1
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
2
|
Ahmadizar F, Younossi ZM. Exploring Biomarkers in Nonalcoholic Fatty Liver Disease Among Individuals With Type 2 Diabetes Mellitus. J Clin Gastroenterol 2024:00004836-990000000-00354. [PMID: 39352015 DOI: 10.1097/mcg.0000000000002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
Integrating biomarkers into a comprehensive strategy is crucial for precise patient management, especially considering the significant healthcare costs associated with diseases. Current studies emphasize the urgent need for a paradigm shift in conceptualizing nonalcoholic fatty liver disease (NAFLD), now renamed metabolic dysfunction-associated steatotic liver disease (MASLD). Biomarkers are emerging as indispensable tools for accurate diagnosis, risk stratification, and monitoring disease progression. This review classifies biomarkers into conventional and novel categories, such as lipids, insulin resistance, hepatic function, and cutting-edge imaging/omics, and evaluates their potential to transform the approach to MASLD among individuals with type 2 diabetes mellitus (T2D). It focuses on the critical role of biomarkers in early MASLD detection, enhancing predictive accuracy, and discerning responses to interventions (pharmacological or lifestyle modifications). Amid this discussion, the complexities of the relationship between T2D and MASLD are explored, considering factors like age, gender, genetics, ethnicity, and socioeconomic background. Biomarkers enhance the effectiveness of interventions and support global initiatives to reduce the burden of MASLD, thereby improving public health outcomes. This review recognizes the promising potential of biomarkers for diagnostic precision while candidly addressing the challenges in implementing these advancements in clinical practice. The transformative role of biomarkers emerges as a central theme, promising to reshape our understanding of disease trajectories, prognosis, and the customization of personalized therapeutic strategies for improved patient outcomes. From a future perspective, identifying early-stage biomarkers, understanding environmental impact through exposomes, and applying a multiomics approach may reveal additional insight into MASLD development.
Collapse
Affiliation(s)
- Fariba Ahmadizar
- Data Science and Biostatistics Department, Julius Global Health, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Beatty Liver and Obesity Research Program Center for Liver Diseases, Inova Health System, Falls Church, VA
| | - Zobair M Younossi
- The Global NASH Council, Center for Outcomes Research in Liver Disease, Washington, DC
| |
Collapse
|
3
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
4
|
Martinez GJ, Kipp ZA, Lee WH, Bates EA, Morris AJ, Marino JS, Hinds TD. Glucocorticoid resistance remodels liver lipids and prompts lipogenesis, eicosanoid, and inflammatory pathways. Prostaglandins Other Lipid Mediat 2024; 173:106840. [PMID: 38830399 PMCID: PMC11199073 DOI: 10.1016/j.prostaglandins.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
We have previously demonstrated that the glucocorticoid receptor β (GRβ) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRβ isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRβ regulates lipids that cause metabolic dysfunction. To determine the effect of GRβ on hepatic lipid classes and molecular species, we overexpressed GRβ (GRβ-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRβ. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRβ-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRβ-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Joseph S Marino
- Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Liu H, Yin G, Kohlhepp MS, Schumacher F, Hundertmark J, Hassan MIA, Heymann F, Puengel T, Kleuser B, Mosig AS, Tacke F, Guillot A. Dissecting Acute Drug-Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver-On-A-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403516. [PMID: 38868948 PMCID: PMC11321671 DOI: 10.1002/advs.202403516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip-based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual-chamber biocompatible liver-on-a-chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug-induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP-injected and dietary MASLD-induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Guo Yin
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Fabian Schumacher
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Jana Hundertmark
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | | | - Felix Heymann
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Tobias Puengel
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Burkhard Kleuser
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Alexander Sandy Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Adrien Guillot
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
6
|
Guo H, Zhang X, You M, Shen Y, Zhang S, Li J, He X, Zhao X, Ma N. Quantitative lipidomics reveals the changes of lipids and antioxidant capacity in egg yolk from laying hens with fatty liver hemorrhagic syndrome. Poult Sci 2024; 103:103785. [PMID: 38688137 PMCID: PMC11077031 DOI: 10.1016/j.psj.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
In laying hens, fatty liver hemorrhagic syndrome (FLHS) is a common metabolic disorder, which can affect egg production and nutritional value. However, the impact of FLHS on the lipid content in egg yolks was not clear. In this study, FLHS model was induced by using high-energy low-protein diet, and the egg quality was evaluated. Egg yolk lipids were quantitatively analyzed by using ultra-performance liquid chromatography-mass spectrometry combined with multivariate statistical analysis. Gene expressions of the lipoprotein were determined by qRT-PCR and antioxidant capacity of the egg yolk were determined by kits. The elevated blood lipids and extensive lipid droplets observed indicated successful establishment of the FLHS model in laying hens. Measurements of egg quality showed that egg yolk weight was increased in the FLHS group. Lipidomics revealed that 1,401 lipids, comprising 27 lipid subclasses in the egg yolk. According to score plots of principal component analysis and orthogonal partial least squares discriminant analysis, different lipid profile was observed between the control and FLHS groups. A total of 97 different lipid species were screen out. Sphingolipid and glycerophospholipid metabolism were identified as key pathways. Free polyunsaturated fatty acids (PUFA) exhibited an increase in the FLHS group (P < 0.05). Notably, the form of PUFAs was changed that the FLHS group showed an increase in triacylglycerol-docosahexenoic acid and triacylglycerol-arachidonic acid in the egg yolk, while triacylglycerol-α-linolenic acid was decreased (P < 0.05). Total superoxide dismutase was decreased in the egg yolks affected by FLHS. Gene expressions of vitellogenin 2 (VTG2), VTG3, very low-density apolipoprotein II and apolipoprotein B were increased in the liver of laying hens with FLHS (P < 0.05). In conclusion, FLHS promoted the lipid transport from the liver to the yolk by upregulating lipoprotein expression, which altered lipid profile, and reduced antioxidant capacity in the yolk. This study provided a foundation for understanding the changes in lipids, lipid transport and lipid antioxidation capacity in egg yolk from laying hens with FLHS.
Collapse
Affiliation(s)
- Honglei Guo
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Xinbo Zhang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Manhua You
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Youming Shen
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, Liaoning, PR China
| | - Shaobo Zhang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Jiefeng Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding 011030, China
| | - Xin He
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Xinghua Zhao
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, PR China
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, PR China.
| |
Collapse
|
7
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
8
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
10
|
Sundaraswamy PM, Minami Y, Jayaprakash J, B Gowda SG, Takatsu H, Gowda D, Shin HW, Hui SP. A facile method for monitoring sphingomyelin synthase activity in HeLa cells using liquid chromatography/mass spectrometry. Analyst 2024; 149:3293-3301. [PMID: 38713069 DOI: 10.1039/d4an00304g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Sphingomyelin synthase (SMS) is a sphingolipid-metabolizing enzyme involved in the de novo synthesis of sphingomyelin (SM) from ceramide (Cer). Recent studies have indicated that SMS is a key therapeutic target for metabolic diseases such as fatty liver, type 2 diabetes, atherosclerosis, and colorectal cancer. However, very few SMS inhibitors have been identified because of the limited sensitivity and selectivity of the current fluorescence-based screening assay. In this study, we developed a simple cell-based assay coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) to screen for SMS inhibitors. HeLa cells stably expressing SMS1 or SMS2 were used for the screening. A non-fluorescent unnatural C6-Cer was used as a substrate for SMS to produce C6-SM. C6-Cer and C6-SM levels in the cells were monitored and quantified using LC-MS/MS. The activity of ginkgolic acid C15:1 (GA), a known SMS inhibitor, was measured. GA had half-maximal inhibitory concentrations of 5.5 μM and 3.6 μM for SMS1 and SMS2, respectively. To validate these findings, hSMS1 and hSMS2 proteins were optimized for molecular docking studies. In silico analyses were conducted to assess the interaction of GA with SMS1 and SMS2, and its binding affinity. This study offers an analytical approach for screening novel SMS inhibitors and provides in silico support for the experimental findings.
Collapse
Affiliation(s)
- Punith M Sundaraswamy
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Siddabasave Gowda B Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
11
|
Meroni M, Longo M, Dongiovanni P. Cardiometabolic risk factors in MASLD patients with HCC: the other side of the coin. Front Endocrinol (Lausanne) 2024; 15:1411706. [PMID: 38846491 PMCID: PMC11153718 DOI: 10.3389/fendo.2024.1411706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) constitutes the commonest cause of chronic liver disorder worldwide, whereby affecting around one third of the global population. This clinical condition may evolve into Metabolic Dysfunction-Associated Steatohepatitis (MASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC), in a predisposed subgroup of patients. The complex pathogenesis of MASLD is severely entangled with obesity, dyslipidemia and type 2 diabetes (T2D), so far so nutritional and lifestyle recommendations may be crucial in influencing the risk of HCC and modifying its prognosis. However, the causative association between HCC onset and the presence of metabolic comorbidities is not completely clarified. Therefore, the present review aimed to summarize the main literature findings that correlate the presence of inherited or acquired hyperlipidemia and metabolic risk factors with the increased predisposition towards liver cancer in MASLD patients. Here, we gathered the evidence underlining the relationship between circulating/hepatic lipids, cardiovascular events, metabolic comorbidities and hepatocarcinogenesis. In addition, we reported previous studies supporting the impact of triglyceride and/or cholesterol accumulation in generating aberrancies in the intracellular membranes of organelles, oxidative stress, ATP depletion and hepatocyte degeneration, influencing the risk of HCC and its response to therapeutic approaches. Finally, our pursuit was to emphasize the link between HCC and the presence of cardiometabolic abnormalities in our large cohort of histologically-characterized patients affected by MASLD (n=1538), of whom 86 had MASLD-HCC by including unpublished data.
