1
|
Botteon CA, Pereira ADES, de Castro LP, Justino IA, Fraceto LF, Bastos JK, Marcato PD. Toxicity Assessment of Biogenic Gold Nanoparticles on Crop Seeds and Zebrafish Embryos: Implications for Agricultural and Aquatic Ecosystems. ACS OMEGA 2025; 10:1032-1046. [PMID: 39829554 PMCID: PMC11740149 DOI: 10.1021/acsomega.4c08287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
The demand for food production has been growing exponentially due to the increase in the global population. Innovative approaches to enhance agricultural productivity have been explored, including the new applications of nanoparticles in agriculture. The nanoparticle application in agriculture can generate environmental and human health risks since nanoparticles can contaminate the soil and inevitably reach groundwater, potentially causing toxicity in aquatic organisms. In this study, we evaluated the benefits and toxicity of gold nanoparticles (GNPs), synthesized via green chemistry, on the growth of cultivated plants and in the zebrafish embryo model. GNPs were synthesized through an economical and environmentally friendly method using Brazilian red propolis (BRP) extract (BRP-GNPs). BRP-GNPs exhibited negative and positive effects on plant germination, depending on the concentration tested and the plant species involved. Moreover, BRP-GNPs induced developmental toxicity in fish embryos in a dose-dependent manner. Our results provide valuable insights for assessing the environmental risks of biogenic GNPs.
Collapse
Affiliation(s)
- Caroline
E. A. Botteon
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | | | - Larissa P. de Castro
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Isabela A. Justino
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Leonardo F. Fraceto
- Institute
of Science and Technology, São Paulo
State University, Sorocaba 18087-180, Brazil
| | - Jairo K. Bastos
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| | - Priscyla D. Marcato
- School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil
| |
Collapse
|
2
|
Vicente TT, Arsalani S, Quiel MS, Fernandes GSP, da Silva KR, Fukada SY, Gualdi AJ, Guidelli ÉJ, Baffa O, Carneiro AAO, Ramos AP, Pavan TZ. Improving the Theranostic Potential of Magnetic Nanoparticles by Coating with Natural Rubber Latex for Ultrasound, Photoacoustic Imaging, and Magnetic Hyperthermia: An In Vitro Study. Pharmaceutics 2024; 16:1474. [PMID: 39598597 PMCID: PMC11597301 DOI: 10.3390/pharmaceutics16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties. While NRL-coated MNPs have shown potential in applications such as magnetic resonance imaging, their effectiveness in theranostics, particularly magnetic hyperthermia (MH) and photoacoustic imaging (PAI), remains underexplored. METHODS In this study, iron oxide nanoparticles were synthesized via coprecipitation, using NRL as the coating agent. The samples were labeled by NRL amount used during synthesis: NRL-100 for 100 μL and NRL-400 for 400 μL. RESULTS Characterization results showed that NRL-100 and NRL-400 samples exhibited improved stability with zeta potentials of -27 mV and -30 mV, respectively and higher saturation magnetization values of 79 emu/g and 88 emu/g of Fe3O4. Building on these findings, we evaluated the performance of these nanoparticles in biomedical applications, including magnetomotive ultrasound (MMUS), PAI, and MH. NRL-100 and NRL-400 samples showed greater displacements and higher contrast in MMUS than uncoated samples (5, 8, and 9 µm) at 0.5 wt%. In addition, NRL-coated samples demonstrated an improved signal-to-noise ratio (SNR) in PAI. SNR values were 24.72 (0.51), 31.44 (0.44), and 33.81 (0.46) dB for the phantoms containing uncoated MNPs, NRL-100, and NRL-400, respectively. Calorimetric measurements for MH confirmed the potential of NRL-coated MNPs as efficient heat-generating agents, showing values of 43 and 40 W/g for NRL-100 and NRL-400, respectively. CONCLUSIONS Overall, NRL-coated MNPs showed great promise as contrast agents in MMUS and PAI imaging, as well as in MH applications.
Collapse
Affiliation(s)
- Thiago T. Vicente
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
- UT Southwestern Medical Center, Biomedical Engineering Department, Dallas, TA 75235-7323, USA
| | - Mateus S. Quiel
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Guilherme S. P. Fernandes
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Keteryne R. da Silva
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Sandra Y. Fukada
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Alexandre J. Gualdi
- Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil;
| | - Éder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Antônio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| |
Collapse
|
3
|
Azzi M, Laib I, Bouafia A, Medila I, Tliba A, Laouini SE, Alsaeedi H, Cornu D, Bechelany M, Barhoum A. Antimutagenic and anticoagulant therapeutic effects of Ag/Ag 2O nanoparticles from Olea europaea leaf extract: mitigating metribuzin-induced hepato-and nephrotoxicity. Front Pharmacol 2024; 15:1485525. [PMID: 39508051 PMCID: PMC11538059 DOI: 10.3389/fphar.2024.1485525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Silver nanoparticles (Ag/Ag₂O NPs) have garnered attention for their potent antioxidant, antimicrobial, and anti-inflammatory properties, showing promise for therapeutic applications, particularly in mitigating chemical-induced toxicity. Objective This study aimed to synthesize Ag/Ag₂O NPs using Olea europaea (olive) leaf extract as a green, eco-friendly reducing agent and evaluate their protective effects against metribuzin-induced toxicity in Wistar rats, focusing on oxidative stress, hematological parameters, and lipid profiles, with specific dose optimization. Methodology Ag/Ag₂O NPs were synthesized using Olea europaea leaf extract, and their properties were confirmed via XRD, FTIR, SEM, EDS, and UV-visible spectroscopy. Wistar rats exposed to metribuzin (110 mg/kg/day) were treated with two doses of Ag/Ag₂O NPs (0.062 mg/kg and 0.125 mg/kg). Hematological and biochemical markers were assessed to evaluate the NPs' protective effects. Results Physicochemical characterization confirmed the successful formation of Ag/Ag₂O NPs loaded with phytochemicals, exhibiting crystallite sizes of 23 nm and 19 nm, a particle size of 25 nm, and significant peaks in XRD, FTIR, and UV-Vis spectra indicating the formation of Ag/Ag₂O. Metribuzin exposure led to significant hematological disruptions (elevated WBC, reduced RBC and hemoglobin) and worsened lipid profiles (increased cholesterol, LDL, and triglycerides). The lower NP dose (0.062 mg/kg) improved WBC, RBC, hemoglobin, and platelet counts, normalized lipid levels, and positively influenced biochemical markers such as serum creatinine and uric acid. In contrast, the higher NP dose (0.125 mg/kg) showed mixed results, with some improvements but an increase in triglycerides and continued elevation of ASAT and ALAT enzyme levels. Conclusion Ag/Ag₂O NPs synthesized via green methods using olive leaf extract effectively mitigated metribuzin-induced toxicity, especially at lower doses, by improving oxidative stress markers and hematological and biochemical profiles. Dose optimization is crucial to maximize therapeutic benefits and minimize adverse effects, underscoring their potential in treating chemical-induced toxicity.
Collapse
Affiliation(s)
- Manel Azzi
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ifriqya Medila
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ali Tliba
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Huda Alsaeedi
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
5
|
Bakir M, Jiménez MS, Laborda F, Slaveykova VI. Exploring the impact of silver-based nanomaterial feed additives on green algae through single-cell techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173564. [PMID: 38806122 DOI: 10.1016/j.scitotenv.2024.173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Silver in its various forms, including dissolved silver ions (Ag+) and silver nanoparticles (AgNPs), is a promising alternative to traditional antibiotics, largely used in livestock as feed additives and could contribute to the decrease and avoidance of the development of antibiotic resistance. The present study aims to assess the potential ecotoxicity of a silver-based nanomaterial (Ag-kaolin), the feed supplemented with the nanomaterial and the faeces since the latter are the ones that finally reach the environment. To this end, green alga Raphidocellis subcapitata was exposed to the extracts of Ag-kaolin, supplemented feed, and pig faeces for 72 h, along with Ag+ and AgNPs as controls for comparison purposes. Given the complexity of the studied materials, single-cell techniques were used to follow the changes in the cell numbers and chlorophyll fluorescence by flow cytometry, and the accumulation of silver in the exposed cells by single cell inductively coupled plasma mass spectrometry (SC-ICP-MS). Changes in cell morphology were observed by cell imaging multimode reader. The results revealed a decrease in chlorophyll fluorescence, even at low concentrations of Ag-kaolin (10 μg L-1) after 48 h of exposure. Additionally, complete growth inhibition was found with this material like the results obtained by exposure to Ag+. For the supplemented feed, a concentration of 50 μg L-1 was necessary to achieve complete growth inhibition. However, the behaviour differed for the leachate of faeces, which released Ag2S and AgCl alongside Ag+ and AgNPs. At 50 μg L-1, inhibition was minimal, primarily due to the predominance of less toxic Ag2S in the leachate. The uptake of silver by the cells was confirmed with all the samples through SC-ICP-MS analysis. These findings demonstrate that the use of Ag-kaolin as a feed supplement will lead to a low environmental impact.
