implications for both dogs and humans with refractory lung metastases and support exploration of combinatorial therapies using inhaled rhIL-15.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sylvia Margret Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Sean J Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aryana M Razmara
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Lauren E Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Rachel V Brady
- College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Jenna H Burton
- Department of Clinical Sciences, Colorado State University College of Veterinary Medicine, Fort Collins, Colorado, USA
| | - Jennifer Willcox
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Kevin Woolard
- Department of Pathology, University of California, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, California, USA
| | - Susan L Stewart
- Department of Public Health Sciences, University of California, Davis, California, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Alicia A Gingrich
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Katherine A Skorupski
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Amandine T LeJeune
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William Tn Culp
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, California, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, California, USA
| |
Collapse
|
29
|
Cervical lymph node staging in head and neck tumors: bridging the gap between humans and companion animals. Eur J Nucl Med Mol Imaging 2022; 49:3306-3308. [PMID: 35511279 DOI: 10.1007/s00259-022-05829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Riccardo F, Tarone L, Camerino M, Giacobino D, Iussich S, Barutello G, Arigoni M, Conti L, Bolli E, Quaglino E, Merighi IF, Morello E, Dentini A, Ferrone S, Buracco P, Cavallo F. Antigen mimicry as an effective strategy to induce CSPG4-targeted immunity in dogs with oral melanoma: a veterinary trial. J Immunother Cancer 2022; 10:e004007. [PMID: 35580930 PMCID: PMC9114861 DOI: 10.1136/jitc-2021-004007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Melanoma is the most lethal form of skin cancer in humans. Conventional therapies have limited efficacy, and overall response is still unsatisfactory considering that immune checkpoint inhibitors induce lasting clinical responses only in a low percentage of patients. This has prompted us to develop a vaccination strategy employing the tumor antigen chondroitin sulfate proteoglycan (CSPG)4 as a target. METHODS To overcome the host's unresponsiveness to the self-antigen CSPG4, we have taken advantage of the conservation of CSPG4 sequence through phylogenetic evolution, so we have used a vaccine, based on a chimeric DNA molecule encompassing both human (Hu) and dog (Do) portions of CSPG4 (HuDo-CSPG4). We have tested its safety and immunogenicity (primary objectives), along with its therapeutic efficacy (secondary outcome), in a prospective, non-randomized, veterinary clinical trial enrolling 80 client-owned dogs with surgically resected, CSPG4-positive, stage II-IV oral melanoma. RESULTS Vaccinated dogs developed anti-Do-CSPG4 and Hu-CSPG4 immune response. Interestingly, the antibody titer in vaccinated dogs was significantly associated with the overall survival. Our data suggest that there may be a contribution of the HuDo-CSPG4 vaccination to the improvement of survival of vaccinated dogs as compared with controls treated with conventional therapies alone. CONCLUSIONS HuDo-CSPG4 adjuvant vaccination was safe and immunogenic in dogs with oral melanoma, with potential beneficial effects on the course of the disease. Thanks to the power of naturally occurring canine tumors as predictive models for cancer immunotherapy response, these data may represent a basis for the translation of this approach to the treatment of human patients with CSPG4-positive melanoma subtypes.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
31
|
Tarone L, Giacobino D, Camerino M, Ferrone S, Buracco P, Cavallo F, Riccardo F. Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Front Vet Sci 2022; 9:803093. [PMID: 35224082 PMCID: PMC8873926 DOI: 10.3389/fvets.2022.803093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
In veterinary oncology, canine melanoma is still a fatal disease for which innovative and long-lasting curative treatments are urgently required. Considering the similarities between canine and human melanoma and the clinical revolution that immunotherapy has instigated in the treatment of human melanoma patients, special attention must be paid to advancements in tumor immunology research in the veterinary field. Herein, we aim to discuss the most relevant knowledge on the immune landscape of canine melanoma and the most promising immunotherapeutic approaches under investigation. Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the encouraging clinical results that we have obtained with DNA vaccines directed against chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated antigen with a key oncogenic role in both canine and human melanoma. In parallel with advances in therapeutic options, progress in the identification of easily accessible biomarkers to improve the diagnosis and the prognosis of melanoma should be sought, with circulating small extracellular vesicles emerging as strategically relevant players. Translational advances in melanoma management, whether achieved in the human or veterinary fields, may drive improvements with mutual clinical benefits for both human and canine patients; this is where the strength of comparative oncology lies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Conrad D, Kehl A, Beitzinger C, Metzler T, Steiger K, Pfarr N, Fischer K, Klopfleisch R, Aupperle-Lellbach H. Molecular Genetic Investigation of Digital Melanoma in Dogs. Vet Sci 2022; 9:vetsci9020056. [PMID: 35202309 PMCID: PMC8874500 DOI: 10.3390/vetsci9020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Canine digital melanoma, in contrast to canine oral melanoma, is still largely unexplored at the molecular genetic level. The aim of this study was to detect mutant genes in digital melanoma. Paraffin-embedded samples from 86 canine digital melanomas were examined for the BRAF V595E variant by digital droplet PCR (ddPCR), and for exon 11 mutations in c-kit. Furthermore, exons 2 and 3 of KRAS and NRAS were analysed by Sanger sequencing. Copy number variations (CNV) of KITLG in genomic DNA were analysed from nine dogs. The BRAF V595E variant was absent and in c-kit, a single nucleotide polymorphism was found in 16/70 tumours (23%). The number of copies of KITLG varied between 4 and 6. KRAS exon 2 codons 12 and 13 were mutated in 22/86 (25.6%) of the melanomas examined. Other mutually exclusive RAS mutations were found within the hotspot loci, i.e., KRAS exon 3 codon 61: 2/55 (3.6%); NRAS exon 2 codons 12 and 13: 2/83 (2.4%); and NRAS exon 3 codon 61: 9/86 (10.5%). However, no correlation could be established between histological malignancy criteria, survival times and the presence of RAS mutations. In summary, canine digital melanoma differs from molecular genetic data of canine oral melanoma and human melanoma, especially regarding the proportion of RAS mutations.