Collapse
|
12
|
Huneault HE, Chen CY, Cohen CC, Liu X, Jarrell ZR, He Z, DeSantos KE, Welsh JA, Maner-Smith KM, Ortlund EA, Schwimmer JB, Vos MB. Lipidome Changes Associated with a Diet-Induced Reduction in Hepatic Fat among Adolescent Boys with Metabolic Dysfunction-Associated Steatotic Liver Disease. Metabolites 2024; 14:191. [PMID: 38668319 PMCID: PMC11052520 DOI: 10.3390/metabo14040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Little is known about lipid changes that occur in the setting of metabolic-dysfunction-associated steatotic liver disease (MASLD) regression. We previously reported improvements in hepatic steatosis, de novo lipogenesis (DNL), and metabolomic profiles associated with oxidative stress, inflammation, and selected lipid metabolism in 40 adolescent boys (11-16 y) with hepatic steatosis ≥5% (98% meeting the definition of MASLD). Participants were randomized to a low-free-sugar diet (LFSD) (n = 20) or usual diet (n = 20) for 8 weeks. Here, we employed untargeted/targeted lipidomics to examine lipid adaptations associated with the LFSD and improvement of hepatic steatosis. Our LC-MS/MS analysis revealed decreased triglycerides (TGs), diacylglycerols (DGs), cholesteryl esters (ChE), lysophosphatidylcholine (LPC), and phosphatidylcholine (PC) species with the diet intervention (p < 0.05). Network analysis demonstrated significantly lower levels of palmitate-enriched TG species post-intervention, mirroring the previously shown reduction in DNL in response to the LFSD. Targeted oxylipins analysis revealed a decrease in the abundance of 8-isoprostane and 14,15-DiHET and an increase in 8,9-DiHET (p < 0.05). Overall, we observed reductions in TGs, DGs, ChE, PC, and LPC species among participants in the LFSD group. These same lipids have been associated with MASLD progression; therefore, our findings may indicate normalization of key biological processes, including lipid metabolism, insulin resistance, and lipotoxicity. Additionally, our targeted oxylipins assay revealed novel changes in eicosanoids, suggesting improvements in oxidative stress. Future studies are needed to elucidate the mechanisms of these findings and prospects of these lipids as biomarkers of MASLD regression.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
| | - Chih-Yu Chen
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Catherine C. Cohen
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Xueyun Liu
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Zachery R. Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Zhulin He
- Pediatric Biostatistics Core, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Karla E. DeSantos
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jean A. Welsh
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kristal M. Maner-Smith
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Eric A. Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Jeffrey B. Schwimmer
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA;
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Miriam B. Vos
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Al-Rashed F, Arefanian H, Madhoun AA, Bahman F, Sindhu S, AlSaeed H, Jacob T, Thomas R, Al-Roub A, Alzaid F, Malik MDZ, Nizam R, Thanaraj TA, Al-Mulla F, Hannun YA, Ahmad R. Neutral Sphingomyelinase 2 Inhibition Limits Hepatic Steatosis and Inflammation. Cells 2024; 13:463. [PMID: 38474427 PMCID: PMC10931069 DOI: 10.3390/cells13050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is manifested by hepatic steatosis, insulin resistance, hepatocyte death, and systemic inflammation. Obesity induces steatosis and chronic inflammation in the liver. However, the precise mechanism underlying hepatic steatosis in the setting of obesity remains unclear. Here, we report studies that address this question. After 14 weeks on a high-fat diet (HFD) with high sucrose, C57BL/6 mice revealed a phenotype of liver steatosis. Transcriptional profiling analysis of the liver tissues was performed using RNA sequencing (RNA-seq). Our RNA-seq data revealed 692 differentially expressed genes involved in processes of lipid metabolism, oxidative stress, immune responses, and cell proliferation. Notably, the gene encoding neutral sphingomyelinase, SMPD3, was predominantly upregulated in the liver tissues of the mice displaying a phenotype of steatosis. Moreover, nSMase2 activity was elevated in these tissues of the liver. Pharmacological and genetic inhibition of nSMase2 prevented intracellular lipid accumulation and TNFα-induced inflammation in in-vitro HepG2-steatosis cellular model. Furthermore, nSMase2 inhibition ameliorates oxidative damage by rescuing PPARα and preventing cell death associated with high glucose/oleic acid-induced fat accumulation in HepG2 cells. Collectively, our findings highlight the prominent role of nSMase2 in hepatic steatosis, which could serve as a potential therapeutic target for NAFLD and other hepatic steatosis-linked disorders.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Halemah AlSaeed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Fawaz Alzaid
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France;
| | - MD Zubbair Malik
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Thangavel Alphonse Thanaraj
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| |
Collapse
|
14
|
Li CZ, Wu LM, Zhu CX, Du HY, Chen GX, Yang F. The impacts of dietary sphingomyelin supplementation on metabolic parameters of healthy adults: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1363077. [PMID: 38463938 PMCID: PMC10922005 DOI: 10.3389/fnut.2024.1363077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Background Studies have shown that sphingomyelin (SM) and its metabolites play signaling roles in the regulation of human health. Endogenous SM is involved in metabolic syndrome (MetS), while dietary SM supplementation may maintain lipid metabolism and prevent or alleviate MetS. Therefore, we hypothesized that dietary SM supplementation is beneficial for human health. Aims In order to examine the impacts of dietary SM on metabolic indexes in adults without MetS, we performed a meta-analysis to test our hypothesis. Methods A comprehensive search was performed to retrieve randomized controlled trials that were conducted between 2003 and 2023 to examine the effects of dietary SM supplementation on metabolic parameters in the Cochrane Library, PubMed, Web of Science, Embase, and ClinicalTrials.gov databases. RevMan 5.4 and Stata 14.0 software were used for meta-analysis, a sensitivity analysis, the risk of bias, and the overall quality of the resulted evidence. Results Eventually, 10 articles were included in this meta-analysis. Dietary SM supplementation did not affect the endline blood SM level. When compared to the control, SM supplementation reduced the blood total cholesterol level [MD: -12.97, 95% CI: (-14.57, -11.38), p < 0.00001], low-density lipoprotein cholesterol level [MD: -6.62, 95% CI: (-10.74, -2.49), p = 0.002], and diastolic blood pressure [MD: -3.31; 95% CI (-4.03, -2.58), p < 0.00001] in adults without MetS. The supplementation also increased high-density lipoprotein level [MD:1.41, 95% CI: (0.94, 1.88), p < 0.00001] and muscle fiber conduction velocity [MD: 95% 1.21 CI (0.53, 1.88), p = 0.0005]. The intake of SM had no effect on the blood phospholipids and lyso-phosphatidylcholine, but slightly decreased phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol concentrations. Dietary SM supplementation reduced insulin level [MD: -0.63; 95% CI (-0.96, -0.31), p = 0.0001] and HOMA-IR [MD: -0.23; 95% CI (-0.31, -0.16), p < 0.00001] without affecting blood levels of glucose and inflammatory cytokines. Conclusion Overall, dietary SM supplementation had a protective effect on blood lipid profiles and insulin level, but had limited impacts on other metabolic parameters in adults without MetS. More clinical trials and basic research are required. Systematic review registration PROSPERO, identifier CRD42023438460.