Collapse
Affiliation(s)
- Mariam Bakir
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland; Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA) University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| | - María S Jiménez
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA) University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA) University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Al-Momani H, Aolymat I, Ibrahim L, Albalawi H, Al Balawi D, Albiss BA, Almasri M, Alghweiri S. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. BMC Microbiol 2024; 24:290. [PMID: 39095741 PMCID: PMC11297655 DOI: 10.1186/s12866-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Lujain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sahar Alghweiri
- Medical Laboratory Department, Prince Hashem Military Hospital, Zarqa, 13133, Jordan
| |
Collapse
|
7
|
Gorgzadeh A, Amiri PA, Yasamineh S, Naser BK, Abdulallah KA. The potential use of nanozyme in aging and age-related diseases. Biogerontology 2024; 25:583-613. [PMID: 38466515 DOI: 10.1007/s10522-024-10095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024]
Abstract
The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.
Collapse
Affiliation(s)
| | - Paria Arab Amiri
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | |
Collapse
|
8
|
Bocca B, Battistini B. Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance. Nanotoxicology 2024; 18:1-35. [PMID: 38436298 DOI: 10.1080/17435390.2023.2301692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.
Collapse
Affiliation(s)
- Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Iavicoli I, Fontana L, Santocono C, Guarino D, Laudiero M, Calabrese EJ. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166030. [PMID: 37544458 DOI: 10.1016/j.scitotenv.2023.166030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In the current radiation protection system, preventive measures and occupational exposure limits for controlling occupational exposure to ionizing radiation are based on the linear no-threshold extrapolation model. However, currently an increasing body of evidence indicates that this paradigm predicts very poorly biological responses in the low-dose exposure region. In addition, several in vitro and in vivo studies demonstrated the presence of hormetic dose response curves correlated to ionizing radiation low exposure. In this regard, it is noteworthy that also the findings of different epidemiological studies, conducted in different categories of occupationally exposed workers (e.g., healthcare, nuclear industrial and aircrew workers), observed lower rates of mortality and/or morbidity from cancer and/or other diseases in exposed workers than in unexposed ones or in the general population, then suggesting the possible occurrence of hormesis. Nevertheless, these results should be considered with caution since the identification of hormetic response in epidemiological studies is rather challenging because of a number of major limitations. In this regard, some of the most remarkable shortcomings found in epidemiological studies performed in workers exposed to ionizing radiation are represented by lack or inadequate definition of exposure doses, use of surrogates of exposure, narrow dose ranges, lack of proper control groups and poor evaluation of confounding factors. Therefore, considering the valuable role and contribution that epidemiological studies might provide to the complex risk assessment and management process, there is a clear and urgent need to overcome the aforementioned limits in order to achieve an adequate, useful and more real-life risk assessment that should also include the key concept of hormesis. Thus, in the present conceptual article we also discuss and provide possible approaches to improve the capacity of epidemiological studies to identify/define the hormetic response and consequently improve the complex process of risk assessment of ionizing radiation at low exposure doses.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Guarino
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Laudiero
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Kartsonakis IA, Vardakas P, Goulis P, Perkas N, Kyriazis ID, Skaperda Z, Tekos F, Charitidis CA, Kouretas D. Toxicity assessment of core-shell and superabsorbent polymers in cell-based systems. ENVIRONMENTAL RESEARCH 2023; 228:115772. [PMID: 36967000 DOI: 10.1016/j.envres.2023.115772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023]
Abstract
The identification of health risks arising from occupational exposure to submicron/nanoscale materials is of particular interest and toxicological investigations designed to assess their hazardous properties can provide valuable insights. The core-shell polymers poly (methyl methacrylate)@poly (methacrylic acid-co-ethylene glycol dimethacrylate) [PMMA@P (MAA-co-EGDMA)] and poly (n-butyl methacrylate-co-ethylene glycol dimethacrylate)@poly (methyl methacrylate) [P (nBMA-co-EGDMA)@PMMA] could be utilized for the debonding of coatings and for the encapsulation and targeted delivery of various compounds. The hybrid superabsorbent core-shell polymers poly (methacrylic acid-co-ethylene glycol dimethacrylate)@silicon dioxide [P (MAA-co-EGDMA)@SiO2] could be utilized as internal curing agents in cementitious materials. Therefore, the characterization of their toxicological profile is essential to ensure their safety throughout manufacturing and the life cycle of the final products. Based on the above, the purpose of the present study was to assess the acute toxic effects of the above mentioned polymers on cell viability and on cellular redox state in EA. hy926 human endothelial cells and in RAW264.7 mouse macrophages. According to our results, the examined polymers did not cause any acute toxic effects on cell viability after any administration. However, the thorough evaluation of a panel of redox biomarkers revealed that they affected cellular redox state in a cell-specific manner. As regards EA. hy926 cells, the polymers disrupted redox homeostasis and promoted protein carbonylation. Concerning RAW264.7 cells, P (nBMA-co-EGDMA)@PMMA caused disturbances in redox equilibrium and special emphasis was placed on the triphasic dose-response effect detected in lipid peroxidation. Finally, P (MAA-co-EGDMA)@SiO2 activated cellular adaptive mechanisms in order to prevent from oxidative damage.
Collapse
Affiliation(s)
- Ioannis A Kartsonakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Periklis Vardakas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Panagiotis Goulis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Nikolaos Perkas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Ioannis D Kyriazis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece.
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
11
|
He G, Yang Y, Liu G, Zhang Q, Liu W. Global analysis of the perturbation effects of metal-based nanoparticles on soil nitrogen cycling. GLOBAL CHANGE BIOLOGY 2023; 29:4001-4017. [PMID: 37082828 DOI: 10.1111/gcb.16735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2 S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2 S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2 S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg-1 ), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Marmiroli M, Birarda G, Gallo V, Villani M, Zappettini A, Vaccari L, Marmiroli N, Pagano L. Cadmium Sulfide Quantum Dots, Mitochondrial Function and Environmental Stress: A Mechanistic Reconstruction through In Vivo Cellular Approaches in Saccharomyces cerevisiae. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1944. [PMID: 37446460 DOI: 10.3390/nano13131944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Research on the effects of engineered nanomaterials (ENMs) on mitochondria, which represent one of the main actors in cell function, highlighted effects on ROS production, gametogenesis and organellar genome replication. Specifically, the mitochondrial effects of cadmium sulfide quantum dots (CdS QDs) exposure can be observed through the variation in enzymatic kinetics at the level of the respiratory chain and also by analyzing modifications of reagent and products in term of the bonds created and disrupted during the reactions through Fourier-transform infrared spectroscopy (FTIR). This study investigated both in intact cells and in isolated mitochondria to observe the response to CdS QDs treatment at the level of electron transport chain in the wild-type yeast Saccharomyces cerevisiae and in the deletion mutant Δtom5, whose function is implicated in nucleo-mitochondrial protein trafficking. The changes observed in wild type and Δtom5 strains in terms of an increase or decrease in enzymatic activity (ranging between 1 and 2 folds) also differed according to the genetic background of the strains and the respiratory chain functionality during the CdS QDs treatment performed. Results were confirmed by FTIR, where a clear difference between the QD effects in the wild type and in the mutant strain, Δtom5, was observed. The utilization of these genetic and biochemical approaches is instrumental to clarify the mitochondrial mechanisms implicated in response to these types of ENMs and to the stress response that follows the exposure.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giovanni Birarda
- Elettra, Sincrotrone Trieste, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Villani
- Istituto dei Materiali per l'Elettronica e il Magnetismo, Consiglio Nazionale delle Ricerche (IMEM-CNR), 43124 Parma, Italy
| | - Andrea Zappettini
- Istituto dei Materiali per l'Elettronica e il Magnetismo, Consiglio Nazionale delle Ricerche (IMEM-CNR), 43124 Parma, Italy
| | - Lisa Vaccari
- Elettra, Sincrotrone Trieste, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124 Parma, Italy
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124 Parma, Italy
| |
Collapse
|
13
|
Agathokleous E, Sonne C, Benelli G, Calabrese EJ, Guedes RNC. Low-dose chemical stimulation and pest resistance threaten global crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162989. [PMID: 36948307 DOI: 10.1016/j.scitotenv.2023.162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Pesticide resistance increases and threatens crop production sustainability. Chemical contamination contributes to the development of pest resistance to pesticides, in part by causing stimulatory effects on pests at low sub-toxic doses and facilitating the spread of resistance genes. This article discusses hormesis and low-dose biological stimulation and their relevance to crop pest resistance. It highlights that a holistic approach is needed to tackle pest resistance to pesticides and reduce imbalance in accessing food and improving food security in accordance with the UN's Sustainable Development Goals. Among others, the effects of sub-toxic doses of pesticides should be considered when assessing the impact of synthetic and natural pesticides, while the promotion of alternative agronomical practices is needed to decrease the use of agrochemicals. Potential alternative solutions include camo-cropping, exogenous application of phytochemicals that are pest-suppressing or -repelling and/or attractive to carnivorous arthropods and other pest natural enemies, and nano-technological innovations. Moreover, to facilitate tackling of pesticide resistance in poorer countries, less technology-demanding and low-cost practices are needed. These include mixed cropping systems, diversification of cultures, use of 'push-pull cropping', incorporation of flower strips into cultivations, modification of microenvironment, and application of beneficial microorganisms and insects. However, there are still numerous open questions, and more research is needed to address the ecological and environmental effects of many of these potential solutions, with special reference to trophic webs.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
14
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
15
|
Al-Momani H, Almasri M, Al Balawi D, Hamed S, Albiss BA, Aldabaibeh N, Ibrahim L, Albalawi H, Al Haj Mahmoud S, Khasawneh AI, Kilani M, Aldhafeeri M, Bani-Hani M, Wilcox M, Pearson J, Ward C. The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci Rep 2023; 13:8876. [PMID: 37264060 DOI: 10.1038/s41598-023-35919-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853). Ag NPs were biosynthesized using a seed extract of Peganum harmala as a reducing agent. Ag NPs were characterized by Ultraviolet-visible (UV-Vis) spectroscopy and scanning transmission electron microscopy (STEM). The effect of Ag NPs on biofilm formation and eradication was examined through micro-titer plate assays, and the minimal inhibitory (MIC) and minimum bactericidal (MBC) concentrations determined. In addition, real-time polymerase chain reactions (RT-PCR) were performed to examine the effects of Ag NPs on the expression of seven PA biofilm-encoding genes (LasR, LasI, LssB, rhIR, rhII, pqsA and pqsR). The biosynthesized Ag NPs were spherically-shaped with a mean diameter of 11 nm. The MIC for each PA strain was 15.6 µg/ml, while the MBC was 31.25 µg/ml. All PA strains exposed to Ag NPs at sub-inhibitory concentrations (0.22-7.5 µg/ml) showed significant inhibitory effects on growth and biofilm formation. Biomass and biofilm metabolism were reduced dependent on Ag NP concentration. The expression of the quorum-sensing genes of all strains were significantly reduced at an Ag NP concentration of 7.5 µg/ml. The results demonstrate the extensive in-vitro antibacterial and antibiofilm performance of Ag NPs and their potential in the treatment of PA infection. It is recommended that future studies examine the possible synergy between Ag NPs and antibiotics.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan.
