1
|
Gourronc FA, Bullert AJ, Helm-Kwasny BK, Adamcakova-Dodd A, Wang H, Jing X, Li X, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Exposure to PCB52 (2,2',5,5'-tetrachlorobiphenyl) blunts induction of the gene for uncoupling protein 1 (UCP1) in white adipose. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 113:104612. [PMID: 39674530 DOI: 10.1016/j.etap.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Polychlorinated biphenyls (PCBs) are linked to cancer, learning disabilities, liver and cardiovascular disease, and diabetes. Older schools often contain high levels of PCBs, and inhalation is a major source of exposure. Technical PCB mixtures, called Aroclors, and individual dioxin-like PCBs impair adipocyte function, which can lead to type II diabetes. To determine how PCB52, a non-dioxin like PCB congener found in school air, affects adipose, adolescent male and female rats were exposed to PCB52 by nose-only inhibition for 4h per day for 28 consecutive days. Transcriptomic analysis of white adipose revealed sex-specific differences in gene expression between PCB52- and sham-exposed males and females. Exposed females showed mitochondrial gene changes, including downregulation of the thermogenic uncoupling gene, Ucp1. Human preadipocytes/adipocytes exposed to PCB52 or its main metabolite, 4-OH-PCB52, also showed reduced norepinephrine-induced UCP1 expression. These findings suggest that PCB52 inhalation disrupts thermogenesis in adipose tissue, potentially contributing to metabolic syndrome.
Collapse
Affiliation(s)
| | | | | | | | - Hui Wang
- Department of Occupational and Environmental Health
| | - Xuefang Jing
- Department of Occupational and Environmental Health
| | - Xueshu Li
- Department of Occupational and Environmental Health
| | | | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health; Fraternal Order of Eagles Diabetes Research Center
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering; Fraternal Order of Eagles Diabetes Research Center
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine; Fraternal Order of Eagles Diabetes Research Center.
| |
Collapse
|
2
|
Bullert AJ, Wang H, Linahon MJ, Chimenti MS, Adamcakova-Dodd A, Li X, Dailey ME, Klingelhutz AJ, Ankrum JA, Stevens HE, Thorne PS, Lehmler HJ. Effects of 28-day nose-only inhalation of PCB52 (2,2',5,5'-Tetrachlorobiphenyl) on the brain transcriptome. Toxicology 2024; 509:153965. [PMID: 39369937 PMCID: PMC11588532 DOI: 10.1016/j.tox.2024.153965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
A semi-volatile polychlorinated biphenyl (PCB) congener, PCB52, is present in the indoor air of schools; however, the effects of inhaled PCB52 on the brain have not been investigated. This study exposed male Sprague-Dawley rats at 39 days of age and female rats at 42 days of age to PCB52 for 4 hours per day over 28 consecutive days through nose-only inhalation. Neurobehavioral tests were conducted during the last 5 days of exposure. The total estimated PCB52 exposures after 28 days were 1080±20 µg/kg BW for male rats and 1140±10 µg/kg BW for female rats. PCB52 and its metabolites were detected by gas chromatography-tandem mass spectrometry in the brain, lung, and serum, with the lung showing the highest concentrations. PCB52 levels were higher in the brains of females than males. Males showed increased exploratory behavior compared to controls, whereas females exhibited decreased exploratory behavior compared to controls in the same tests. PCB52 exposure did not impact locomotor activity or working memory. Gene expression and pathway analysis in the striatum and cerebellum suggest that PCB52 inhalation causes mitochondrial dysfunction. No significant differences were observed by immunohistochemical evaluation in the density and percent area of total cells, astrocytes, or microglia in the striatum and cerebellar cortex. Our results indicate multilevel effects of inhaled PCB52 on the rat brain, from gene expression to behavioral effects.
Collapse
Affiliation(s)
- Amanda J Bullert
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Morgan J Linahon
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael E Dailey
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Biology, The University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Bullert A, Wang H, Valenzuela AE, Neier K, Wilson RJ, Badley JR, LaSalle JM, Hu X, Lein PJ, Lehmler HJ. Interactions of Polychlorinated Biphenyls and Their Metabolites with the Brain and Liver Transcriptome of Female Mice. ACS Chem Neurosci 2024; 15:3991-4009. [PMID: 39392776 PMCID: PMC11587508 DOI: 10.1021/acschemneuro.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs) is linked to neurotoxic effects. This study aims to close knowledge gaps regarding the specific modes of action of PCBs in female C57BL/6J mice (>6 weeks) orally exposed for 7 weeks to a human-relevant PCB mixture (MARBLES mix) at 0, 0.1, 1, and 6 mg/kg body weight/day. PCB and hydroxylated PCB (OH-PCBs) levels were quantified in the brain, liver, and serum; RNA sequencing was performed in the striatum, prefrontal cortex, and liver, and metabolomic analyses were performed in the striatum. Profiles of PCBs but not their hydroxylated metabolites were similar in all tissues. In the prefrontal cortex, PCB exposure activated the oxidative phosphorylation respiration pathways, while suppressing the axon guidance pathway. PCB exposure significantly changed the expression of genes associated with neurodevelopmental and neurodegenerative diseases in the striatum, impacting pathways like growth hormone synthesis and dendrite development. PCBs did not affect the striatal metabolome. In contrast to the liver, which showed activation of metabolic processes following PCB exposure and the induction of cytochrome P450 enzymes, the expression of xenobiotic processing genes was not altered by PCB exposure in either brain region. Network analysis revealed complex interactions between individual PCBs (e.g., PCB28 [2,4,4'-trichlorobiphenyl]) and their hydroxylated metabolites and specific differentially expressed genes (DEGs), underscoring the need to characterize the association between specific PCBs and DEGs. These findings enhance the understanding of PCB neurotoxic mechanisms and their potential implications for human health.
Collapse
Affiliation(s)
- Amanda
J. Bullert
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Hui Wang
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Anthony E. Valenzuela
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Kari Neier
- Department
of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Rebecca J. Wilson
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Jessie R. Badley
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Janine M. LaSalle
- Department
of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Xin Hu
- Gangarosa
Department of Environmental Health, Emory
University, Atlanta, Georgia 30329, United States
| | - Pamela J. Lein
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Human Toxicology, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Paranjape N, Strack S, Lehmler HJ, Doorn JA. Astrocyte Mitochondria Are a Sensitive Target of PCB52 and its Human-Relevant Metabolites. ACS Chem Neurosci 2024; 15:2729-2740. [PMID: 38953493 PMCID: PMC11311133 DOI: 10.1021/acschemneuro.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) are industrial chemicals that are ubiquitously found in the environment. Exposure to these compounds has been associated with neurotoxic outcomes; however, the underlying mechanisms for such outcomes remain to be fully understood. Recent studies have shown that astrocytes, the most abundant glial cell type in the brain, are susceptible to PCB exposure as well as exposure to human-relevant metabolites of PCBs. Astrocytes are critical for maintaining healthy brain function due to their unique functional attributes and positioning within the neuronal networks in the brain. In this study, we assessed the toxicity of PCB52, one of the most abundantly found PCB congeners in outdoor and indoor air, and two of its human-relevant metabolites, on astrocyte mitochondria. We exposed C6 cells, an astrocyte cell line, to PCB52 or its human-relevant metabolites and found that all the compounds showed increased toxicity in galactose-containing media compared to that in the glucose-containing media, indicating the involvement of mitochondria in observed toxicity. Additionally, we also found increased oxidative stress upon exposure to PCB52 metabolites. All three compounds caused a loss of mitochondrial membrane potential, distinct changes in the mitochondrial structure, and impaired mitochondrial function. The hydroxylated metabolite 4-OH-PCB52 likely functions as an uncoupler of mitochondria. This is the first study to report the adverse effects of exposure to PCB52 and its human-relevant metabolites on the mitochondrial structure and function in astrocytes.
Collapse
Affiliation(s)
- Neha Paranjape
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Stefan Strack
- Department
of Neuroscience and Pharmacology, University
of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
5
|
Chau K, Neier K, Valenzuela AE, Schmidt RJ, Durbin-Johnson B, Lein PJ, Korf I, LaSalle JM. Placental-brain axis in females detected within broadly impacted metabolic gene networks protects against prenatal PCB exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603326. [PMID: 39071357 PMCID: PMC11275969 DOI: 10.1101/2024.07.14.603326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Neurodevelopmental disorders have a strong male bias that is poorly understood. Placenta is a rich source of molecular information about environmental interactions with genetics (including biological sex), that affect the developing brain. We investigated placental-brain transcriptional responses in an established mouse model of prenatal exposure to a human-relevant mixture of polychlorinated biphenyls (PCBs). Results To understand sex, tissue, and dosage effects in embryonic (E18) brain and placenta by RNAseq, we used weighted gene correlation network analysis (WGCNA) to create correlated gene networks that could be compared across sex or tissue. WGCNA revealed that expression within most correlated gene networks was significantly and strongly associated with PCB exposures, but frequently in opposite directions between male-female and placenta-brain comparisons. In both WGCNA and differentially expressed gene analyses, male brain showed more PCB-induced transcriptional changes than male placenta, but the reverse pattern was seen in females. Furthermore, non-monotonic dose responses to PCBs were observed in most gene networks but were most prominent in male brain. The transcriptomic effects of low dose PCB exposure were significantly reversed by dietary folic acid supplementation across both sexes, but these effects were strongest in female placenta. PCB-dysregulated and folic acid-reversed gene networks were commonly enriched in functions in metabolic pathways involved in energy usage and translation, with female-specific protective effects enriched in PPAR, thermogenesis, glycerolipids, and O-glycan biosynthesis, as opposed to toxicant responses in male brain. Conclusions The female protective effect in prenatal PCB exposures appears to be mediated by dose-dependent sex differences in transcriptional modulation of metabolism in placenta.