Collapse
Affiliation(s)
- David Conrad
- Department of Pathology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany;
- Correspondence:
| | - Alexandra Kehl
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.K.); (C.B.)
| | - Christoph Beitzinger
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.K.); (C.B.)
| | - Thomas Metzler
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Konrad Fischer
- School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany;
| | - Robert Klopfleisch
- Department of Pathology, Freie Universität Berlin, 14163 Berlin, Germany;
| | | |
Collapse
|
33
|
Prouteau A, Mottier S, Primot A, Cadieu E, Bachelot L, Botherel N, Cabillic F, Houel A, Cornevin L, Kergal C, Corre S, Abadie J, Hitte C, Gilot D, Lindblad-Toh K, André C, Derrien T, Hedan B. Canine Oral Melanoma Genomic and Transcriptomic Study Defines Two Molecular Subgroups with Different Therapeutical Targets. Cancers (Basel) 2022; 14:cancers14020276. [PMID: 35053440 PMCID: PMC8774001 DOI: 10.3390/cancers14020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In humans, mucosal melanoma (MM) is a rare and aggressive cancer. The canine model is frequently and spontaneously affected by MM, thus facilitating the collection of samples and the study of its genetic bases. Thanks to an integrative genomic and transcriptomic analysis of 32 canine MM samples, we identified two molecular subgroups of MM with a different microenvironment and structural variant (SV) content. We demonstrated that SVs are associated with recurrently amplified regions, and identified new candidate oncogenes (TRPM7, GABPB1, and SPPL2A) for MM. Our findings suggest the existence of two MM molecular subgroups that could benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine. Abstract Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.
Collapse
Affiliation(s)
- Anais Prouteau
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Stephanie Mottier
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Aline Primot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Edouard Cadieu
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laura Bachelot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Nadine Botherel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Florian Cabillic
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Armel Houel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laurence Cornevin
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Camille Kergal
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Sébastien Corre
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Jérôme Abadie
- Laboniris, Department of Biology, Pathology and Food Sciences, Oniris, 44300 Nantes, France;
| | - Christophe Hitte
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - David Gilot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Catherine André
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Thomas Derrien
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| | - Benoit Hedan
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| |
Collapse
|
34
|
Hendricks-Wenger A, Arnold L, Gannon J, Simon A, Singh N, Sheppard H, Nagai-Singer MA, Imran KM, Lee K, Clark-Deener S, Byron C, Edwards MR, Larson MM, Rossmeisl JH, Coutermarsh-Ott SL, Eden K, Dervisis N, Klahn S, Tuohy J, Allen IC, Vlaisavljevich E. Histotripsy Ablation in Preclinical Animal Models of Cancer and Spontaneous Tumors in Veterinary Patients: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:5-26. [PMID: 34478363 PMCID: PMC9284566 DOI: 10.1109/tuffc.2021.3110083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New therapeutic strategies are direly needed in the fight against cancer. Over the last decade, several tumor ablation strategies have emerged as stand-alone or combination therapies. Histotripsy is the first completely noninvasive, nonthermal, and nonionizing tumor ablation method. Histotripsy can produce consistent and rapid ablations, even near critical structures. Additional benefits include real-time image guidance, high precision, and the ability to treat tumors of any predetermined size and shape. Unfortunately, the lack of clinically and physiologically relevant preclinical cancer models is often a significant limitation with all focal tumor ablation strategies. The majority of studies testing histotripsy for cancer treatment have focused on small animal models, which have been critical in moving this field forward and will continue to be essential for providing mechanistic insight. While these small animal models have notable translational value, there are significant limitations in terms of scale and anatomical relevance. To address these limitations, a diverse range of large animal models and spontaneous tumor studies in veterinary patients have emerged to complement existing rodent models. These models and veterinary patients are excellent at providing realistic avenues for developing and testing histotripsy devices and techniques designed for future use in human patients. Here, we provide a review of animal models used in preclinical histotripsy studies and compare histotripsy ablation in these models using a series of original case reports across a broad spectrum of preclinical animal models and spontaneous tumors in veterinary patients.