Collapse
Affiliation(s)
- Chen-Zi Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Li-Mei Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Chen-Xi Zhu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huan-Yu Du
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guo-Xun Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
15
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
16
|
YANG S, MA Y, BAI Z, YU Y, FANG B, ZHANG L, WANG L. Intervention effect of Cigu Xiaozhi prescription on ceramide lipoapoptosis in non-alcoholic fatty liver disease. J TRADIT CHIN MED 2024; 44:63-69. [PMID: 38213240 PMCID: PMC10774722 DOI: 10.19852/j.cnki.jtcm.20231215.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To explore the mechanism of the Chinese medicine Cigu Xiaozhi prescription (, CGXZ) in the treatment of the non-alcoholic fatty liver disease (NAFLD) by detoxification and phlegm-reducing, the effect of CGXZ prescription on ceramide-mediated lipid apoptosis in Hep G2 cells with NAFLD. METHODS The experiment was randomly divided into 6 groups: normal control group, model group, CGXZ prescription medicated serum high, medium, and low dose groups, and pioglitazone positive control group. Using 500 μmol/L free fatty acid (FFA) mixture to induce Hep G2 cells to establish NAFLD cell model, respectively, with 2%, 4%, and 6% concentration of CGXZ prescription medicated serum intervention for 24 h. The changes in organelles and lipid droplet accumulation were observed under the electron microscope. Furthermore, TdT-mediated dUTP Nick-End Labeling method was used to assay hepatocyte apoptosis; Biochemical determination of glutamic-pyruvic transaminase, glutamic oxalacetic transaminase, triglycerides, and FFA levels in Hep G2 cells; the content of ceramide was determined by high-performance thin-layer chromatography. Finally, Western Blot and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the protein and gene expression levels, such as inducible nitric oxide synthase (iNOS), nuclear factor κB (NF-κB), B cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax). RESULTS Under the electron microscope, the cells in the model group showed moderate-to-severe steatosis, and apoptotic bodies could be seen. The model group had greater improvements in the apoptosis rate (P < 0.01), and the levels of ceramide C2 and FFA in the cytoplasm (P < 0.01) than the normal control group. The protein expressions of NF-κB, iNOS, and Bax were significantly up-regulated (P < 0.05), while the Bcl-2 had no significant change (P > 0.05). Compared with the model group, the levels of ceramide C2 and FFA (P < 0.01), the protein expressions of NF-κB, iNOS, and Bax (P < 0.05) in the CGXZ prescription treatment group and pioglitazone positive control group were significantly decreased; Only the Bcl-2 protein was significantly up-regulated in the high-dose Chinese medicine group (P < 0.05). The down-regulation of Bax mRNA expression in each Chinese medicine treatment group was significantly better than in the pioglitazone positive control group (P < 0.01). CONCLUSIONS The CGXZ prescription, formulated with the method of detoxification and phlegm, can inhibit lipoapoptosis in the NAFLD cell model by down-regulating the levels of ceramide C2 and FFA, which may be achieved by regulating ceramide/iNOS/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shaojun YANG
- 1 Department of Spleen and Stomach Diseases, Beihai Traditional Chinese Medicine hospital, Beihai 536000, China
| | - Yanhua MA
- 2 the First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Zhouxia BAI
- 3 Department of Clinical Laboratory, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Ye YU
- 1 Department of Spleen and Stomach Diseases, Beihai Traditional Chinese Medicine hospital, Beihai 536000, China
| | - Buwu FANG
- 4 Department of Pharmacology, School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Li ZHANG
- 4 Department of Pharmacology, School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Li WANG
- 2 the First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| |
Collapse
|
17
|
Cho BS, Fligor SC, Fell GL, Secor JD, Tsikis ST, Pan A, Yu LJ, Ko VH, Dao DT, Anez-Bustillos L, Hirsch TI, Lund J, Rustan AC, Fraser DA, Gura KM, Puder M. A medium-chain fatty acid analogue prevents hepatosteatosis and decreases inflammatory lipid metabolites in a murine model of parenteral nutrition-induced hepatosteatosis. PLoS One 2023; 18:e0295244. [PMID: 38039287 PMCID: PMC10691711 DOI: 10.1371/journal.pone.0295244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Parenteral (intravenous) nutrition is lifesaving for patients with intestinal failure, but long-term use of parenteral nutrition often leads to liver disease. SEFA-6179 is a synthetic medium-chain fatty acid analogue designed to target multiple fatty acid receptors regulating metabolic and inflammatory pathways. We hypothesized that SEFA-6179 would prevent hepatosteatosis and lipotoxicity in a murine model of parenteral nutrition-induced hepatosteatosis. METHODS Two in vivo experiments were conducted. In the first experiment, six-week-old male mice were provided an ad lib fat-free high carbohydrate diet (HCD) for 19 days with orogastric gavage of either fish oil, medium-chain triglycerides, or SEFA-6179 at a low (0.3mmol/kg) or high dose (0.6mmol/kg). In the second experiment, six-week-old mice were provided an ad lib fat-free high carbohydrate diet for 19 days with every other day tail vein injection of saline, soybean oil lipid emulsion, or fish oil lipid emulsion. Mice then received every other day orogastric gavage of medium-chain triglyceride vehicle or SEFA-6179 (0.6mmol/kg). Hepatosteatosis was assessed by a blinded pathologist using an established rodent steatosis score. Hepatic lipid metabolites were assessed using ultra-high-performance liquid chromatography-mass spectrometry. Effects of SEFA-6179 on fatty acid oxidation, lipogenesis, and fatty acid uptake in human liver cells were assessed in vitro. RESULTS In the first experiment, mice receiving the HCD with either saline or medium-chain triglyceride treatment developed macrovesicular steatosis, while mice receiving fish oil or SEFA-6179 retained normal liver histology. In the second experiment, mice receiving a high carbohydrate diet with intravenous saline or soybean oil lipid emulsion, along with medium chain triglyceride vehicle treatment, developed macrovescular steatosis. Treatment with SEFA-6179 prevented steatosis. In each experiment, SEFA-6179 treatment decreased arachidonic acid metabolites as well as key molecules (diacylglycerol, ceramides) involved in lipotoxicity. SEFA-6179 increased both β- and complete fatty oxidation in human liver cells, while having no impact on lipogenesis or fatty acid uptake. CONCLUSIONS SEFA-6179 treatment prevented hepatosteatosis and decreased toxic lipid metabolites in a murine model of parenteral nutrition-induced hepatosteatosis. An increase in both β- and complete hepatic fatty acid oxidation may underlie the reduction in steatosis.
Collapse
Affiliation(s)
- Bennet S. Cho
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott C. Fligor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gillian L. Fell
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jordan D. Secor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Savas T. Tsikis
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Pan
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Lumeng J. Yu
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victoria H. Ko
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Duy T. Dao
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas I. Hirsch
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jenny Lund
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | | | - Kathleen M. Gura
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pharmacy and the Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Ferrasi AC, Lima SVG, Galvani AF, Delafiori J, Dias-Audibert FL, Catharino RR, Silva GF, Praxedes RR, Santos DB, Almeida DTDM, Lima EO. Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways. World J Hepatol 2023; 15:1237-1249. [DOI: 10.4254/wjh.v15.i11.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Chronic Hepatitis C (CHC) affects 71 million people globally and leads to liver issues such as fibrosis, cirrhosis, cancer, and death. A better understanding and prognosis of liver involvement are vital to reduce morbidity and mortality. The accurate identification of the fibrosis stage is crucial for making treatment decisions and predicting outcomes. Tests used to grade fibrosis include histological analysis and imaging but have limitations. Blood markers such as molecular biomarkers can offer valuable insights into fibrosis.
AIM To identify potential biomarkers that might stratify these lesions and add information about the molecular mechanisms involved in the disease.
METHODS Plasma samples were collected from 46 patients with hepatitis C and classified into fibrosis grades F1 (n = 13), F2 (n = 12), F3 (n = 6), and F4 (n = 15). To ensure that the identified biomarkers were exclusive to liver lesions (CHC fibrosis), healthy volunteer participants (n = 50) were also included. An untargeted metabolomic technique was used to analyze the plasma metabolites using mass spectrometry and database verification. Statistical analyses were performed to identify differential biomarkers among groups.
RESULTS Six differential metabolites were identified in each grade of fibrosis. This six-metabolite profile was able to establish a clustering tendency in patients with the same grade of fibrosis; thus, they showed greater efficiency in discriminating grades.
CONCLUSION This study suggests that some of the observed biomarkers, once validated, have the potential to be applied as prognostic biomarkers. Furthermore, it suggests that liquid biopsy analyses of plasma metabolites are a good source of molecular biomarkers capable of stratifying patients with CHC according to fibrosis grade.
Collapse
Affiliation(s)
| | | | - Aline Faria Galvani
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, University of Campinas, Campinas 13083-877, Brazil
| | | | | | - Giovanni Faria Silva
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| | | | | | | | - Estela Oliveira Lima
- Department of Internal Medicine, Sao Paulo State University, Botucatu 18618-686, Brazil
| |
Collapse
|
19
|
Wang X, Wu L, Tao J, Ye H, Wang J, Gao R, Liu W. A lipidomic approach to bisphenol F-induced non-alcoholic fatty liver disease-like changes: altered lipid components in a murine model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112644-112659. [PMID: 37837594 DOI: 10.1007/s11356-023-30306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Bisphenol A (BPA), a typical environmental endocrine disruptor, is an "obesogen" that can induce lipid accumulation in the liver. Highly similar in structure to BPA, bisphenol F (BPF) is becoming the dominant BPA substitute on the market, which attracts more and more attention due to its potential adverse effects. Recently, BPF exposure is found to cause non-alcoholic fatty liver disease (NAFLD)-like changes; however, the underlying toxic effects remain poorly understood. Therefore, in the current study, we focused on BPF-mediated lipid homeostasis, especially the alterations of lipid components and metabolism. In human serum, the BPF levels in healthy controls and NAFLD patients were assessed by ELISA, and BPF-induced disturbance of lipid metabolism was evaluated in mouse model via non-targeted lipomic methods with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. It suggested that BPF exposure was positively correlated with NAFLD severity and triglyceride level in patients. Based on the relationships, lipid metabolites were assessed in mouse livers between control and BPF-treated group, and it revealed that twenty-six lipid metabolites (including phospholipids, sphingolipids, and glycerides) were significantly changed in mouse livers. Phosphatidylcholine, phosphatidylethanolamine, and diglyceryl ester levels were lower than those in the control mice; hexose ceramide content in sphingolipids markedly increased in BPF-treated mouse livers. Noteworthily, the glycerophospholipid metabolic pathway was found to be the most pronounced in BPF-induced disturbance of lipid metabolism. Therefore, the current study, for the first time, is deciphering the BPF-induced lipid metabolic disturbance, which may provide novel intervention strategies for BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Xinjing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Jingxian Tao
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
| | - Jun Wang
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Gao
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
20
|
Xie Q, Gao S, Li Y, Xi W, Dong Z, Li Z, Lei M. Effects of 3021 meal replacement powder protect NAFLD via suppressing the ERS, oxidative stress and inflammatory responses. PeerJ 2023; 11:e16154. [PMID: 37868068 PMCID: PMC10586295 DOI: 10.7717/peerj.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/31/2023] [Indexed: 10/24/2023] Open
Abstract
Objective To explore the specific protective mechanism of 3021 meal replacement powder (MRP) against non-alcoholic fatty liver disease (NAFLD). Materials and Methods C57BL/6J male mice were divided into four groups: control group, 3021 MRP group, model group and test group. The lipid accumulation and endoplasmic reticulum stress (ERS)-related proteins in hepatocytes of mice were detected by hematoxylin-eosin (HE) staining, oil red O staining and Western blotting. Results The expressions of GRP78, GRP94, p-PERK and p-IRE1α were significantly inhibited in test group compared with those in model group. The protein expressions of p-NF-κB, p-JNK, IL-1β, IL-18 and NOX4 in test group were also significantly lower than those in model group. In vivo and in vitro experiments revealed that the body weight and lipid droplet content, and the expressions of ERS-related proteins (including BIP and XBP-1) in liver tissues all significantly declined in model group compared with those in 3021 MRP group. Conclusion In conclusion, 3021 MRP can greatly reduce lipid accumulation by inhibiting ERS, oxidative stress and inflammatory response in NAFLD.