Collapse
|
6
|
Tanaka Y, Shindo A, Dong W, Nakamura T, Ogura K, Nomiyama K, Teraoka H. Tyrosinase inhibition prevents non-coplanar polychlorinated biphenyls and polybrominated diphenyl ethers-induced hyperactivity in developing zebrafish: Interaction between pigmentation and neurobehavior. Neurotoxicol Teratol 2024; 104:107373. [PMID: 39025421 DOI: 10.1016/j.ntt.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Non-coplanar polychlorinated biphenyl (PCB) mixture Aroclor 1254 and polybrominated diphenyl ether (PBDE) BDE-47 are known to impede neurogenesis and neuronal development. We previously reported that exposure to PCB and PBDE leads to increased embryonic movement in zebrafish by decreasing dopamine levels. In this study, we studied the connection between the melanin and dopamine synthesis pathways in this context. Both genetic and chemical inhibition of tyrosinase, the rate-limiting enzyme in melanin synthesis, not only led to reduced pigmentation but also inhibit PCB/PBDE-induced embryonic hyperactivity. Furthermore, PCB and PBDE rarely affected tyrosinase expression in the potential pigment cells, suggesting that these compounds reduce dopamine through enzymatic regulation, including a competitive interaction for the substrate tyrosine. Our results provide new insights into the interactions between melanogenesis and dopaminergic neuronal activity, which may contribute to understanding the mechanisms underlying PCB/PBDE toxicity in developing organisms.
Collapse
Affiliation(s)
- Yasuaki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Asako Shindo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; Department of Biological Sciences, Osaka University, Osaka 560-0043, Japan
| | - Wenjing Dong
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Tatsuro Nakamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Kyoko Ogura
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| |
Collapse
|
7
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Cao W, Wu N, Zhang S, Qi Y, Guo R, Wang Z, Qu R. Photodegradation of polychlorinated biphenyls in water/nitrogen-doped silica and air/nitrogen-doped silica systems: Kinetics, mechanism and quantitative structure activity relationship (QSAR) analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171586. [PMID: 38461975 DOI: 10.1016/j.scitotenv.2024.171586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Developing efficient and low-cost photocatalytic materials is essential for removing polychlorinated biphenyls (PCBs). In this work, the photodegradation process of fourteen representative polychlorinated biphenyls (PCBs) in both water/nitrogen-doped SiO2 (N-SiO2) and air/N-SiO2 systems was studied. The photodegradation kinetics of PCBs is consistent with the pseudo-first-order kinetic equation. The variation in the degradation effects of different PCBs in the two systems is primarily related to the position of the Cl substituent and the effective absorption wavelength range of PCBs. A total of fourteen intermediates for 4'-Dichlorobiphenyl (PCB-15), 2,2',4,4',6,6'-Hexachlorobiphenyl (PCB-155), and 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (PCB-209) generated from four reaction pathways were identified based on both mass spectrometry analysis and theoretical calculations. Using the values of lnk (k denotes pseudo-first-order kinetic constants) for the 11 PCBs in the training set and the calculated molecular and structural parameters, quantitative structure-activity relationship (QSAR) models for the two systems were constructed by using multiple linear regression (MLR) method to better understand the factors affecting the photodegradation rate of PCBs. The QSAR equations were obtained with Cl atom substitution at position 3 (N3) as the main parameter, which were lnk = -1.98 - 0.19 N3 for the water/N-SiO2 system and lnk = -1.56 - 0.34 N3 for the air/N-SiO2 system, with the correlation coefficient (R2) of 0.66 and 0.73, leave-one-out cross-validation (Q2LOO) of 0.51 and 0.59, respectively, and bootstrapping validation coefficients (Q2BOOT) values of both 0.74, confirming that the models were well fitted and showed high robustness and prediction ability. This study provides valuable insights into photocatalytic degradation studies of PCBs.
Collapse
Affiliation(s)
- Wenqian Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Nannan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Li X, Wang H, Wang H, Bullert AJ, Cui JY, Wang K, Lehmler HJ. Germ-free status but not subacute polychlorinated biphenyl (PCB) exposure altered hepatic phosphatidylcholine and ether-phosphatidylcholine levels in mice. Toxicology 2024; 504:153790. [PMID: 38552894 DOI: 10.1016/j.tox.2024.153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose a current ecosystem and human health concern. PCB exposure impacts the gut microbiome in animal models, suggesting a mechanistic link between PCB exposure and adverse health outcomes. The presence and absence of the microbiome and exposure to PCBs independently affect the lipid composition in the liver, which in turn affects the PCB disposition in target tissues, such as the liver. Here, we investigated microbiome × subacute PCB effects on the hepatic lipid composition of conventional and germ-free female mice exposed to 0, 6, or 30 mg/kg body weight of an environmental PCB mixture in sterile corn oil once daily for 3 consecutive days. Hepatic triacylglyceride and polar lipid levels were quantified using mass spectrometric methods following the subacute PCB exposure. The lipidomic analysis revealed no PCB effect on the hepatic levels. No microbiome effect was observed on levels of triacylglyceride and most polar lipid classes. The total hepatic levels of phosphatidylcholine (PC) and ether-phosphatidylcholine (ePC) lipids were lower in germ-free mice than the conventional mice from the same exposure group. Moreover, levels of several unsaturated PCs, such as PC(36:5) and PC(42:10), and ePCs, such as ePC(36:2) and ePC(4:2), were lower in germ-free than conventional female mice. Based on a KEGG pathway meta-analysis of RNA sequencing data, the ether lipid metabolism pathway is altered in the germ-free mouse liver. In contrast to the liver, extractable lipid levels, determined gravimetrically, differed in several tissues from naïve conventional vs. germ-free mice. Overall, microbiome × subacute PCB exposure effects on hepatic lipid composition are unlikely to affect PCB distribution into the mouse liver. Further studies are needed to assess how the different extractable lipid levels in other tissues alter PCB distribution in conventional vs. germ-free mice.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Wilkinson J, Lehmler HJ, Roman DL. High-Throughput GPCRome Screen of Pollutants Reveals the Activity of Polychlorinated Biphenyls at Melatonin and Sphingosine-1-phosphate Receptors. Chem Res Toxicol 2024; 37:439-449. [PMID: 38295294 PMCID: PMC10880096 DOI: 10.1021/acs.chemrestox.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Exposure to environmental pollutants is linked to numerous toxic outcomes, warranting concern about the effect of pollutants on human health. To assess the threat of pollutant exposure, it is essential to understand their biological activity. Unfortunately, gaps remain for many pollutants' specific biological activity and molecular targets. A superfamily of signaling proteins, G-protein-coupled receptors (GPCRs), has been shown as potential targets for pollutant activity. However, research investigating the pollutant activity at the GPCRome is scarce. This work explores pollutant activity across a library of human GPCRs by leveraging modern high-throughput screening techniques devised for drug discovery and pharmacology. We designed and implemented a pilot screen of eight pollutants at 314 human GPCRs and discovered specific polychlorinated biphenyl (PCB) activity at sphingosine-1-phosphate and melatonin receptors. The method utilizes open-source resources available to academic and governmental institutions to enable future campaigns that screen large numbers of pollutants. Thus, we present a novel high-throughput approach to assess the biological activity and specific targets of pollutants.