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'A Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Nour Aldabaibeh
- Supervisor of Microbiology Laboratory, Laboratory Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa' Applied University, AL-Salt, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan
| | - Muna Kilani
- Department of Pediatrics, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Muneef Aldhafeeri
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Muayyad Bani-Hani
- Department of Plant Production and Protection, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Matthew Wilcox
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jeffrey Pearson
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
16
|
Abou Elez RMM, Attia ASA, Tolba HMN, Anter RGA, Elsohaby I. Molecular identification and antiprotozoal activity of silver nanoparticles on viability of Cryptosporidium parvum isolated from pigeons, pigeon fanciers and water. Sci Rep 2023; 13:3109. [PMID: 36813872 PMCID: PMC9946930 DOI: 10.1038/s41598-023-30270-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Cryptosporidium is a protozoan that causes acute gastroenteritis, abdominal pain, and diarrhea in many vertebrate species, including humans, animals and birds. A number of studies have reported the occurrence of Cryptosporidium in domestic pigeons. Thus, this study aimed to identify Cryptosporidium spp. in samples collected from domestic pigeons, pigeon fanciers, and drinking water, as well as to investigate the antiprotozoal activity of biosynthesized silver nanoparticles (AgNPs) on the viability of isolated Cryptosporidium parvum (C. parvum). Samples were collected from domestic pigeons (n = 150), pigeon fanciers (n = 50), and drinking water (n = 50) and examined for the presence of Cryptosporidium spp. using microscopic and molecular techniques. The antiprotozoal activity of AgNPs was then assessed both in vitro and in vivo. Cryptosporidium spp. was identified in 16.4% of all examined samples, with C. parvum identified in 5.6%. The highest frequency of isolation was from domestic pigeon, rather than from pigeon fanciers or drinking water. In domestic pigeons, there was a significant association between Cryptosporidium spp. positivity and pigeon's age, droppings consistency, housing, hygienic and heath conditions. However, Cryptosporidium spp. positivity was only significantly associated with pigeon fanciers' gender and heath condition. The viability of C. parvum oocysts was reduced using AgNPs at various concentrations and storage times in a descending manner. In an in vitro study, the highest reduction in C. parvum count was observed at the AgNPs concentration of 1000 µg/mL after a 24 h contact time, followed by the AgNPs concentration of 500 µg/mL after a 24 h contact time. However, after a 48 h contact time, a complete reduction was observed at both 1000 and 500 µg/mL concentrations. Overall, the count and viability of C. parvum decreased with increasing the AgNPs concentration and contact times in both the in vitro and in vivo studies. Furthermore, the C. parvum oocyst destruction was time-dependent and increased with increasing the contact time at various AgNPs concentrations.
Collapse
Affiliation(s)
- Rasha M. M. Abou Elez
- grid.31451.320000 0001 2158 2757Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Sharkia 44511 Egypt
| | - Amira S. A. Attia
- grid.31451.320000 0001 2158 2757Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Sharkia 44511 Egypt
| | - Hala M. N. Tolba
- grid.31451.320000 0001 2158 2757Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Sharkia 44511 Egypt
| | - Reham G. A. Anter
- grid.31451.320000 0001 2158 2757Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Sharkia 44511 Egypt
| | - Ibrahim Elsohaby
- grid.31451.320000 0001 2158 2757Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Sharkia 44511 Egypt ,grid.35030.350000 0004 1792 6846Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, Kowloon Tong China ,grid.35030.350000 0004 1792 6846Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong SAR, Kowloon Tong China
| |
Collapse
|
17
|
Saladino GM, Vogt C, Brodin B, Shaker K, Kilic NI, Andersson K, Arsenian-Henriksson M, Toprak MS, Hertz HM. XFCT-MRI hybrid multimodal contrast agents for complementary imaging. NANOSCALE 2023; 15:2214-2222. [PMID: 36625091 DOI: 10.1039/d2nr05829d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multimodal contrast agents in biomedical imaging enable the collection of more comprehensive diagnostic information. In the present work, we design hybrid ruthenium-decorated superparamagnetic iron oxide nanoparticles (NPs) as the contrast agents for both magnetic resonance imaging (MRI) and X-ray fluorescence computed tomography (XFCT). The NPs are synthesized via a one-pot polyol hot injection route, in diethylene glycol. In vivo preclinical studies demonstrate the possibility of correlative bioimaging with these contrast agents. The complementarity allows accurate localization, provided by the high contrast of the soft tissues in MRI combined with the elemental selectivity of XFCT, leading to NP detection with high specificity and resolution. We envision that this multimodal imaging could find future applications for early tumor diagnosis, improved long-term treatment monitoring, and enhanced radiotherapy planning.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Carmen Vogt
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Kian Shaker
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Nuzhet Inci Kilic
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Kenth Andersson
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Marie Arsenian-Henriksson
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institute, SE 17165 Stockholm, Sweden
| | - Muhammet Sadaka Toprak
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Hans Martin Hertz
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| |
Collapse
|
18
|
Qv W, Wang X, Li N, Du J, Pu G, Zhang H. How do the Growth and Metabolic Activity of Aquatic fungi Geotrichum Candidum and Aspergillus Niger Respond to Nanoplastics? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1043-1050. [PMID: 36239766 DOI: 10.1007/s00128-022-03625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In this study, exposure experiments were conducted to assess the effects of polystyrene nanoparticles (PS) and amine-modified polystyrene nanoparticles (APS) at environmental concentrations (1, 10, and 100 µg L- 1) on two fungal species (Geotrichum candidum and Aspergillus niger), isolated from leaf litter in streams, concerning their growth and metabolic activity. Results showed that PS at 1 and 10 µg L- 1 have hormesis effects on G. candidum growth. Compared with G. candidum, A. niger had higher sensitivity to nanoplastic exposure. Besides, the peroxidase and cellobiohydrolase activities of A. niger were significantly inhibited by nanoplastics (except 1 µg L- 1 PS), which would weaken its metabolic activity in carbon cycling. These results provided a new thought on how the growth and functions of aquatic fungi cope with the stress induced by nanoplastics. Overall, the study provided evidence for the different responses of aquatic fungi to nanoplastics in streams.
Collapse
Affiliation(s)
- Wenrui Qv
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 541006, Guilin, China
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, 450001, Zhengzhou, People's Republic of China
| | - Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, 450001, Zhengzhou, People's Republic of China
| | - Ningyun Li
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, 450001, Zhengzhou, People's Republic of China
| | - Jingjing Du
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 541006, Guilin, China.
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, 450001, Zhengzhou, People's Republic of China.