Collapse
Affiliation(s)
- Qi Xie
- The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuqing Gao
- The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanjudi Li
- Shenzhen Anxintang Biotechnology Co., Ltd, Shenzhen, China
| | - Weifang Xi
- Xinchen Biotechnology (Guandong) Company Limited, Dongguan, China
| | - Zhiyun Dong
- Shenzhen Anxintang Biotechnology Co., Ltd, Shenzhen, China
| | - Zengning Li
- The First Hospital of Hebei Medical University, Hebei Province Key Laboratory of Nutrition and Health, Shijiazhuang, China
| | - Min Lei
- The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
22
|
Chiang YP, Li Z, He M, Jones Q, Pan M, Han X, Jiang XC. Sphingomyelin synthase-related protein SMSr is a phosphatidylethanolamine phospholipase C that promotes nonalcoholic fatty liver disease. J Biol Chem 2023; 299:105162. [PMID: 37586586 PMCID: PMC10494463 DOI: 10.1016/j.jbc.2023.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound β-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor β1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.
Collapse
Affiliation(s)
- Yeun-Po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Quiana Jones
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, New York, USA.
| |
Collapse
|
23
|
Bertran L, Capellades J, Abelló S, Durán-Bertran J, Aguilar C, Martinez S, Sabench F, Correig X, Yanes O, Auguet T, Richart C. LC/MS-Based Untargeted Metabolomics Study in Women with Nonalcoholic Steatohepatitis Associated with Morbid Obesity. Int J Mol Sci 2023; 24:9789. [PMID: 37372937 DOI: 10.3390/ijms24129789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the importance of a metabolomic analysis in a complex disease such as nonalcoholic steatohepatitis (NASH) associated with obesity. Using an untargeted metabolomics technique, we studied blood metabolites in 216 morbidly obese women with liver histological diagnosis. A total of 172 patients were diagnosed with nonalcoholic fatty liver disease (NAFLD), and 44 were diagnosed with normal liver (NL). Patients with NAFLD were classified into simple steatosis (n = 66) and NASH (n = 106) categories. A comparative analysis of metabolites levels between NASH and NL demonstrated significant differences in lipid metabolites and derivatives, mainly from the phospholipid group. In NASH, there were increased levels of several phosphatidylinositols and phosphatidylethanolamines, as well as isolated metabolites such as diacylglycerol 34:1, lyso-phosphatidylethanolamine 20:3 and sphingomyelin 38:1. By contrast, there were decreased levels of acylcarnitines, sphingomyelins and linoleic acid. These findings may facilitate identification studies of the main pathogenic metabolic pathways related to NASH and may also have a possible applicability in a panel of metabolites to be used as biomarkers in future algorithms of the disease diagnosis and its follow-up. Further confirmatory studies in groups with different ages and sexes are necessary.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Sonia Abelló
- Servei de Recursos Científics i Tècnics, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Joan Durán-Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Salomé Martinez
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Fàtima Sabench
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
- Unitat de Cirurgia, Facultad de Medicina i Ciències de la Salut, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, 43005 Tarragona, Spain
| |
Collapse
|
24
|
Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci 2023; 17:1191609. [PMID: 37333888 PMCID: PMC10272456 DOI: 10.3389/fncel.2023.1191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Ceramide, a bioactive sphingolipid, serves as an important second messenger in cell signal transduction. Under stressful conditions, it can be generated from de novo synthesis, sphingomyelin hydrolysis, and/or the salvage pathway. The brain is rich in lipids, and abnormal lipid levels are associated with a variety of brain disorders. Cerebrovascular diseases, which are mainly caused by abnormal cerebral blood flow and secondary neurological injury, are the leading causes of death and disability worldwide. There is a growing body of evidence for a close connection between elevated ceramide levels and cerebrovascular diseases, especially stroke and cerebral small vessel disease (CSVD). The increased ceramide has broad effects on different types of brain cells, including endothelial cells, microglia, and neurons. Therefore, strategies that reduce ceramide synthesis, such as modifying sphingomyelinase activity or the rate-limiting enzyme of the de novo synthesis pathway, serine palmitoyltransferase, may represent novel and promising therapeutic approaches to prevent or treat cerebrovascular injury-related diseases.
Collapse
|
25
|
Lu Z, Li Y, Chowdhury N, Yu H, Syn WK, Lopes-Virella M, Yilmaz Ö, Huang Y. The Presence of Periodontitis Exacerbates Non-Alcoholic Fatty Liver Disease via Sphingolipid Metabolism-Associated Insulin Resistance and Hepatic Inflammation in Mice with Metabolic Syndrome. Int J Mol Sci 2023; 24:8322. [PMID: 37176029 PMCID: PMC10179436 DOI: 10.3390/ijms24098322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Clinical studies have shown that periodontitis is associated with non-alcoholic fatty liver disease (NAFLD). However, it remains unclear if periodontitis contributes to the progression of NAFLD. In this study, we generated a mouse model with high-fat diet (HFD)-induced metabolic syndrome (MetS) and NAFLD and oral P. gingivalis inoculation-induced periodontitis. Results showed that the presence of periodontitis increased insulin resistance and hepatic inflammation and exacerbated the progression of NAFLD. To determine the role of sphingolipid metabolism in the association between NAFLD and periodontitis, we also treated mice with imipramine, an inhibitor of acid sphingomyelinase (ASMase), and demonstrated that imipramine treatment significantly alleviated insulin resistance and hepatic inflammation, and improved NAFLD. Studies performed in vitro showed that lipopolysaccharide (LPS) and palmitic acid (PA), a major saturated fatty acid associated with MetS and NAFLD, synergistically increased the production of ceramide, a bioactive sphingolipid involved in NAFLD progression in macrophages but imipramine effectively reversed the ceramide production stimulated by LPS and PA. Taken together, this study showed for the first time that the presence of periodontitis contributed to the progression of NAFLD, likely due to alterations in sphingolipid metabolism that led to exacerbated insulin resistance and hepatic inflammation. This study also showed that targeting ASMase with imipramine improves NAFLD by reducing insulin resistance and hepatic inflammation.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Yu
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MI 63110, USA
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del Pa S Vasco/Euskal Herriko Univertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Maria Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
26
|
Brown RDR, Spiegel S. ORMDL in metabolic health and disease. Pharmacol Ther 2023; 245:108401. [PMID: 37003301 PMCID: PMC10148913 DOI: 10.1016/j.pharmthera.2023.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Obesity is a key risk factor for the development of metabolic disease. Bioactive sphingolipid metabolites are among the lipids increased in obesity. Obesogenic saturated fatty acids are substrates for serine palmitoyltransferase (SPT) the rate-limiting step in de novo sphingolipid biosynthesis. The mammalian orosomucoid-like protein isoforms ORMDL1-3 negatively regulate SPT activity. Here we summarize evidence that dysregulation of sphingolipid metabolism and SPT activity correlates with pathogenesis of obesity. This review also discusses the current understanding of the function of SPT and ORMDL in obesity and metabolic disease. Gaps and limitations in current knowledge are highlighted together with the need to further understand how ORMDL3, which has been identified as an obesity-related gene, contributes to the pathogenesis of obesity and development of metabolic disease related to its physiological functions. Finally, we point out the needs to move this young field of research forward.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
27
|
Huang J, Sigon G, Mullish BH, Wang D, Sharma R, Manousou P, Forlano R. Applying Lipidomics to Non-Alcoholic Fatty Liver Disease: A Clinical Perspective. Nutrients 2023; 15:nu15081992. [PMID: 37111211 PMCID: PMC10143024 DOI: 10.3390/nu15081992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The prevalence of Non-alcoholic fatty liver disease (NAFLD) and associated complications, such as hepatocellular carcinoma (HCC), is growing worldwide, due to the epidemics of metabolic risk factors, such as obesity and type II diabetes. Among other factors, an aberrant lipid metabolism represents a crucial step in the pathogenesis of NAFLD and the development of HCC in this population. In this review, we summarize the evidence supporting the application of translational lipidomics in NAFLD patients and NAFLD associated HCC in clinical practice.
Collapse
Affiliation(s)
- Jian Huang
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Giordano Sigon
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Benjamin H Mullish
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Dan Wang
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London W21NY, UK
| | - Pinelopi Manousou
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| | - Roberta Forlano
- Liver Unit, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W21NY, UK
| |
Collapse
|
28
|
Fang H, Cao Y, Zhang J, Wang X, Li M, Hong Z, Wu Z, Fang M. Lipidome remodeling activities of DPA-EA in palmitic acid-stimulated HepG2 cells and the in vivo anti-obesity effect of the DPA-EA and DHA-EA mixture prepared from algae oil. Front Pharmacol 2023; 14:1146276. [PMID: 37063272 PMCID: PMC10090563 DOI: 10.3389/fphar.2023.1146276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Background: The nuclear receptor Nur77 has been demonstrated to play a vital role in the inflammatory response and cellular metabolisms, and its ligands exhibit efficacy in the treatment of inflammation-related diseases (e.g., improving mouse acute lung injury (ALI) and obesity. Recently, ω-3 polyunsaturated fatty acid-ethanolamine derivatives (ω-3 PUFA-EAs), including DPA-EA and DHA-EA, have been reported as new Nur77-targeting anti-inflammatory agents. However, the lipid-lowering effect of ω-3 PUFA-EAs is still unknown, and lipid profile changes induced by Nur77-targeting anti-inflammatory agents also remain unclear.Objective: This study aimed to evaluate the lipid-lowering effect and the underlying mechanism of DPA-EA acting as Nur77-targeting anti-inflammatory agents. It also aimed to investigate the in vitro and in vivo lipid-lowering effects of the DPA-EA and DHA-EA mixture prepared from algae oil.Methods: The in vitro lipid-lowing effect of DPA-EA and its mixture with DHA-EA was first evaluated in palmitic acid-stimulated HepG2 Cells. To confirm the lipid-lowering effect and explore the underlying mechanism, we performed untargeted lipidomic analysis using ultra-performance liquid chromatography/triple quadrupole-time-of-flight (TOF) mass spectrometry coupled with multivariate statistical analysis, with another Nur77-targeting anti-inflammatory compound Celastrol (Cel) as a reference. Finally, we examined the anti-obesity effect of the DPA-EA and DHA-EA mixture synthesized from algae oil in a high-fat diet (HFD)-fed mice model.Results: DPA-EA significantly alleviated lipid accumulation with lower toxicity than Celastrol. Nur77-targeting compounds DPA-EA and Celastrol could simultaneously reduce 14 lipids (9 TGs, 2 PCs, 1 PA, 1 SM, and 1 LacCer) and increase 13 lipids (4 DGs, 6 LPEs, 2 PEs, and 1PC) in Pal-stimulated HepG2 cells. However, Cer lipids were more sensitive to DPA-EA, while the over-downregulation of SM lipids might be associated with the off-target toxicity of Celastrol. The mixture of DPA-EA and DHA-EA synthesized from algae oil could significantly decrease TG, TC, and LDL levels and increase HDL levels in HFD-fed mice, exerting an excellent anti-obesity effect.Conclusion: Nur77-targeting anti-inflammatory compound DAP-EA could promote the hydrolysis of PEs and TGs to ameliorate lipid accumulation. The DPA-EA and DHA-EA mixture prepared from algae oil might be a potential therapeutic agent for obesity and other inflammation-related diseases.