Collapse
Affiliation(s)
- Joshua
C. Wilkinson
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Human Toxicology, University
of Iowa, Iowa City, Iowa 52242, United States
| | - David L. Roman
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Iowa
Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine,
University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
11
|
Goutman SA, Boss J, Jang DG, Mukherjee B, Richardson RJ, Batterman S, Feldman EL. Environmental risk scores of persistent organic pollutants associate with higher ALS risk and shorter survival in a new Michigan case/control cohort. J Neurol Neurosurg Psychiatry 2024; 95:241-248. [PMID: 37758454 PMCID: PMC11060633 DOI: 10.1136/jnnp-2023-332121] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurogenerative disease caused by combined genetic susceptibilities and environmental exposures. Identifying and validating these exposures are of paramount importance to modify disease risk. We previously reported that persistent organic pollutants (POPs) associate with ALS risk and survival and aimed to replicate these findings in a new cohort. METHOD Participants with and without ALS recruited in Michigan provided plasma samples for POPs analysis by isotope dilution with triple quadrupole mass spectrometry. ORs for risk models and hazard ratios for survival models were calculated for individual POPs. POP mixtures were represented by environmental risk scores (ERS), a summation of total exposures, to evaluate the association with risk (ERSrisk) and survival (ERSsurvival). RESULTS Samples from 164 ALS and 105 control participants were analysed. Several individual POPs significantly associated with ALS, including 8 of 22 polychlorinated biphenyls and 7 of 10 organochlorine pesticides (OCPs). ALS risk was most strongly represented by the mixture effects of OCPs alpha-hexachlorocyclohexane, hexachlorobenzene, trans-nonachlor and cis-nonachlor and an interquartile increase in ERSrisk enhanced ALS risk 2.58 times (p<0.001). ALS survival was represented by the combined mixture of all POPs and an interquartile increase in ERSsurvival enhanced ALS mortality rate 1.65 times (p=0.008). CONCLUSIONS These data continue to support POPs as important factors for ALS risk and progression and replicate findings in a new cohort. The assessments of POPs in non-Michigan ALS cohorts are encouraged to better understand the global effect and the need for targeted disease risk reduction strategies.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rudy J Richardson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
13
|
Adeniran JA, Ogunlade BT, Abdulraheem KA, Odediran ET, Atanda AS, Oyeneye AK, Yusuf RO. Concentration and sources of persistent organic pollutants within the vicinity of a scrap-iron smelting plant: Seasonal pattern and health risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:16-32. [PMID: 38060326 DOI: 10.1080/26896583.2023.2286863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a class of ubiquitous and significant synthetic organic chemicals that pose deleterious threats to the environment and human health. This study examined the concentration, indoor-outdoor and seasonal change, sources, and health effects of PCBs in particulate-bound dust near a scrap iron recycling plant. PCBs levels were determined in samples using gas chromatograph mass spectrometer. The results indicated that 5 Cl atoms PCB constituted the majority of PCBs (41% overall), contributing 43% during the rainy season and 39% during the dry season. Dioxin-like PCBs (DLPCBs) contributed 38% during the rainy season and 33% during the dry season. In addition, DLPCB accounted for 26% and 40% of indoor and outdoor PCB emissions, respectively. Iron and steel production were identified as the highest identified contributing sources, accounting for 76% of PCB emissions in the rainy season, while plastic combustion had the highest contribution in the dry season, accounting for 44% of PCB emissions. Incremental Lifetime Cancer Risk assessment showed ingestion as the main exposure pathway for children and adults during the two seasons (74.42% and 58.24%, respectively), followed by dermal exposure, while inhalation had the least contribution. A multifaced approach involving relevant agencies, the industry, and the community is required to reduce exposure.
Collapse
|
14
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted versus observed activity of PCB mixtures toward the ryanodine receptor. Neurotoxicology 2024; 100:25-34. [PMID: 38065417 PMCID: PMC10842331 DOI: 10.1016/j.neuro.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs and similar compounds toward RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erika B Holland
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA.
| |
Collapse
|
15
|
Wang H, Bullert AJ, Li X, Stevens H, Klingelhutz AJ, Ankrum JA, Adamcakova-Dodd A, Thorne PS, Lehmler HJ. Use of a polymeric implant system to assess the neurotoxicity of subacute exposure to 2,2',5,5'-tetrachlorobiphenyl-4-ol, a human metabolite of PCB 52, in male adolescent rats. Toxicology 2023; 500:153677. [PMID: 37995827 PMCID: PMC10757425 DOI: 10.1016/j.tox.2023.153677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that ubiquitously exist in the environment. PCB exposure has been linked to cancer and multi-system toxicity, including endocrine disruption, immune inhibition, and reproductive and neurotoxicity. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) is one of the most frequently detected congeners in the environment and human blood. The hydroxylated metabolites of PCB 52 may also be neurotoxic, especially for children whose brains are still developing. However, it is challenging to discern the contribution of these metabolites to PCB neurotoxicity because the metabolism of PCB is species-dependent. In this study, we evaluated the subacute neurotoxicity of a human-relevant metabolite, 2,2',5,5'-tetrachlorobiphenyl-4-ol (4-52), on male adolescent Sprague Dawley rats, via a novel polymeric implant drug delivery system grafted subcutaneously, at total loading concentrations ranging from 0%, 1%, 5%, and 10% of the implant (w/w) for 28 days. Y-maze, hole board test, open field test, and elevated plus maze were performed on exposure days 24-28 to assess their locomotor activity, and exploratory and anxiety-like behavior. 4-52 and other possible hydroxylated metabolites in serum and vital tissues were quantified using gas chromatography with tandem mass spectrometry (GC-MS/MS). Our results demonstrate the sustained release of 4-52 from the polymeric implants into the systemic circulation in serum and tissues. Dihydroxylated and dechlorinated metabolites were detected in serum and tissues, depending on the dose and tissue type. No statistically significant changes were observed in the neurobehavioral tasks across all exposure groups. The results demonstrate that subcutaneous polymeric implants provide a straightforward method to expose rats to phenolic PCB metabolites to study neurotoxic outcomes, e.g., in memory, anxiety, and exploratory behaviors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Hanna Stevens
- Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Department of Psychiatry, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, the University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Ferreira ALL, Freitas-Costa N, da Silva Rosa Freire S, Figueiredo ACC, Padilha M, Alves-Santos NH, Kac G. Association between persistent organic pollutants in human milk and the infant growth and development throughout the first year postpartum in a cohort from Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115050-115063. [PMID: 37878172 DOI: 10.1007/s11356-023-30316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Persistent organic pollutants (POPs) are compounds that are recalcitrant and ubiquitous that bioaccumulate in human milk (HM) and can impact infant growth and development. We explore the association between POP concentration in HM at 2-50 days postpartum and infant growth and development trajectory throughout the first year of life. A cohort of 68 healthy adult Brazilian women and their infants were followed from 28 to 35 gestational weeks to 12 months postpartum. HM samples were collected between 2 and 50 days postpartum, and POP concentrations were analyzed using gas chromatography with mass spectrometry. Concentrations of POPs >limit of quantification (LOQ) were defined as presence, and concentrations ≤LOQ as an absence. Growth z-scores were analyzed according to WHO growth charts and infant development scores according to Age & Stages Questionnaires at 1 (n = 66), 6 (n = 50), and 12 months (n = 45). Linear mixed effects (LME) models were used to investigate the association of POPs in HM with infant growth and development. Benjamini-Hochberg (BH) correction for multiple testing was performed to reduce the false discovery ratio. P < 0.1 was considered for models with the interaction between POPs and time/sex. After BH correction, adjusted LME models with time interaction showed (1) a positive association between the presence of β hexachlorocyclohexane and an increase in head circumference-for-age z-score (β = 0.003, P = 0.095); (2) negative associations between total POPs (β = -0.000002, P = 0.10), total organochlorine pesticides (β = -0.000002, P = 0.10), and dichlorodiphenyldichloroethylene concentrations in HM (β = -0.000002, P = 0.10) and fine motor scores. No statistical difference between the sexes was observed. Postnatal exposure to organochlorine pesticides in HM shows a positive association with the trajectory of head circumference-for-age z-score and a negative association with the trajectories of fine motor skills scores. Future studies on POP variation in HM at different postpartum times and their effect on infant growth and development should be encouraged.
Collapse
Affiliation(s)
- Ana Lorena Lima Ferreira
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2o Andar, Sala 29, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nathalia Freitas-Costa
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2o Andar, Sala 29, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Samary da Silva Rosa Freire
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2o Andar, Sala 29, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Amanda Caroline Cunha Figueiredo
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2o Andar, Sala 29, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Health Science Center, Serra dos Órgãos University Center, Avenida Alberto Tôrres, 111 - Alto, Rio de Janeiro, 25964-004, Teresópilis, Brazil
| | - Marina Padilha
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2o Andar, Sala 29, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nadya Helena Alves-Santos
- Faculty of Collective Health, Institute for Health and Biological Studies, Federal University of South and Southeast of Pará, Rodovia BR-230 (Transamazônica), Loteamento Cidade Jardim, Avenida dos Ipês, s/n.o - Cidade Jardim, Maraba, PA, 68500-000, Brazil
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2o Andar, Sala 29, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
17
|
Narduzzi L, Hernández-Mesa M, Vincent P, Guitton Y, García-Campaña AM, Le Bizec B, Dervilly G. Deeper insights into the effects of low dietary levels of polychlorinated biphenyls on pig metabolism using gas chromatography-high resolution mass spectrometry metabolomics. CHEMOSPHERE 2023; 341:140048. [PMID: 37660801 DOI: 10.1016/j.chemosphere.2023.140048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of contaminants of great concern, linked to the development of many chronic diseases. Adverse effects of PCBs have been documented in humans after accidental and massive exposure. However, little is known about the effect of chronic exposure to low-dose PCB mixtures, and studies regarding scattered lifetime exposures to non-dioxin-like (NDL)-PCBs are especially missing. In this work, serum samples from pigs chronically exposed through their diet during 22 days to Aroclor 1260 (i.e. a commercially available mixture of NDL-PCBs) underwent a metabolomics analysis using gas chromatography-high resolution mass spectrometry (GC-HRMS), with the objective to investigate the effect of exposure to low doses of NDL-PCBs (few ng/kg body weight (b.w.) per day). The study showed that the serum profiles of 84 metabolites are significantly altered by the administration of Aroclor 1260, of which 40 could be identified at level 1. The aggregate interpretation of the results of this study, together with the outcome of a previous one involving LC-HRMS profiling, provided a substantial and concise overview of the effect of low dose exposure to NDL-PCBs, reflecting the hepatotoxic and neurotoxic effects already reported in literature at higher and longer exposures. These results are intended to contribute to the debate on the current toxicological reference values for these substances.
