1
|
Abd El-Hamid MI, El-Malt RMS, Khater SI, Abdelwarith AA, Khamis T, Abd El-Wahab RA, Younis EM, Davies SJ, Mohamed DI, Mohamed RI, Zayed S, Abdelrahman MA, Ibrahim D. Impact of liposomal hesperetin in broilers: prospects for improving performance, antioxidant potential, immunity, and resistance against Listeria monocytogenes. Avian Pathol 2025; 54:120-148. [PMID: 39169883 DOI: 10.1080/03079457.2024.2395357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broiler industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broiler growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broiler groups were fed 0, 150, 250, or 400 mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400 mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and expression levels of its virulence-related genes (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes-infected broilers were restored post-inclusion at higher levels of liposomal hesperetin, which reflects increase of the birds' resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1β, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancement of the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broiler diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, Zagazig, Egypt
| | - Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute, Mansoura Provincial Laboratory (AHRI-Mansoura), Cairo, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud A Abdelrahman
- Bacteriology Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
da Silva Bomfim N, de Souza Ferreira R, Silva E Oliveira J, de Cássia Gonçalves Alfenas R. Green banana biomass anti-obesogenic, anti-hyperlipidemic, antidiabetic, and intestinal function potential effects: a systematic review. Nutr Rev 2025; 83:e290-e303. [PMID: 38630587 DOI: 10.1093/nutrit/nuae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
CONTEXT Apparently, the consumption of resistant-starch food sources, such as green banana biomass, stimulates the proliferation of short-chain fatty acid intestinal bacteria producers, which can contribute to intestinal health and reduce the risk of chronic diseases. However, the available scientific evidence is scarce and no study has systematically evaluated such evidence. OBJECTIVE The aim of this study was to analyze the potential effects of green banana biomass on anthropometry, body composition, and biochemical and intestinal variables in humans and animals. DATA SOURCES The Cochrane Library, Embase, Medline/PubMed, Scopus, and Web of Science electronic databases were searched in January 2024 for eligible articles. Studies that tested the effects of cooked peeled or unpeeled green banana on anthropometric, biochemical, and/or intestinal variables were included. DATA EXTRACTION This systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The classification and assessment of the quality of studies were based on the relevant criteria related to the design of these studies and the quality criteria checklist of the Academy of Nutrition and Dietetics manual. Twelve studies published between 2001 and 2021 were included in the review. DATA ANALYSIS The results of human studies indicate that the ingestion of green banana biomass controlled intestinal dysfunction (50-300 g/day for 5-14 days or 30 g/day for 8 wk) in children, and showed potential anti-obesogenic, anti-hyperlipidemic, and antidiabetic (40 g/day for 24 wk) effects in adults. In rats, biomass consumption led to potential anti-obesogenic (25 g/day for 8 wk), anti-hyperlipidemic, and antidiabetic (∼8-30 g/day for 12 wk) effects. CONCLUSION Consumption of green banana biomass seems to exert beneficial effects on intestinal function and potential effects on obesity, dyslipidemia, and diabetes. These effects may be related to increased fecal short-chain fatty acid concentrations as a result of type 3 resistant starch present in biomass. SYSTEMATIC REVIEW REGISTRATION Open Science Framework (OSF) (https://doi.org/10.17605/OSF.IO/TKCWV).
Collapse
Affiliation(s)
- Natália da Silva Bomfim
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renata de Souza Ferreira
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais-Campus Barbacena, Barbacena, Minas Gerais, Brazil
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Julia Silva E Oliveira
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
3
|
Cai R, Zheng Y, Lane JA, Huang P, Hu R, Huang Q, Liu F, Zhang B. In Vitro Infant Fecal Fermentation Metabolites of Osteopontin and 2'-Fucosyllactose Support Intestinal Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1642-1655. [PMID: 39705716 DOI: 10.1021/acs.jafc.4c07683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
In this study, we investigated the effects of infant fecal fermentation-derived metabolites of digested osteopontin (OPN) and 2'-fucosyllactose (2'-FL), either individually or in combination, on intestinal barrier function using a Caco-2/HT-29 coculture cell model. Our results suggested that the OPN/2'-FL (1:36-1:3) cofermentation metabolites improved epithelial barrier integrity by supporting the mRNA and protein expression of occludin, claudin-1, claudin-2, ZO-1, and ZO-2. All of the OPN/2'-FL treatments decreased the production of IL-1β, IL-6, and TNF-α, while the OPN/2'-FL ratio increased IL-10 production by inhibiting activation of the MyD88/IκB-α/NF-κB signaling pathway. OPN/2'-FL cofermentation altered the metabolic pathways, and the protective effect of fermentation metabolites on intestinal barrier function was related to differential metabolite expression such as short-chain fatty acids, deoxycholic acid, and 4-aminobutyric acid. Our findings provide in vitro evidence to support the application of the OPN/2'-FL combination in infant formula for the advancement of formulation functionality, including intestinal barrier function.
Collapse
Affiliation(s)
- Ran Cai
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
| | - Yuxing Zheng
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Jonathan A Lane
- H&H Research, Global Research and Technology Centre, H&H Group, P61 K202 Co. Cork, Ireland
| | - Pantian Huang
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Ruibiao Hu
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Qiang Huang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
| | - Feitong Liu
- H&H Research, China Research and Innovation Center, H&H Group, Guangzhou 510700, China
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
| |
Collapse
|
4
|
Bi J, Fu X, Jiang Y, Wang J, Li D, Xiao M, Mou H. Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation. Food Funct 2025. [PMID: 39812735 DOI: 10.1039/d4fo04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
Collapse
Affiliation(s)
- Jiayuan Bi
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polyacrylamide of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| |
Collapse
|
5
|
Verdile N, Cattaneo N, Camin F, Zarantoniello M, Conti F, Cardinaletti G, Brevini TAL, Olivotto I, Gandolfi F. New Insights in Microplastic Cellular Uptake Through a Cell-Based Organotypic Rainbow-Trout ( Oncorhynchus mykiss) Intestinal Platform. Cells 2025; 14:44. [PMID: 39791745 PMCID: PMC11719976 DOI: 10.3390/cells14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout (Oncorhynchus mykiss) intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h. MP uptake was faster in RTpi-MI compared to RTdi-MI. Exposure to microplastics compromised the cellular barrier integrity by disrupting the tight-junction protein zonula occludens-1, inducing significant decreases in the transepithelial-electrical-resistance (TEER) values. Consequently, MPs were internalized by cultured epithelial cells and fibroblasts. The expression of genes related to endocytosis (cltca, cav1), macropinocytosis (rac1), and tight junctions' formation (oclna, cldn3a, ZO-1) was analyzed. No significant differences were observed in cltca, oclna, and cldn3a expression, while an upregulation of cav1, rac1, and ZO-1 genes was detected, suggesting macropinocytosis as the route of internalization, since also cav1 and ZO-1 are indirectly related to this mechanism. The obtained results are consistent with data previously reported in vivo, confirming its validity for identifying MP internalization pathways. This could help to develop strategies to mitigate MP absorption through ingestion.
Collapse
Affiliation(s)
- Nicole Verdile
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.V.); (T.A.L.B.)
| | - Nico Cattaneo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (N.C.); (M.Z.); (F.C.)
| | - Federica Camin
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy;
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (N.C.); (M.Z.); (F.C.)
| | - Federico Conti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (N.C.); (M.Z.); (F.C.)
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Tiziana A. L. Brevini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (N.V.); (T.A.L.B.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (N.C.); (M.Z.); (F.C.)
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
6
|
Hu Y, Tang S, Zhao W, Wang S, Sun C, Chen B, Zhu Y. Dietary ferulic acid improves growth performance of broilers via enhanced intestinal antioxidant capacity and barrier function. Anim Biosci 2025; 38:106-116. [PMID: 38665075 PMCID: PMC11725724 DOI: 10.5713/ab.23.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVE In this study, the effects of dietary ferulic acid (FA) on the growth traits, antioxidant capacity, and intestinal barrier function of broilers were investigated. METHODS In total, 192 male Arbor Acres broilers were randomly allocated to one of three dietary groups (8 replicates of 8 birds each): control (CON) group (basal diet), FA100 group (basal diet + 100 mg/kg FA), or FA200 group (basal diet + 200 mg/kg FA). The duration of the feeding trial was 42 days. RESULTS Higher average daily gain (ADG) and lower feed to gain (F/G) ratio during day 0 to day 21 were found in the FA100 and FA200 groups, while higher ADG and lower F/G during day 21 to day 42 were only found in FA200 group, compared to the CON group (p<0.05). Serum levels of malondialdehyde and diamine oxidase on day 21 were lower in the FA100 and FA200 groups and those on day 42 were lower in the FA200 group, while glutathione peroxidase level in the FA100 and FA200 groups on day 21 and that in the FA200 group on day 42 were increased (p<0.05). On day 21, jejunal glutathione synthetase (GSS) expression was upregulated in the FA200 group (p<0.05), while jejunal and ileal expression of nuclear factor erythroid 2-related factor 2 (NRF2) and Occludin as well as ileal expression of glutathione peroxidase 1 (GPX1) and zonula occludens 1 (ZO1) were increased in the FA100 and FA200 groups compared to the CON group (p<0.05). On day 42, mRNA expression of GSS, NRF2, SOD1, and GPX1 in the jejunum and ileum as well as Claudin2 in the jejunum and Occludin in the ileum were increased in the FA200 group (p<0.05). CONCLUSION Dietary FA addition could improve the growth performance, antioxidant capacity, and gut integrity of broilers. The current findings provided evidence that the adoption of FA can be a nutrition intervention measure to achieve high-efficient broiler production for poultry farmers.