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan Province, China.
| | - Gaozhong Pu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 541006, Guilin, China
| | - Hongzhong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, 450001, Zhengzhou, People's Republic of China
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou, Henan Province, China
| |
Collapse
|
19
|
Vogt R, Hartmann S, Kunze J, Jupke JF, Steinhoff B, Schönherr H, Kuhnert KD, Witte K, Lamatsch DK, Wanzenböck J. Silver nanoparticles adversely affect the swimming behavior of European Whitefish ( Coregonus lavaretus) larvae within the low µg/L range. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:867-880. [PMID: 35881030 DOI: 10.1080/15287394.2022.2102099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study was to determine the effects of silver nanoparticles (AgNPs; speciation: NM-300 K) in the lab on the behavior of larvae in European Whitefish (Coregonus lavaretus), a relevant model species for temperate aquatic environments during alternating light and darkness phases. The behavioral parameters measured included activity, turning rate, and distance moved. C. lavaretus were exposed to AgNP at nominal concentrations of 0, 5, 15, 45, 135, or 405 µg/L (n = 33, each) and behavior was recorded using a custom-built tracking system equipped with light sources that reliably simulate light and darkness. The observed behavior was analyzed using generalized linear mixed models, which enabled reliable detection of AgNP-related movement patterns at 10-fold higher sensitivity compared to recently reported standard toxicological studies. Exposure to 45 µg/L AgNPs significantly resulted in hyperactive response patterns for both activity and turning rates after an illumination change from light to darkness suggesting that exposure to this compound triggered escape mechanisms and disorientation-like behaviors in C. lavaretus fish larvae. Even at 5 µg/L AgNPs some behavioral effects were detected, but further tests are required to assess their ecological relevance. Further, the behavior of fish larvae exposed to 135 µg/L AgNPs was comparable to the control for all test parameters, suggesting a triphasic dose response pattern. Data demonstrated the potential of combining generalized linear mixed models with behavioral investigations to detect adverse effects on aquatic species that might be overlooked using standard toxicological tests.
Collapse
Affiliation(s)
- Roland Vogt
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Sarah Hartmann
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
| | - Jan Kunze
- Institute of Real-time Learning Systems, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| | - Jonathan Frederik Jupke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Benedikt Steinhoff
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
- Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Holger Schönherr
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
- Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Klaus-Dieter Kuhnert
- Institute of Real-time Learning Systems, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| | - Klaudia Witte
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
| | | | - Josef Wanzenböck
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
20
|
Bao L, Geng Z, Wang J, He L, Kang A, Song J, Huang X, Zhang Y, Liu Q, Jiang T, Pang Y, Niu Y, Zhang R. Attenuated T cell activation and rearrangement of T cell receptor β repertoire in silica nanoparticle-induced pulmonary fibrosis of mice. ENVIRONMENTAL RESEARCH 2022; 213:113678. [PMID: 35710025 DOI: 10.1016/j.envres.2022.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Silica nanoparticles (SiNPs) cause pulmonary fibrosis through a complex immune response, but the underlying mechanisms by which SiNPs interact with T cells and affect their functions remain unclear. The T cell receptor (TCR) repertoire is closely related to T cell activation and proliferation and mediates innate and adaptive immunity. High-throughput sequencing of the TCR enables comprehensive monitoring of the immune microenvironment. Here, the role of the TCRβ repertoire was explored using a mouse model of SiNP-induced pulmonary fibrosis and a co-culture of RAW264.7 and CD4+ T cells. Our results demonstrated increased TCRβ expression and decreased CD25 and CD69 expression in CD4+ T cells from peripheral blood and lung collected 14 days after the induction of pulmonary fibrosis by SiNPs. Simultaneously, SiNPs significantly decreased CD25 and CD69 expression in CD4+ T cells in vitro via RAW264.7 cell presentation. Mechanistically, pLCK and pZap70 expression, involved in mediating T cell activation, were also decreased in the lung of mice with SiNP-induced pulmonary fibrosis. Furthermore, the profile of the TCRβ repertoire in mice with SiNP-induced pulmonary fibrosis showed that SiNPs markedly altered the usage of V genes, VJ gene combinations, and CDR3 amino acids in lung tissue. Collectively, our data suggested that SiNPs could interfere with T cell activation by macrophage presentation via the LCK/Zap70 pathway and rearrange the TCRβ repertoire for adaptive immunity and the pulmonary microenvironment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Juan Wang
- Department of Statistics, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Liyi He
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jianshi Song
- School of Basic Medical, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
21
|
Venzhik Y, Deryabin A, Popov V, Dykman L, Moshkov I. Gold nanoparticles as adaptogens increazing the freezing tolerance of wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55235-55249. [PMID: 35316488 DOI: 10.1007/s11356-022-19759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The intensive development of nanotechnology led to the widespread application of various nanoparticles and nanomaterials. As a result, nanoparticles enter the environment and accumulate in ecosystems and living organisms. The consequences of possible impact of nanoparticles on living organisms are not obvious. Experimental data indicate that nanoparticles have both toxic and stimulating effects on organisms. In this study, we demonstrated for the first time that gold nanoparticles can act as adaptogens increasing plant freezing tolerance. Priming winter wheat (Triticum aestivum L., var. Moskovskaya 39, Poaceae) seeds for 1 day in solutions of gold nanoparticles (15-nm diameter, concentrations of 5, 10, 20, and 50 µg/ml) led to an increase in freezing tolerance of 7-day-old wheat seedlings. A relationship between an increase in wheat freezing tolerance and changes in some important indicators for its formation-growth intensity, the activity of the photosynthetic apparatus and oxidative processes, and the accumulation of soluble sugars in seedlings-was established. Assumptions on possible mechanisms of gold nanoparticles effects on plant freezing tolerance are discussed.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Valery Popov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, 410049, Russia
| | - Igor Moshkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| |
Collapse
|
22
|
Application of an Ecotoxicological Battery Test to the Paddy Field Soils of the Albufera Natural Park. TOXICS 2022; 10:toxics10070375. [PMID: 35878280 PMCID: PMC9324136 DOI: 10.3390/toxics10070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
Albufera Natural Park (ANP) (Valencia, Spain) is one of the most important wetland areas of the Mediterranean coast subject to high anthropogenic pressure, on whose soils a battery of bioassays has never been applied to evaluate the ecotoxicological risk. The present study determined available and water-soluble heavy metal content in four paddy soils used in the ANP, and the ecotoxicological effect on these soils was evaluated by performing the bioassays regulated in Spanish Royal Decree 9/2005. Soil properties and extractable Co, Cr, Cu, Ni, Pb and Zn (EDTA pH = 7) were analyzed in soils. These elements and macro- and micronutrients were also assessed in soil leachate. A test battery covering the following was needed: acute toxicity test in Eisenia foetida (OECD TG 207); mineralization tests of nitrogen (OECD TG 2016) and carbon (OECD TG 217); growth inhibition test in Raphidocelis subcapitata (OECD TG 201); mobility inhibition test in Daphnia magna (OECD TG 202). The soils found in the most anthropized areas to the north of the ANP (Massanassa and Alfafar) demonstrated a higher concentration of available heavy metals than in the southern ones (Sueca and Sollana). The aqueous leachate of the studied soils contained very low concentrations, which would be related to soil properties. Despite the high concentration of available potentially toxic elements (PTEs) in the Massanassa and Alfafar soils, the studied soils showed no toxicity during the performed battery bioassays. Therefore, soils can be considered non-toxic despite the obtained PTEs available concentration.
Collapse
|
23
|
Ozfidan-Konakci C, Alp FN, Arikan B, Elbasan F, Cavusoglu H, Yildiztugay E. The biphasic responses of nanomaterial fullerene on stomatal movement, water status, chlorophyll a fluorescence transient, radical scavenging system and aquaporin-related gene expression in Zea mays under cobalt stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154213. [PMID: 35240187 DOI: 10.1016/j.scitotenv.2022.154213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Nanomaterial fullerene (FLN) has different responses called the hormesis effect against stress conditions. The favorable/adverse impacts of hormesis on crop quality and productivity are under development in agrotechnology. In this study, the effect of FLN administration (100-250-500mg L-1 for FLN1-2-3, respectively) on growth, water management, gas exchange, chlorophyll fluorescence kinetics and cobalt (Co)-induced oxidative stress in Zea mays was investigated. The negative alterations in relative growth rate (RGR), water status (relative water content, osmotic potential and proline content) and gas exchange/stomatal regulation were removed by FLNs. FLNs were shown to protect photosynthetic apparatus and preserve the photochemistry of photosystems (PSI-PSII) in photosynthesis, chlorophyll fluorescence transients and energy flux damaged under Co stress. The maize leaves exposed to Co stress exhibited a high accumulation of hydrogen peroxide (H2O2) due to insufficient scavenging activity, which was confirmed by reactive oxygen species (ROS)-specific fluorescence visualization in guard cells. FLN regulated the gene expression of ribulose-1,5-bisphosphate carboxylase large subunit (rbcL), nodulin 26-like intrinsic protein1-1 (NIP1-1) and tonoplast intrinsic protein2-1 (TIP2-1) under stress. After stress exposure, FLNs successfully eliminated H2O2 content produced by superoxide dismutase (SOD) activity of catalase (CAT) and peroxidase (POX). The ascorbate (AsA) regeneration was achieved in all FLN applications together with Co stress through the elevated monodehydroascorbate reductase (MDHAR, under all FLNs) and dehydroascorbate reductase (DHAR, only FLN1). However, dose-dependent FLNs (FLN1-2) provided the induced pool of glutathione (GSH) and GSH redox state. Hydroponically applied FLNs removed the restrictions on metabolism and biological process induced by lipid peroxidation (TBARS content) and excessive ROS production. Considering all data, the modulation of treatment practices in terms of FLN concentrations and forms of its application will provide a unique platform for improving agricultural productivity and stress resistance in crops. The current study provided the first findings on the chlorophyll a fluorescence transient and localization of ROS in guard cells of Zea mays exposed to FLN and Co stress.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram 42090, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu 42130, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu 42130, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu 42130, Konya, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu 42130, Konya, Turkey.