Collapse
Affiliation(s)
- Luca Narduzzi
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain
| | - Maykel Hernández-Mesa
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain.
| | | | | | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain
| | | | | |
Collapse
|
18
|
Lavery TC, Spiegelhoff A, Wang K, Kennedy CL, Ridlon M, Keil Stietz KP. Polychlorinated biphenyl (PCB) exposure in adult female mice can influence bladder contractility. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:367-384. [PMID: 37941647 PMCID: PMC10628623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 11/10/2023]
Abstract
Lower urinary tract symptoms (LUTS) greatly reduce quality of life. While LUTS etiology is not completely understood, it is plausible that environmental contaminants could play a role. Polychlorinated biphenyls (PCBs), are a group of persistent environmental toxicants frequently documented in animal and human tissues. PCBs are capable of influencing voiding function in mouse offspring exposed developmentally, however whether PCB exposure during adulthood can also influence voiding dynamics is unknown. Therefore, the purpose of this study was to determine whether PCB exposure in adult female mice can impact voiding function. As part of a larger study to generate developmentally exposed offspring, adult female C57Bl/6J mice were dosed orally with the MARBLES PCB mixture (0.1, 1, or 6 mg/kg/day) or vehicle control beginning two weeks before mating and throughout gestation and lactation (9 weeks). Adult dosed female dams then underwent void spot assay, uroflowmetry, and anesthetized cystometry to assess voiding function. Bladder contractility was assessed in ex vivo bladder bath assays, and bladders were collected for morphology and histology assessments. While voiding behavior endpoints were minimally impacted, alterations to bladder contractility dynamics were more pronounced. Adult female mice dosed with 1 mg/kg/d PCB showed an increase in urine spots 2-3 cm2 in size, increased bladder contractility in response to electrical field stimulation, and decreased bladder wall thickness compared to vehicle control. PCBs also altered contractile response to cholinergic agonist in a dose-dependent manner. Overall, these results indicate that exposure to PCBs in adult female mice is sufficient to produce changes in bladder physiology. These results also highlight the critical role of timing of exposure in influencing voiding function.
Collapse
Affiliation(s)
- Thomas Cm Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| |
Collapse
|
19
|
Westmark CJ. Toward an understanding of the role of the exposome on fragile X phenotypes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:141-170. [PMID: 37993176 DOI: 10.1016/bs.irn.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Fragile X syndrome (FXS) is the leading known monogenetic cause of autism with an estimated 21-50% of FXS individuals meeting autism diagnostic criteria. A critical gap in medical care for persons with autism is an understanding of how environmental exposures and gene-environment interactions affect disease outcomes. Our research indicates more severe neurological and metabolic outcomes (seizures, autism, increased body weight) in mouse and human models of autism spectrum disorders (ASD) as a function of diet. Thus, early-life exposure to chemicals in the diet could cause or exacerbate disease outcomes. Herein, we review the effects of potential dietary toxins, i.e., soy phytoestrogens, glyphosate, and polychlorinated biphenyls (PCB) in FXS and other autism models. The rationale is that potentially toxic chemicals in the diet, particularly infant formula, could contribute to the development and/or severity of ASD and that further study in this area has potential to improve ASD outcomes through dietary modification.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States; Molecular Environmental Toxicology Center, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States.
| |
Collapse
|
20
|
Bullert A, Li X, Chunyun Z, Lee K, Pulliam CF, Cagle BS, Doorn JA, Klingelhutz AJ, Robertson LW, Lehmler HJ. Disposition and metabolomic effects of 2,2',5,5'-tetrachlorobiphenyl in female rats following intraperitoneal exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104245. [PMID: 37572994 PMCID: PMC10562985 DOI: 10.1016/j.etap.2023.104245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies.
Collapse
Affiliation(s)
- Amanda Bullert
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Zhang Chunyun
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kendra Lee
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F Pulliam
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna S Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan A Doorn
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
21
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
22
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted Versus Observed Activity of PCB Mixtures Toward the Ryanodine Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554299. [PMID: 37662381 PMCID: PMC10473618 DOI: 10.1101/2023.08.22.554299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs, and similar compounds, towards RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A. Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach California
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Erika B. Holland
- Department of Biological Science, California State University of Long Beach, Long Beach California
| |
Collapse
|
23
|
Li X, Bullert AJ, Han W, Yang W, Zhang QY, Ding X, Lehmler HJ. Enantiomeric Fractions Reveal Differences in the Atropselective Disposition of 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) in Wildtype, Cyp2abfgs-Null, and CYP2A6-Humanized Mice. Chem Res Toxicol 2023; 36:1386-1397. [PMID: 37467352 PMCID: PMC10445290 DOI: 10.1021/acs.chemrestox.3c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/21/2023]
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that can cause neurotoxicity. PCBs, such as PCB 95 (2,2',3,5',6-pentachlorobiphenyl), can be metabolized by cytochrome P450 enzymes into neurotoxic metabolites. To better understand how the metabolism of PCB 95 affects neurotoxic outcomes, we conducted a study on the disposition of PCB 95 in transgenic mouse models. The mice were given a single oral dose of PCB 95 (1.0 mg/kg) and were euthanized 24 h later for analysis. PCB 95 levels were highest in adipose tissue, followed by the liver, brain, and blood. Adipose tissue levels were significantly higher in wild-type (WT) mice than in Cyp2abfgs-null (KO) or CYP2A6-transgenic (KI) mice. We also observed genotype-dependent differences in the enrichment of aS-PCB 95 in female mice, with a less pronounced enrichment in KO than WT and KI mice. Ten hydroxylated PCB 95 metabolites were detected in blood and tissue across all exposure groups. The metabolite profiles differed across tissues, while sex and genotype-dependent differences were less pronounced. Total OH-PCB levels were highest in the blood, followed by the liver, adipose tissue, and brain. Total OH-PCB blood levels were lower in KO than in WT mice, while the opposite trend was observed in the liver. In male mice, total OH-PCB metabolite levels were significantly lower in KI than in WT mice in blood and the liver, while the opposite trend was observed in female mice. In conclusion, the study highlights the differences in the atropselective disposition of PCB 95 and its metabolites in different types of mice, demonstrating the usefulness of these transgenic mouse models for characterizing the role of PCB metabolism in PCB neurotoxicity.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Bullert
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Weiguo Han
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Weizhu Yang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xinxin Ding
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Bullert A, Li X, Zhang C, Lee K, Pulliam CF, Cagle BS, Doorn JA, Klingelhutz AJ, Robertson LW, Lehmler HJ. Disposition and Metabolomic Effects of 2,2',5,5'-Tetrachlorobiphenyl in Female Rats Following Intraperitoneal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.19.544952. [PMID: 37609242 PMCID: PMC10441371 DOI: 10.1101/2023.06.19.544952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The disposition and toxicity of lower chlorinated PCBs (LC-PCBs) with less than five chlorine substituents have received little attention. This study characterizes the distribution and metabolomic effects of PCB 52, an LC-PCB found in indoor and outdoor air, three weeks after intraperitoneal exposure of female Sprague Dawley rats to 0, 1, 10, or 100 mg/kg BW. PCB 52 exposure did not affect overall body weight. Gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis identified PCB 52 in all tissues investigated. Hydroxylated, sulfated, and methylated PCB metabolites, identified using GC-MS/MS and nontarget liquid chromatography-high resolution mass spectrometry (Nt-LCMS), were primarily found in the serum and liver of rats exposed to 100 mg/kg BW. Metabolomic analysis revealed minor effects on L-cysteine, glycine, cytosine, sphingosine, thymine, linoleic acid, orotic acid, L-histidine, and erythrose serum levels. Thus, the metabolism of PCB 52 and its effects on the metabolome must be considered in toxicity studies. Highlights PCB 52 was present in adipose, brain, liver, and serum 3 weeks after PCB exposureLiver and serum contained hydroxylated, sulfated, and methylated PCB 52 metabolitesMetabolomics analysis revealed minor changes in endogenous serum metabolitesLevels of dopamine and its metabolites in the brain were not affected by PCB 52.