Collapse
|
35
|
Sparger EE, Chang H, Chin N, Rebhun RB, Withers SS, Kieu H, Canter RJ, Monjazeb AM, Kent MS. T Cell Immune Profiles of Blood and Tumor in Dogs Diagnosed With Malignant Melanoma. Front Vet Sci 2021; 8:772932. [PMID: 34926643 PMCID: PMC8674490 DOI: 10.3389/fvets.2021.772932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Investigation of canine T cell immunophenotypes in canine melanomas as prognostic biomarkers for disease progression or predictive biomarkers for targeted immunotherapeutics remains in preliminary stages. We aimed to examine T cell phenotypes and function in peripheral blood mononuclear cells (PBMC) and baseline tumor samples by flow cytometry, and to compare patient (n = 11–20) T cell phenotypes with healthy controls dogs (n = 10–20). CD3, CD4, CD8, CD25, FoxP3, Ki67, granzyme B, and interferon-γ (IFN-γ) were used to classify T cell subsets in resting and mitogen stimulated PBMCs. In a separate patient cohort (n = 11), T cells were classified using CD3, CD4, CD8, FoxP3, and granzyme B in paired PBMC and single cell suspensions of tumor samples. Analysis of flow cytometric data of individual T cell phenotypes in PBMC revealed specific T cell phenotypes including FoxP3+ and CD25+FoxP3- populations that distinguished patients from healthy controls. Frequencies of IFN-γ+ cells after ConA stimulation identified two different patient phenotypic responses, including a normal/exaggerated IFN-γ response and a lower response suggesting dysfunction. Principle component analysis of selected T cell immunophenotypes also distinguished patients and controls for T cell phenotype and revealed a clustering of patients based on metastasis detected at diagnosis. Findings supported the overall hypothesis that canine melanoma patients display a T cell immunophenotype profile that is unique from healthy pet dogs and will guide future studies designed with larger patient cohorts necessary to further characterize prognostic T cell immunophenotypes.
Collapse
Affiliation(s)
- Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ning Chin
- California National Primate Research Center, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Hung Kieu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J Canter
- Surgical Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Arta M Monjazeb
- Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
36
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
37
|
Scattone NV, Epiphanio TMF, Caddrobi KG, Ferrão JSP, Hernandez-Blazquez FJ, Loureiro APDM, Massoco CDO, Dagli MLZ. Quantification of Global DNA Methylation in Canine Melanotic and Amelanotic Oral Mucosal Melanomas and Peripheral Blood Leukocytes From the Same Patients With OMM: First Study. Front Vet Sci 2021; 8:680181. [PMID: 34504885 PMCID: PMC8421724 DOI: 10.3389/fvets.2021.680181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023] Open
Abstract
Oral mucosal melanomas (OMMs) are aggressive and resistant cancers of high importance in veterinary oncology. Amelanotic OMM produces comparatively less melanin and is considered to be more aggressive than melanotic OMM. Global DNA methylation profiles with hypomethylated or hypermethylated patterns have both been associated with aggressive neoplasms; however, global DNA hypomethylation seems to correlate to higher aggressiveness. Accordingly, global DNA methylation in peripheral blood leukocytes has been investigated to understand the role of systemic or environmental factors in cancer development. This study aimed to quantify global DNA methylation in canine melanotic and amelanotic OMM samples and in the peripheral blood leukocytes of the same dogs. Tumor tissue samples were collected from 38 dogs, of which 19 were melanotic and 19 were amelanotic OMM. These were submitted to immunohistochemistry (IHC) with anti-5-methylcytosine (5mC) and anti-Ki67 primary antibodies. Ki67- and 5mC-positive nuclei were manually scored with the help of an image analysis system. Peripheral blood samples were collected from 18 among the 38 OMM-bearing dogs and from 7 additional healthy control dogs. Peripheral blood leukocytes were isolated from the 25 dogs, and DNA was extracted and analyzed by high-performance liquid chromatography (HPLC) for global DNA methylation. The pattern of global DNA methylation in both canine melanotic and amelanotic OMM indicated higher percentages of weakly or negatively stained nuclei in most of the OMM cells, presuming predominant global DNA hypomethylation. In addition, Ki67 counts in amelanotic OMM were significantly higher than those in melanotic OMM (p < 0.001). Global DNA methylation different immunostaining patterns (strong, weak or negative) correlated with Ki67 scores. Global DNA methylation in circulating leukocytes did not differ between the 9 melanotic and 9 amelanotic OMM or between the 18 OMM-bearing dogs and the 7 healthy dogs. This study provides new information on canine melanotic and amelanotic OMM based on global DNA methylation and cell proliferation.