| |
Collapse
|
24
|
Gamma Radiation (60Co) Induces Mutation during In Vitro Multiplication of Vanilla (Vanilla planifolia Jacks. ex Andrews). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro mutagenesis is an alternative to induce genetic variation in vanilla (Vanilla planifolia Jacks. ex Andrews), which is characterized by low genetic diversity. The objective of this study was to induce somaclonal variation in V. planifolia by gamma radiation and detect it using inter-simple sequence repeat (ISSR) molecular markers. Shoots previously established in vitro were multiplied in Murashige and Skoog culture medium supplemented with 2 mg·L−1 BAP (6-benzylaminopurine). Explants were irradiated with different doses (0, 20, 40, 60, 80 and 100 Gy) of 60Co gamma rays. Survival percentage, number of shoots per explant, shoot length, number of leaves per shoot, and lethal dose (LD50) were recorded after 60 d of culture. For molecular analysis, ten shoots were used for each dose and the donor plant as a control. Eight ISSR primers were selected, and 43 fragments were obtained. The percentage of polymorphism (% P) was estimated. A dendrogram based on Jaccard’s coefficient and the neighbor joining clustering method was obtained. Results showed a hormetic effect on the explants, promoting development at low dose (20 Gy) and inhibition and death at high doses (60–100 Gy). The LD50 was observed at the 60 Gy. Primers UBC-808, UBC-836 and UBC-840 showed the highest % P, with 42.6%, 34.7% and 28.7%, respectively. Genetic distance analysis showed that treatments without irradiation and with irradiation presented somaclonal variation. The use of gamma rays during in vitro culture is an alternative to broaden genetic diversity for vanilla breeding.
Collapse
|
25
|
Ying H, Ruan Y, Zeng Z, Bai Y, Xu J, Chen S. Iron oxide nanoparticles size-dependently activate mouse primary macrophages via oxidative stress and endoplasmic reticulum stress. Int Immunopharmacol 2022; 105:108533. [DOI: 10.1016/j.intimp.2022.108533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022]
|
26
|
Hlaing CB, Chariyakornkul A, Pilapong C, Punvittayagul C, Srichairatanakool S, Wongpoomchai R. Assessment of Systemic Toxicity, Genotoxicity, and Early Phase Hepatocarcinogenicity of Iron (III)-Tannic Acid Nanoparticles in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1040. [PMID: 35407158 PMCID: PMC9000733 DOI: 10.3390/nano12071040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Iron-tannic acid nanoparticles (Fe-TA NPs) presented MRI contrast enhancement in both liver cancer cells and preneoplastic rat livers, while also exhibiting an anti-proliferative effect via enhanced autophagic death of liver cancer cells. Hence, a toxicity assessment of Fe-TA NPs was carried out in the present study. Acute and systemic toxicity of intraperitoneal Fe-TA NPs administration was investigated via a single dose of 55 mg/kg body weight (bw). Doses were then repeated 10 times within a range of 0.22 to 5.5 mg/kg bw every 3 days in rats. Furthermore, clastogenicity was assessed by rat liver micronucleus assay. Carcinogenicity was evaluated by medium-term carcinogenicity assay using glutathione S-transferase placental form positive foci as a preneoplastic marker, while three doses ranging from 0.55 to 17.5 mg/kg bw were administered 10 times weekly via intraperitoneum. Our study found that the LD50 value of Fe-TA NPs was greater than 55 mg/kg bw. Repeated dose administration of Fe-TA NPs over a period of 28 days and 10 weeks revealed no obvious signs of systemic toxicity, clastogenicity, and hepatocarcinogenicity. Furthermore, Fe-TA NPs did not alter liver function or serum iron status, however, increased liver iron content at certain dose in rats. Notably, antioxidant response was observed when a dose of 17.5 mg/kg bw was given to rats. Accordingly, our study found no signs of toxicity, genotoxicity, and early phase hepatocarcinogenicity of Fe-TA NPs in rats.
Collapse
Affiliation(s)
- Chi Be Hlaing
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Charatda Punvittayagul
- Research Affairs, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| |
Collapse
|
27
|
The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Demetrio PM, Rimoldi F, Peluso ML. Impact of Intensive Agricultural Production on the Ecotoxicologic Quality of Associated Medium-Order Streams: Cereal and Oilseed versus Horticultural Production. ENVIRONMENTAL MANAGEMENT 2022; 69:600-611. [PMID: 35067764 DOI: 10.1007/s00267-021-01579-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Streams associated with agroecosystems receive inputs of chemicals used within a basin that negatively impact its environmental quality. In this work, we aimed at comparing, through a battery of ecotoxicological tests, the relative impact of the cereal and/or oilseed and vegetable and/or flower agricultural-production models on the ecotoxicologic quality of both the water column and the bottom sediments of medium-order streams. The study, performed over 4 years, involved two major agroproductive areas of Argentina, one predominating in cereal and/or oilseed crops (Area 1), the other in vegetable and/or flower agriculture (Area 2). Both productive systems impacted the associated surface water bodies negatively, with the intensive production of vegetables and flowers producing greater ecotoxicologic effects on diagnostic organisms. The intensive-agriculture systems associated with Area 2 caused greater negative impacts on the water column than those of Area 1, with this pattern occurring in reverse for the bottom sediments. Furthermore, the samples from the sites associated with horticulture were more frequently toxic than those from Area 1. Of the organisms used to assess sample toxicity-Lactuca sativa, Daphnia magna, and Hyallela curvispina-L. sativa was the most sensitive to the type of contaminants associated with the form of agricultural land use; whereas no differences in sensitivity were observed between the two crustaceans. We found that the sublethal effects were significantly more sensitive than the lethal. The findings from this work would strongly advocate more sustainable agricultural-management plans that employed phytosanitary products whose action were more environmentally sustainable.
Collapse
Affiliation(s)
- Pablo Martín Demetrio
- Centro de Investigaciones del Medio Ambiente (CIM), CONICET, Universidad Nacional de La Plata, Bv. 120 n° 1489, La Plata (1900), Buenos Aires, Argentina
| | - Federico Rimoldi
- Centro de Investigaciones del Medio Ambiente (CIM), CONICET, Universidad Nacional de La Plata, Bv. 120 n° 1489, La Plata (1900), Buenos Aires, Argentina
| | - María Leticia Peluso
- Centro de Investigaciones del Medio Ambiente (CIM), CONICET, Universidad Nacional de La Plata, Bv. 120 n° 1489, La Plata (1900), Buenos Aires, Argentina.
| |
Collapse
|
29
|
Chahardoli A, Sharifan H, Karimi N, Kakavand SN. Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO 2NPs) in Nigella arvensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151222. [PMID: 34715233 DOI: 10.1016/j.scitotenv.2021.151222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of titanium dioxide nanoparticles (TiO2NPs) in agro-industrial practices leads to their high accumulation in the environment or agricultural soils. However, their threshold and ecotoxicological impacts on plants are still poorly understood. In this study, the hormetic effects of TiO2NPs at a concentration range of 0-2500 mg/L on the growth, and biochemical and physiological behaviors of Nigella arvensis in a hydroponic system were examined for three weeks. The translocation of TiO2NPs in plant tissues was characterized through scanning and transmission electron microscopy (SEM and TEM). The bioaccumulation of total titanium (Ti) was quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Briefly, the elongation of roots and shoots and the total biomass growth were significantly promoted at 100 mg/L TiO2NPs. As the results indicated, TiO2NPs had a hormesis effect on the proline content, i.e., a stimulating effect at the low concentrations of 50 and 100 mg/L and an inhibiting effect in the highest concentration of 2500 mg/L. A biphasic dose-response was observed against TiO2NPs in shoot soluble sugar and protein contents. The inhibitory effects were detected at ≥1000 mg/L TiO2NPs, where the synthesis of chlorophylls and carotenoid was reduced. At 1000 mg/ L, TiO2NPs significantly promoted the cellular H2O2 generation, and increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Furthermore, it enhanced the total antioxidant content (TAC), total iridoid content (TIC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, the study revealed the physiological and biochemical alterations in a medicinal plant affected by TiO2NPs, which can help to use these NPs beneficially by eliminating their harmful effects.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamidreza Sharifan
- Department of Natural Science, Albany State University, Albany, GA 31705, USA
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Shiva Najafi Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
30
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
31
|
Priyam A, Singh PP, Afonso LOB, Schultz AG. Abiotic factors and aging alter the physicochemical characteristics and toxicity of Phosphorus nanomaterials to zebrafish embryos. NANOIMPACT 2022; 25:100387. [PMID: 35559893 DOI: 10.1016/j.impact.2022.100387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale phosphorus (P)-based formulations are being investigated as potentially new fertilizers to overcome the challenges of conventional bulk P fertilizers in agriculture, including low efficacy rates and high application levels. After agricultural applications, the NMs may be released into aquatic environments and transform over time (by aging) or in the presence of abiotic factors such as natural organic matter or sunlight exposure. It is, therefore, important to investigate the physicochemical changes of NMs in environmentally realistic conditions and assess their potential acute and sublethal toxic effects on aquatic organisms. To investigate this, two separate studies were conducted: 1. the effects of 3-months aged P-based NMs on zebrafish embryos, and 2. the influence of humic acid (HA), UV exposure, or a combination of both on P-based NM toxicity in zebrafish embryos. Four different types of nanohydroxyapatites (nHAPs) and a nanophosphorus (nP) were included in the study. These NMs differed in their physicochemical properties, most prominently their shape and size. Environmental transformations were observed for P-based NMs due to aging or interaction with abiotic factors. The aging of the NMs increased the hydrodynamic diameter (HDD) of rod- and needle-shaped NMs and decreased the size of the platelet and spherical NMs, whereas interactions with HA and UV decreased the NMs' HDD. It was observed that no LC50 (survival) and IC50 (hatch and heart rates) were obtained when the zebrafish embryos were exposed to the aged NMs or when NMs were added in the presence of HA and UV. Overall, these results suggest that P-based NMs cause no acute toxicity and minimal sub-lethal toxicity to zebrafish embryos in environmentally realistic experimental conditions.