Collapse
Affiliation(s)
- Amanda Bullert
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Chunyun Zhang
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Kendra Lee
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna S. Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan A. Doorn
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Teglas T, Torices S, Taylor M, Coker D, Toborek M. Exposure to polychlorinated biphenyls selectively dysregulates endothelial circadian clock and endothelial toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131499. [PMID: 37126901 PMCID: PMC10202419 DOI: 10.1016/j.jhazmat.2023.131499] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) are lipophilic and persistent environmental toxicants, which pose health threats to the exposed population. Among several organs and cell types, vascular tissue and endothelial cells are especially prone to PCB-induced toxicity. Exposure to PCBs can exert detrimental impacts on biological pathways, expression of transcription factors, and tight junction proteins that are integral to the functionality of endothelial cells. Because biological and cellular processes are tightly regulated by circadian rhythms, and disruption of the circadian system may cause several diseases, we evaluated if exposure to PCBs can alter the expression of the major endothelial circadian regulators. In addition, we studied if dysregulation of circadian rhythms by silencing the brain and muscle ARNT-like 1 (Bmal1) gene can contribute to alterations of brain endothelial cells in response to PCB treatment. We demonstrated that diminished expression of Bmal1 enhances PCB-induced dysregulation of tight junction complexes, such as the expression of occludin, JAM-2, ZO-1, and ZO-2 especially at pathologically relevant longer PCB exposure times. Overall, the obtained results imply that dysregulation of the circadian clock is involved in endothelial toxicity of PCBs. The findings provide new insights for toxicological studies focused on the interactions between environmental pollutants and regulation of circadian rhythms.
Collapse
Affiliation(s)
- Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Madison Taylor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Desiree Coker
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
26
|
Spiegelhoff A, Wang K, Ridlon M, Lavery T, Kennedy CL, George S, Stietz KPK. Polychlorinated Biphenyls (PCBs) Impact Prostatic Collagen Density and Bladder Volume in Young Adult Mice Exposed during in Utero and Lactational Development. TOXICS 2023; 11:609. [PMID: 37505574 PMCID: PMC10384510 DOI: 10.3390/toxics11070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants linked to deleterious health outcomes, including voiding dysfunction in developmentally exposed mice. Changes in prostate volume and/or extracellular matrix composition are associated with voiding dysfunction in men and animal models. Whether PCB-induced changes in voiding function in male mice occur in part via alterations to the prostate or an alternate mechanism is unclear. Therefore, we tested whether developmental exposure to the MARBLES PCB mixture altered prostate morphology in young adult offspring. C57Bl/6J female mice were dosed daily with the MARBLES PCB mixture at 0, 0.1, 1 or 6 mg/kg/d for two weeks prior to mating and through gestation and lactation, offspring were collected at 6 weeks of age. Ventral prostate mass was decreased in the 1 mg/kg/d PCB group compared to other PCB groups. There were no PCB-induced changes in prostate smooth muscle thickness, apoptosis, proliferation, or testes mass. PCBs impacted the prostate extracellular matrix; anterior prostate collagen density was decreased in the 1 mg/kg/d PCB group compared to all other groups. Normalized bladder volume was increased in male and female offspring in the 6 mg/kg/d PCB group compared to control. No change in water consumption, bladder mass or bladder smooth muscle thickness accompanied changes in bladder volume. Urine and serum creatinine concentrations were elevated but only in male mice. Together, these results suggest that developmental exposure to PCBs can influence prostate wet weight and prostate/bladder morphology, but PCBs do not promote prostate enlargement. Whether these changes persist throughout adult life and how they contribute to voiding function in animal models and humans is of future interest.
Collapse
Affiliation(s)
- Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Serena George
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
27
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
28
|
Paranjape N, Dean LE, Martinez A, Tjalkens RB, Lehmler HJ, Doorn JA. Structure-Activity Relationship of Lower Chlorinated Biphenyls and Their Human-Relevant Metabolites for Astrocyte Toxicity. Chem Res Toxicol 2023; 36:971-981. [PMID: 37279407 PMCID: PMC10283044 DOI: 10.1021/acs.chemrestox.3c00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Indexed: 06/08/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) is associated with developmental neurotoxicity and neurodegenerative disorders; however, the underlying mechanisms of pathogenesis are unknown. Existing literature has focused mainly on using neurons as a model system to study mechanisms of PCB-mediated neurotoxicity, overlooking the role of glial cells, such as astrocytes. As normal brain function is largely astrocyte-dependent, we hypothesize that astrocytes play an important role in PCB-mediated injury to neurons. We assessed the toxicity of two commercial PCB mixtures, Aroclor 1016 and Aroclor 1254, and a non-Aroclor PCB mixture found in residential air called the Cabinet mixture, all of which contain lower chlorinated PCBs (LC-PCBs) found in indoor and outdoor air. We further assessed the toxicity of five abundant airborne LC-PCBs and their corresponding human-relevant metabolites in vitro models of astrocytes, namely, the C6 cell line and primary astrocytes isolated from Sprague-Dawley rats and C57BL/6 mice. PCB52 and its human-relevant hydroxylated and sulfated metabolites were found to be the most toxic compounds. No significant sex-dependent cell viability differences were observed in rat primary astrocytes. Based on the equilibrium partitioning model, it was predicted that the partitioning of LC-PCBs and their corresponding metabolites in biotic and abiotic compartments of the cell culture system is structure-dependent and that the observed toxicity is consistent with this prediction. This study, for the first time, shows that astrocytes are sensitive targets of LC-PCBs and their human-relevant metabolites and that further research to identify mechanistic targets of PCB exposure in glial cells is necessary.
Collapse
Affiliation(s)
- Neha Paranjape
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Laura E. Dean
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andres Martinez
- Department
of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ronald B. Tjalkens
- Department
of Environmental and Radiological Health Sciences, College of Veterinary
Medicine and Biomedical Sciences, Colorado
State University, Fort Collins, Colorado 80521, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department
of Pharmaceutical Sciences & Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
29
|
Oros M, Barčák D, Miklisová D, Uhrovič D, Brázová T. A fish-parasite sentinel system in an assessment of the spatial distribution of polychlorinated biphenyls. Sci Rep 2023; 13:5164. [PMID: 36997612 PMCID: PMC10063543 DOI: 10.1038/s41598-023-31939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
The spatial distribution of polychlorinated biphenyls (PCBs), in the Zemplínska Šírava water reservoir and adjacent tributaries in the Bodrog River Basin were investigated using a fish-parasite sentinel system. PCB concentrations were detected in various fish matrices (dorsal and abdominal muscles, liver and intestine) of the Wels catfish (Silurus glanis) and its intestinal cestode Glanitaenia osculata. PCB concentrations in the fish from the water reservoir, located closest to the chemical plant, the primary source of the PCB pollution, were the highest. The analysis of these contaminants in catfish matrices showed the highest concentrations in the abdominal muscle, followed by the dorsal muscle, liver and intestine. Concentrations of ∑PCBs exceeding the limits for food set by European regulations were measured in the muscle tissue of catfish at all sites, even in the Bodrog River, 60 km away from the primary source of contamination, posing a significant risk to humans in the Zemplín region. For the first time, the ability of cestode G. osculata to accumulate higher amounts of PCBs compared to fish matrices has been demonstrated. Due to the enormous ability of the parasites to accumulate PCBs, we recommend this approach for alternative biomonitoring of PCBs in contaminated aquatic environments.
Collapse
Affiliation(s)
- Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Daniel Barčák
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dana Miklisová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dalibor Uhrovič
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Tímea Brázová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia.
| |
Collapse
|
30
|
Alfonso S, Blanc M, Cousin X, Bégout ML. Exposure of zebrafish to an environmental mixture of persistent organic pollutants triggers an increase in anxiety-like syndrome but does not affect boldness in unexposed offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21439-21452. [PMID: 36269479 DOI: 10.1007/s11356-022-23689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that are present as complex mixtures in all environmental compartments, including aquatic ecosystems. However, little is known about the effects of such complex mixtures on teleost behaviour. In this study, zebrafish (Danio rerio) were chronically exposed to an environmentally relevant mixture (MIX) containing 22 PCB and 7 PBDE congeners through diet from 5 days post fertilization onwards. MIX-exposed F0 fish produced offspring (F1 and F2 generations) that were fed using plain food and grown until adulthood. In each generation, five behavioural traits (i.e. boldness, activity, sociality, exploration and anxiety) were evaluated by the mean of different experimental set-ups. Two distinct behavioural syndromes were identified: boldness, positively correlated to activity and exploration; and anxiety, associated with low sociality. F0 fish did not display any behavioural disruption resulting from POP exposure whereas F1 MIX fish were bolder than fish from other generations but did not differ significantly from F1 controls. F2 MIX fish displayed a higher anxiety syndrome than F2 controls. This is of particular importance since such behavioural changes in offspring generations may have persistent ecological consequences, may affect fitness and hence cause detrimental effects on wild fish populations exposed to POP mixtures.