Collapse
Affiliation(s)
- Nayra Villar Scattone
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tatiane Moreno Ferrarias Epiphanio
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Paula de Melo Loureiro
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Laboratory of Pharmacology and Toxicology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Magee K, Marsh IR, Turek MM, Grudzinski J, Aluicio-Sarduy E, Engle JW, Kurzman ID, Zuleger CL, Oseid EA, Jaskowiak C, Albertini MR, Esbona K, Bednarz B, Sondel PM, Weichert JP, Morris ZS, Hernandez R, Vail DM. Safety and feasibility of an in situ vaccination and immunomodulatory targeted radionuclide combination immuno-radiotherapy approach in a comparative (companion dog) setting. PLoS One 2021; 16:e0255798. [PMID: 34383787 PMCID: PMC8360580 DOI: 10.1371/journal.pone.0255798] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale Murine syngeneic tumor models have revealed efficacious systemic antitumor responses following primary tumor in situ vaccination combined with targeted radionuclide therapy to secondary or metastatic tumors. Here we present studies on the safety and feasibility of this approach in a relevant translational companion dog model (n = 17 dogs) with advanced cancer. Methods The three component of the combination immuno-radiotherapy approach were employed either separately or in combination in companion dogs with advanced stage cancer. In situ vaccination was achieved through the administration of hypofractionated external beam radiotherapy and intratumoral hu14.18-IL2 fusion immunocytokine injections to the index tumor. In situ vaccination was subsequently combined with targeted radionuclide therapy using a theranostic pairing of IV 86Y-NM600 (for PET imaging and subject-specific dosimetry) and IV 90Y-NM600 (therapeutic radionuclide) prescribed to deliver an immunomodulatory 2 Gy dose to all metastatic sites in companion dogs with metastatic melanoma or osteosarcoma. In a subset of dogs, immunologic parameters preliminarily assessed. Results The components of the immuno-radiotherapy combination were well tolerated either alone or in combination, resulting in only transient low grade (1 or 2) adverse events with no dose-limiting events observed. In subject-specific dosimetry analyses, we observed 86Y-NM600 tumor:bone marrow absorbed-dose differential uptakes ≥2 in 4 of 5 dogs receiving the combination, which allowed subsequent safe delivery of at least 2 Gy 90Y-NM600 TRT to tumors. NanoString gene expression profiling and immunohistochemistry from pre- and post-treatment biopsy specimens provide evidence of tumor microenvironment immunomodulation by 90Y-NM600 TRT. Conclusions The combination of external beam radiotherapy, intratumoral immunocytokine, and targeted radionuclide immuno-radiotherapy known to have activity against syngeneic melanoma in murine models is feasible and well tolerated in companion dogs with advanced stage, spontaneously arising melanoma or osteosarcoma and has immunomodulatory potential. Further studies evaluating the dose-dependent immunomodulatory effects of this immuno-radiotherapy combination are currently ongoing.
Collapse
Affiliation(s)
- Kara Magee
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ian R. Marsh
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michelle M. Turek
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joseph Grudzinski
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jonathan W. Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ilene D. Kurzman
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cindy L. Zuleger
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elizabeth A. Oseid
- Office of Environment, Health and Safety, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christine Jaskowiak
- Department of Radiology, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mark R. Albertini
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- The Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bryan Bednarz
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Radiology, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul M. Sondel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Human Oncology, School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jamey P. Weichert
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Radiology, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zachary S. Morris
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Radiology, School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (RH); . (DMV)
| | - David M. Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (RH); . (DMV)
| |
Collapse
|
39
|
Saellstrom S, Sadeghi A, Eriksson E, Segall T, Dimopoulou M, Korsgren O, Loskog AS, Tötterman TH, Hemminki A, Ronnberg H. Adenoviral CD40 Ligand Immunotherapy in 32 Canine Malignant Melanomas-Long-Term Follow Up. Front Vet Sci 2021; 8:695222. [PMID: 34368282 PMCID: PMC8342889 DOI: 10.3389/fvets.2021.695222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023] Open
Abstract
Malignant melanoma is a serious disease in both humans and dogs, and the high metastatic potential results in poor prognosis for many patients. Its similarities with human melanoma make spontaneous canine melanoma an excellent model for comparative studies of novel therapies and tumor biology. Gene therapy using adenoviruses encoding the immunostimulatory gene CD40L (AdCD40L) has shown promise in initial clinical trials enrolling human patients with various malignancies including melanoma. We report a study of local AdCD40L treatment in 32 cases of canine melanoma (23 oral, 5 cutaneous, 3 ungual and 1 conjunctival). Eight patients were World Health Organization (WHO) stage I, 9 were stage II, 12 stage III, and 3 stage IV. One to six intratumoral injections of AdCD40L were given every seven days, combined with cytoreductive surgery in 20 cases and only immunotherapy in 12 cases. Tumor tissue was infiltrated with T and B lymphocytes after treatment, suggesting immune stimulation. The best overall response based on result of immunotherapy included 7 complete responses, 5 partial responses, 5 stable and 2 progressive disease statuses according to the World Health Organization response criteria. Median survival was 285 days (range 20–3435 d). Our results suggest that local AdCD40L therapy is safe and could have beneficial effects in dogs, supporting further treatment development. Clinical translation to human patients is ongoing.