Collapse
Affiliation(s)
- Yaodong Hu
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Shi Tang
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Silu Wang
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Caiyun Sun
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Binlong Chen
- College of Animal Science, Xichang University, Xichang, 615000,
China
| | - Yuxing Zhu
- College of Animal Science, Xichang University, Xichang, 615000,
China
| |
Collapse
|
7
|
Alvarez SCV, Pendón MD, Bengoa AA, Leiva Alaniz MJ, Maturano YP, Garrote GL. Probiotic Potential of Yeasts Isolated from Fermented Beverages: Assessment of Antagonistic Strategies Against Salmonella enterica Serovar Enteritidis. J Fungi (Basel) 2024; 10:878. [PMID: 39728373 DOI: 10.3390/jof10120878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Global concern about pathogenic resistance to antibiotics is prompting interest in probiotics as a strategy to prevent or inhibit infections. Fermented beverages are promising sources of probiotic yeasts. This study aimed to evaluate the antagonistic effects of Kluyveromyces marxianus, Wickerhamomyces anomalus, and Pichia manshurica strains from kefir and wine against Salmonella enterica serovar Enteritidis in intestinal epithelial cells. The ability of these yeasts to adhere to Caco-2/TC-7 cells was evaluated, as well as their influence on the ability of Salmonella to associate and invade these cells. The behavior of the pathogen was analyzed by (a) incubation of enterocytes with yeast before adding Salmonella, (b) co-incubation of Salmonella with yeast before contact with the enterocytes, and (c) incubation of Salmonella with yeast metabolites before contact with enterocytes. All yeast strains demonstrated adherence to Caco-2/TC-7 cells (33-100%) and effectively inhibited Salmonella invasion. Among the treatments, co-culture showed the greatest effect, reducing Salmonella association and invasion by more than 50%. Additionally, these yeasts modulated the epithelial immune response, significantly decreasing CCL20-driven luminescence by 60-81% (p < 0.0001). These results highlight the potential of yeasts from fermented beverages as probiotics to counteract Salmonella infections, offering a promising alternative in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Silvia Cristina Vergara Alvarez
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - María Dolores Pendón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| | - Ana Agustina Bengoa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| | - María José Leiva Alaniz
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Yolanda Paola Maturano
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. San Martín 1109 (O), San Juan 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Graciela Liliana Garrote
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires 1425, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-UNLP-CIC, Street 47 and 116, La Plata 1900, Argentina
| |
Collapse
|
8
|
Jiang H, Shi L, Deng T, Hou G, Xun W. Effects of cardamonin on the growth performance, intestinal barrier function and intestinal microbiota of Danzhou chickens under heat stress. Poult Sci 2024; 103:104362. [PMID: 39426223 PMCID: PMC11536001 DOI: 10.1016/j.psj.2024.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
The aim of this study was to investigate the effects of cardamonin (CDN) on the growth performance, intestinal mucosal barrier function and intestinal microbiota of Danzhou chickens under heat stress. A total of 200 one-day-old female Danzhou chickens were randomly divided into 5 groups. The daytime temperature of heat stress (HS) was set at 36 ± 2°C, and the nighttime temperature was kept the same as in the control (CON) group at 25 ± 2°C. The formal experiment lasted for 21 d. The CON and HS groups were fed a basal diet, whereas the L-CDN, M-CDN, and H-CDN groups received a basal diet supplemented with 50, 100, and 200 mg/kg CDN, respectively. Compared with the HS group, the CDN group presented a significantly greater average daily gain (ADG) (P < 0.001) but a significantly lower feed-to-gain ratio (F/G) (P = 0.007). CDN supplementation also increased the villus height (VH) and the ratio of the villus height to crypt depth (V/C) (P < 0.001) and reduced intestinal permeability by increasing expression of the ZO-1 (P < 0.001), Occludin (P < 0.001), and Claudin-1 (P = 0.034) proteins and decreasing the content of D-lactic acid (D-LA) and the activity of diamine oxidase (DAO) in serum (P < 0.001). Additionally, CDN reduced the levels of the intestinal mucosal inflammatory factors (IL-1β (P = 0.031), IL-6 (P = 0.003), and TNF-α (P = 0.014)) while upregulating IL-10 (P < 0.001). Furthermore, it increased the total antioxidant capacity (T-AOC) (P = 0.004) and catalase (CAT) activity (P < 0.001) and reduced the malondialdehyde (MDA) content (P = 0.017), effectively reducing intestinal oxidative stress and inflammatory reactions. Expression of the Nrf2 pathway-related proteins Nrf2 (P = 0.012), HO-1 (P = 0.008), and NQO1 (P = 0.003) was also increased by CDN. Moreover, feeding CDN increased the proportion of beneficial bacteria such as Firmicutes and Bacteroidetes but decreased the proportion of harmful bacteria such as Proteobacteria, thus protecting the intestinal barrier. In summary, 200 mg/kg CDN in the diet improved growth performance, enhanced intestinal barrier function and improved intestinal flora disorders in heat stress-induced Danzhou chickens, which may be related to the Nrf2/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Haoran Jiang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Tanjie Deng
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Wenjuan Xun
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
9
|
Cao X, Chen L, Fan Y, Fu M, Du Q, Chang Z. Black phosphorus quantum dots induced neurotoxicity, intestinal microbiome and metabolome dysbiosis in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176644. [PMID: 39374705 DOI: 10.1016/j.scitotenv.2024.176644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
The potential toxicity of BPQDs has received considerable attention due to their increasing use in biomedical applications. In this study, the toxicity of BPQDs at concentrations of 5 μg/mL, 50 μg/mL, and 500 μg/mL on the brain-gut axis was assessed in zebrafish. Following 35 days of exposure, the neurotransmitter, locomotor behavior, gut barrier (physical barrier, chemical barrier, and microbial barrier), and gut content metabolism in zebrafish were evaluated. The results indicated that BPQDs induced the locomotor behavior abnormalities, inhibited acetylcholinesterase activity, induced dopaminase activity, and promoted apoptosis in zebrafish brain tissue. Meanwhile, BPQDs caused damage to the physical and chemical barriers in zebrafish intestinal tissue, which increased the permeability of the intestinal mucosa, and induced oxidative stress and apoptosis. The gut microbiota was analyzed by 16S rRNA gene sequencing. The results showed that BPQDs caused dysbiosis of the gut microbiota, resulting in decreased diversity. Specifically, the relative abundance of Firmicutes, Bacteroidetes, and Actinobacteria decreased, while the relative abundance of Proteobacteria and Clostriobacteria increased. At the genus level, the high concentration BPQDs showed a significant increase in Cetobacterium, Pleisionomas, Aeromonas, and other bacteria. Bioinformatic analysis revealed a correlation between the relative abundance of the gut microbiota and antioxidant levels, immune response, and apoptosis. Statistical analysis of the metabolomic revealed significant perturbations in several metabolic pathways, including amino acid, lipid, nucleotide, and energy metabolism. In addition, correlation analysis between microbiota and metabolism confirmed that gut microbiota dysbiosis was closely associated with metabolic dysfunction. The histopathologic injury supported the changes in biomarkers and the expression of related marker genes in the gut-brain axis, indicating the communication between the gut peripheral nerves and the CNS. The results indicate that BPQDs induce gut microbiota dysbiosis, disrupt metabolic function, and induce neurotoxicity, probably by disrupting the homeostasis of the microbiota-gut-brain axis. In summary, this study demonstrates the effects of BPQDs on physiological changes within the zebrafish brain-gut axis and provides valuable data for assessing the toxicological risks of BPQDs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaonan Cao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Lili Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Yingxin Fan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Mengxiao Fu
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
10
|
Yu W, Zhu Z, Tang F. Emerging Insights into Postoperative Neurocognitive Disorders: The Role of Signaling Across the Gut-Brain Axis. Mol Neurobiol 2024; 61:10861-10882. [PMID: 38801630 PMCID: PMC11584502 DOI: 10.1007/s12035-024-04228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
The pathophysiological regulatory mechanisms in postoperative neurocognitive disorders (PNCDs) are intricately complex. Currently, the pathogenesis of PNCDs has not been fully elucidated. The mechanism involved may include a variety of factors, such as neuroinflammation, oxidative stress, and neuroendocrine dysregulation. Research into the gut microbiota-induced regulations on brain functions is increasingly becoming a focal point of exploration. Emerging evidence has shown that intestinal bacteria may play an essential role in maintaining the homeostasis of various physiological systems and regulating disease occurrence. Recent studies have confirmed the association of the gut-brain axis with central nervous system diseases. However, the regulatory effects of this axis in the pathogenesis of PNCDs remain unclear. Therefore, this paper intends to review the bidirectional signaling and mechanism of the gut-brain axis in PNCDs, summarize the latest research progress, and discuss the possible mechanism of intestinal bacteria affecting nervous system diseases. This review is aimed at providing a scientific reference for predicting the clinical risk of PNCD patients and identifying early diagnostic markers and prevention targets.
Collapse
Affiliation(s)
- Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
11
|
Cho Y, Sung MH, Kang HT, Lee JH. Establishment of an Apical-Out Organoid Model for Directly Assessing the Function of Postbiotics. J Microbiol Biotechnol 2024; 34:2184-2191. [PMID: 39317684 PMCID: PMC11637808 DOI: 10.4014/jmb.2405.05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
In vitro organoids that mimic the physiological properties of in vivo organs based on three-dimensional cell cultures overcome the limitations of two-dimensional culture systems. However, because the lumen of a typical intestinal organoid is internal, we used an apical-out intestinal organoid model in which the lumen that absorbs nutrients is outside to directly assess the function of postbiotics. A composite culture supernatant of Lactiplantibacillus plantarum KM2 and Bacillus velezensis KMU01 was used as a postbiotic treatment. Expression of COX-2 decreased in apical-out organoids co-treated with a lipopolysaccharide (LPS) and postbiotics. Expression of tight-junction markers such as ZO-1, claudin, and Occludin increased, and expression of mitochondrial homeostasis factors such as PINK1, parkin, and PGC1a also increased. As a result, small and large intestine organoids treated with postbiotics protected tight junctions from LPS-induced damage and maintained mitochondrial homeostasis through mitophagy and mitochondrial biogenesis. This suggests that an apical-out intestinal organoid model can confirm the function of food ingredients.
Collapse
Affiliation(s)
- Yeonoh Cho
- Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Moon-Hee Sung
- KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Hee-Taik Kang
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
12
|
Gao F, Zhang X, Xu Z, Zhang K, Quan F. Goat milk derived small extracellular vesicles ameliorate LPS-induced intestinal epithelial barrier dysfunction, oxidative stress, and apoptosis by inhibiting the MAPK signaling pathway. Food Funct 2024; 15:11590-11607. [PMID: 39508525 DOI: 10.1039/d4fo04067h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Intestinal injury is often accompanied by epithelial barrier dysfunction, oxidative stress, and apoptosis. Previous research studies have demonstrated that small extracellular vesicles (sEVs) from animal milk play a crucial role in regulating intestinal injury. Nonetheless, there has been limited research on the impact of goat milk sEVs on intestinal damage. This study aims to explore the functional differences between proteins in colostrum-derived sEVs (CME) and mature milk-derived sEVs (MME) from goat and elucidate their effects and mechanisms on lipopolysaccharide (LPS)-induced injury in IEC-6. Proteomic analysis revealed that both CME and MME are rich in various bioactive proteins that have regulatory effects on cell damage. CME and MME significantly improved LPS-induced IEC-6 barrier dysfunction and oxidative stress. Additionally, CME and MME alleviated LPS-induced IEC-6 proliferation inhibition and apoptosis. Notably, CME exhibited a more significant improvement effect. RNA-Seq analysis indicated that CME ameliorates IEC-6 injury by inhibiting multiple genes and signaling pathways associated with cell damage, particularly the MAPK signaling pathway. In summary, goat milk-derived sEVs improve LPS-induced IEC-6 injury by targeting the MAPK signaling pathway, significantly restoring the intestinal epithelial barrier function, reducing oxidative stress, and alleviating apoptosis. These findings offer scientific evidence supporting the potential application of goat milk-derived sEVs as protective agents against intestinal injury.