Collapse
Affiliation(s)
- Sébastien Alfonso
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France.
- COISPA Tecnologia & Ricerca, Via dei trulli 18/20, Torre a Mare, 70126, Bari, Italy.
| | - Mélanie Blanc
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| | - Xavier Cousin
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| | - Marie-Laure Bégout
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| |
Collapse
|
31
|
Shaw EL, Urban NR. What can we learn from 28 years of monitoring of fish tissue polychlorinated biphenyls in Michigan's rivers? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:152-162. [PMID: 35446467 DOI: 10.1002/ieam.4613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated biphenyls (PCBs) are an important part of chemical legacies in the Laurentian Great Lakes basin. Used in industrial products worldwide, PCBs are now extensively monitored because of their potential toxicity to humans. Fish consumption is a major pathway for exposure. Edible portion (i.e., fish fillet) data from Michigan's fish tissue PCB monitoring program were evaluated using regression statistics, principal component analysis, and t-tests to answer three questions: (1) How do fish tissue total PCB concentrations vary across Michigan's rivers? (2) Are the PCB congener patterns uniformly distributed among tested sites and species? (3) Do monitoring methods limit our ability to discern trends in fish tissue PCB concentrations? Our results indicate that although contaminated sites have been successfully identified, based on higher PCB concentrations in samples from Areas of Concern (AOCs) compared to non-AOC sites, 77% of fish samples from 2010 to 2015 exceeded the safe fish tissue PCB concentration for unrestricted consumption (97 g/day) by sensitive populations. The PCB congener profiles vary among species and locations. Results demonstrate that these data are not useful for supplementing ongoing spatial and temporal trend analysis. Only 15 of the 83 species + waterbody pairs had adequate data for evaluating temporal trends with more than three data points. In general, the trends at each location varied based on the analytical method. Conclusions from this work can inform revisions to existing monitoring programs and improve our ability to protect human health. Integr Environ Assess Manag 2023;19:152-162. © 2022 SETAC.
Collapse
Affiliation(s)
- Emily L Shaw
- Michigan Technological University, Houghton, Michigan, USA
| | - Noel R Urban
- Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
32
|
Lehmler HJ, Uwimana E, Dean LE, Kovalchuk N, Zhang QY, Ding X. Probing the Role of CYP2 Enzymes in the Atropselective Metabolism of Polychlorinated Biphenyls Using Liver Microsomes from Transgenic Mouse Models. Chem Res Toxicol 2022; 35:2310-2323. [PMID: 36473170 PMCID: PMC9957597 DOI: 10.1021/acs.chemrestox.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chiral polychlorinated biphenyls (PCB) are environmentally relevant developmental neurotoxicants. Because their hydroxylated metabolites (OH-PCBs) are also neurotoxic, it is necessary to determine how PCB metabolism affects the developing brain, for example, in mouse models. Because the cytochrome P450 isoforms involved in the metabolism of chiral PCBs remain unexplored, we investigated the metabolism of PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), and PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) using liver microsomes from male and female Cyp2a(4/5)bgs-null, Cyp2f2-null, and wild-type mice. Microsomes, pooled by sex, were incubated with 50 μM PCB for 30 min, and the levels and enantiomeric fractions of the OH-PCBs were determined gas chromatographically. All four PCB congeners appear to be atropselectively metabolized by CYP2A(4/5)BGS and CYP2F2 enzymes in a congener- and sex-dependent manner. The OH-PCB metabolite profiles of PCB 91 and PCB 132, PCB congeners with one para-chlorine substituent, differed between null and wild-type mice. No differences in the metabolite profiles were observed for PCB 95 and PCB 136, PCB congeners without a para-chlorine group. These findings suggest that Cyp2a(4/5)bgs-null and Cyp2f2-null mice can be used to study how a loss of a specific metabolic function (e.g., deletion of Cyp2a(4/5)bgs or Cyp2f2) affects the toxicity of chiral PCB congeners.
Collapse
Affiliation(s)
- Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Eric Uwimana
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Laura E. Dean
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, United States
| | - Nataliia Kovalchuk
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Qing-Yu Zhang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Xinxin Ding
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
33
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
34
|
Yaghoobi B, Miller GW, Holland EB, Li X, Harvey D, Li S, Lehmler HJ, Pessah IN, Lein PJ. Ryanodine receptor-active non-dioxin-like polychlorinated biphenyls cause neurobehavioral deficits in larval zebrafish. FRONTIERS IN TOXICOLOGY 2022; 4:947795. [PMID: 36278027 PMCID: PMC9582434 DOI: 10.3389/ftox.2022.947795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 01/28/2023] Open
Abstract
Although their production was banned in the United States in 1977, polychlorinated biphenyls (PCBs) continue to pose significant risks to the developing nervous system. Perinatal exposure to PCBs is associated with increased risk of neuropsychiatric disorders, perhaps due to altered patterns of dendritic arborization of central neurons. Non-dioxin-like (NDL) PCB congeners enhance dendritic arborization of developing mammalian neurons via sensitization of ryanodine receptors (RYR). Structure-activity relationships (SAR) of RYR sensitization by PCBs have been demonstrated using mammalian and rainbow trout (Oncorhynchus mykiss) tissue homogenates. The purpose of this study is to determine whether this SAR translates to developmental neurotoxicity (DNT) of PCBs in vivo, a question that has yet to be tested. To address this gap, we leveraged a zebrafish model to evaluate the developmental neurotoxicity potential of PCBs 28, 66, 84, 95, 138, and 153, congeners previously shown to have broadly different potencies towards sensitizing RYR. We first confirmed that these PCB congeners exhibited differing potency in sensitizing RYR in zebrafish muscle ranging from negligible (PCB 66) to moderate (PCB 153) to high (PCB 95) RYR activity. Next, enzymatically dechorionated embryos were statically exposed to varying concentrations (0.1-10 μM) of each PCB congener from 6 h post-fertilization to 5 days post-fertilization (dpf). Embryos were observed daily using stereomicroscopy to assess mortality and gross malformations and photomotor behavior was assessed in larval zebrafish at 3, 4, and 5 dpf. The body burden of each PCB was measured by gas chromatography. The key findings are: 1) None of these PCBs caused death or overt teratology at the concentrations tested; 2) A subset of these PCB congeners altered photomotor behavior in larval zebrafish and the SAR for PCB behavioral effects mirrored the SAR for RYR sensitization; and 3) Quantification of PCB levels in larval zebrafish ruled out the possibility that congener-specific effects on behavior were due to differential uptake of PCB congeners. Collectively, the findings from this study provide in vivo evidence in support of the hypothesis that RYR sensitization contributes to the DNT of PCBs.
Collapse
Affiliation(s)
- Bianca Yaghoobi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Galen W. Miller
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erika B. Holland
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, United States
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Danielle Harvey
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Shuyang Li
- Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,*Correspondence: Pamela J. Lein,
| |
Collapse
|
35
|
Update of Indicator PCB Levels in Food in Southern Italy: Assessment of the Dietary Exposure for Adult and Elderly Population. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The levels of non-dioxin-like PCB indicators (iPCBs 28, 52, 101, 138, 153, and 180) were determined in food samples (seafood, meat and processed meat, milk and dairy products, hen eggs, olive oil, and other fats) to evaluate the exposure of adult and elderly population. iPCB levels in samples were in the following order: fishery products > meat and processed meat > milk and dairy products > olive oil and other fats. None of the samples had concentrations above the maximum permissible limits for human consumption established by the European Union legislation, except for salami samples. The dietary intake for the total population was 12.33 ng·kg−1 bw·d−1, while depending on the sex/age groups, exposure was estimated between 9.60 and 12.11 ng·kg−1 bw·d−1, with seafood being the major contributor. The exposure scenario indicates that further efforts must still be carried out to protect the consumer from these harmful chemicals.
Collapse
|
36
|
Imran SJ, Vagaska B, Kriska J, Anderova M, Bortolozzi M, Gerosa G, Ferretti P, Vrzal R. Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals (Basel) 2022; 15:ph15070828. [PMID: 35890127 PMCID: PMC9321538 DOI: 10.3390/ph15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.
Collapse
Affiliation(s)
- Saima Jalil Imran
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| | - Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy;
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| |
Collapse
|
37
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
38
|
Relevant safety aspects of raw milk for dairy foods processing. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:211-264. [PMID: 35659353 DOI: 10.1016/bs.afnr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concern with food safety in the milk chain begins with the quality of the raw milk. Due to the health hazard that this food can carry when contaminated, the focus of studies has turned to microbiological and chemical contaminants that may be present in raw milk. There is an essential concern about conventional pathogens (Shiga toxin-producing Escherichia coli, Salmonella spp., Listeria monocytogenes, Campylobacter spp., Salmonella spp., and coagulase-positive Staphylococcus spp.) and emerging pathogens (Arcobacter butzleri, Yersinia enterocolitica, Mycobacterium avium ssp. paratuberculosis, Helicobacter pylori, and Cronobacter sakazakii) found in raw milk and dairy products. In addition, a growing public health issue has been raised regarding antimicrobial-resistant pathogens and commensal strains found in milk and dairy products. The antibiotic residues in milk can also damage health, such as allergies, and cause technological problems in dairy products processing. This health issue extends to other chemical contaminants such as heavy metals, pesticides, polycyclic aromatic hydrocarbons, melamine, dioxins, polychlorinated biphenyls, plasticizers, and additives in milk and dairy products. Other chemical substances formed by microorganisms are also of high importance, such as biogenic amines and mycotoxins. Therefore, this chapter aimed to revise and discuss relevant biological and chemical risks to ensure the safety and quality of raw milk and dairy products.