Collapse
Affiliation(s)
- Hua Fang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jianyu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Mengyu Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zhuan Hong
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Meijuan Fang,
| |
Collapse
|
29
|
Sun C, Guo Y, Cong P, Tian Y, Gao X. Liver Lipidomics Analysis Revealed the Novel Ameliorative Mechanisms of L-Carnitine on High-Fat Diet-Induced NAFLD Mice. Nutrients 2023; 15:nu15061359. [PMID: 36986087 PMCID: PMC10053018 DOI: 10.3390/nu15061359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The beneficial effects of L-carnitine on non-alcoholic fatty liver disease (NAFLD) were revealed in previous reports. However, the underlying mechanisms remain unclear. In this study, we established a high fat diet (HFD)-induced NAFLD mice model and systematically explored the effects and mechanisms of dietary L-carnitine supplementation (0.2% to 4%) on NAFLD. A lipidomics approach was conducted to identify specific lipid species involved in the ameliorative roles of L-carnitine in NAFLD. Compared with a normal control group, the body weight, liver weight, concentrations of TG in the liver and serum AST and ALT levels were dramatically increased by HFD feeding (p < 0.05), accompanied with obvious liver damage and the activation of the hepatic TLR4/NF-κB/NLRP3 inflammatory pathway. L-carnitine treatment significantly improved these phenomena and exhibited a clear dose–response relationship. The results of a liver lipidomics analysis showed that a total of 12 classes and 145 lipid species were identified in the livers. Serious disorders in lipid profiles were noticed in the livers of the HFD-fed mice, such as an increased relative abundance of TG and a decreased relative abundance of PC, PE, PI, LPC, LPE, Cer and SM (p < 0.05). The relative contents of PC and PI were significantly increased and that of DG were decreased after the 4% L-carnitine intervention (p < 0.05). Moreover, we identified 47 important differential lipid species that notably separated the experimental groups based on VIP ≥ 1 and p < 0.05. The results of a pathway analysis showed that L-carnitine inhibited the glycerolipid metabolism pathway and activated the pathways of alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and Glycosylphosphatidylinositol (GPI)-anchor biosynthesis. This study provides novel insights into the mechanisms of L-carnitine in attenuating NAFLD.
Collapse
Affiliation(s)
- Chengyuan Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yan Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Tian
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
- Correspondence: (Y.T.); (X.G.); Tel.: +86-138-8620-6248 (Y.T.); +86-133-6120-6713 (X.G.)
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
- Correspondence: (Y.T.); (X.G.); Tel.: +86-138-8620-6248 (Y.T.); +86-133-6120-6713 (X.G.)
| |
Collapse
|
30
|
Liao Y, Ding Y, Du Q, Wu Y, Lin H, Benjakul S, Zhang B. Changes in the lipid profiles of hairtail (Trichiurus lepturus) muscle during air-drying via liquid chromatography-mass spectrometry analysis. Food Chem X 2023; 17:100610. [PMID: 36974190 PMCID: PMC10039224 DOI: 10.1016/j.fochx.2023.100610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chemical and liquid chromatography-mass spectrometry (LC/MS)-based lipidomics analyses were performed to explore the alterations in lipid profiles in the hairtail muscle during air-drying. The peroxide value (POV) and carbonyl group value (CGV) in the air-dried hairtail (ADH) significantly increased with air-drying time. Lipidomics results revealed 1,326 lipids, which were grouped into 33 lipid categories, including 422 triglycerides (TGs), 170 phosphatidylcholines (PCs), 110 phosphatidylethanolamines (PEs), among others. In addition, ADH contained 131 and 201 differentially abundant lipids (DALs) at high and low levels, respectively. Among them, DALs, TGs, PCs, LPCs, and LPEs could be used to distinguish between ADH and FH samples. The apparent alterations in ADH and FH samples were attributed to lipid decomposition, side-chain modifications during oxidation, or oxygen- and salt-promoted lipid oxidation. Thus, this study provides a more comprehensive understanding of hairtail lipid profiles before and after air-drying which can be used as a guide for hairtail products.
Collapse
Affiliation(s)
- Yueqin Liao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Yixuan Ding
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Huimin Lin
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
- Pisa Marine Graduate School, Zhejiang Ocean University, PR China
- Corresponding authors at: No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, PR China.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
- Pisa Marine Graduate School, Zhejiang Ocean University, PR China
- Corresponding authors at: No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan, Zhejiang Province 316022, PR China.
| |
Collapse
|
31
|
Lytle KA, Chung JO, Bush NC, Triay JM, Jensen MD. Ceramide concentrations in liver, plasma, and very low-density lipoproteins of humans with severe obesity. Lipids 2023; 58:107-115. [PMID: 36849669 DOI: 10.1002/lipd.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 03/01/2023]
Abstract
We investigated the relationships between ceramide species concentrations in liver, plasma and very low-density lipoproteins (VLDL) particles of humans with obesity as well as the relationships between hepatic fat content and hepatic ceramide concentrations and proportional distribution. Twenty-five obese (body mass index >35 kg/m2 ) adults participated in this study. Plasma, VLDL and hepatocellular ceramide concentrations were measured by liquid chromatography/tandem mass spectrometry. The proportionate distribution of measured ceramide species differed between liver, whole plasma and the VLDL fraction. We found significant, positive correlations between the proportion of C14:0, C18:0, C20:0 and C24:1 ceramide in the liver and whole plasma (γ = 0.491, p = 0.013; γ = 0.573, p = 0.003; γ = 0.479, p = 0.015; γ = 0.716, p = 0.00006; respectively). In contrast, only the proportional contribution of C24:1 ceramide correlated positively between VLDL and liver (γ = 0.425, p = 0.013). The percent hepatic fat correlated positively with the proportion of C18:1, C18:0 and C20:0 hepatic ceramides (γ = 0.415, p = 0.039; γ = 0.426, p = 0.034; γ = 0.612, p = 0.001; respectively), but not with total hepatic ceramide concentration. The proportions of whole plasma ceramide subspecies, especially C14:0, C18:0, C20:0 and C24:1chain length, are reflective of those of hepatic ceramide subspecies in obese humans; these appear to be markers of hepatic ceramide species composition.
Collapse
Affiliation(s)
- Kelli A Lytle
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jin Ook Chung
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Nikki C Bush
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Michael D Jensen
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Egg Yolk Fat Deposition Is Regulated by Diacylglycerol and Ceramide Enriched by Adipocytokine Signaling Pathway in Laying Hens. Animals (Basel) 2023; 13:ani13040607. [PMID: 36830395 PMCID: PMC9951658 DOI: 10.3390/ani13040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The mechanism which regulates differential fat deposition in egg yolk from the indigenous breeds and commercial laying hens is still unclear. In this research, Chinese indigenous Huainan Partridge chickens and Nongda III commercial laying hens were used for egg collection and liver sampling. The weight of eggs and yolk were recorded. Yolk fatty acids were determined by gas chromatography-mass spectrometry. Lipid metabolites in the liver were detected by liquid chromatography-mass spectrometry. Yolk weight, yolk ratio and yolk fat ratio exhibited higher in the Huainan Partridge chicken than that of the Nongda III. Compared to the Nongda III, the content of total saturated fatty acid was lower, while the unsaturated fatty acid was higher in the yolk of the Huainan Partridge chicken. Metabolites of phosphatidylinositol and phosphatidylserine from glycerolphospholipids, and metabolites of diacylglycerol from glycerolipids showed higher enrichment in the Huainan Partridge chicken than that of the Nongda III, which promoted the activation of the adipocytokine signaling pathway. However, metabolites of phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine from glycerol phospholipids, and metabolites of triacylglycerol from glycerolipids showed lower enrichment in the Huainan Partridge chicken than that of the Nongda III. The high level of yolk fat deposition in the Huainan Partridge chicken is regulated by the activation of the adipocytokine signaling pathway which can promote the accumulation of diacylglycerol and ceramide in the liver.
Collapse
|
33
|
Lu H, George J, Eslam M, Villanueva A, Bolondi L, Reeves HL, McCain M, Chambers E, Ward C, Sartika D, Sands C, Maslen L, Lewis MR, Ramaswami R, Sharma R. Discriminatory Changes in Circulating Metabolites as a Predictor of Hepatocellular Cancer in Patients with Metabolic (Dysfunction) Associated Fatty Liver Disease. Liver Cancer 2023; 12:19-31. [PMID: 36872928 PMCID: PMC9982340 DOI: 10.1159/000525911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/25/2022] [Indexed: 02/19/2023] Open
Abstract
Introduction The burden of metabolic (dysfunction) associated fatty liver disease (MAFLD) is rising mirrored by an increase in hepatocellular cancer (HCC). MAFLD and its sequelae are characterized by perturbations in lipid handling, inflammation, and mitochondrial damage. The profile of circulating lipid and small molecule metabolites with the development of HCC is poorly characterized in MAFLD and could be used in future studies as a biomarker for HCC. Methods We assessed the profile of 273 lipid and small molecule metabolites by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry in serum from patients with MAFLD (n = 113) and MAFLD-associated HCC (n = 144) from six different centers. Regression models were used to identify a predictive model of HCC. Results Twenty lipid species and one metabolite, reflecting changes in mitochondrial function and sphingolipid metabolism, were associated with the presence of cancer on a background of MAFLD with high accuracy (AUC 0.789, 95% CI: 0.721-0.858), which was enhanced with the addition of cirrhosis to the model (AUC 0.855, 95% CI: 0.793-0.917). In particular, the presence of these metabolites was associated with cirrhosis in the MAFLD subgroup (p < 0.001). When considering the HCC cohort alone, the metabolic signature was an independent predictor of overall survival (HR 1.42, 95% CI: 1.09-1.83, p < 0.01). Conclusion These exploratory findings reveal a metabolic signature in serum which is capable of accurately detecting the presence of HCC on a background of MAFLD. This unique serum signature will be taken forward for further investigation of diagnostic performance as biomarker of early stage HCC in patients with MAFLD in the future.