Collapse
Affiliation(s)
- Sara Saellstrom
- University Animal Hospital, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Arian Sadeghi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emma Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thomas Segall
- National Veterinary Institute, Department of Pathology and Wildlife Diseases, Uppsala, Sweden
| | - Maria Dimopoulou
- University Animal Hospital, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angelica Si Loskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Thomas H Tötterman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Henrik Ronnberg
- Center of Clinical Comparative Oncology (C3O), Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
40
|
Grassinger JM, Floren A, Müller T, Cerezo-Echevarria A, Beitzinger C, Conrad D, Törner K, Staudacher M, Aupperle-Lellbach H. Digital Lesions in Dogs: A Statistical Breed Analysis of 2912 Cases. Vet Sci 2021; 8:vetsci8070136. [PMID: 34357928 PMCID: PMC8310350 DOI: 10.3390/vetsci8070136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014–2019 to the Laboklin GmbH & Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43%), tumor-like lesions in 138 (5%), and neoplasms in 1528 cases (52%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = −2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = −2.17), Jack Russell Terriers (log OR = −1.88), and Rhodesian Ridgebacks (log OR = −1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or “resistance” to the development of specific acral tumors and/or other sites.
Collapse
Affiliation(s)
- Julia Maria Grassinger
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
- Correspondence:
| | - Andreas Floren
- Institut für Tierökologie und Tropenbiologie, Universität Würzburg, 97070 Würzburg, Germany;
| | - Tobias Müller
- Institut für Bioinformatik, Universität Würzburg, 97070 Würzburg, Germany;
| | - Argiñe Cerezo-Echevarria
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - Christoph Beitzinger
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - David Conrad
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - Katrin Törner
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | | | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| |
Collapse
|
41
|
Stevenson VB, Perry SN, Todd M, Huckle WR, LeRoith T. PD-1, PD-L1, and PD-L2 Gene Expression and Tumor Infiltrating Lymphocytes in Canine Melanoma. Vet Pathol 2021; 58:692-698. [PMID: 34169800 DOI: 10.1177/03009858211011939] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Melanoma in humans and dogs is considered highly immunogenic; however, the function of tumor-infiltrating lymphocytes (TILs) is often suppressed in the tumor microenvironment. In humans, current immunotherapies target checkpoint molecules (such as PD-L1, expressed by tumor cells), inhibiting their suppressive effect over TILs. The role of PD-L2, an alternative PD-1 ligand also overexpressed in malignant tumors and in patients with anti-PD-L1 resistance, remains poorly understood. In the current study, we evaluated the expression of checkpoint molecule mRNAs in canine melanoma and TILs. Analysis of checkpoint molecule gene expression was performed by RT-qPCR (real-time quantitative polymerase chain reaction) using total RNA isolated from formalin-fixed and paraffin-embedded melanomas (n = 22) and melanocytomas (n = 9) from the Virginia Tech Animal Laboratory Services archives. Analysis of checkpoint molecule expression revealed significantly higher levels of PDCD1 (PD-1) and CD274 (PD-L1) mRNAs and an upward trend in PDCD1LG2 (PD-L2) mRNA in melanomas relative to melanocytomas. Immunohistochemistry revealed markedly increased numbers of CD3+ T cells in the highest PD-1-expressing subgroup of melanomas compared to the lowest PD-1 expressors, whereas densities of IBA1+ cells (macrophages) were similar in both groups. CD79a+ cell numbers were low for both groups. As in human melanoma, overexpression of the PD-1/PD-L1/PD-L2 axis is a common feature of canine melanoma. High expression of PD-1 and PD-L1 correlates with increased numbers of CD3+ cells. Additionally, the high level of IBA1+ cells in melanomas with low PD-1 expression and low CD3+ cells levels suggest that the expression of checkpoint molecules is modulated by interactions between T cells and cancer cells rather than histiocytes.