Collapse
Affiliation(s)
- Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
13
|
Xirouchakis E, Kranidioti H, Hadziyanni E, Kourikou A, Reppas C, Vertzoni M, Papadopoulos N, Deutsch M, Papatheodoridis G, Manolakopoulos S. The effect of propranolol on gastrointestinal motility and permeability in patients with cirrhosis and significant portal hypertension. BMC Gastroenterol 2024; 24:420. [PMID: 39574005 PMCID: PMC11580216 DOI: 10.1186/s12876-024-03483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Patients with cirrhosis and portal hypertension may have alterations in intestinal barrier resulting in increased susceptibility for infections. We investigated the effect of propranolol in gastrointestinal motility, permeability and bacterial overgrowth in cirrhosis. METHODS Patients with cirrhosis and esophageal varices were studied before and after a build-up dose of propranolol according to standard guidelines. Serum TNF-a, IL-6, IL-1b, LPS and bacterial DNA were measured before and during propranolol therapy. Oro-caecal transit time (OCTT) and bacterial overgrowth (BO) have been evaluated with H2 breath testing. Intestinal paracellular (IP), cellular passive non-carrier (ICNC), cellular passive carrier-mediated (ICCM), and gastric permeability (GP) were evaluated by measurement of lactulose, mannitol, D-xylose and sucrose respectively in urine, with high performance liquid chromatography (HPLC). RESULTS 35 patients with cirrhosis and portal hypertension with median age was 59.6 years (range 42-86) were included in the study. Twenty one had viral hepatitis and 25 were classified as having advanced cirrhosis (Child-Pugh B: 14 or C: 11). Median dose of administrated propranolol was 40 mg/day. After 7 days propranolol treatment BO was resolved in 15 out of 16 patients (93.7%, p = 0.0001) and OCTT was reduced significantly from 180 min to 139 min (SD 58.5, difference - 4 1 min, p = 0.0001). Serum IL-6 levels were reduced in 21/35 (60%) patients from 41.1 to 19 pg/ml (p = 0.01), TNF-a in 10/35 (28.5%) patients from 10.7 to 5.6 pg/ml (p = 0.007) and LPS in 20/35 (57%) from 7.1 to 5.2 mg/L (p = 0.1). No bacterial DNA was detected in serum of all patients either baseline or under propranolol treatment. IP was significantly reduced (0.2 to 0.16, p = 0.04) whereas ICNC (p = 0.9), ICCM (p = 0.4) and GP (p = 0.7) were not affected significantly. Intestinal Permeability (PI) index (Lactulose to Mannitol ratio) was significantly reduced (0.027 to 0.02, p = 0.03). CONCLUSION In patients with cirrhosis and portal hypertension, propranolol use is associated with reduction in BO, increase in intestinal motility and amelioration in intestinal permeability. Moreover IL-6 and LPS levels are being decreased in the majority of patients under propranolol.
Collapse
Affiliation(s)
- Elias Xirouchakis
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens "Hippocration", National and Kapodistrian University of Athens, Athens, Greece
- Department of Gastroenterology and Hepatology, Athens Medical - P. Faliron Hospital, Athens, Greece
| | - Hariklia Kranidioti
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens "Hippocration", National and Kapodistrian University of Athens, Athens, Greece
| | - Emilia Hadziyanni
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens "Hippocration", National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Kourikou
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens "Hippocration", National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papadopoulos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens "Hippocration", National and Kapodistrian University of Athens, Athens, Greece
| | - Melanie Deutsch
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens "Hippocration", National and Kapodistrian University of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology National, Kapodistrian University of Athens Laiko General Hospital, Athens, Greece
| | - Spilios Manolakopoulos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens "Hippocration", National and Kapodistrian University of Athens, Athens, Greece.
- Department of Gastroenterology National, Kapodistrian University of Athens Laiko General Hospital, Athens, Greece.
| |
Collapse
|
14
|
Wang J, Wang Y, Huang C, Chen Y, Li X, Jiang Z. Decursin protects against DSS-induced experimental colitis in mice by inhibiting the cGAS-STING signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03589-4. [PMID: 39520553 DOI: 10.1007/s00210-024-03589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
While studies have shown that Angelica gigas Nakai (A. gigas) can alleviate ulcerative colitis in mice, the therapeutic role of its main active ingredient, decursin, is uncertain. Therefore, we aimed to investigate the protective effect and mechanism of decursin against inflammatory bowel disease (IBD) in vivo using mice. IBD was simulated via induction with 3% dextran sodium sulfate (DSS), with or without daily treatment with decursin (10 mg/kg or 20 mg/kg) or 5-amino salicylic acid (5-ASA; 100 mg/kg) for 14 days. Mice were weighed and monitored daily for disease activity index (DAI) scoring. Colon tissues were collected for histopathological staining analysis, and serum was collected for ELISA measurement of proinflammatory cytokines. Western blotting was employed to analyze colonic expression levels of the tight junction-related proteins ZO-1, Occludin, and Claudin 1, as well as cGAS-STING signaling pathway-associated proteins. The expression levels of major proteins were verified using immunohistochemistry and immunofluorescence. Compared with the control group, DSS-induced mice showed decreased body weight, increased DAI scores, shortening of the colon, disrupted colon tissue structure, increased serum levels of proinflammatory cytokines, increased expression of factors involved in activating the cGAS-STING signaling pathway, and reduced expression of ZO-1, Occludin, and Claudin 1. Under decursin treatment, the pathological state of IBD was less severe, proinflammatory factors were downregulated, and activation of the cGAS-STING signaling pathway was inhibited. Our findings indicate that decursin helps restore the intestinal mucosal barrier and prevents activation of the cGAS-STING signaling cascade, alleviating experimental IBD in mice.
Collapse
Affiliation(s)
- Jiamin Wang
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, Jilin, 133000, China
| | - Yudi Wang
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, Jilin, 133000, China
| | - Caisheng Huang
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, Jilin, 133000, China
| | - Yonghu Chen
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, Jilin, 133000, China
| | - Xuezheng Li
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, Jilin, 133000, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe Jiang
- College of Pharmacy, Yanbian University Hospital, Yanbian University, Yanji, Jilin, 133000, China.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
15
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
16
|
Ouyang J, Zhang C, Deng C, Wen A, Zhou H, You J, Li G. Dietary vitamin B6 supplementation alleviates heat stress-induced intestinal barrier impairment by regulating the gut microbiota and metabolites in broilers. Poult Sci 2024; 103:104202. [PMID: 39222554 PMCID: PMC11402297 DOI: 10.1016/j.psj.2024.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Heat stress (HS) brings great challenges to the poultry industry. Vitamin B6 (VB6) is an essential micro-nutrient for animals to maintain normal physiological functions and possesses antioxidant and anti-inflammatory properties. This study aimed to explore the effect of VB6 on alleviating HS-induced intestinal barrier impairment in broilers. A total of 250 broilers (609.76 ± 0.34 g) were randomly allocated to 5 groups with 5 replicate cages of 10 birds each. The broilers in thermoneutral (TN) group were raised in thermoneutral conditions (23 ± 1°C) and fed with a basal diet. The birds in other four groups were housed under cycle high temperature (34 ± 1°C for 8 h/d) from d 21 to 35 and fed with the basal diet (HS group) or basal diet supplemented with 6, 12, or 24 mg/kg VB6 (HB-6, HB-12, HB-24 groups). The results showed that HS reduced the growth performance, increased ileum inflammatory cytokines levels, and impaired the gut barrier function (P < 0.05). Compared to the HS group, final body weight, average daily gain, and average daily feed intake, and the feed conversion ratio were improved by VB6 supplementation. The diamine oxidase, interleukin (IL)-1β, tumor necrosis factor-α, IL-18, IL-10, and interferon-γ levels were reduced by VB6 supplementation (P < 0.05). Moreover, VB6 supplementation linearly or quadratically enhanced villus height and villus height-to-crypt depth ratio of duodenum and jejunum, and decreased crypt depth of duodenum and ileum. The mRNA expression of Occlaudin, ZO1, Mucin2, Mucin4, E-cadhein, and β-catenin were increased by VB6 treatment (P < 0.05). Furthermore, dietary VB6 altered the diversity and community of gut microbiota (P < 0.05). A total of 83 differential metabolites associated with the amelioration of VB6 were identified, which were primarily enriched in glycerophospholipid metabolism, caffeine metabolism, and glutathione metabolism pathway. Collectively, VB6 may improve the growth performance and intestinal barrier function of heat-stressed broilers by regulating the ileal microbiota and metabolic homeostasis.
Collapse
Affiliation(s)
- Jingxin Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chao Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chenxi Deng
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Ai Wen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China.
| |
Collapse
|
17
|
Zhang S, Huang Z, Li Q, Zheng X, Liu J. Two-stage solid-state fermentation to increase the nutrient value of corn processing waste and explore its efficacy as a feed protein source. Food Chem X 2024; 23:101656. [PMID: 39113738 PMCID: PMC11304863 DOI: 10.1016/j.fochx.2024.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Corn gluten meal-corn husk mixes (CCM) are an inexpensive and readily available agricultural by-product. This study explores a novel technique by converting CCM into high-value livestock feed protein sources through fermentation with Aspergillus niger AAX and Lactobacillus fermentum LLS, aiming to sustainably meet future global protein needs. The process of fermentation significantly altered the structural composition of high molecular weight proteins, zein, and dietary fibers. This transformation resulted in a marked elevation in the concentrations of peptides, free amino acids, and polyphenols. The acidic environment produced during fermentation prevented lipid oxidation in CCM, thereby extending its storability. After fermentation, the content of anti-nutritional factors decreased, while its antioxidant capacity increased. In vitro simulated digestion suggested that fermentation improved the digestibility of CCM protein. In vivo animal experiments showed that fermented CCM (FCCM) promoted growth and gut health in chicks. This study provides new insights into the utilization of CCM.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoxin Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qining Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
18
|
Gao F, Wu S, Zhang K, Xu Z, Zhang X, Zhu Z, Quan F. Goat Milk Exosomes Ameliorate Ulcerative Colitis in Mice through Modulation of the Intestinal Barrier, Gut Microbiota, and Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23196-23210. [PMID: 39390385 DOI: 10.1021/acs.jafc.4c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Goat milk is rich in a variety of nutrients that are important for intestinal health and disease prevention. However, the role of exosomes in goat milk remains to be elucidated. This study investigated for the first time the therapeutic efficacy and molecular underlying mechanisms of mature milk exosomes (M-exo) and goat colostrum exosomes (C-exo) on dextran sodium sulfate-induced ulcerative colitis (UC) in mice. The findings demonstrate that M-exo and C-exo significantly improved physiological indices, suppressed the secretion of proinflammatory cytokines, and diminished oxidative stress and apoptosis in UC mice. Moreover, C-exo and M-exo restored the intestinal barrier function, remodeled the gut microbiota, and improved metabolite composition in the feces of colitis mice. In conclusion, goat milk exosomes ameliorate UC in mice, which provides a basis for the development of functional food applications for the prevention and treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xin Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhengjin Zhu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
19
|
Dong L, Luo P, Zhang A. Intestinal microbiota dysbiosis contributes to the liver damage in subchronic arsenic-exposed mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1774-1788. [PMID: 39394819 PMCID: PMC11693861 DOI: 10.3724/abbs.2024131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 10/14/2024] Open
Abstract
There is an extensive amount of evidence that links changes in the intestinal microbiota structure to the progression and pathophysiology of many liver diseases. However, comprehensive analysis of gut flora dysbiosis in arsenic-induced hepatotoxicity is lacking. Herein, C57BL/6 mice are exposed to arsenic (1, 2, or 4 mg/kg) for 12 weeks, after which fecal microbiota transplantation (FMT) study is conducted to confirm the roles of the intestinal microbiome in pathology. Treatment with arsenic results in pathological and histological changes in the liver, such as inflammatory cell infiltration and decreased levels of TP and CHE but increased levels of ALP, GGT, TBA, AST, and ALT. Arsenic causes an increase in the relative abundance of Escherichia-Shigella, Klebsiella and Blautia, but a decrease in the relative abundance of Muribaculum and Lactobacillus. In arsenic-exposed mice, protein expressions of Occludin, ZO-1, and MUC2 are significantly decreased, but the level of FITC in serum is increased, and FITC fluorescence is extensively dispersed in the intestinal tract. Importantly, FMT experiments show that mice gavaged with stool from arsenic-treated mice exhibit severe inflammatory cell infiltration in liver tissues. Arsenic-manipulated gut microbiota transplantation markedly facilitates gut flora dysbiosis in the recipient mice, including an up-regulation in Escherichia-Shigella and Bacteroides, and a down-regulation in Lactobacillus and Desulfovibrio. In parallel with the intestinal microbiota wreck, protein expressions of Occludin, ZO-1, and MUC2 are decreased. Our findings suggest that subchronic exposure to arsenic can affect the homeostasis of the intestinal microbiota, induce intestinal barrier dysfunction, increase intestinal permeability, and cause damage to liver tissues in mice.