Collapse
Affiliation(s)
- Haonan Lu
- Division of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| | - Mohammed Eslam
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| | | | - Luigi Bolondi
- Division of Internal Medicine, University of Bologna, Bologna, Italy
| | - Helen L. Reeves
- Newcastle University Translational Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Misti McCain
- Newcastle University Translational Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Edward Chambers
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Caroline Ward
- Division of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Dewi Sartika
- Division of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Caroline Sands
- National Phenome Centre, Imperial College London, London, UK
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lynn Maslen
- National Phenome Centre, Imperial College London, London, UK
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Matthew R. Lewis
- National Phenome Centre, Imperial College London, London, UK
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ramya Ramaswami
- Division of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Rohini Sharma
- Division of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
34
|
Circulating Metabolic Markers Related to the Diagnosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7840606. [DOI: 10.1155/2022/7840606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Primary liver carcinoma is the sixth most common cancer worldwide, while hepatocellular carcinoma (HCC) is the most dominant cancer type. Chronic hepatitis B and C virus infections and aflatoxin exposure are the main risk factors, while nonalcoholic fatty liver disease caused by obesity, diabetes, and metabolic syndrome are the more common risk factors for HCC. Metabolic disorders caused by these high-risk factors are closely related to the tumor microenvironment of HCC, revealing a possible cause-and-effect relationship between the two. These metabolic disorders involve many complex metabolic pathways, such as carbohydrate, lipid, lipid derivative, amino acid, and amino acid derivative metabolic processes. The resulting metabolites with significant abnormal changes in the concentration level in circulating blood may be used as biomarkers to guide the diagnosis, treatment, or prognosis of HCC. At present, there are high-throughput technologies that can quickly detect small molecular metabolites in many samples. Compared to tissue biopsy, blood samples are easier to obtain, and patients’ willingness to participate is higher, which makes it possible to study blood HCC biomarkers. Over the past few years, a substantial body of research has been performed worldwide, and other potential biomarkers have been identified. Unfortunately, due to the limitations of each study, only a few markers have been widely verified and are suitable for clinical use. This review briefly summarizes the potential blood metabolic markers related to the diagnosis of HCC, mainly focusing on amino acids and their derivative metabolism, lipids and their derivative metabolism, and other possible related metabolisms.
Collapse
|
35
|
Hang J, Chen Y, Liu L, Chen L, Fang J, Wang F, Wang M. Antitumor effect and metabonomics of niclosamide micelles. J Cell Mol Med 2022; 26:4814-4824. [PMID: 35923077 PMCID: PMC9465187 DOI: 10.1111/jcmm.17509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/12/2023] Open
Abstract
Polymer micelles now have promising applications in the treatment of cancer, increasing the water solubility and bioavailability of drugs. Previous studies have found that micelles of niclosamide have good anti‐liver cancer effect. In view of the poor water solubility of niclosamide (NIC), we decided to prepare niclosamide micelles. However, its therapeutic mechanism is not clear, so this paper conducted a preliminary study on its vitro anti‐tumour mechanism and metabonomics to find out its impact. It was found that the drug‐loaded micelles (PEG2K‐FIbu/NIC) had an inhibitory effect on HepG2 cells. Moreover, it can promote apoptosis of HepG2 cells and block S and G2/M phase of cell cycle. The plasma and liver metabolomics of mice in normal group, model group and administration group were studied by UPLC‐MS and 1H‐NMR. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS‐DA) were used to process the data and find the relevant metabolites. metaboanalyst 5.0 was used to integrate the relevant metabolites to find the main related metabolic pathways. Thus, the anti‐tumour mechanism of PEG2K‐FIbu/NIC was analysed. Fifty‐one biomarkers were detected in plasma, and 43 biomarkers were detected in liver. After comprehensive biomarker and metabolic pathway analysis, it was found that PEG2K‐FIbu/NIC micelles could affect the changes of many metabolites, mainly affecting amino acid metabolism. This article is an in‐depth study based on the published Preparation and pharmacodynamics of niclosamide micelles (DOI: 10.1016/j.jddst.2021.103088).
Collapse
Affiliation(s)
- Jiarong Hang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lukuan Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Liwen Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiqin Fang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Fei Wang
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
36
|
Biao Y, Chen J, Liu C, Wang R, Han X, Li L, Zhang Y. Protective Effect of Danshen Zexie Decoction Against Non-Alcoholic Fatty Liver Disease Through Inhibition of ROS/NLRP3/IL-1β Pathway by Nrf2 Signaling Activation. Front Pharmacol 2022; 13:877924. [PMID: 35800450 PMCID: PMC9253674 DOI: 10.3389/fphar.2022.877924] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Lipid metabolism disorders are a prominent characteristic in the pathological development of non-alcoholic fatty liver disease (NAFLD). Danshen zexie decoction (DZD) is a Chinese herbal medicine that is based on zexie decoction and has an effect of regulating lipid mechanism. However, the anti-NAFLD effect and mechanism of DZD remain unclear. In this study, we observed the therapeutic effect of DZD on NAFLD rats and investigated its possible mechanisms. Sixty Sprague Dawley rats were randomly assigned to six groups: control group, model group, Yishanfu (polyene phosphatidylcholine) group, and low, medium and high-dose DZD groups. High-fat diet (HFD) was fed to the rats to establish an NAFLD model, and each treatment group was given corresponding drugs at the same time for eight consecutive weeks. The results revealed that the obvious lipid metabolism disorder and liver injury induced by HFD were alleviated by treatment with DZD, which was verified by decreased serum TC, TG, ALT, AST, liver TC, TG, and FFA, as well as the alleviation of hepatic steatosis. The production of ROS in rats was reduced after treatment with DZD. The SOD activity and GSH content were increased with DZD treatment, while the MDA level was decreased. The administration of DZD could decrease serum IL-1β and IL-18 contents. Moreover, DZD upregulated the expressions of Nrf2, HO-1, GCLC, and GCLM, while it suppressed the expressions of NLRP3, caspase-1, GSDMD, and GSDMD-N. In conclusion, the data showed that DZD can reduce lipid accumulation, alleviate oxidative stress and inflammation, and inhibit pyroptosis in NAFLD rats, which might be ascribed to suppression of the ROS/NLRP3/IL-1β signaling pathway by activation of Nrf2. Overall, these results indicated that DZD is expected to be a therapeutic drug for NAFLD.
Collapse
Affiliation(s)
- Yaning Biao
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Jian Chen
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chenxu Liu
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ruilong Wang
- Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Xue Han
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Li Li, ; Yixin Zhang,
| | - Yixin Zhang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Li Li, ; Yixin Zhang,
| |
Collapse
|
37
|
Varre JV, Holland WL, Summers SA. You aren't IMMUNE to the ceramides that accumulate in cardiometabolic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159125. [PMID: 35218934 PMCID: PMC9050903 DOI: 10.1016/j.bbalip.2022.159125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Obesity leads to persistent increases in immune responses that contribute to cardiometabolic pathologies such as diabetes and cardiovascular disease. Pro-inflammatory macrophages infiltrate the expanding fat mass, which leads to increased production of cytokines such as tumor necrosis factor-alpha. Moreover, saturated fatty acids enhance signaling through the toll-like receptors involved in innate immunity. Herein we discuss the evidence that ceramides-which are intermediates in the biosynthetic pathway that produces sphingolipids-are essential intermediates that link these inflammatory signals to impaired tissue function. We discuss the mechanisms linking these immune insults to ceramide production and review the numerous ceramide actions that alter cellular metabolism, induce oxidative stress, and stimulate apoptosis. Lastly, we evaluate the correlation of ceramides in humans with inflammation-linked cardiometabolic disease and discuss preclinical studies which suggest that ceramide-lowering interventions may be an effective strategy to treat or prevent such maladies.