Collapse
Affiliation(s)
- Ayushi Priyam
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia; National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Pushplata Prasad Singh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia; National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia.
| |
Collapse
|
32
|
Pereira SH, Almeida LT, Ferraz AC, Ladeira MDS, Ladeira LO, Magalhães CLDB, Silva BDM. Antioxidant and antiviral activity of fullerol against Zika virus. Acta Trop 2021; 224:106135. [PMID: 34536367 DOI: 10.1016/j.actatropica.2021.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Neglected for years, Zika virus (ZIKV) has become one of the most relevant arboviruses in current public health. The recent Zika fever epidemic in the Americas generated a worldwide alert due to the association with diseases such as Guillain-Barré syndrome and congenital syndromes. Among the pathogenesis of ZIKV, recent studies suggest that oxidative stress plays an important role during infection and that compounds capable of modulating oxidative stress are promising as therapeutics. Furthermore, so far there are no specific and efficient antiviral drug or vaccine available against ZIKV. Thus, fullerol was evaluated in the context of infection by ZIKV, since it is a carbon nanomaterial known for its potent antioxidant action. In this study, fullerol did not alter cell viability at the concentrations tested, proving to be inert, beyond to presenting high antioxidant power at low concentrations. ZIKV infection of human glioblastoma increased the production of reactive oxygen species by 60% and modulated the Nrf-2 pathway activity negatively. After treatment with fullerol, both conditions were restored to baseline levels. Additionally, fullerol was able to reduce viral production by up to 90%. Therefore, our results suggest that fullerol as a promising candidate in the control of ZIKV infections, presenting both antioxidant and antiviral action.
Collapse
Affiliation(s)
- Samille Henriques Pereira
- Laboratório de Biologia e Tecnologia de Micro-organismos, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil; Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Brazil
| | - Letícia Trindade Almeida
- Laboratório de Biologia e Tecnologia de Micro-organismos, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil; Programa de Pós Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil
| | - Ariane Coelho Ferraz
- Laboratório de Biologia e Tecnologia de Micro-organismos, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil; Programa de Pós Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil
| | | | | | - Cíntia Lopes de Brito Magalhães
- Laboratório de Biologia e Tecnologia de Micro-organismos, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil; Programa de Pós Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil
| | - Breno de Mello Silva
- Laboratório de Biologia e Tecnologia de Micro-organismos, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil; Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Brazil; Programa de Pós Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Brazil.
| |
Collapse
|
33
|
Iavicoli I, Fontana L, Agathokleous E, Santocono C, Russo F, Vetrani I, Fedele M, Calabrese EJ. Hormetic dose responses induced by antibiotics in bacteria: A phantom menace to be thoroughly evaluated to address the environmental risk and tackle the antibiotic resistance phenomenon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149255. [PMID: 34340082 DOI: 10.1016/j.scitotenv.2021.149255] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 05/17/2023]
Abstract
The environmental contamination of antibiotics caused by their over or inappropriate use is a major issue for environmental and human health since it can adversely impact the ecosystems and promote the antimicrobial resistance. Indeed, considering that in the environmental matrices these drugs are present at low levels, the possibility that bacteria exhibit a hormetic response to increase their resilience when exposed to antibiotic subinhibitory concentrations might represent a serious threat. Information reported in this review showed that exposure to different types of antibiotics, either administered individually or in mixtures, is capable of exerting hormetic effects on bacteria at environmentally relevant concentrations. These responses have been reported regardless of the type of bacterium or antibiotic, thus suggesting that hormesis would be a generalized adaptive mechanism implemented by bacteria to strengthen their resistance to antibiotics. Hormetic effects included growth, bioluminescence and motility of bacteria, their ability to produce biofilm, but also the frequency of mutation and plasmid conjugative transfer. The evaluation of quantitative features of antibiotic-induced hormesis showed that these responses have both maximum stimulation and dose width characteristics similar to those already reported in the literature for other stressors. Notably, mixtures comprising individual antibiotic inducing stimulatory responses might have distinct combined effects based on antagonistic, synergistic or additive interactions between components. Regarding the molecular mechanisms of action underlying the aforementioned effects, we put forward the hypothesis that the adoption of adaptive/defensive responses would be driven by the ability of antibiotic low doses to modulate the transcriptional activity of bacteria. Overall, our findings suggest that hormesis plays a pivotal role in affecting the bacterial behavior in order to acquire a survival advantage. Therefore, a proactive and effective risk assessment should necessarily take due account of the hormesis concept to adequately evaluate the risks to ecosystems and human health posed by antibiotic environmental contamination.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Francesco Russo
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Ilaria Vetrani
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Mauro Fedele
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
34
|
Guzmán-Báez GA, Trejo-Téllez LI, Ramírez-Olvera SM, Salinas-Ruíz J, Bello-Bello JJ, Alcántar-González G, Hidalgo-Contreras JV, Gómez-Merino FC. Silver Nanoparticles Increase Nitrogen, Phosphorus, and Potassium Concentrations in Leaves and Stimulate Root Length and Number of Roots in Tomato Seedlings in a Hormetic Manner. Dose Response 2021; 19:15593258211044576. [PMID: 34840539 PMCID: PMC8619790 DOI: 10.1177/15593258211044576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) display unique biological activities and may serve as novel biostimulators. Nonetheless, their biostimulant effects on germination, early growth, and major nutrient concentrations (N, P, and K) in tomato (Solanum lycopersicum) have been little explored. Methods Tomato seeds of the Vengador and Rio Grande cultivars were germinated on filter paper inside plastic containers in the presence of 0, 5, 10, and 20 mg/L AgNPs. Germination parameters were recorded daily, while early growth traits of seedlings were determined 20 days after applying the treatments (dat). To determine nutrient concentrations in leaves, a hydroponic experiment was established, adding AgNPs to the nutrient solution. Thirty-day-old plants were established in the hydroponic system and kept there for 7 days, and subsequently, leaves were harvested and nutrient concentrations were determined. Results The AgNPs applied did not affect germination parameters, whereas their application stimulated length and number of roots in a hormetic manner. In 37-day-old plants, low AgNP applications increased the concentrations of N, P, and K in leaves. Conclusion As novel biostimulants, AgNPs promoted root development, especially when applied at 5 mg/L. Furthermore, they increased N, P, and K concentration in leaves, which is advantageous for seedling performance during the early developmental stages.
Collapse
Affiliation(s)
| | | | | | - Josafhat Salinas-Ruíz
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | - Jericó J Bello-Bello
- CONACYT-College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| | | | | | - Fernando C Gómez-Merino
- College of Postgraduates in Agricultural Sciences Campus Córdoba, Amatlán de Los Reyes, Veracruz, Mexico
| |
Collapse
|
35
|
Hassan A, Elebeedy D, Matar ER, Fahmy Mohamed Elsayed A, Abd El Maksoud AI. Investigation of Angiogenesis and Wound Healing Potential Mechanisms of Zinc Oxide Nanorods. Front Pharmacol 2021; 12:661217. [PMID: 34721007 PMCID: PMC8552110 DOI: 10.3389/fphar.2021.661217] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The angiogenesis process is an essential issue in tissue engineering. Zinc oxide nanorods are biocompatible metals capable of generating reactive oxygen species (ROS) that respond to induced angiogenesis through various mechanisms; however, released Zn (II) ions suppress the angiogenesis process. In this study, we fabricated green ZnO nanorods using albumin eggshell as a bio-template and investigate its angiogenic potential through chorioallantoic membrane assay and excision wound healing assay. This study demonstrated that angiogenesis and wound healing processes depend on pro-angiogenic factors as VEGF expression due to ZnO nanorods' exiting. Angiogenesis induced via zinc oxide nanorods may develop sophisticated materials to apply in the wound healing field.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Dalia Elebeedy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Emadeldin R Matar
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed I Abd El Maksoud
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt.,College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
36
|
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021; 26:889-915. [PMID: 34677749 PMCID: PMC8578518 DOI: 10.1007/s12192-021-01241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil.