Collapse
Affiliation(s)
- Ling Dong
- />The Key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationDepartment of ToxicologySchool of Public HealthCollaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and MinistryGuizhou Medical UniversityGuiyang561113China
| | - Peng Luo
- />The Key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationDepartment of ToxicologySchool of Public HealthCollaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and MinistryGuizhou Medical UniversityGuiyang561113China
| | - Aihua Zhang
- />The Key Laboratory of Environmental Pollution Monitoring and Disease ControlMinistry of EducationDepartment of ToxicologySchool of Public HealthCollaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and MinistryGuizhou Medical UniversityGuiyang561113China
| |
Collapse
|
20
|
Wang XY, Meng FH, Zhang MY, Li FX, Lei YX, Ma ZG, Li JQ, Lou YN, Chu YF, Ma K, Yu SX. Gut Lactococcus garvieae promotes protective immunity to foodborne Clostridium perfringens infection. Microbiol Spectr 2024; 12:e0402523. [PMID: 39190634 PMCID: PMC11448249 DOI: 10.1128/spectrum.04025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
The gut microbiota, a pivotal component of the intestinal mucosal barrier, is critical for host resistance to enteric pathogen infection. Here, we report a novel function of the potentially probiotic Lactococcus garvieae strain LG1 (L. garvieae strain LG1) in maintaining intestinal mucosal barrier integrity and protecting against foodborne Clostridium perfringens (C. perfringens) infection. L. garvieae was isolated from the intestinal contents of Chinese Mongolian sheep (MS) and exhibited potential probiotic properties. In a C. perfringens enterocolitis model, L. garvieae-pretreated mice were less susceptible to C. perfringens infection compared with Phosphate buffered solution (PBS)-pretreated mice, which manifested as higher survival rates, lower pathogen loads, less weight loss, mild clinical symptoms and intestinal damage, and minor inflammation. Further mechanistic analysis showed that L. garvieae could ameliorate the disruption of intestinal permeability and maintain the integrity of the intestinal mucosal barrier by promoting the expression of tight junction proteins and mucoproteins. Moreover, L. garvieae was also able to facilitate antimicrobial peptide expression and ameliorate dysbiosis of the gut microbiota caused by C. perfringens. Together, these findings highlight the prospect of immunomodulatory potentially probiotic L. garvieae and might offer valuable strategies for prophylaxis and/or treatment of pathogenic C. perfringens mucosal infection. IMPORTANCE C. perfringens necrotic enteritis leads to losses of about US $2 billion to the poultry industry worldwide every year. Worse, US Centers for Disease Control and Prevention (CDC) has estimated that C. perfringens causes nearly 1 million foodborne illnesses in the United States annually. Nowadays, the treatment recommendation is a combination of a broad-spectrum synergistic penicillin with clindamycin or a carbapenem, despite growing scientific concern over antibiotic resistance. The global understanding of the gut microbiome for C. perfringens infection may provide important insights into the intervention. L. garvieae originated from Mongolian sheep intestine, exhibited potentially probiotic properties, and was able to limit C. perfringens enterocolitis and pathogenic colonization. Importantly, we found that L. garvieae limits C. perfringens invasion via improving intestinal mucosal barrier function. Also, L. garvieae alleviates C. perfringens-induced gut microbiota dysbiosis. It allowed us to convince that utilization of probiotics to promote protective immunity against pathogens infection is of pivotal importance.
Collapse
Affiliation(s)
- Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ming-Yue Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fen-Xin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhao-Guo Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jia-Qi Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ya-Nan Lou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yue-Feng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy agricultural Sciences, Lanzhou, China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy agricultural Sciences, Lanzhou, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
21
|
Cao Z, Wang W, Yang Z, Liu Y, Sun L, Zhang L, Li Z. Discovery of the FXR/CES2 dual modulator LE-77 for the treatment of irinotecan-induced delayed diarrhea. Bioorg Chem 2024; 153:107852. [PMID: 39362081 DOI: 10.1016/j.bioorg.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
22
|
Wu X, Cao Y, Liu Y, Zheng J. A New Strategy for Dietary Nutrition to Improve Intestinal Homeostasis in Diarrheal Irritable Bowel Syndrome: A Perspective on Intestinal Flora and Intestinal Epithelial Interaction. Nutrients 2024; 16:3192. [PMID: 39339792 PMCID: PMC11435304 DOI: 10.3390/nu16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although a reasonable diet is essential for promoting human health, precise nutritional regulation presents a challenge for different physiological conditions. Irritable Bowel Syndrome (IBS) is characterized by recurrent abdominal pain and abnormal bowel habits, and diarrheal IBS (IBS-D) is the most common, seriously affecting patients' quality of life. Therefore, the implementation of precise nutritional interventions for IBS-D has become an urgent challenge in the fields of nutrition and food science. IBS-D intestinal homeostatic imbalance involves intestinal flora disorganization and impaired intestinal epithelial barrier function. A familiar interaction is evident between intestinal flora and intestinal epithelial cells (IECs), which together maintain intestinal homeostasis and health. Dietary patterns, such as the Mediterranean diet, have been shown to regulate gut flora, which in turn improves the body's health by influencing the immune system, the hormonal system, and other metabolic pathways. METHODS This review summarized the relationship between intestinal flora, IECs, and IBS-D. It analyzed the mechanism behind IBS-D intestinal homeostatic imbalance by examining the interactions between intestinal flora and IECs, and proposed a precise dietary nutrient intervention strategy. RESULTS AND CONCLUSION This increases the understanding of the IBS-D-targeted regulation pathways and provides guidance for designing related nutritional intervention strategies.
Collapse
Affiliation(s)
- Xinyu Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Yilong Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
23
|
Zou C, Xing X, Li S, Zheng X, Zhao J, Liu H. Effects of a Combined Chinese Herbal Medicine on Growth Performance, Intestinal Barrier Function, Immune Response, and Cecal Microflora in Broilers Infected with Salmonella enteritidis. Animals (Basel) 2024; 14:2670. [PMID: 39335258 PMCID: PMC11429040 DOI: 10.3390/ani14182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of CCHM in drinking water on broilers infected with Salmonella enteritidis. One-day-old male Cobb 500 broilers (n = 300) were randomly assigned to five groups: a control (NC) group, a Salmonella enteritidis challenge (SE) group, an antibiotic (AB) group, a low dose of CCHM (CL) group, and a high dose of CCHM (CH) group. Each group had six replicate cages with ten broilers per cage. The broilers in the NC and SE groups were given normal drinking water. From days 12 to 18, the AB group received water treated with ciprofloxacin lactate injection (1 mL/L), while the CL and CH groups received water containing CCHM at doses of 5 mL/L and 10 mL/L, respectively. Broilers in all groups except the NC group were orally given Salmonella enteritidis daily from days 9 to 11. The experimental period was 28 days. The results showed that, compared with the SE group, the CL and CH groups showed improved growth performance; increased immune organ indices, expressions of ileal occludin and ZO-1 proteins, jejunal and ileal villus heights (except at day 19), and cecal Lactobacillus counts on days 19 and 28 (p < 0.05); and decreased jejunal and ileal lesion scores, ileal interleukin 1β (IL-1β) (except at day 19), interferon-γ (IFN-γ), interleukin 6 (IL-6) (except at day 19), secretory immunoglobulin A (slgA) and tumor necrosis factor α (TNF-α) (except at day 19) levels, serum D-lactic acid and diamine oxidase (DAO) (except at day 19) contents, jejunal and ileal crypt depths (except at day 19), and cecal Salmonella and Escherichia coli counts on days 19 and 28 (p < 0.05). On day 28, except for the levels of ileal interleukin 10 (IL-10), TNF-α, slgA, and serum D-lactic acid content, there were no differences among the NC, AB, and CL groups (p > 0.05). In conclusion, drinking water supplemented with CCHM alleviated the intestinal damage caused by Salmonella enteritidis infection and improved growth performance and cecal microbiota in broilers. The optimal addition rate of CCHM was 5 mL/L.
Collapse
Affiliation(s)
- Changzhi Zou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Xin Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Shunxi Li
- Guangrao County Livestock Development Service Center, Dongying 257000, China;
| | - Xuelong Zheng
- Pingdu Yunshan Animal Health and Product Quality Supervision Station, Qingdao 266700, China;
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (C.Z.); (X.X.); (J.Z.)
| |
Collapse
|
24
|
Ma R, Feng L, Wu P, Liu Y, Ren HM, Jin XW, Li SW, Tang L, Zhou XQ, Jiang WD. Dietary copper improves intestinal structural integrity in juvenile grass carp ( Ctenopharyngodon idella) probably related to its increased intestinal antioxidant capacity and apical junction complex. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:96-106. [PMID: 39056059 PMCID: PMC11269860 DOI: 10.1016/j.aninu.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 07/28/2024]
Abstract
This research evaluated the effects of copper (Cu) on intestinal antioxidant capacity and apical junctional complex (AJC) in juvenile grass carp. A total of 1080 healthy juvenile grass carp (11.16 ± 0.01 g) were fed six diets including different dosages of Cu, namely 0, 2, 4, 6, 8 mg/kg (Cu citrate [CuCit] as Cu source) and 3 mg/kg (CuSO4·5H2O as Cu source). The trial lasted for 9 weeks. The findings revealed that dietary optimal Cu supplementation (2.2 to 4.1 mg/kg) promoted intestinal growth, including intestinal length, intestinal length index, intestinal weight, and intestinal somatic index (P < 0.05). Furthermore, optimal Cu boosted the intestinal mucosal barrier in juvenile grass carp. On the one hand, optimal Cu reduced diamine oxidase and D-lactate levels in serum (P < 0.05), reduced levels of the oxidative damage indicators malondialdehyde, reactive oxygen species (ROS), protein carbonyl, superoxide dismutase (P < 0.05), and catalase mRNA levels were elevated (P < 0.05), thus boosting intestinal antioxidant capacity, the binding protein Keap1a/1b/Nrf2 signaling pathway might be involved. Optimal Cu had no impact on glutathione peroxidase 1b (GPx1b) gene expression (P > 0.05). On the other hand, optimal Cu increased intestinal tight junction (TJ) proteins (except for claudin 15b) and adherens junction (AJ) proteins (E-cadherin, α-catenin, β-catenin, nectin and afadin) mRNA levels (P < 0.05), which could be connected to the signaling pathway formed by the Ras homolog gene family, member A (RhoA), Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK). Finally, based on serum indicator D-lactate and intestinal oxidative damage index (ROS), Cu requirement (CuCit as Cu source) for juvenile grass carp from initial weight to final weight (from 11 to 173 g) was determined to be 4.14 and 4.12 mg/kg diet, respectively. This work may provide a theoretical foundation for identifying putative Cu regulation pathways on fish intestinal health.