Collapse
Affiliation(s)
- Joseph V Varre
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 94108, United States of America.
| |
Collapse
|
38
|
Jackson KG, Way GW, Zhou H. Bile acids and sphingolipids in non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1163-1171. [PMID: 35788089 PMCID: PMC9337250 DOI: 10.1097/cm9.0000000000002156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is one of the fastest-growing diseases, and its global prevalence is estimated to increase >50% by 2030. NAFLD is comorbid with metabolic syndrome, obesity, type 2 diabetes, and insulin resistance. Despite extensive research efforts, there are no pharmacologic or biological therapeutics for the treatment of NAFLD. Bile acids and sphingolipids are well-characterized signaling molecules. Over the last few decades, researchers have uncovered potential mechanisms by which bile acids and sphingolipids regulate hepatic lipid metabolism. Dysregulation of bile acid and sphingolipid metabolism has been linked to steatosis, inflammation, and fibrosis in patients with NAFLD. This clinical observation has been recapitulated in animal models, which are well-accepted by experts in the hepatology field. Recent transcriptomic and lipidomic studies also show that sphingolipids are important players in the pathogenesis of NAFLD. Moreover, the identification of bile acids as activators of sphingolipid-mediated signaling pathways established a novel theory for bile acid and sphingolipid biology. In this review, we summarize the recent advances in the understanding of bile acid and sphingolipid-mediated signaling pathways as potential contributors to NAFLD. A better understanding of the pathologic effects mediated by bile acids and sphingolipids will facilitate the development of new diagnostic and therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Kaitlyn G. Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Grayson W. Way
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
39
|
Vegas-Suárez S, Simón J, Martínez-Chantar ML, Moratalla R. Metabolic Diffusion in Neuropathologies: The Relevance of Brain-Liver Axis. Front Physiol 2022; 13:864263. [PMID: 35634148 PMCID: PMC9134112 DOI: 10.3389/fphys.2022.864263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic liver diseases include a broad group of hepatic disorders from different etiologies and with varying degrees of progression and severity. Among them, non-alcoholic fatty (NAFLD) and alcoholic (ALD) liver diseases are the most frequent forms of expression, caused by either metabolic alterations or chronic alcohol consumption. The liver is the main regulator of energy homeostasis and metabolism of potentially toxic compounds in the organism, thus hepatic disorders often promote the release of harmful substances. In this context, there is an existing interconnection between liver and brain, with the well-named brain-liver axis, in which liver pathologies lead to the promotion of neurodegenerative disorders. Alzheimer's (AD) and Parkinson's (PD) diseases are the most relevant neurological disorders worldwide. The present work highlights the relevance of the liver-related promotion of these disorders. Liver-related hyperammonemia has been related to the promotion of perturbations in nervous systems, whereas the production of ketone bodies under certain conditions may protect from developing them. The capacity of the liver of amyloid-β (Aβ) clearance is reduced under liver pathologies, contributing to the development of AD. These perturbations are even aggravated by the pro-inflammatory state that often accompanies liver diseases, leading to the named neuroinflammation. The current nourishment habits, named as Western diet (WD) and alterations in the bile acid (BA) profile, whose homeostasis is controlled by the liver, have been also related to both AD and PD, whereas the supplementation with certain compounds, has been demonstrated to alleviate the pathologies.
Collapse
Affiliation(s)
- Sergio Vegas-Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain,Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERned), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III Institute of Health (ISCIII), Madrid, Spain,*Correspondence: María Luz Martínez-Chantar, ; Rosario Moratalla,
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERned), Carlos III Institute of Health (ISCIII), Madrid, Spain,*Correspondence: María Luz Martínez-Chantar, ; Rosario Moratalla,
| |
Collapse
|
40
|
Sun X, Qu T, Wang W, Li C, Yang X, He X, Wang Y, Xing G, Xu X, Yang L, Zhang H. Untargeted lipidomics analysis in women with intrahepatic cholestasis of pregnancy: a cross-sectional study. BJOG 2022; 129:880-888. [PMID: 34797934 DOI: 10.1111/1471-0528.17026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To compare the plasma lipid profiles in women with normal pregnancies and those with mild or severe intrahepatic cholestasis of pregnancy (ICP). Our goal was to reveal lipidome-wide alterations in ICP and delve into the pathogenesis of ICP from a lipid metabolism perspective. DESIGN Cross-sectional study, including women with normal pregnancies, women with mild ICP and women with severe ICP. SETTING Gansu Provincial Hospital. POPULATION Women with ICP were recruited from October 2019 to March 2020 in Gansu, China. METHODS Untargeted lipidomics was used to analyse differentially expressed plasma lipids in controls, in women with mild ICP and in women with severe ICP (n = 30 per group). For lipidomics, liquid chromatography and Q-Exactive Plus Orbitrap mass spectrometry were performed. MAIN OUTCOME MEASURES Differentially expressed lipids. RESULTS Thirty-three lipids were differentially expressed in the severe and mild ICP groups, compared with the control group, and 20 of those were sphingolipids (ceramide, six species; sphingomyelin, 14 species). All differentially expressed sphingolipids in women with mild ICP were also differentially expressed in women with severe ICP; the fold change and significance of the differential expression were positively correlated with disease severity. CONCLUSIONS We systematically characterized the lipidome-wide alterations in mild and severe ICP groups. The results indicated a link between ICP and disordered sphingolipid homeostasis. TWEETABLE ABSTRACT Abnormal sphingolipid metabolism is involved in the pathogenesis of ICP.
Collapse
Affiliation(s)
- X Sun
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - T Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - W Wang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - C Li
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X He
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Y Wang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - G Xing
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X Xu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - L Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - H Zhang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
41
|
Song Q, Liu H, Zhang Y, Qiao C, Ge S. Lipidomics Revealed Alteration of the Sphingolipid Metabolism in the Liver of Nonalcoholic Steatohepatitis Mice Treated with Scoparone. ACS OMEGA 2022; 7:14121-14127. [PMID: 35559132 PMCID: PMC9089391 DOI: 10.1021/acsomega.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/24/2022] [Indexed: 05/07/2023]
Abstract
Perturbation in sphingolipid metabolism has been regarded as a risk factor for nonalcoholic steatohepatitis (NASH) development, predisposing to inflammation, insulin resistance, and weight gain. Scoparone can regulate the level of ceramide in primary hepatocytes and effectively ameliorate hepatic inflammation, apoptosis, steatosis, and fibrogenesis in a mice model of NASH. Nevertheless, the potential effects of scoparone in sphingolipid metabolism, which is dysregulated in NASH, have not been explored so far. To uncover the impact of scoparone on sphingolipid metabolism in NASH and potential therapeutic targets for treating NASH, the liver tissue samples were collected and lipidomics analysis based on UPLC-QTRAP-MRM/MS was carried out. The collected raw data was handled with multivariate data treatment to discover the potential biomarkers in sphingolipid metabolism. Compared to the control group, 22 potential sphingolipid biomarkers were discovered in the NASH group, of which 10 were downregulated and 12 were upregulated. Orally administrated scoparone contributed to the reversal of the levels of these potential biomarkers. Ten differential metabolites showed a tendency of recovery compared to the control group and may be potential targets for scoparone to treat NASH. This study indicated that lipidomics can detect the perturbed sphingolipids to unravel the therapeutic effects of scoparone on NASH.
Collapse
Affiliation(s)
- Qi Song
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Hu Liu
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Yunqi Zhang
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Chuanqi Qiao
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Shaoqin Ge
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
- College
of Basic Medical Science, Hebei University, Baoding 071000, P.R. China
- (S.G.). Phone: +86-312-5075644. Fax: +86-312-5075644
| |
Collapse
|
42
|
Byrne FL, Olzomer EM, Lolies N, Hoehn KL, Wegner MS. Update on Glycosphingolipids Abundance in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23094477. [PMID: 35562868 PMCID: PMC9102297 DOI: 10.3390/ijms23094477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer. Low numbers of HCC patients being suitable for liver resection or transplantation and multidrug resistance development during pharmacotherapy leads to high death rates for HCC patients. Understanding the molecular mechanisms of HCC etiology may contribute to the development of novel therapeutic strategies for prevention and treatment of HCC. UDP-glucose ceramide glycosyltransferase (UGCG), a key enzyme in glycosphingolipid metabolism, generates glucosylceramide (GlcCer), which is the precursor for all glycosphingolipids (GSLs). Since UGCG gene expression is altered in 0.8% of HCC tumors, GSLs may play a role in cellular processes in liver cancer cells. Here, we discuss the current literature about GSLs and their abundance in normal liver cells, Gaucher disease and HCC. Furthermore, we review the involvement of UGCG/GlcCer in multidrug resistance development, globosides as a potential prognostic marker for HCC, gangliosides as a potential liver cancer stem cell marker, and the role of sulfatides in tumor metastasis. Only a limited number of molecular mechanisms executed by GSLs in HCC are known, which we summarize here briefly. Overall, the role GSLs play in HCC progression and their ability to serve as biomarkers or prognostic indicators for HCC, requires further investigation.
Collapse
Affiliation(s)
- Frances L. Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.B.); (E.M.O.); (K.L.H.)
| | - Ellen M. Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.B.); (E.M.O.); (K.L.H.)
| | - Nina Lolies
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Kyle L. Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.B.); (E.M.O.); (K.L.H.)
| | - Marthe-Susanna Wegner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (F.L.B.); (E.M.O.); (K.L.H.)
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt, Germany;
- Correspondence:
| |
Collapse
|
43
|
Cervantes M, Lewis RG, Della-Fazia MA, Borrelli E, Sassone-Corsi P. Dopamine D2 receptor signaling in the brain modulates circadian liver metabolomic profiles. Proc Natl Acad Sci U S A 2022; 119:e2117113119. [PMID: 35271395 PMCID: PMC8931347 DOI: 10.1073/pnas.2117113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
SignificanceWe analyzed the liver metabolome of mice deficient in the expression of the dopamine D2 receptor (D2R) in striatal medium spiny neurons (iMSN-D2RKO) and found profound changes in the liver circadian metabolome compared to control mice. Additionally, we show activation of dopaminergic circuits by acute cocaine administration in iMSN-D2RKO mice reprograms the circadian liver metabolome in response to cocaine. D2R signaling in MSNs is key for striatal output and essential for regulating the first response to the cellular and rewarding effects of cocaine. Our results suggest changes in dopamine signaling in specific striatal neurons evoke major changes in liver physiology. Dysregulation of liver metabolism could contribute to an altered allostatic state and therefore be involved in continued use of drugs.