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
37
|
Seyed Alian R, Dziewięcka M, Kędziorski A, Majchrzycki Ł, Augustyniak M. Do nanoparticles cause hormesis? Early physiological compensatory response in house crickets to a dietary admixture of GO, Ag, and GOAg composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147801. [PMID: 34022572 DOI: 10.1016/j.scitotenv.2021.147801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to identify the physiological responses of house cricket females following short-term exposure to relatively low dietary doses of graphene oxide (GO, 20 μg · g-1 food), silver (Ag, 400 μg · g-1 food) nanoparticles (NPs), or graphene oxide‑silver nanoparticle composite (GO-AgNPs, 20: 400 μg · g-1 food). Energy intake and distribution were measured on the third, sixth, and tenth day. A semi-quantitative API®ZYM assay of digestive enzyme fingerprints was performed on the third and tenth day of continuous treatment. Physicochemical properties of the NPs were obtained by combining SEM, EDX spectrometry, AFM, and DLS techniques. The obtained results showed decreased energy consumption, particularly assimilation as an early response to dietary NPs followed by compensatory changes in feeding activity leading to the same consumption and assimilation throughout the experimental period (10 days). The increased activities of digestive enzymes in NP-treated females compared to the control on the third day of the experiment suggest the onset of compensatory reactions of the day. Moreover, the insects treated with GO-AgNP composite retained more body water, suggesting increased uptake. The observed changes in the measured physiological parameters after exposure to NPs are discussed in light of hormesis.
Collapse
Affiliation(s)
- Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Majchrzycki
- Centre of Advanced Technology, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
38
|
Yates-Alston S, Sarkar S, Cochran M, Kuthirummal N, Levi N. Hybrid donor-acceptor polymer nanoparticles and combination antibiotic for mitigation of pathogenic bacteria and biofilms. J Microbiol Methods 2021; 190:106328. [PMID: 34536464 DOI: 10.1016/j.mimet.2021.106328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
Biofilms pose a significant clinical problem in skin and soft tissue infections. Their resistance to antibiotics has spurred investigations into alternative treatments, such as nanoparticle-mediated photothermal ablation. Non-toxic Hybrid Donor- Acceptor (DA) Polymer nanoParticles (H-DAPPs) were developed for fluorescence imaging (using poly(3-hexylthiophene-2,5 diyl) (P3HT)) and rapid, near-infrared photothermal ablation (NIR- PTA) (using poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe)). H-DAPPs were evaluated alone, and in combination with antibiotics, against planktonic S. aureus and S. pyogenes, and S. aureus biofilms. H-DAPPs NIR-PTA (15-700 μg/ mL) can generate rapid temperature changes of 27.6-73.1 °C, which can eradicate planktonic bacterial populations and reduce biofilm bacterial viability by more than 4- log (> 99.99%) with exposure to 60 s of 800 nm light. Reductions were confirmed via confocal analysis, which suggested that H-DAPPs PTA caused bacterial inactivation within the biofilms, but did not significantly reduce biofilm polysaccharides. SEM imaging revealed structural changes in biofilms after H-DAPPs PTA. S. aureus biofilms challenged with 100 μg/mL of H-DAPPs (H-DAPPs-100) to induce an average temperature of 55.1 °C, and the minimum biofilm eradication concentration (MBEC) of clindamycin, resulted in up to ~3- log decrease in bacterial viability compared to untreated biofilms and those administered H-DAPPs-100 PTA only, and up to ~2- log compared to biofilms administered only clindamycin. This study demonstrates that polymer nanoparticle PTA can mitigate biofilm infection and may improve antimicrobial efficacy.
Collapse
Affiliation(s)
- Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Matthew Cochran
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| |
Collapse
|
39
|
Variable Molecular Weight Polymer Nanoparticles for Detection and Hyperthermia-Induced Chemotherapy of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13174472. [PMID: 34503282 PMCID: PMC8431470 DOI: 10.3390/cancers13174472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The purpose of this work was to evaluate the development of polymer-based nanoparticles that can both generate heat and be used for fluorescence detection. The nanoparticles were used against luminescent colorectal cancer cells that were either sensitive or resistant to the chemotherapy drug, oxaliplatin. The fluorescence of the nanoparticles indicates that they are internalized within the cells for heat generation. Mild heating makes oxaliplatin-resistant cancer cells responsive to chemotherapy, and the nanoparticle-induced hyperthermia causes cell death in a few minutes, compared to classical bulk heating, which takes a few hours. Changes in the luminescence of the cancer cells can be used to determine the thermal dose induced by the nanoparticles, which may be correlated with the cell viability and therapeutic response. Abstract Oxaliplatin plays a significant role as a chemotherapeutic agent for the treatment of colorectal cancer (CRC); however, oxaliplatin-resistant phenotypes make further treatment challenging. Here, we have demonstrated that rapid (60 s) hyperthermia (42 °C), generated by the near-infrared stimulation of variable molecular weight nanoparticles (VMWNPs), increases the effectiveness of oxaliplatin in the oxaliplatin-resistant CRC cells. VMWNP-induced hyperthermia resulted in a higher cell death in comparison to cells exposed to chemotherapy at 42 °C for 2 h. Fluorescence from VMWNPs was observed inside cells, which allows for the detection of CRC. The work further demonstrates that the intracellular thermal dose can be determined using cell luminescence and correlated with the cell viability and response to VMWNP-induced chemotherapy. Mild heating makes oxaliplatin-resistant cancer cells responsive to chemotherapy, and the VMWNPs-induced hyperthermia can induce cell death in a few minutes, compared to classical bulk heating. The results presented here lay the foundation for photothermal polymer nanoparticles to be used for cell ablation and augmenting chemotherapy in drug-resistant colorectal cancer cells.
Collapse
|
40
|
Investigating the Molecular Processes behind the Cell-Specific Toxicity Response to Titanium Dioxide Nanobelts. Int J Mol Sci 2021; 22:ijms22179432. [PMID: 34502343 PMCID: PMC8431385 DOI: 10.3390/ijms22179432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
Some engineered nanomaterials incite toxicological effects, but the underlying molecular processes are understudied. The varied physicochemical properties cause different initial molecular interactions, complicating toxicological predictions. Gene expression data allow us to study the responses of genes and biological processes. Overrepresentation analysis identifies enriched biological processes using the experimental data but prompts broad results instead of detailed toxicological processes. We demonstrate a targeted filtering approach to compare public gene expression data for low and high exposure on three cell lines to titanium dioxide nanobelts. Our workflow finds cell and concentration-specific changes in affected pathways linked to four Gene Ontology terms (apoptosis, inflammation, DNA damage, and oxidative stress) to select pathways with a clear toxicity focus. We saw more differentially expressed genes at higher exposure, but our analysis identifies clear differences between the cell lines in affected processes. Colorectal adenocarcinoma cells showed resilience to both concentrations. Small airway epithelial cells displayed a cytotoxic response to the high concentration, but not as strongly as monocytic-like cells. The pathway-gene networks highlighted the gene overlap between altered toxicity-related pathways. The automated workflow is flexible and can focus on other biological processes by selecting other GO terms.
Collapse
|
41
|
Cesar-Ribeiro C. Chemical Contents of Disposed Light Sticks Affect the Physiology of Rocky Crab Pachygrapsus transversus and Gray Shrimps Litopennaeus vanammei. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:370-377. [PMID: 34216230 DOI: 10.1007/s00128-021-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Light-sticks shine resulting from a chemiluminescent reaction between two components kept separate by a glass ampoule. Light-stick baits are discarded in the ocean after being used in longline fishing. The traditional Brazilian community of Costa dos Coqueiros, Brazil, uses the discarded light-sticks chemical contents found on beaches as medicine for rheumatism and mycoses. This study assessed the effects that light-sticks (chemical contents) have on Pachygrapsus transversus and Litopennaeus vanammei. Assays of metabolic changes involved rates of ammonia excretion and oxygen consumption. The EC50-60 min to juveniles and adults P. transversus were 0.0004% and 0.0046%, respectively; and L. vanammei revealed a susceptible species: EC50-60 min of 0.0006% for oxygen uptake and 0.0072% for ammonia excretion, and also was observed a hormesis effect in the ammonia excretion. Light-stick contents could promote significant metabolic changes in rocky crabs and gray shrimp. Educational actions are needed that make the population aware of and avoid the dangerous misuse of the light-sticks.
Collapse
Affiliation(s)
- Caio Cesar-Ribeiro
- Laboratório de Ecotoxicologia, Centro Universitário Monte Serrat, Av. Rangel Pestana, 99, Vila Mathias, Santos, SP, 11013-931, Brazil.
| |
Collapse
|
42
|
Tortella GR, Pieretti JC, Rubilar O, Fernández-Baldo M, Benavides-Mendoza A, Diez MC, Seabra AB. Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Crit Rev Biotechnol 2021; 42:431-449. [PMID: 34233551 DOI: 10.1080/07388551.2021.1939260] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rapid development of nanomedicine has created a high demand for silver, copper and copper oxide nanoparticles. Due to their high reactivity and potent antimicrobial activity, silver and copper-based nanomaterials have been playing an important role in the search for new alternatives for the treatment of several issues of concern, such as pathologies caused by bacteria and viruses. Viral diseases are a significant and constant threat to public health. The most recent example is the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, the object of the present review is to highlight recent progress in the biomedical uses of these metal nanoparticles for the treatment and prevention of human viral infections. We discuss the antiviral activity of AgNPs and Cu-based NPs, including their actions against SARS-CoV-2. We also discuss the toxicity, biodistribution and excretion of AgNPs and CuNPs, along with their uses in medical devices or on inert surfaces to avoid viral dissemination by fomites. The challenges and limitations of the biomedical use of these nanoparticles are presented.