Collapse
Affiliation(s)
- Rui Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
25
|
Xie LW, Lu HY, Tang LF, Tang FL, Zhu RQ, Wang DF, Cai S, Tian Y, Li M. Probiotic Consortia Protect the Intestine Against Radiation Injury by Improving Intestinal Epithelial Homeostasis. Int J Radiat Oncol Biol Phys 2024; 120:189-204. [PMID: 38485099 DOI: 10.1016/j.ijrobp.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Radiation-induced intestinal injury (RIII) commonly occur during abdominal-pelvic cancer radiation therapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII. METHODS AND MATERIALS Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation. The survival rates, clinical scores, and histologic changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cell proliferation, differentiation, and epithelial barrier function; oxidative stress; and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry. RESULTS The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histologic level compared with individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, the probiotic consortium stimulated intestinal stem cell proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of the gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with the probiotic consortium, including elevated levels of anti-inflammatory and antiradiation metabolites. CONCLUSIONS The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.
Collapse
Affiliation(s)
- Li-Wei Xie
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Hai-Yan Lu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Lin-Feng Tang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Feng-Ling Tang
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Rui-Qiu Zhu
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, Second Affiliated Hospital of Soochow University, Suzhou, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| |
Collapse
|
26
|
Fitzpatrick PA, Johansson J, Maglennon G, Wallace I, Hendrickx R, Stamou M, Balogh Sivars K, Busch S, Johansson L, Van Zuydam N, Patten K, Åberg PM, Ollerstam A, Hornberg JJ. A novel in vitro high-content imaging assay for the prediction of drug-induced lung toxicity. Arch Toxicol 2024; 98:2985-2998. [PMID: 38806719 PMCID: PMC11324770 DOI: 10.1007/s00204-024-03800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The development of inhaled drugs for respiratory diseases is frequently impacted by lung pathology in non-clinical safety studies. To enable design of novel candidate drugs with the right safety profile, predictive in vitro lung toxicity assays are required that can be applied during drug discovery for early hazard identification and mitigation. Here, we describe a novel high-content imaging-based screening assay that allows for quantification of the tight junction protein occludin in A549 cells, as a model for lung epithelial barrier integrity. We assessed a set of compounds with a known lung safety profile, defined by clinical safety or non-clinical in vivo toxicology data, and were able to correctly identify 9 of 10 compounds with a respiratory safety risk and 9 of 9 compounds without a respiratory safety risk (90% sensitivity, 100% specificity). The assay was sensitive at relevant compound concentrations to influence medicinal chemistry optimization programs and, with an accessible cell model in a 96-well plate format, short protocol and application of automated imaging analysis algorithms, this assay can be readily integrated in routine discovery safety screening to identify and mitigate respiratory toxicity early during drug discovery. Interestingly, when we applied physiologically-based pharmacokinetic (PBPK) modelling to predict epithelial lining fluid exposures of the respiratory tract after inhalation, we found a robust correlation between in vitro occludin assay data and lung pathology in vivo, suggesting the assay can inform translational risk assessment for inhaled small molecules.
Collapse
Affiliation(s)
- Paul A Fitzpatrick
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden.
| | - Julia Johansson
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Gareth Maglennon
- AstraZeneca Pathology, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Cambridge, UK
| | - Ian Wallace
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Ramon Hendrickx
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (R and I), R and D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Susann Busch
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Linnea Johansson
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Natalie Van Zuydam
- Data Sciences and Quantitative Biology, Discovery Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Kelley Patten
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Per M Åberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
27
|
Tan Z, Chen Y, Wen C, Zhou Y. Dietary supplementation with a silicate clay mineral (palygorskite) alleviates inflammatory responses and intestinal barrier damage in broiler chickens challenged with Escherichia coli. Poult Sci 2024; 103:104017. [PMID: 39043023 PMCID: PMC11318557 DOI: 10.1016/j.psj.2024.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
This experiment aimed to explore the protective effects of dietary palygorskite (Pal) supplementation on inflammatory responses and intestinal barrier function of broiler chickens challenged with Escherichia coli (E. coli). A 2 × 2 factorial arrangement was designed to assess the effects of Pal administration (0 or 5 g/kg of feed) and E. coli challenge (E. coli or bacterial culture medium) on broilers in a 21-d feeding trial. Birds were randomly assigned into one of the 4 groups, and each group had 8 replicates with ten birds each. The challenged chickens were orally gavaged with E. coli suspended in Luria-Bertani broth on 14 d of age, while unchallenged birds were administrated with an equivalent amount of culture medium. The sampling was performed at 21 d of age. Compared with the normal birds, an oral E. coli challenge reduced final body weight, and decreased feed intake, weight gain, and feed efficiency during the challenge period (P < 0.05). E. coli challenge promoted colonization of E. coli in cecal content and their translocation to internal organs (heart, liver, and spleen) (P < 0.05). E. coli infection also increased levels of pro-inflammatory cytokines in jejunum and ileum possibly through activating the toll-like receptor-4-mediated signaling pathway (P < 0.05). Moreover, E. coli administration increased intestinal mucosal permeability (higher serum D-lactate level and diamine oxidase activity, and lower intestinal mucosal disaccharidase activities), altered intestinal morphology, and downregulated the gene expression of intestinal tight junction proteins (P < 0.05). In contrast, Pal supplementation enhanced growth performance, inhibited colonization of E. coli, reduced intestinal inflammation, decreased intestinal permeability, restored intestinal morphology, and normalized the expression of genes responsible for inflammatory processes and maintenance of intestinal mucosal barrier (P < 0.05), and most of these beneficial effects resulting from Pal administration were independent of bacterial challenge. The results indicated dietary Pal incorporation was effective in improving growth performance and alleviating inflammation and intestinal mucosal barrier damage in broilers challenged with E. coli.
Collapse
Affiliation(s)
- Zichao Tan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
28
|
Shawky LM, Abo El Wafa SM, Behery M, Bahr MH, Abu Alnasr MT, Morsi AA. Lactobacillus rhamnosus GG and Tannic Acid Synergistically Promote the Gut Barrier Integrity in a Rat Model of Experimental Diarrhea via Selective Immunomodulatory Cytokine Targeting. Mol Nutr Food Res 2024; 68:e2400295. [PMID: 39034291 DOI: 10.1002/mnfr.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Indexed: 07/23/2024]
Abstract
SCOPE Diarrhea is a common health issue that contributes to a significant annual death rate among children and the elderly worldwide. The anti-diarrheal activity of Lactobacillus rhamnosus GG (LGG) and tannic acid (TA), alone or combined, is examined, in addition to their effect on intestinal barrier integrity. METHODS AND RESULTS Fifty-six adult male Wistar rats are randomly assigned into seven groups: control, LGG alone, TA alone, diarrhea model, diarrhea+LGG, diarrhea+TA, and diarrhea+LGG+TA-treated groups. Diarrhea is induced by high-lactose diet (HLD) consumption. LGG (1x109 CFU/rat) and TA (100 mg Kg-1 d-1) were given orally 4 days after HLD feeding and continued for 10 days. Ileum specimens are processed for biochemical analysis of the local intestinal cytokines, polymerase chain reaction (PCR), and histological study. Also, immunohistochemistry-based identification of Proliferating Cell Nuclear Antigen (PCNA) and zonula occludens 1 (ZO-1) is performed. Compared to the diarrhea model group, both treatments maintain the intestinal mucosal structure and proliferative activity and preserve ZO-1 expression, with the combination group showing the maximal effect. However, LGG-treated diarrheic rats show a remarkable decrease in the intestinal tissue concentrations of tumor necrosis factor-alpha (TNF-α) and nuclear factor Kappa beta (NF-κB); meanwhile, TA treatment leads to a selective decrease of interferon-gamma (INF-γ) and transforming growth factor-beta (TGF-β1). CONCLUSION Individual LGG and TA treatments significantly alleviate diarrhea, probably through a selective immunomodulatory cytokine-dependent mechanism, while the combination of both synergistically maintains the intestinal mucosa by keeping the intestinal epithelial barrier function and regenerative capability.
Collapse
Affiliation(s)
- Lamiaa M Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Sahar M Abo El Wafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Maged Behery
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Mohamed H Bahr
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, 11451, Saudi Arabia
| | | | - Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, 63511, Egypt
| |
Collapse
|
29
|
Liu J. Aged garlic therapeutic intervention targeting inflammatory pathways in pathogenesis of bowel disorders. Heliyon 2024; 10:e33986. [PMID: 39130474 PMCID: PMC11315124 DOI: 10.1016/j.heliyon.2024.e33986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, manifest as a result of intricate interactions involving genetic predisposition, environmental factors, intestinal microbiota dynamics, and immune dysregulation, ultimately leading to persistent mucosal inflammation. Addressing this complex pathology requires a nuanced understanding to inform targeted therapeutic strategies. Consequently, our study explored the viability of Aged Garlic Extract (AGE) as an alternative therapeutic regimen for IBD management. Utilizing gas chromatography-mass spectrometry (GC-MS) and scanning electron microscopy (SEM), we characterized AGE, revealing distinctions from Fresh Garlic Extract (FGE), particularly the absence of allicin in AGE and accompanying structural alterations. In In-Vivo experiments employing an IBD rat model, AGE intervention exhibited remarkable antioxidant, antibacterial, and anti-inflammatory properties. Noteworthy outcomes included improved survival rates, mitigation of intestinal damage, restoration of gut microbial diversity, reinforcement of tight junctions, and reversal of mitochondrial dysfunction. Collectively, these effects contributed to the preservation of enterocyte integrity and the attenuation of inflammation. In conclusion, the unique chemical composition of AGE, coupled with its substantial influence on gut microbiota, antioxidant defenses, and inflammatory pathways, positions it as a promising adjunctive therapy for the management of IBD. These observations, synergistically considered with existing research, provide significant insights into the potential utility of AGE in addressing the intricate pathophysiology inherent to IBD. The potential strength of study and rationale of using AGE against IBD includes exploring alternative therapeutic regimens if conventional treatments are associated with side effects, identification of potential hotspots/pathways involved in disease progression and study can provide economically cheaper and naturally occurring alternative to patient community who are struggling to afford expensive medications. These promising findings underscore the necessity for additional investigations to ascertain the feasibility of clinical translation, thereby substantiating the potential therapeutic role of AGE in the management of IBD.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| |
Collapse
|
30
|
Meng Y, Zhao M, Ma Q, Hua Q, Hu J, Zhou Q, Yi H, Zhang Z, Zhang L. Bifidobacterium bifidum alleviates adenine-induced acute kidney injury in mice by improving intestinal barrier function. Food Funct 2024; 15:8030-8042. [PMID: 38984966 DOI: 10.1039/d4fo02014f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Acute kidney injury (AKI) is a kind of critical kidney disease characterized by tubular injury, rapid decline of renal function and renal inflammation, with high clinical incidence. AKI has been shown to be associated with dysregulation of the gut microbiota and impaired intestinal barrier. Bifidobacterium has a positive impact on the treatment of many diseases. However, little is known about the role and mechanism of Bifidobacterium in AKI. Based on previous experiments, Bifidobacterium bifidum FL228.1 and FL276.1, which can relieve intestinal inflammation, and Bifidobacterium bifidum ZL.1, which has anti-inflammatory potential, were screened. This study aimed to investigate the effects of Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 on AKI, focusing on their role in the gut microbiota composition and intestinal barrier function. Our results showed that Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 effectively improved kidney function in mice with AKI by regulating the gut microbiota dysregulation, inhibiting intestinal inflammation and rebuilding the intestinal mucosal barrier. In addition, intervention with probiotics turned the gut microbiota disturbance caused by AKI into a normalized trend, reversed the adverse outcome of microbiota imbalance, and increased the abundance of potentially beneficial bacteria Bifidobacterium and Faecalibaculum. In summary, Bifidobacterium bifidum FL228.1, FL276.1, and ZL.1 alleviate adenine-induced AKI based on the gut-kidney axis. Although their mechanisms of action are different, their effect on alleviating AKI is almost the same.