Collapse
Affiliation(s)
- Marlene Cervantes
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Robert G. Lewis
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697
| | | | - Emiliana Borrelli
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697
| | - Paolo Sassone-Corsi
- INSERM U1233, Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| |
Collapse
|
44
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
45
|
Nenu I, Stefanescu H, Procopet B, Sparchez Z, Minciuna I, Mocan T, Leucuta D, Morar C, Grigorescu M, Filip GA, Socaciu C. Navigating through the Lipid Metabolism Maze: Diagnosis and Prognosis Metabolites of Hepatocellular Carcinoma versus Compensated Cirrhosis. J Clin Med 2022; 11:jcm11051292. [PMID: 35268381 PMCID: PMC8910918 DOI: 10.3390/jcm11051292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The pursuit of finding biomarkers for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has never been so paramount in the days of personalized medicine. The main objective of our study is to identify new biomarkers for diagnosing HCC, and to identify which patients are at risk of developing tumor recurrence, decompensation, or even possesses the risk of cancer-related death. (2) Methods: We have conducted an untargeted metabolomics study from the serum of 69 European patients—32 compensated cirrhotic patients without HCC (controls), and 37 cirrhotic patients with HCC with compensated underlying liver disease (cases), that underwent curative treatment (surgery or ablation), performing ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-QTOF- (ESI+)-MS) with an emphasis on lipid metabolites. (3) Results: 1,25-dihydroxy cholesterol (m/z = 419.281), myristyl palmitate (m/z = 453.165), 25-hydroxy vitamin D2 (m/z = 413.265), 12-ketodeoxycholic acid (m/z = 391.283), lysoPC (21:4) (m/z = 558.291), and lysoPE (22:2) (m/z = 534.286) represent notable biomarkers that differentiate compensated cirrhosis from early HCC, and ceramide species are depleted in the serum of HCC patients. Regarding prognosis, no metabolite identified in our study could determine tumor relapse. To distinguish between the HCC patients that survived curative treatment and those at risk that developed tumor burden, we have identified two notable phosphocholines (PC (30:2); PC (30:1)) with AUROCs of 0.820 and 0.807, respectively, that seem to increase when patients are at risk. In a univariate analysis, arachidonic acid was the only metabolite to predict decompensation (OR = 0.1, 95% CI: 0−0.16, p < 0.005), while in the multivariate analysis, dismally, no variable was associated with decompensation. Furthermore, in the multivariate analysis, we have found out for the first time that the increased expression of 1,25-dihydroxy cholesterol, myristyl palmitate, 12-keto deoxycholic acid, lysoPC (21:4), and lysoPE (22:2) are independent markers of survival. (4) Conclusions: Our study reveals that lipids play a crucial role in discriminating compensated cirrhosis and early hepatocellular carcinoma, and might represent markers of survival and prognosis in personalized and minimally invasive medicine.
Collapse
Affiliation(s)
- Iuliana Nenu
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (B.P.); (Z.S.); (I.M.); (T.M.); (M.G.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Correspondence: (I.N.); (H.S.)
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Correspondence: (I.N.); (H.S.)
| | - Bogdan Procopet
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (B.P.); (Z.S.); (I.M.); (T.M.); (M.G.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Zeno Sparchez
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (B.P.); (Z.S.); (I.M.); (T.M.); (M.G.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Iulia Minciuna
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (B.P.); (Z.S.); (I.M.); (T.M.); (M.G.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Tudor Mocan
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (B.P.); (Z.S.); (I.M.); (T.M.); (M.G.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Daniel Leucuta
- Department of Medical Statistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Corina Morar
- Center for Applied Biotechnology BIODIATECH, SC Proplanta, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| | - Mircea Grigorescu
- 3rd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (B.P.); (Z.S.); (I.M.); (T.M.); (M.G.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Center for Applied Biotechnology BIODIATECH, SC Proplanta, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| |
Collapse
|
46
|
Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022; 12:diagnostics12020407. [PMID: 35204498 PMCID: PMC8871470 DOI: 10.3390/diagnostics12020407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is currently the most common cause of chronic liver disease worldwide, and its prevalence is increasing globally. NAFLD is a multifaceted disorder, and its spectrum includes steatosis to steatohepatitis, which may evolve to advanced fibrosis and cirrhosis. In addition, the presence of NAFLD is independently associated with a higher cardiometabolic risk and increased mortality rates. Considering that the vast majority of individuals with NAFLD are mainly asymptomatic, early diagnosis of non-alcoholic steatohepatitis (NASH) and accurate staging of fibrosis risk is crucial for better stratification, monitoring and targeted management of patients at risk. To date, liver biopsy remains the gold standard procedure for the diagnosis of NASH and staging of NAFLD. However, due to its invasive nature, research on non-invasive tests is rapidly increasing with significant advances having been achieved during the last decades in the diagnostic field. New promising non-invasive biomarkers and techniques have been developed, evaluated and assessed, including biochemical markers, imaging modalities and the most recent multi-omics approaches. Our article provides a comprehensive review of the currently available and emerging non-invasive diagnostic tools used in assessing NAFLD, also highlighting the importance of accurate and validated diagnostic tools.
Collapse
|
47
|
McGowan EM, Lin Y, Chen S. Targeting Chronic Inflammation of the Digestive System in Cancer Prevention: Modulators of the Bioactive Sphingolipid Sphingosine-1-Phosphate Pathway. Cancers (Basel) 2022; 14:cancers14030535. [PMID: 35158806 PMCID: PMC8833440 DOI: 10.3390/cancers14030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Incidence of gastrointestinal (GI) cancers is increasing, and late-stage diagnosis makes these cancers difficult to treat. Chronic and low-grade inflammation are recognized risks for most GI cancers. The GI mucosal immune system maintains healthy homeostasis and signalling molecules made from saturated fats, bioactive sphingolipids, play essential roles in healthy GI immunity. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid, is a key mediator in a balanced GI immune response. Disruption in the S1P pathway underlies systemic chronic metabolic inflammatory disorders, including diabetes and GI cancers, providing a strong rationale for using modulators of the S1P pathway to treat pathological inflammation. Here, we discuss the effects of bioactive sphingolipids in immune homeostasis with a focus on S1P in chronic low-grade inflammation associated with increased risk of GI carcinogenesis. Contemporary information on S1P signalling involvement in cancers of the digestive system, from top to bottom, is reviewed. Further, we discuss the use of novel S1P receptor modulators currently in clinical trials and their potential as first-line drugs in the clinic for chronic inflammatory diseases. Recently, ozanimod (ZeposiaTM) and etrasimod have been approved for clinical use to treat ulcerative colitis and eosinophilic oesophagitis, respectively, which may have longer term benefits in reducing risk of GI cancers.
Collapse
Affiliation(s)
- Eileen M. McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
- Correspondence: ; Tel.: +86-614-0581-4048
| | - Yiguang Lin
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- School of Life Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Size Chen
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China; (Y.L.); (S.C.)
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
48
|
Weinstein G, O’Donnell A, Davis-Plourde K, Zelber-Sagi S, Ghosh S, DeCarli CS, Thibault EG, Sperling RA, Johnson KA, Beiser AS, Seshadri S. Non-Alcoholic Fatty Liver Disease, Liver Fibrosis, and Regional Amyloid-β and Tau Pathology in Middle-Aged Adults: The Framingham Study. J Alzheimers Dis 2022; 86:1371-1383. [PMID: 35213373 PMCID: PMC11323287 DOI: 10.3233/jad-215409] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Liver steatosis and fibrosis are emerging as risk factors for multiple extrahepatic health conditions; however, their relationship with Alzheimer's disease pathology is unclear. OBJECTIVE To examine whether non-alcoholic fatty liver disease (NAFLD) and FIB-4, a non-invasive index of advanced fibrosis, are associated with brain amyloid-β (Aβ) and tau pathology. METHODS The study sample included Framingham Study participants from the Offspring and Third generation cohorts who attended exams 9 (2011-2014) and 2 (2008-2011), respectively. Participants underwent 11C-Pittsburgh Compound-B amyloid and 18F-Flortaucipir tau positron emission tomography (PET) imaging and abdomen computed tomography, or had information on all components of the FIB-4 index. Linear regression models were used to assess the relationship of NAFLD and FIB-4 with regional tau and Aβ, adjusting for potential confounders and multiple comparisons. RESULTS Of the subsample with NAFLD information (N = 169; mean age 52±9 y; 57% males), 57 (34%) had NAFLD. Of the subsample with information on liver fibrosis (N = 177; mean age 50±10 y; 51% males), 34 (19%) had advanced fibrosis (FIB-4 > 1.3). Prevalent NAFLD was not associated with Aβ or tau PET. However, FIB-4 index was significantly associated with increased rhinal tau (β= 1.03±0.33, p = 0.002). Among individuals with prevalent NAFLD, FIB-4 was related to inferior temporal, parahippocampal gyrus, entorhinal and rhinal tau (β= 2.01±0.47, p < 0.001; β= 1.60±0.53, p = 0.007, and β= 1.59±0.47, p = 0.003 and β= 1.60±0.42, p = 0.001, respectively) and to Aβ deposition overall and in the inferior temporal and parahippocampal regions (β= 1.93±0.47, p < 0.001; β= 1.59±0.38, p < 0.001, and β= 1.52±0.54, p = 0.008, respectively). CONCLUSION This study suggests a possible association between liver fibrosis and early Alzheimer's disease pathology, independently of cardio-metabolic risk factors.
Collapse
Affiliation(s)
| | - Adrienne O’Donnell
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
| | - Kendra Davis-Plourde
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
| | - Shira Zelber-Sagi
- School of Public Health, University of Haifa, Haifa, Israel
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Saptaparni Ghosh
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Emma G. Thibault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A. Sperling
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith A. Johnson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa S. Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Sudha Seshadri
- The Framingham Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
49
|
Lee HB, Lee AY, Jang Y, Kwon YH. Soy isoflavone ameliorated the alterations in circulating adipokines and microRNAs of mice fed a high-fat diet. Food Funct 2022; 13:12268-12277. [DOI: 10.1039/d2fo02106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mice fed a high-fat diet, soy isoflavone consumption regulated the circulating miRNA profiles, which were significantly associated with adiposity and serum levels of adipokines, including leptin and adiponectin.
Collapse
Affiliation(s)
- Hyo Bin Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Ah Young Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Yumi Jang
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
50
|
Gill L, Contag S. Lipidomics provides therapeutic and diagnostic potential, but needs standardisation. BJOG 2021; 129:889. [PMID: 34913254 DOI: 10.1111/1471-0528.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Lisa Gill
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal Fetal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen Contag
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal Fetal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|