Collapse
|
42
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
43
|
Eto S, Yanai H, Hangai S, Kato D, Nishimura R, Nakagawa T. The impact of damage-associated molecules released from canine tumor cells on gene expression in macrophages. Sci Rep 2021; 11:8525. [PMID: 33875721 PMCID: PMC8055655 DOI: 10.1038/s41598-021-87979-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Dying or damaged cells that are not completely eradicated by the immune system release their intracellular components in the extracellular space. Aberrant exposure of the damage-associated molecules to the immune system is often associated with inflammation and cancer pathogenesis. Thus, elucidating the role of damage-associated molecules in inducing sterile immune responses is crucial. In this study, we show that prostaglandin E2 (PGE2) is produced in the supernatants from several types of canine necrotic tumor cell lines. Inhibition of PGE2 production by indomethacin, a potent inhibitor of cyclooxygenase (COX) enzymes, induces the expression of tumor necrosis factor (Tnf) mRNA in the necrotic tumor cell supernatants. These results comply with the previous observations reported in mouse cell lines. Furthermore, comprehensive ribonucleic acid-sequencing (RNA-seq) analysis revealed that three categories of genes were induced by the damage-associated molecules: (i) a group of PGE2-inducible genes, (ii) genes that promote inflammation and are suppressed by PGE2, and (iii) a group of genes not suppressed by PGE2. Collectively, our findings reveal the hitherto unknown immune regulatory system by PGE2 and damage-associated molecules, which may have clinical implications in inflammation and cancer.
Collapse
Affiliation(s)
- Shotaro Eto
- grid.26999.3d0000 0001 2151 536XLaboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8505 Japan
| | - Hideyuki Yanai
- grid.26999.3d0000 0001 2151 536XDepartment of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8505 Japan
| | - Sho Hangai
- grid.26999.3d0000 0001 2151 536XDepartment of Inflammology, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8505 Japan
| | - Daiki Kato
- grid.26999.3d0000 0001 2151 536XLaboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ryohei Nishimura
- grid.26999.3d0000 0001 2151 536XLaboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takayuki Nakagawa
- grid.26999.3d0000 0001 2151 536XLaboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
44
|
Characterization of Primary Cultures of Normal and Neoplastic Canine Melanocytes. Animals (Basel) 2021; 11:ani11030768. [PMID: 33802040 PMCID: PMC7998744 DOI: 10.3390/ani11030768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Melanoma is one of the most aggressive cancers in humans, with high rates of metastasis and a poor prognosis. Because of its environmental, biological and genetic features, numerous studies indicate the dog as a good comparative model for human melanoma. Primary cell cultures of healthy and neoplastic melanocytes derived from skin and oral mucosa of dogs with spontaneous tumors are established in this study. This model could represent a suitable tool to compare biological and molecular features of normal and neoplastic melanocytes from the same patient, to investigate the pathways underlying the oncogenic transformation, and to apply a more personalized therapeutic strategy. The cell cultures also meet international guidelines that encourage the use of alternative models to animal ones for the study of oncological diseases. Abstract Although numerous animal models, especially mouse models, have been established for the study of melanoma, they often fail to accurately describe the mechanisms of human disease because of their anatomic, physiological, and immune differences. The dog, as a spontaneous model of melanoma, is nowadays considered one of the most valid alternatives due to the heterogeneity of clinical presentations and of histological and genetic similarities of canine melanoma with the human counterpart. The aim of the study was to optimize a protocol for the isolation and cultivation of healthy and neoplastic canine melanocytes derived from the same animal and obtained from cutaneous and mucosal (oral) sites. We obtained five primary tumor cell cultures (from 2 cutaneous melanoma, 2 mucosal melanoma and 1 lymph node metastasis) and primary normal melanocyte cell cultures (from normal skin and mucosa) from the same dogs. Immunocytochemical characterization with Melan A, PNL2 and S100 antibodies confirmed the melanocytic origin of the cells. This work contributes to expanding the case record of studies on canine melanoma cell cultures as suitable model to study human and canine melanoma. To the authors’ knowledge, this is the first report of isolation of normal skin and mucosal canine melanocytes.
Collapse
|
45
|
Palma SD, McConnell A, Verganti S, Starkey M. Review on Canine Oral Melanoma: An Undervalued Authentic Genetic Model of Human Oral Melanoma? Vet Pathol 2021; 58:881-889. [PMID: 33685309 DOI: 10.1177/0300985821996658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral melanoma (OM) is a highly aggressive tumor of the oral cavity in humans and dogs. Here we review the phenotypic similarities between the disease in these 2 species as the basis for the view that canine OM is a good model for the corresponding human disease. Utility of the "canine model" has likely been hindered by a paucity of information about the extent of the molecular genetic similarities between human and canine OMs. Current knowledge of the somatic alterations that underpin human tumorigenesis and metastatic progression is relatively limited, primarily due to the rarity of the disease in humans and consequent lack of opportunity for large-scale molecular analysis. The molecular genetic comparisons between human and canine OMs that have been completed indicate some overlap between the somatic mutation profiles of canine OMs and a subset of human OMs. However, further comparative studies featuring, in particular, larger numbers of human OMs are required to provide substantive evidence that canine OMs share mechanisms of tumorigenesis with at least a subset of human OMs. Future molecular genetic investigations of both human and canine OMs should investigate how primary tumors develop a metastatic gene expression signature and the genetic and epigenetic alterations specific to metastatic sites. Such studies may identify genetic alterations and pathways specific to the metastatic disease which could be targetable by new drugs.