Collapse
Affiliation(s)
- Yang Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Maozhen Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Qiyu Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Qinglian Hua
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Jinpeng Hu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Qi Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
31
|
Shi F, Ma L, Chen Z, Huang Y, Lin L, Qin Z. Long-term disinfectant exposure on intestinal immunity and microbiome variation of grass carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106942. [PMID: 38788458 DOI: 10.1016/j.aquatox.2024.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiome is crucial in maintaining fish health homeostasis. Disinfectants can kill important pathogens and disinfect fish eggs, yet their effect on the immune pathways and intestinal microbiome in healthy fish remains unknown. In this study, we investigated the effects of two disinfectants on the transcriptome profiles, immunological response, and gut microbiota dynamics of grass carp over a four-week trial. In particular, aquatic water was disinfected with 80 μg/L glutaraldehyde or 50 μg/L povidone-iodine. We found that glutaraldehyde and povidone-iodine induced gut antioxidant system and depressed the function of grass carp digestive enzymes. The results of the 16S rDNA high-throughput sequencing identified a reduction in the diversity of grass carp gut microbiota following the disinfectant treatment. Moreover, transcriptome profiling revealed that disinfectant exposure altered the immune-related pathways of grass carp and inhibited the expression of inflammation and tight junction related genes. Finally, the histopathological observation and apoptosis detection results suggested that the long-term diet of disinfectant destroyed intestinal structural integrity and promoted apoptosis. In conclusion, long-term exposure to disinfectants was observed to reduce oxidation resistance, suppress the immune response, dysbiosis of the intestinal flora, and resulted in increasing the apoptosis in intestinal of grass carp.
Collapse
Affiliation(s)
- Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lixin Ma
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhilong Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yao Huang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
32
|
Tian R, Wang X, Tang S, Zhao L, Hao Y, Li R, Zhou X. Gut microbiota mediates the protective effects of β-hydroxybutyrate against cisplatin-induced acute kidney injury. Biomed Pharmacother 2024; 175:116752. [PMID: 38761425 DOI: 10.1016/j.biopha.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
The gut microbiota has been reported to be perturbed by chemotherapeutic agents and to modulate side effects. However, the critical role of β-hydroxybutyrate (BHB) in the regulation of the gut microbiota and the pathogenesis of chemotherapeutic agents related nephrotoxicity remains unknown. We conducted a comparative analysis of the composition and function of gut microbiota in healthy, cisplatin-challenged, BHB-treated, and high-fat diet-treated mice using 16 S rDNA gene sequencing. To understand the crucial involvement of intestinal flora in BHB's regulation of cisplatin -induced nephrotoxicity, we administered antibiotics to deplete the gut microbiota and performed fecal microbiota transplantation (FMT) before cisplatin administration. 16 S rDNA gene sequencing analysis demonstrated that both endogenous and exogenous BHB restored gut microbiota dysbiosis and cisplatin-induced intestinal barrier disruption in mice. Additionally, our findings suggested that the LPS/TLR4/NF-κB pathway was responsible for triggering renal inflammation in the gut-kidney axis. Furthermore, the ablation of the gut microbiota ablation using antibiotics eliminated the renoprotective effects of BHB against cisplatin-induced acute kidney injury. FMT also confirmed that administration of BHB-treated gut microbiota provided protection against cisplatin-induced nephrotoxicity. This study elucidated the mechanism by which BHB affects the gut microbiota mediation of cisplatin-induced nephrotoxicity by inhibiting the inflammatory response, which may help develop novel therapeutic approaches that target the composition of the microbiota.
Collapse
Affiliation(s)
- Ruixue Tian
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Xingru Wang
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Rongshan Li
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China; Shanxi Kidney Disease Institute, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Xiaoshuang Zhou
- The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan 030012, China; Shanxi Kidney Disease Institute, 29 Shuang Ta East Street, Taiyuan 030012, China.
| |
Collapse
|
33
|
Nie HZR, Zhou YW, Yu XH, Yin CG, Li LF, Hao HQ, Yuan T, Pan Y. Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability. Acta Pharmacol Sin 2024; 45:1189-1200. [PMID: 38438579 PMCID: PMC11130237 DOI: 10.1038/s41401-024-01238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Maintenance of intestinal barrier function contributes to gastrointestinal homeostasis and therefore cardiovascular diseases. A number of studies show that intestinal permeability is affected by excessive inflammatory responses. Krüppel-like factor (KLF) 4 is one of the critical transcriptional factors, which controls multiple immune responses. In this study we investigated the role of KLF4 in regulating intestinal inflammation and permeability during the atherosclerotic process. Atherosclerotic model was established in ApoE-/- mice by feeding a high fat high cholesterol (HFHC) diet. We showed that colon expression levels of KLF4 and tight junction proteins were significantly decreased whereas inflammatory responses increased in atherosclerotic mice. Overexpression of colon epithelial Klf4 decreased atherosclerotic plaque formation and vascular inflammation in atherosclerotic mice, accompanied by remarkable suppression of intestinal NF-κB activation. We found that overexpression of epithelial Klf4 in atherosclerotic mice significantly increased intestinal tight junction expression and ameliorated endotoxemia, whereas replenishment of LPS abolished these benefits. Overexpression of Klf4 reversed LPS-induced permeability and downregulation of ZO-1 and Occludin in Caco-2 cells in vitro. HFHC diet stimulated the expression of epithelial microRNA-34a, whereas silence of epithelial Klf4 abolished the benefits of microRNA-34a sponge, a specific miR-34a inhibitor, on intestinal permeability and atherosclerotic development. A clinical cohort of 24 atherosclerotic patients supported colon KLF4/NF-κB/tight junction protein axis mediated intestine/cardiovascular interaction in patients with atherosclerosis. Taken together, intestinal epithelial KLF4 protects against intestinal inflammation and barrier dysfunction, ameliorating atherosclerotic plaque formation.
Collapse
Affiliation(s)
- He-Zhong-Rong Nie
- Center of clinical laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Yi-Wen Zhou
- Center of clinical laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Xiao-Hong Yu
- Center of clinical laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Cong-Guo Yin
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ling-Fei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui-Qin Hao
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518000, China
| | - Tao Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518000, China
| | - Yong Pan
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518000, China.
| |
Collapse
|
34
|
Kim DH, Lee S, Ahn J, Kim JH, Lee E, Lee I, Byun S. Transcriptomic and metabolomic analysis unveils nanoplastic-induced gut barrier dysfunction via STAT1/6 and ERK pathways. ENVIRONMENTAL RESEARCH 2024; 249:118437. [PMID: 38346486 DOI: 10.1016/j.envres.2024.118437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The widespread prevalence of micro and nanoplastics in the environment raises concerns about their potential impact on human health. Recent evidence demonstrates the presence of nanoplastics in human blood and tissues following ingestion and inhalation, yet the specific risks and mechanisms of nanoplastic toxicity remain inadequately understood. In this study, we aimed to explore the molecular mechanisms underlying the toxicity of nanoplastics at both systemic and molecular levels by analyzing the transcriptomic/metabolomic responses and signaling pathways in the intestines of mice after oral administration of nanoplastics. Transcriptome analysis in nanoplastic-administered mice revealed a notable upregulation of genes involved in pro-inflammatory immune responses. In addition, nanoplastics substantially reduced the expression of tight junction proteins, including occludin, zonula occluden-1, and tricellulin, which are crucial for maintaining gut barrier integrity and function. Importantly, nanoplastic administration increased gut permeability and exacerbated dextran sulfate sodium-induced colitis. Further investigation into the underlying molecular mechanisms highlighted significant activation of signaling transsducer and activator of transcription (STAT)1 and STAT6 by nanoplastic administration, which was in line with the elevation of interferon and JAK-STAT pathway signatures identified through transcriptome enrichment analysis. Additionally, the consumption of nanoplastics specifically induced nuclear factor kappa-B (NF-κB) and extracellular signal-regulated kinase (ERK)1/2 signaling pathways in the intestines. Collectively, this study identifies molecular mechanisms contributing to adverse effects mediated by nanoplastics in the intestine, providing novel insights into the pathophysiological consequences of nanoplastic exposure.
Collapse
Affiliation(s)
- Da Hyun Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungho Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jisong Ahn
- Research Group of Traditional Food, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Science and Technology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Hwan Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunjung Lee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju, 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
35
|
Wu S, Jiang P, Zhang X, Mao C, Dai Y, Zhuang H, Pang Y. Understanding the Transepithelial Transport and Transbilayer Diffusion of the Antihypertensive Peptide Asn-Cys-Trp: Insights from Caco-2 Cell Monolayers and the DPPC Model Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9828-9841. [PMID: 38639269 DOI: 10.1021/acs.jafc.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Understanding the transport mechanism of the peptide Asn-Cys-Trp (NCW) is crucial to improving its intestinal absorption and bioavailability. This study investigated the absorption of NCW through Caco-2 cell monolayers and its interaction with the DPPC bilayers. Results revealed that after a 3 h incubation, the Papp (AP-BL) and Papp (BL-AP) values of NCW at a concentration of 5 mmol/L were (22.24 ± 4.52) × 10-7 and (6.63 ± 2.31) × 10-7 cm/s, respectively, with the transport rates of 1.59 ± 0.32 and 0.62 ± 0.20%, indicating its moderate absorption. NCW was found to be transported via PepT1 and paracellular transport pathways, as evidenced by the significant impact of Gly-Pro and cytochalasin D on the Papp values. Moreover, NCW upregulated ZO-1 mRNA expression. Further investigation of the ZO-1-mediated interaction between NCW and tight junction proteins will contribute to a better understanding of the paracellular transport mechanism of NCW. The interaction between NCW and the DPPC bilayers was predominantly driven by entropy. NCW permeated the bilayers through electrostatic, hydrogen bonding, and hydrophobic interactions, resulting in increased fluidity, flexibility, and disorder as well as phase transition and phase separation of the bilayers.