Collapse
Affiliation(s)
- G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - J C Pieretti
- Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - O Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile
| | - M Fernández-Baldo
- National Scientific and Technical Research Council
- Conicet · INQUISAL Instituto de Química San Luis, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico
| | - M C Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA-BIOREN, Universidad de La Frontera, Temuco, Chile.,Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC (UFABC), Santo André, Brazil
| |
Collapse
|
43
|
Liu M, Lin Z, Ke X, Fan X, Joseph S, Taherymoosavi S, Liu X, Bian R, Solaiman ZM, Li L, Pan G. Rice Seedling Growth Promotion by Biochar Varies With Genotypes and Application Dosages. FRONTIERS IN PLANT SCIENCE 2021; 12:580462. [PMID: 34234791 PMCID: PMC8256797 DOI: 10.3389/fpls.2021.580462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
While biochar use in agriculture is widely advocated, how the effect of biochar on plant growth varies with biochar forms and crop genotypes is poorly addressed. The role of dissolvable organic matter (DOM) in plant growth has been increasingly addressed for crop production with biochar. In this study, a hydroponic culture of rice seedling growth of two cultivars was treated with bulk mass (DOM-containing), water extract (DOM only), and extracted residue (DOM-free) of maize residue biochar, at a volumetric dosage of 0.01, 0.05, and 0.1%, respectively. On seedling root growth of the two cultivars, bulk biochar exerted a generally negative effect, while the biochar extract had a consistently positive effect across the application dosages. Differently, the extracted biochar showed a contrasting effect between genotypes. In another hydroponic culture with Wuyunjing 7 treated with biochar extract at sequential dosages, seedling growth was promoted by 95% at 0.01% dosage but by 26% at 0.1% dosage, explained with the great promotion of secondary roots rather than of primary roots. Such effects were likely explained by low molecular weight organic acids and nanoparticles contained in the biochar DOM. This study highlights the importance of biochar DOM and crop genotype when evaluating the effect of biochar on plants. The use of low dosage of biochar DOM could help farmers to adopt biochar technology as a solution for agricultural sustainability.
Collapse
Affiliation(s)
- Minglong Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Zhi Lin
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xianlin Ke
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Stephen Joseph
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Sarasadat Taherymoosavi
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zakaria M. Solaiman
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Toxicity and Antioxidant Activity of Fullerenol C 60,70 with Low Number of Oxygen Substituents. Int J Mol Sci 2021; 22:ijms22126382. [PMID: 34203700 PMCID: PMC8232284 DOI: 10.3390/ijms22126382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/01/2023] Open
Abstract
Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene’s carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.
Collapse
|
45
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
46
|
Yu H, Luo D, Dai L, Cheng F. In silico nanosafety assessment tools and their ecosystem-level integration prospect. NANOSCALE 2021; 13:8722-8739. [PMID: 33960351 DOI: 10.1039/d1nr00115a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered nanomaterials (ENMs) have tremendous potential in many fields, but their applications and commercialization are difficult to widely implement due to their safety concerns. Recently, in silico nanosafety assessment has become an important and necessary tool to realize the safer-by-design strategy of ENMs and at the same time to reduce animal tests and exposure experiments. Here, in silico nanosafety assessment tools are classified into three categories according to their methodologies and objectives, including (i) data-driven prediction for acute toxicity, (ii) fate modeling for environmental pollution, and (iii) nano-biological interaction modeling for long-term biological effects. Released ENMs may cross environmental boundaries and undergo a variety of transformations in biological and environmental media. Therefore, the potential impacts of ENMs must be assessed from a multimedia perspective and with integrated approaches considering environmental and biological effects. Ecosystems with biodiversity and an abiotic environment may be used as an excellent integration platform to assess the community- and ecosystem-level nanosafety. In this review, the advances and challenges of in silico nanosafety assessment tools are carefully discussed. Furthermore, their integration at the ecosystem level may provide more comprehensive and reliable nanosafety assessment by establishing a site-specific interactive system among ENMs, abiotic environment, and biological communities.
Collapse
Affiliation(s)
- Hengjie Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Limin Dai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Fan D, Wang S, Guo Y, Liu J, Agathokleous E, Zhu Y, Han J. The role of bacterial communities in shaping Cd-induced hormesis in 'living' soil as a function of land-use change. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124996. [PMID: 33444951 DOI: 10.1016/j.jhazmat.2020.124996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Bacterial communities and soil physicochemical properties shape soil enzymes activities. However, how environmental factors and bacterial communities affect the relationship between increasing doses of soil pollutants and soil alkaline phosphatase (ALP), an index of soil microbiota activity, remains poorly understood. In this study, we investigated the response of soil ALP to 13 doses of Cd (0 and 0.01-100 mg/kg) under four land uses, viz. grassland (GL), natural forest (NF), plantation forest (PF), and wheat field (WF). We found that Cd commonly induced hormetic-like responses of soil ALP, with a maximum stimulation of 10.7%, 10.1%, 11.6%, and 14.5% in GL, NF, PF, and WF, respectively. The size of the hormetic zone (Horzone), an integrated indicator of the stimulation phase and biological plasticity, was in the order GL > WF > PF > NF, and the hormetic zone occurred in the dose range of 5-10, 0.3-10, 0.8-3, and 3-5 mg/kg, respectively. These results indicate highly pleiotropic responses of 'living' soil system to promote resilience to Cd contamination, with soil microbiota potentially contributing to soil ALP's hormetic-like response under different land uses. The hormetic-like response of 'living' soil ALP in different land uses offers a new insight into the identification and minimization of the ecological risks of land-use change in Cd-contaminated lands.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengyan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanhui Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
48
|
George S, Teo LL, Majumder S, Chew WL, Khoo GH. Low levels of silver in food packaging materials may have no functional advantage, instead enhance microbial spoilage of food through hormetic effect. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Filipiak ZM, Bednarska AJ. Different effects of Zn nanoparticles and ions on growth and cellular respiration in the earthworm Eisenia andrei after long-term exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:459-469. [PMID: 33616802 PMCID: PMC7987695 DOI: 10.1007/s10646-021-02360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 05/13/2023]
Abstract
In this study, the effects of zinc nanoparticles (ZnO-NPs) and ions (ZnCl2) on the mortality, growth, maturation, and cellular respiration of the earthworm Eisenia andrei were assessed. Earthworms were individually exposed for 98 days, starting from the juvenile stage, to soils contaminated with either ZnO-NPs or ZnCl2 (125, 250, 500 and 1000 mg Zn kg-1 dry weight (dw)). Exposure to the highest-concentration ionic treatments (500 and 1000 mg kg-1) caused 100% mortality, while for other treatments, mortality did not exceed 15% at the end of exposure. Compared to the control treatment, both 125-1000 mg kg-1 ZnO-NPs and 125 or 250 mg kg-1 ZnCl2 stimulated earthworm growth, which might be due to a hormetic effect. ZnO-NPs and ZnCl2 caused different responses at medium Zn concentrations (250 and 500 mg kg-1): earthworms exposed to ionic treatment at 250 mg kg-1 were characterized by a significantly lower growth constant, lower cellular respiration rate, later inflection point, and higher final body weight than those exposed to ZnO-NPs treatments at the same (250 mg kg-1) or twice as high (500 mg kg-1) nominal Zn concentrations. However, differences were not observed in all examined parameters between the studied forms when the highest-concentration ZnO-NPs treatment was compared with the lowest-concentration ionic treatment, which was likely due to the same levels of available Zn concentrations in those treatments. Overall, different growth and maturation strategies accompanied by pronounced differences in cellular respiration were adopted by earthworms exposed to low and medium levels of either ZnO-NPs or ZnCl2.
Collapse
Affiliation(s)
- Zuzanna M Filipiak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland
| |
Collapse
|
50
|
Ullman D. Exploring Possible Mechanisms of Hormesis and Homeopathy in the Light of Nanopharmacology and Ultra-High Dilutions. Dose Response 2021; 19:15593258211022983. [PMID: 34177397 PMCID: PMC8207273 DOI: 10.1177/15593258211022983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Serially diluted succussed solutions of a suitable drug/toxic substance can exhibit physicochemical and biological properties even far beyond Avogadro's limit defying conventional wisdom. They can show hormesis, and homeopathy uses them as medicines. Many studies confirm that they can have an impact on gene expression different than controls. Water in the exclusion zone phase can have memory but for a short period. However, the nanoparticle as the physical substrate can hold information. Nanoparticle and exclusion zone duo as nanoparticle-exclusion zone shell can provide a prolonged memory. The Nanoparticle-Exclusion Zone Shell Model may be an important step toward explaining the nature and bioactivity of serially diluted succussed solutions used as homeopathic medicines. This model may also provide insight into the workings of hormesis. Hormesis is the primary phenomenon through which homeopathic phenomenon may have evolved exhibiting the principle of similars. Hahnemann exploited it to establish homeopathy. The nanoparticle-exclusion zone shells present in the remedy, selected on the principle of similars, can be patient-specific nanoparticles in a symptom syndrome-specific manner. They can carry the drug-specific information for safer clinical applications in an amplified form for high yielding. It suggests homeopathy is a type of nanopharmacology.
Collapse
Affiliation(s)
- Dana Ullman
- Homeopathic Educational Services, Berkeley, CA, USA
| |
Collapse
|