Collapse
|
39
|
Hernández-Mesa M, Narduzzi L, Ouzia S, Soetart N, Jaillardon L, Guitton Y, Le Bizec B, Dervilly G. Metabolomics and lipidomics to identify biomarkers of effect related to exposure to non-dioxin-like polychlorinated biphenyls in pigs. CHEMOSPHERE 2022; 296:133957. [PMID: 35157878 DOI: 10.1016/j.chemosphere.2022.133957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Recent epidemiological studies show that current levels of exposure to polychlorinated biphenyls (PCBs) remain of great concern, as there is still a link between such exposures and the development of chronic environmental diseases. In this sense, most studies have focused on the health effects caused by exposure to dioxin-like PCBs (DL-PCBs), although chemical exposure to non-dioxin-like PCB (NDL-PCB) congeners is more significant. In addition, adverse effects of PCBs have been documented in humans after accidental and massive exposure, but little is known about the effect of chronic exposure to low-dose PCB mixtures. In this work, exposure to Aroclor 1260 (i.e. a commercially available mixture of PCBs consisting primarily of NDL-PCB congeners) in pigs is investigated as new evidence in the risk assessment of NDL-PCBs. This animal model has been selected due to the similarities with human metabolism and to support previous toxicological studies carried out with more frequently used animal models. Dietary exposure doses in the order of few ng/kg body weight (b.w.) per day were applied. As expected, exposure to Aroclor 1260 led to the bioaccumulation of NDL-PCBs in perirenal fat of pigs. Metabolomics and lipidomics have been applied to reveal biomarkers of effect related to Aroclor 1260 exposure, and by extension to NDL-PCB exposure, for 21 days. In the metabolomics analysis, 33 metabolites have been identified (level 1 and 2) as significantly altered by the Aroclor 1260 administration, while in the lipidomics analysis, 39 metabolites were putatively annotated (level 3) and associated with NDL-PCB exposure. These biomarkers are mainly related to the alteration of fatty acid metabolism, glycerophospholipid metabolism and tryptophan-kynurenine pathway.
Collapse
Affiliation(s)
| | | | - Sadia Ouzia
- Oniris, INRAE, LABERCA, 44300, Nantes, France
| | | | | | | | | | | |
Collapse
|
40
|
Jahnke JC, Martinez A, Hornbuckle KC. Distinguishing Aroclor and non-Aroclor sources to Chicago Air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153263. [PMID: 35066038 PMCID: PMC9116205 DOI: 10.1016/j.scitotenv.2022.153263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/03/2023]
Abstract
Many polychlorinated biphenyl (PCB) congeners are found in both legacy Aroclor mixtures and modern materials, and both contribute to PCBs levels in ambient air. The various sources of PCBs make it difficult to quantify the relative importance of emissions from remaining legacy materials and emissions of PCBs released from production and use of modern products. To address this challenge, we utilized active and passive sampling, analytical methods optimized for PCBs, and Positive Matrix Factorization (PMF) and cos theta to examine the chemical signature of PCBs in Chicago air. Here we report our findings for over 640 samples collected over 7 years and analyzed for all 209 congeners. We conclude that Aroclor sources (1254, 1016/1242, and 1260) are consistent and dominant contributors to Chicago air. However, non-Aroclors sources accounted for 13%-16% of the total PCBs measured. Our analysis indicates non-Aroclor sources explain 99% of PCB11, 90% of PCB 68, and 58-69% of congeners with 8 to 10 chlorines in Chicago air. All of these are known to be emitted from paints or silicone polymers. Additionally, we identified over 20 congeners that have non-Aroclor contributions of more than 50% including PCB 3 (4-monochlorobiphenyl, 83% non-Aroclor) as well as 7 congeners of unknown sources: PCBs 43, 46, 55, 89, 96, 137, and 139 + 140. Non-Aroclor emission sources contribute to the entire range of congeners from mono- to deca-chlorobiphenyls. We found evidence of highly localized non-Aroclor sources including a signature similar to that of green paint. We also found source signals similar to the PCB congeners volatilizing from and absorbing to neighboring Lake Michigan. The measured profiles vary from season to season: lower chlorinated congeners dominate in winter months while higher chlorinated congeners contribute more in summer.
Collapse
Affiliation(s)
- Jacob C Jahnke
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andres Martinez
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Keri C Hornbuckle
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
41
|
Ruan F, Liu C, Hu W, Ruan J, Ding X, Zhang L, Yang C, Zuo Z, He C, Huang J. Early life PCB138 exposure induces kidney injury secondary to hyperuricemia in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118977. [PMID: 35157936 DOI: 10.1016/j.envpol.2022.118977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 05/26/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs) that have adverse effects on human health. However, the long-term health effects and potential mechanism of neonatal exposure to PCBs are still unclear. In this study, nursing male mice exposed to PCB138 at 0.5, 5, and 50 μg/kg body weight (bw) from postnatal day (PND) 3 to PND 21 exhibited increased serum uric acid levels and liver uric acid synthase activity at 210 days of age. We also found an increased kidney somatic index in the 50 μg/kg group and kidney fibrosis in the 5 and 50 μg/kg groups. Mechanistically, PCB138 induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which might have led to inflammatory responses, such as activation of the NF-κB (nuclear factor kappa-B) and NLRP3 (NOD-like receptor protein 3) pathways. The inflammatory response might regulate renal fibrosis and hypertrophy. In summary, this study reports a long-term effect of neonatal PCB exposure on uric acid metabolism and secondary nephrotoxicity and clarifies the underlying mechanism. Our work also indicates that early life pollutant exposure may be an important cause of diseases later in life.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Weiping Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
42
|
Zhang W, Xie HQ, Li Y, Zhou M, Zhou Z, Wang R, Hahn ME, Zhao B. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128084. [PMID: 34952507 PMCID: PMC9039345 DOI: 10.1016/j.jhazmat.2021.128084] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/01/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.
Collapse
Affiliation(s)
- Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Zhou
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
45
|
Keil Stietz KP, Sethi S, Klocke CR, de Ruyter TE, Wilson MD, Pessah IN, Lein PJ. Sex and Genotype Modulate the Dendritic Effects of Developmental Exposure to a Human-Relevant Polychlorinated Biphenyls Mixture in the Juvenile Mouse. Front Neurosci 2021; 15:766802. [PMID: 34924936 PMCID: PMC8678536 DOI: 10.3389/fnins.2021.766802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
While many neurodevelopmental disorders (NDDs) are thought to result from interactions between environmental and genetic risk factors, the identification of specific gene-environment interactions that influence NDD risk remains a critical data gap. We tested the hypothesis that polychlorinated biphenyls (PCBs) interact with human mutations that alter the fidelity of neuronal Ca2+ signaling to confer NDD risk. To test this, we used three transgenic mouse lines that expressed human mutations known to alter Ca2+ signals in neurons: (1) gain-of-function mutation in ryanodine receptor-1 (T4826I-RYR1); (2) CGG-repeat expansion in the 5′ non-coding portion of the fragile X mental retardation gene 1 (FMR1); and (3) a double mutant (DM) that expressed both mutations. Transgenic and wildtype (WT) mice were exposed throughout gestation and lactation to the MARBLES PCB mix at 0.1, 1, or 6 mg/kg in the maternal diet. The MARBLES mix simulates the relative proportions of the twelve most abundant PCB congeners found in serum from pregnant women at increased risk for having a child with an NDD. Using Golgi staining, the effect of developmental PCB exposure on dendritic arborization of pyramidal neurons in the CA1 hippocampus and somatosensory cortex of male and female WT mice was compared to pyramidal neurons from transgenic mice. A multilevel linear mixed-effects model identified a main effect of dose driven by increased dendritic arborization of cortical neurons in the 1 mg/kg PCB dose group. Subsequent analyses with genotypes indicated that the MARBLES PCB mixture had no effect on the dendritic arborization of hippocampal neurons in WT mice of either sex, but significantly increased dendritic arborization of cortical neurons of WT males in the 6 mg/kg PCB dose group. Transgene expression increased sensitivity to the impact of developmental PCB exposure on dendritic arborization in a sex-, and brain region-dependent manner. In conclusion, developmental exposure to PCBs present in the gestational environment of at-risk humans interfered with normal dendritic morphogenesis in the developing mouse brain in a sex-, genotype- and brain region-dependent manner. Overall, these observations provide proof-of-principle evidence that PCBs interact with heritable mutations to modulate a neurodevelopmental outcome of relevance to NDDs.