Collapse
Affiliation(s)
- Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Ping Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
36
|
Liu Y, Robinson AM, Su XQ, Nurgali K. Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules 2024; 14:447. [PMID: 38672464 PMCID: PMC11048140 DOI: 10.3390/biom14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- School of Rural Health, La Trobe University, Melbourne, VIC 3010, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xiao Qun Su
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
37
|
Huang XZ, Yii CY, Yong SB, Li CJ. peu-MIR2916-p3-enriched garlic exosomes ameliorate murine colitis by reshaping gut microbiota, especially by boosting the anti-colitic Bacteroides thetaiotaomicron - Correspondence. Pharmacol Res 2024; 202:107131. [PMID: 38438088 DOI: 10.1016/j.phrs.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Xin-Zhi Huang
- School of Chinese Medicine for Post Baccalaureate, Taichung, Taiwan
| | - Chin-Yuan Yii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Landseed International Hospital, Taoyuan, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| | - Su-Boon Yong
- Center for Allergy, Immunology, and Microbiome (A.I.M.), Taichung, Taiwan; Department of Allergy, Immunology, and Rheumatology (AIR), China Medical University Children's Hospital, Taichung, Taiwan; Department of Medicine, College of Medicine, Taichung, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
38
|
Li L, Zhong G, Li Y, Li T, Huo Y, Ma F, Li Y, Zhang H, Pan J, Hu L, Liao J, Tang Z. Long-term Cu exposure alters CYP450s activity and induces jejunum injury and apoptosis in broilers. Biometals 2024; 37:421-432. [PMID: 37991682 DOI: 10.1007/s10534-023-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Copper (Cu) is an essential trace element that plays a crucial role in numerous physiopathological processes related to human and animal health. In the poultry industry, Cu is used to promote growth as a feed supplement, but excessive use can lead to toxicity on animals. Cytochrome P450 enzymes (CYP450s) are a superfamily of proteins that require heme as a cofactor and are essential for the metabolism of xenobiotic compounds. The purpose of this study was to explore the influence of exposure to Cu on CYP450s activity and apoptosis in the jejunum of broilers. Hence, we first simulated the Cu exposure model by feeding chickens diets containing different amounts of Cu. In the present study, histopathological observations have revealed morphological damage to the jejunum. The expression levels of genes and proteins of intestinal barrier markers were prominently downregulated. While the mRNA expression level of the gene associated with CYP450s was significantly increased. Additionally, apoptosis-related genes and proteins (Bak1, Bax, Caspase-9, Caspase-3, and CytC) were also significantly augmented by excessive Cu, while simultaneously decreasing the expression of Bcl-2. It can be concluded that long-term Cu exposure affects CYP450s activity, disrupts intestinal barrier function, and causes apoptosis in broilers that ultimately leads to jejunum damage.
Collapse
Affiliation(s)
- Lei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Qu X, Song Y, Li Q, Xu Q, Li Y, Zhang H, Cheng X, Mackay CR, Wang Q, Liu W. Indole-3-acetic acid ameliorates dextran sulfate sodium-induced colitis via the ERK signaling pathway. Arch Pharm Res 2024; 47:288-299. [PMID: 38489148 DOI: 10.1007/s12272-024-01488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Microbiota-derived catabolism of nutrients is closely related to ulcerative colitis (UC). The level of indole-3-acetic acid (IAA), a microbiota-dependent metabolite of tryptophan, was decreased significantly in the feces of UC patients. Thus supplementation with IAA could be a potential therapeutic method for ameliorating colitis. In this work, the protective effect of supplementation with IAA on dextran sulfate sodium (DSS)-induced colitis was evaluated, and the underlying mechanism was elucidated. The results indicated that the administration of IAA significantly relieved DSS-induced weight loss, reduced the disease activity index (DAI), restored colon length, alleviated intestinal injury, and improved the intestinal tight junction barrier. Furthermore, IAA inhibited intestinal inflammation by reducing the expression of proinflammatory cytokines and promoting the production of IL-10 and TGF-β1. In addition, the ERK signaling pathway is an important mediator of various physiological processes including inflammatory responses and is closely associated with the expression of IL-10. Notably, IAA treatment induced the activation of extracellular signal-regulated kinase (ERK), which is involved in the progression of colitis, while the ERK inhibitor U0126 attenuated the beneficial effects of IAA. In summary, IAA could attenuate the clinical symptoms of colitis, and the ERK signaling pathway was involved in the underlying mechanism. Supplementation with IAA could be a potential option for preventing or ameliorating UC.
Collapse
Affiliation(s)
- Xinyan Qu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yingying Song
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qingjun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Xu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanru Li
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Xuemei Cheng
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Charles R Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Wei Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
40
|
Zhao BC, Wang TH, Chen J, Qiu BH, Xu YR, Li JL. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:174-188. [PMID: 38357573 PMCID: PMC10864218 DOI: 10.1016/j.aninu.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 02/16/2024]
Abstract
Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
41
|
MacLaren LA, Wang J, Borzouie S, Rathgeber BM. Changes in Tight Junction Protein Expression Levels but Not Distribution in Commercial White and Brown Laying Hens Supplemented with Chondrus crispus or Ascophyllum nodosum Seaweed. Animals (Basel) 2024; 14:777. [PMID: 38473162 DOI: 10.3390/ani14050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
It is proposed that prebiotic diet supplements improve intestinal function, in part by improving the barrier function of the intestinal epithelium with an associated increase in the expression of tight junction proteins, including occludin and zonula occludens-1 (ZO-1). We examined the expression of these proteins in two strains of laying hens (Lohman LSL-lite (White) and Lohman Brown-lite (Brown)) who were supplemented or not with 3% Chondrus crispus or 0.5% Ascophyllum nodosum seaweeds from 31 to 72 weeks of age. Occludin was localized to the lateral surfaces and across the intestinal epithelium in all animals. Reactivity for ZO-1 was concentrated at the apicolateral epithelial cell membrane border. Mood's median test indicated that White hens may express more occludin in villus epithelium (median intensity 3.5 vs. 2.5 in Brown hens, p = 0.06) but less ZO-1 in the deep cryptal epithelium (median intensity 1.5 vs. 2.5 in Brown hens, p = 0.06). Western blotting also showed higher levels of occludin in White than Brown hens (p < 0.05). A decrease in ZO-1 Western blot expression was associated with Chondrus crispus supplementation in comparison to controls (p < 0.05), but not with Ascophyllum nodosum supplementation (p > 0.05). In conclusion, genetic strain and dietary seaweed supplements affect tight junction regulatory protein expression levels but do not impact the anatomical distribution, as seen in cryosections.
Collapse
Affiliation(s)
- Leslie A MacLaren
- Department of Animal Science & Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Jingyi Wang
- Department of Animal Science & Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Shima Borzouie
- Department of Animal Science & Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bruce M Rathgeber
- Department of Animal Science & Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
42
|
Wang G, Jiang Z, Song Y, Xing Y, He S, Boomi P. Gut microbiota contribution to selenium deficiency-induced gut-liver inflammation. Biofactors 2024; 50:311-325. [PMID: 37676478 DOI: 10.1002/biof.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
There is limited knowledge about the factors that drive gut-liver axis changes after selenium (Se) deficiency-induced gut or liver injuries. Thus, we tested Se deficiency in mice to determine its effects on intestinal bacterial balance and whether it induced liver injury. Serum Se concentration, lipopolysaccharide (LPS) level, and liver injury biomarkers were tested using a biochemical method, while pathological changes in the liver and jejunum were observed via hematoxylin and eosin stain, and a fluorescence spectrophotometer was used to evaluate intestinal permeability. Tight junction (TJ)-related and toll-like receptor (TLR) signaling-related pathway genes and proteins were tested using quantitative polymerase chain reaction, western blotting, immunohistochemistry, and 16S ribosomal ribonucleic acid gene-targeted sequencing of jejunum microorganisms. Se deficiency significantly decreased glutathione peroxidase activity and disrupted the intestinal flora, with the most significant effect being a decrease in Lactobacillus reuteri. The expression of TJ-related genes and proteins decreased significantly with increased treatment time, whereas supplementation with Se, fecal microbiota transplantation, or L. reuteri reversed these decreases. Signs of liver injury and LPS content were significantly increased after intestinal flora imbalance or jejunum injury, and the levels of TLR signaling-related genes were significantly increased. The results indicated that Se deficiency disrupted the microbiota balance, decreased the expression of intestinal TJ factors, and increased intestinal permeability. By contrast, LPS increased due to a bacterial imbalance, which may induce inflammatory liver injury via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Guodong Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Zhihui Jiang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yuwei Song
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yueteng Xing
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Simin He
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - P Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
43
|
Ziegler AL, Caldwell ML, Craig SE, Hellstrom EA, Sheridan AE, Touvron MS, Pridgen TA, Magness ST, Odle J, Van Landeghem L, Blikslager AT. Enteric glial cell network function is required for epithelial barrier restitution following intestinal ischemic injury in the early postnatal period. Am J Physiol Gastrointest Liver Physiol 2024; 326:G228-G246. [PMID: 38147796 PMCID: PMC11211042 DOI: 10.1152/ajpgi.00216.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 12/28/2023]
Abstract
Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.
Collapse
Affiliation(s)
- Amanda L Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Madison L Caldwell
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Sara E Craig
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Emily A Hellstrom
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Anastasia E Sheridan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Melissa S Touvron
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Tiffany A Pridgen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Scott T Magness
- Joint Department of Biomedical Engineering, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Jack Odle
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Anthony T Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
44
|
Liu G, Sharma MK, Tompkins YH, Teng PY, Kim WK. Impacts of varying methionine to cysteine supplementation ratios on growth performance, oxidative status, intestinal health, and gene expression of immune response and methionine metabolism in broilers under Eimeria spp. challenge. Poult Sci 2024; 103:103300. [PMID: 38100947 PMCID: PMC10762478 DOI: 10.1016/j.psj.2023.103300] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
A study was conducted to investigate effects of different methionine (Met) to cysteine (Cys) supplementation ratios (MCR) on growth performance, oxidative status, intestinal health, immune responses, and methionine metabolism in broilers under Eimeria challenge. A total of 720 male Cobb500 broilers (14-day-old) were allocated in a 2 × 5 factorial arrangement (5 diets, with or without challenge) with 6 replicates per treatment. The total sulfur amino acid concentrations were consistent across treatments meeting the breeder's recommendation, only MCR varied. The diets were labeled as MET100; MET75; MET50; MET25; and MET0, representing MCR of 100:0; 75:25; 50:50; 25:75; and 0:100, respectively. Data were analyzed by 2-way ANOVA and orthogonal polynomial contrast. Growth performance declined linearly or quadratically as MCR decreased (P < 0.01). On 6-day postinoculation (DPI), interaction effects (P < 0.01) were found; BW and body weight gain were lower in MET0 compared to the other treatments in the nonchallenged groups, whereas not in the challenged groups. On 6 and 9 DPI, serum total antioxidant capacity linearly decreased as MCR decreased (P < 0.05). Hepatic activities of glutathione peroxidase on 6 DPI and superoxide dismutase on 9 DPI changed quadratically as MCR decreased (P < 0.05). The digestibility of Met linearly decreased whereas the digestibility of Cys linearly increased as MCR decreased. The ileal crypt depth linearly decreased as MCR decreased (P < 0.01) on 6 DPI. The expression of transforming growth factor beta on 6 and 9 DPI, tumor necrotic factor alpha and interleukin 10 on 9 DPI changed quadratically as MCR decreased (P < 0.05). Eimeria challenge increased expression of Met adenosyltransferase and cystathionine gamma-lyase, whereas decreasing the expression of other Met metabolism genes (P < 0.01) on 6 DPI. Expression of Met metabolism genes linearly increased as MCR decreased (P < 0.05). In conclusion, different Met to Cys supplementation ratios exerted linearly or quadratically effects on the growth performance, oxidative status, intestinal health, and metabolism of Met in broiler chickens under Eimeria infection.