Collapse
Affiliation(s)
| | | | - Sara Verganti
- 170851Dick White Referrals, Station Farm, Cambridgeshire, UK
| | - Mike Starkey
- 11661Animal Health Trust, Newmarket, Suffolk, UK
| |
Collapse
|
46
|
Suwabe Y, Nakano R, Namba S, Yachiku N, Kuji M, Sugimura M, Kitanaka N, Kitanaka T, Konno T, Sugiya H, Nakayama T. Involvement of GLUT1 and GLUT3 in the growth of canine melanoma cells. PLoS One 2021; 16:e0243859. [PMID: 33539362 PMCID: PMC7861381 DOI: 10.1371/journal.pone.0243859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The rate of glucose uptake dramatically increases in cancer cells even in the presence of oxygen and fully functioning mitochondria. Cancer cells produce ATP by glycolysis rather than oxidative phosphorylation under aerobic conditions, a process termed as the “Warburg effect.” In the present study, we treated canine melanoma cells with the glucose analog 2-deoxy-D-glucose (2-DG) and investigated its effect on cell growth. 2-DG attenuated cell growth in a time- and dose-dependent manner. Cell growth was also inhibited following treatment with the glucose transporter (GLUT) inhibitor WZB-117. The treatment of 2-DG and WZB-117 attenuated the glucose consumption, lactate secretion and glucose uptake of the cells. The mRNA expression of the subtypes of GLUT was examined and GLUT1 and GLUT3 were found to be expressed in melanoma cells. The growth, glucose consumption and lactate secretion of melanoma cells transfected with siRNAs of specific for GLUT1 and GLUT3 was suppressed. These findings suggest that glucose uptake via GLUT1 and GLUT3 plays a crucial role for the growth of canine melanoma cells.
Collapse
Affiliation(s)
- Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Naoya Yachiku
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Manami Kuji
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Mana Sugimura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
47
|
Abstract
Comparative oncology clinical trials play an important and growing role in cancer research and drug development efforts. These trials, typically conducted in companion (pet) dogs, allow assessment of novel anticancer agents and combination therapies in a veterinary clinical setting that supports serial biologic sample collections and exploration of dose, schedule and corresponding pharmacokinetic/pharmacodynamic relationships. Further, an intact immune system and natural co-evolution of tumour and microenvironment support exploration of novel immunotherapeutic strategies. Substantial improvements in our collective understanding of the molecular landscape of canine cancers have occurred in the past 10 years, facilitating translational research and supporting the inclusion of comparative studies in drug development. The value of the approach is demonstrated in various clinical trial settings, including single-agent or combination response rates, inhibition of metastatic progression and randomized comparison of multiple agents in a head-to-head fashion. Such comparative oncology studies have been purposefully included in the developmental plan for several US FDA-approved and up-and-coming anticancer drugs. Challenges for this field include keeping pace with technology and data dissemination/harmonization, improving annotation of the canine genome and immune system, and generation of canine-specific validated reagents to support integration of correlative biology within clinical trial efforts.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christina N Mazcko
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Kamoto S, Shinada M, Kato D, Yoshimoto S, Ikeda N, Tsuboi M, Yoshitake R, Eto S, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kaneko MK, Fujita N, Nishimura R, Kato Y, Nakagawa T. Phase I/II Clinical Trial of the Anti-Podoplanin Monoclonal Antibody Therapy in Dogs with Malignant Melanoma. Cells 2020; 9:E2529. [PMID: 33238582 PMCID: PMC7700559 DOI: 10.3390/cells9112529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN), a small transmembrane mucin-like glycoprotein, is ectopically expressed on tumor cells. PDPN is known to be linked with several aspects of tumor malignancies in certain types of human and canine tumors. Therefore, it is considered to be a novel therapeutic target. Monoclonal antibodies targeting PDPN expressed in human tumor cells showed obvious anti-tumor effects in preclinical studies using mouse models. Previously, we generated a cancer-specific mouse-dog chimeric anti-PDPN antibody, P38Bf, which specifically recognizes PDPN expressed in canine tumor cells. In this study, we investigated the safety and anti-tumor effects of P38Bf in preclinical and clinical trials. P38Bf showed dose-dependent antibody-dependent cellular cytotoxicity against canine malignant melanoma cells. In a preclinical trial with one healthy dog, P38Bf administration did not induce adverse effects over approximately 2 months. In phase I/II clinical trials of three dogs with malignant melanoma, one dog vomited, and all dogs had increased serum levels of C-reactive protein, although all adverse effects were grade 1 or 2. Severe adverse effects leading to withdrawal of the clinical trial were not observed. Furthermore, one dog had stable disease with P38Bf injections. This is the first reported clinical trial of anti-PDPN antibody therapy using spontaneously occurring canine tumor models.
Collapse
Affiliation(s)
- Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Sho Yoshimoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.T.); (Y.H.); (Y.T.)
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.T.); (Y.H.); (Y.T.)
| | - Yosuke Takahashi
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.T.); (Y.H.); (Y.T.)
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (J.C.); (K.U.)
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (J.C.); (K.U.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (Y.K.)
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (Y.K.)
- New Industry Creation Hatchery Center, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.K.); (M.S.); (S.Y.); (N.I.); (R.Y.); (S.E.); (N.F.); (R.N.); (T.N.)
| |
Collapse
|
49
|
Gray M, Meehan J, Turnbull AK, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. The Importance of the Tumor Microenvironment and Hypoxia in Delivering a Precision Medicine Approach to Veterinary Oncology. Front Vet Sci 2020; 7:598338. [PMID: 33282935 PMCID: PMC7688625 DOI: 10.3389/fvets.2020.598338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
Treating individual patients on the basis of specific factors, such as biomarkers, molecular signatures, phenotypes, environment, and lifestyle is what differentiates the precision medicine initiative from standard treatment regimens. Although precision medicine can be applied to almost any branch of medicine, it is perhaps most easily applied to the field of oncology. Cancer is a heterogeneous disease, meaning that even though patients may be histologically diagnosed with the same cancer type, their tumors may have different molecular characteristics, genetic mutations or tumor microenvironments that can influence prognosis or treatment response. In this review, we describe what methods are currently available to clinicians that allow them to monitor key tumor microenvironmental parameters in a way that could be used to achieve precision medicine for cancer patients. We further describe exciting novel research involving the use of implantable medical devices for precision medicine, including those developed for mapping tumor microenvironment parameters (e.g., O2, pH, and cancer biomarkers), delivering local drug treatments, assessing treatment responses, and monitoring for recurrence and metastasis. Although these research studies have predominantly focused on and were tailored to humans, the results and concepts are equally applicable to veterinary patients. While veterinary clinical studies that have adopted a precision medicine approach are still in their infancy, there have been some exciting success stories. These have included the development of a receptor tyrosine kinase inhibitor for canine mast cell tumors and the production of a PCR assay to monitor the chemotherapeutic response of canine high-grade B-cell lymphomas. Although precision medicine is an exciting area of research, it currently has failed to gain significant translation into human and veterinary healthcare practices. In order to begin to address this issue, there is increasing awareness that cross-disciplinary approaches involving human and veterinary clinicians, engineers and chemists may be needed to help advance precision medicine toward its full integration into human and veterinary clinical practices.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Scotland, United Kingdom
| | - Lisa Y. Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - David J. Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
50
|
Porcellato I, Brachelente C, Cappelli K, Menchetti L, Silvestri S, Sforna M, Mecocci S, Iussich S, Leonardi L, Mechelli L. FoxP3, CTLA-4, and IDO in Canine Melanocytic Tumors. Vet Pathol 2020; 58:42-52. [PMID: 33021155 DOI: 10.1177/0300985820960131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite promising immunotherapy strategies in human melanoma, there are few studies on the immune environment of canine melanocytic tumors. In humans, the activation of immunosuppressive cell subpopulations, such as regulatory T cells (Tregs) that express forkhead box protein P3 (FoxP3), the engagement of immunosuppressive surface receptors like cytotoxic T lymphocyte antigen (CTLA-4), and the secretion of molecules inhibiting lymphocyte activation, such as indoleamine-pyrrole 2,3-dioxygenase (IDO), are recognized as immunoescape mechanisms that allow tumor growth and progression. The aim of our study was to investigate the expression of these immunosuppression markers in canine melanocytic tumors and to postulate their possible role in melanoma biology and progression. Fifty-five formalin-fixed, paraffin-embedded canine melanocytic tumors (25 oral melanomas; 20 cutaneous melanomas; 10 cutaneous melanocytomas) were selected to investigate the expression of FoxP3, CTLA-4, and IDO by immunohistochemistry and RT-qPCR (real-time quantitative polymerase chain reaction). All of the tested markers showed high gene and protein expression in oral melanomas and were differently expressed in cutaneous melanomas when compared to their benign counterpart. IDO expression was associated with an increased hazard of death both in univariable and multivariable analyses (P < .05). FoxP3 protein expression >6.9 cells/HPF (high-power field) was an independent predictor of death (P < .05). CTLA-4 gene and protein expressions were associated with a worse prognosis, but only in the univariable analysis (P < .05). FoxP3, CTLA-4, and IDO likely play a role in canine melanoma immunoescape. Their expression, if supported by future studies, could represent a prognostic tool in canine melanoma and pave the way to future immunotherapeutic approaches in dogs.
Collapse
Affiliation(s)
| | | | | | - Laura Menchetti
- 9309University of Perugia, Perugia, Italy.,Department of Agricultural and Food Sciences (DISTAL), University of Bologna
| | | | | | | | | | | | | |
Collapse
|