Collapse
Affiliation(s)
- Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Yuguo H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
45
|
Kovanda L, Rengman S, Tawde S, Pos J, Park S, Sun S, Park J, Kim K, Li X, Liu Y. Dietary glycerides of valerate ameliorate diarrhea and impact intestinal physiology and serum biomarkers in weaned piglets infected with enterotoxigenic Escherichia coli F18. J Anim Sci 2024; 102:skae322. [PMID: 39432563 PMCID: PMC11537800 DOI: 10.1093/jas/skae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
In the commercial swine farm setting, the postweaning period is a critical window during which piglets are highly susceptible to infection and enterotoxigenic E. coli (ETEC)-associated diarrhea. Short-chain fatty acids and their glycerides are compounds that may influence intestinal health; however, valerate is one that has not been well-characterized for its role as a dietary supplement. Therefore, the major objective of this experiment was to investigate two forms of valerate glycerides on diarrhea, intestinal physiology, and systemic immunity of weaned pigs experimentally infected with ETEC F18. Dietary treatments included a control diet and three additional diets supplemented with 0.075% monovalerin, 0.1% monovalerin, or 0.1% trivalerin, respectively. Piglets were weaned (21 d to 24 d of age), individually housed, and experimental diets were fed through the 28-d trial period. After a 7-d period, all piglets were inoculated on three consecutive days with 1010 CFU ETEC F18/3 mL. Growth performance was monitored throughout the trial, and daily diarrhea scores were recorded. Rectal swabs were collected for bacterial culture to confirm the presence or absence of β-hemolytic coliforms throughout the trial. Serum samples were collected and analyzed for inflammatory biomarkers on days 0, 3, 6, and 21 postinoculation (PI) and untargeted metabolomics on day 6 PI. Intestinal mucosa and tissue sections were harvested from pigs sacrificed on day 7 PI for gene expression and histology analysis. All data, except for frequency of diarrhea and metabolomics, were analyzed by ANOVA using the PROC MIXED of SAS. Dietary trivalerin reduced (P < 0.05) the frequency of severe diarrhea over the entire trial period and the frequency of β-hemolytic coliforms on day 7 PI compared with the control. The intestinal villus height on day 7 PI in jejunum tissue was increased (P < 0.05) in pigs fed trivalerin. The mRNA expression of TNF-α was decreased (P < 0.05) in the trivalerin group, while that of ZO1 was increased (P < 0.05) compared with control. Throughout the trial, serum TNF-α was reduced in pigs fed trivalerin compared with control. Serum metabolites, adenosine, inosine, and shikimic acid were reduced (P < 0.05) on day 6 PI in all treatment groups compared with control. In conclusion, the present results indicate supplementing dietary valerate glycerides exhibited beneficial impacts on diarrhea, inflammation, and intestinal gene expression of piglets during the postweaning period.
Collapse
Affiliation(s)
- Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Sofia Rengman
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Snehal Tawde
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Jeroen Pos
- Department of Population Health and Reproduction, Perstorp Animal Nutrition, Waspik, The Netherlands
| | - Sangwoo Park
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Shuhan Sun
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Jungjae Park
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Kwangwook Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
46
|
Niu Y, Zhang R, Yang C, He J, Wang T. Dietary supplementation with dihydroartemisinin improves intestinal barrier function in weaned piglets with intrauterine growth retardation by modulating the gut microbiota. J Anim Sci 2024; 102:skae140. [PMID: 38813622 PMCID: PMC11222986 DOI: 10.1093/jas/skae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
The aim of this study was to investigate whether dietary dihydroartemisinin (DHA) supplementation could improve intestinal barrier function and microbiota composition in intrauterine growth restriction (IUGR) weaned piglets. Twelve normal birth weight (NBW) piglets and 24 IUGR piglets at 21 d of age were divided into three groups, which were fed a basal diet (NBW-CON and IUCR-CON groups) and an 80 mg/kg DHA diet (IUGR-DHA group). At 49 d of age, eight piglets of each group with similar body weights within groups were slaughtered, and serum and small intestine samples were collected. The results showed that IUGR piglets reduced growth performance, impaired the markers of intestinal permeability, induced intestinal inflammation, decreased intestinal immunity, and disturbed the intestinal microflora. Dietary DHA supplementation increased average daily gain, average daily feed intake, and body weight at 49 d of age in IUGR-weaned piglets (P < 0.05). DHA treatment decreased serum diamine oxidase activity and increased the numbers of intestinal goblet cells and intraepithelial lymphocytes, concentrations of jejunal mucin-2 and ileal trefoil factor 3, and intestinal secretory immunoglobin A and immunoglobin G (IgG) concentrations of IUGR piglets (P < 0.05). Diet supplemented with DHA also upregulated mRNA abundances of jejunal IgG, the cluster of differentiation 8 (CD8), major histocompatibility complex-I (MHC-I), and interleukin 6 (IL-6) and ileal IgG, Fc receptor for IgG (FcRn), cluster of differentiation 8 (CD4), CD8, MHC-I, IL-6 and tumor necrosis factor α (TNF-α), and enhanced mRNA abundance and protein expression of intestinal occludin and ileal claudin-1 in IUGR piglets (P < 0.05). In addition, DHA supplementation in the diet improved the microbial diversity of the small intestine of IUGR piglets and significantly increased the relative abundance of Actinobacteriota, Streptococcus, Blautia and Streptococcus in the jejunum, and Clostridium sensu_ stricto_in the ileum (P < 0.05). The intestinal microbiota was correlated with the mRNA abundance of tight junction proteins and inflammatory response-related genes. These data suggested that DHA could improve the markers of intestinal barrier function in IUGR-weaned piglets by modulating gut microbiota. DHA may be a novel nutritional candidate for preventing intestinal dysfunction in IUGR pigs.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
47
|
Sun DS, Lien TS, Chang HH. Restraint stress-associated gastrointestinal injury and implications from the Evans blue-fed restraint stress mouse model. Tzu Chi Med J 2024; 36:23-29. [PMID: 38406572 PMCID: PMC10887336 DOI: 10.4103/tcmj.tcmj_101_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 02/27/2024] Open
Abstract
The association between stress and gastrointestinal (GI) tract diseases is well established, while the exact mechanism remains elusive. As a result, it is urgent to establish mouse models to investigate restraint stress-associated GI leakage, but current models have their limitations. A new Evans blue-fed restraint mouse model has recently been developed that allows researchers to study restraint stress-associated GI leakage in live animals. This review article will focus on this model, including its mechanisms, clinical implications, and applications for studying restraint stress-associated GI injury. Recent findings from studies using this model will also be highlighted, along with their potential for diagnosis and treatment. The article aims to discuss about current research and provide recommendations for further study, ultimately improving our understanding of the link between stress and GI injury and improving patient outcomes.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
48
|
Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023; 203:115130. [PMID: 37913890 DOI: 10.1016/j.addr.2023.115130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Oral administration is the preferred route of drug delivery in clinical practice due to its noninvasiveness, safety, convenience, and high patient compliance. The gastrointestinal tract (GIT) plays a crucial role in facilitating the targeted delivery of oral drugs. However, the GIT presents multiple barriers that impede drug absorption, including the gastric barrier in the stomach and the mucus and epithelial barriers in the intestine. In recent decades, nanotechnology has emerged as a promising approach for overcoming these challenges by utilizing nanocarrier-based drug delivery systems such as liposomes, micelles, polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Encapsulating drugs within nanocarriers not only protects them from degradation but also enhances their transport and absorption across the GIT, ultimately improving oral bioavailability. The aim of this review is to elucidate the mechanisms underlying nanocarrier-mediated transportation across the GIT into systemic circulation via both the blood circulation and lymphatic pathway.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China; China Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
49
|
Bianchimano P, Iwanowski K, Smith EM, Cantor A, Leone P, Bongers G, Gonzalez CG, Hongsup Y, Elias J, Weiner HL, Clemente JC, Tankou SK. Oral vancomycin treatment suppresses gut trypsin activity and preserves intestinal barrier function during EAE. iScience 2023; 26:108143. [PMID: 37915599 PMCID: PMC10616394 DOI: 10.1016/j.isci.2023.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Studies have reported increased intestinal permeability in multiple sclerosis (MS) patients and its mouse model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms driving increased intestinal permeability that in turn exacerbate neuroinflammation during EAE remain unclear. Here we showed that vancomycin preserved the integrity of the intestinal barrier, while also suppressing gut trypsin activity, enhancing the relative abundance of specific Lactobacilli and ameliorating disease during EAE. Furthermore, Lactobacilli enriched in the gut of vancomycin-treated EAE mice at day 3 post immunization negatively correlated with gut trypsin activity and EAE severity. In untreated EAE mice, we observed increased intestinal permeability and increased intestinal protease activated receptor 2 (PAR2) expression at day 3 post immunization. Prior studies have shown that trypsin increases intestinal permeability by activating PAR2. Our results suggest that the interaction between intestinal PAR2 and trypsin may be a key modulator of intestinal permeability and disease severity during EAE.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Cantor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Leone
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerold Bongers
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Yoon Hongsup
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian-University, Martinsried, Germany
- Hertie Senior Professor Group, Max-Plank-Institute of Neurobiology, Martinsried, Germany
| | - Joshua Elias
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jose C. Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K. Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
Alsholi DM, Yacoub GS, Rehman AU, Ullah H, Khan AI, Deng T, Siddiqui NZ, Alioui Y, Farooqui NA, Elkharti M, Li Y, Wang L, Xin Y. Lactobacillus rhamnosus Attenuates Cisplatin-Induced Intestinal Mucositis in Mice via Modulating the Gut Microbiota and Improving Intestinal Inflammation. Pathogens 2023; 12:1340. [PMID: 38003804 PMCID: PMC10674506 DOI: 10.3390/pathogens12111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Lactobacillus rhamnosus (LBS) is a well-documented probiotic strain in oncology and has a pivotal role in clinical applications. Here, we have investigated the protective effect of Lactobacillus rhamnosus on intestinal mucositis induced by cisplatin (CP) and explored the underlying mechanisms targeting inflammatory proteins, as well as the histological changes in the intestinal tissue of mice, in addition, the bacterial strains that may be related to the health-enhancing properties. BALB/c mice were pre-treated with or without LBS via oral gavage, followed by mucositis induction with cisplatin. Our results revealed that the LBS-treated groups significantly attenuated proinflammatory cytokine levels (IL-1β, IL-6, and TNF-α) compared to the CP group. Furthermore, LBS mitigated the damaged tight junction integrity caused by CP via up-regulating the levels of claudin, occludin, ZO-1, and mucin-2 protein (MUC-2). Finally, the 16S rRNA fecal microbiome genomic analysis showed that LBS administration enhanced the growth of beneficial bacteria, i.e., Firmicutes and Lachnospiraceae, while the relative abundance of the opportunistic bacteria Bacteroides and Proteobacteria decreased. Collectively, LBS was found to beneficially modulate microbial composition structure and functions and enrich the ecological diversity in the gut.
Collapse
Affiliation(s)
- Duaa M. Alsholi
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Ghazi Suleiman Yacoub
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian 116011, China;
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Hidayat Ullah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Ting Deng
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Maroua Elkharti
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Yanxia Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| |
Collapse
|