Collapse
Affiliation(s)
- Kimberly P Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Tryssa E de Ruyter
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Machelle D Wilson
- Clinical and Translational Science Center, Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
46
|
Sethi S, Keil Stietz KP, Valenzuela AE, Klocke CR, Silverman JL, Puschner B, Pessah IN, Lein PJ. Developmental Exposure to a Human-Relevant Polychlorinated Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Front Neurosci 2021; 15:766826. [PMID: 34938155 PMCID: PMC8685320 DOI: 10.3389/fnins.2021.766826] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are putative environmental risks for neurodevelopmental disorders. Here, we tested two hypotheses: (1) developmental exposure to a human-relevant PCB mixture causes behavioral phenotypes relevant to neurodevelopmental disorders; and (2) expression of human mutations that dysregulate neuronal Ca2+ homeostasis influence sensitivity to behavioral effects of developmental PCB exposures. To test these hypotheses, we used mice that expressed a gain-of-function mutation (T4826I) in ryanodine receptor 1 (RYR1), the X-linked fragile X mental retardation 1 (FMR1) CGG repeat expansion or both mutations (double mutant; DM). Transgenic mice and wildtype (WT) mice were exposed to the MARBLES PCB mix at 0, 0.1, 1, and 6 mg/kg/day in the maternal diet throughout gestation and lactation. The MARBLES PCB mix simulates the relative proportions of the 12 most abundant PCB congeners found in the serum of pregnant women at increased risk for having a child with a neurodevelopmental disorder. We assessed ultrasonic vocalizations at postnatal day 7 (P7), spontaneous repetitive behaviors at P25-P30, and sociability at P27-P32. Developmental PCB exposure reduced ultrasonic vocalizations in WT litters in all dose groups, but had no effect on ultrasonic vocalizations in transgenic litters. Developmental PCB exposure significantly increased self-grooming and decreased sociability in WT males in the 0.1 mg/kg dose group, but had no effect on WT females in any dose group. Genotype alone influenced ultrasonic vocalizations, self-grooming and to a lesser extent sociability. Genotype alone also influenced effects of PCBs on sociability. PCB levels in the brain tissue of pups increased in a dose-dependent manner, but within any dose group did not differ between genotypes. In summary, developmental PCB exposure phenocopied social behavior phenotypes observed in mice expressing human mutations that modify intracellular Ca2+ dynamics, and expression of these mutations alleviated PCB effects on ultrasonic vocalizations and repetitive behavior, and modified the dose-response relationships and sex-dependent effects of PCB effects on social behavior. These findings suggest that: (1) developmental PCB exposure causes behavioral phenotypes that vary by sex and genotype; and (2) sex-specific responses to environmental factors may contribute to sex biases in the prevalence and/or severity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R. Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
47
|
Brun NR, Panlilio JM, Zhang K, Zhao Y, Ivashkin E, Stegeman JJ, Goldstone JV. Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Commun Biol 2021; 4:1129. [PMID: 34561524 PMCID: PMC8463681 DOI: 10.1038/s42003-021-02626-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.
Collapse
Affiliation(s)
- Nadja R Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jennifer M Panlilio
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Evgeny Ivashkin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
48
|
Kennedy CL, Spiegelhoff A, Wang K, Lavery T, Nunez A, Manuel R, Hillers-Ziemer L, Arendt LM, Stietz KPK. The Bladder Is a Novel Target of Developmental Polychlorinated Biphenyl Exposure Linked to Increased Inflammatory Cells in the Bladder of Young Mice. TOXICS 2021; 9:toxics9090214. [PMID: 34564365 PMCID: PMC8473463 DOI: 10.3390/toxics9090214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Bladder inflammation is associated with several lower urinary tract symptoms that greatly reduce quality of life, yet contributing factors are not completely understood. Environmental chemicals are plausible mediators of inflammatory reactions within the bladder. Here, we examine whether developmental exposure to polychlorinated biphenyls (PCBs) leads to changes in immune cells within the bladder of young mice. Female mice were exposed to an environmentally relevant mixture of PCBs through gestation and lactation, and bladders were collected from offspring at postnatal day (P) 28-31. We identify several dose- and sex-dependent PCB effects in the bladder. The lowest concentration of PCB (0.1 mg/kg/d) increased CD45+ hematolymphoid immune cells in both sexes. While PCBs had no effect on CD79b+ B cells or CD3+ T cells, PCBs (0.1 mg/kg/d) did increase F4/80+ macrophages particularly in female bladder. Collagen density was also examined to determine whether inflammatory events coincide with changes in the stromal extracellular matrix. PCBs (0.1 mg/kg/d) decreased collagen density in female bladder compared to control. PCBs also increased the number of cells undergoing cell division predominantly in male bladder. These results implicate perturbations to the immune system in relation to PCB effects on the bladder. Future study to define the underlying mechanisms could help understand how environmental factors can be risk factors for lower urinary tract symptoms.
Collapse
|
49
|
McCann MS, Fernandez HR, Flowers SA, Maguire-Zeiss KA. Polychlorinated biphenyls induce oxidative stress and metabolic responses in astrocytes. Neurotoxicology 2021; 86:59-68. [PMID: 34265337 PMCID: PMC8440398 DOI: 10.1016/j.neuro.2021.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Exposure to environmental toxicants is prevalent, hazardous and linked to varied detrimental health outcomes and disease. Polychlorinated biphenyls (PCBs), a class of hazardous organic chlorines once widely used for industrial purposes, are associated with neurodegenerative disease and oxidative stress in both in vitro and in vivo models. Here, we investigated the impact of Aroclor 1254, a commercially available PCB mixture, on primary murine astrocytes to determine the response to this once ubiquitously used toxicant on the most numerous cells of the central nervous system (CNS). Astrocytes are a critical component of homeostasis throughout the CNS, including at the blood-brain barrier, where they serve as the primary defense against xenobiotics entering the CNS, and at the synapse, where they are closely coupled to neurons through several metabolic pathways. We hypothesized that PCBs cause astrocytic oxidative stress and related dysfunction including altered metabolism. We exposed primary murine cortical astrocytes to PCBs and report an increased expression of antioxidant genes (Prdx1, Gsta2, Gfap, Amigo2) in response to oxidative stress. Our data show increased ATP production and spare respiratory capacity in astrocytes exposed to 10 μM (∼ 3 ppm) PCBs. This dose also causes an increase in glucose uptake that is not seen at a higher dose (50 μM) suggesting that, at a lower dose, astrocytes are able to engage compensatory mechanisms to promote survival. Together, these data suggest that exposure to PCBs impact astrocytic metabolism, which is important to consider both in the context of human health and disease and in in vitro and in vivo disease models.
Collapse
Affiliation(s)
- Mondona S McCann
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Harvey R Fernandez
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Sarah A Flowers
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States
| | - Kathleen A Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington D.C., United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington D.C., United States.
| |
Collapse
|
50
|
Kofoed AB, Deen L, Hougaard KS, Petersen KU, Meyer HW, Pedersen EB, Ebbehøj NE, Heitmann BL, Bonde JP, Tøttenborg SS. Maternal exposure to airborne polychlorinated biphenyls (PCBs) and risk of adverse birth outcomes. Eur J Epidemiol 2021; 36:861-872. [PMID: 34420151 PMCID: PMC8416822 DOI: 10.1007/s10654-021-00793-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Human health effects of airborne lower-chlorinated polychlorinated biphenyls (LC-PCBs) are largely unexplored. Since PCBs may cross the placenta, maternal exposure could potentially have negative consequences for fetal development. We aimed to determine if exposure to airborne PCB during pregnancy was associated with adverse birth outcomes. In this cohort study, exposed women had lived in PCB contaminated apartments at least one year during the 3.6 years before conception or the entire first trimester of pregnancy. The women and their children were followed for birth outcomes in Danish health registers. Logistic regression was performed to estimate odds ratios (OR) for changes in secondary sex ratio, preterm birth, major congenital malformations, cryptorchidism, and being born small for gestational age. We performed linear regression to estimate difference in birth weight among children of exposed and unexposed mothers. All models were adjusted for maternal age, educational level, ethnicity, and calendar time. We identified 885 exposed pregnancies and 3327 unexposed pregnancies. Relative to unexposed women, exposed women had OR 0.97 (95% CI 0.82, 1.15) for secondary sex ratio, OR 1.13 (95% CI 0.76, 1.67) for preterm birth, OR 1.28 (95% CI 0.81, 2.01) for having a child with major malformations, OR 1.73 (95% CI 1.01, 2.95) for cryptorchidism and OR 1.23 (95% CI 0.88, 1.72) for giving birth to a child born small for gestational age. The difference in birth weight for children of exposed compared to unexposed women was − 32 g (95% CI—79, 14). We observed an increased risk of cryptorchidism among boys after maternal airborne LC-PCB exposure, but due to the proxy measure of exposure, inability to perform dose–response analyses, and the lack of comparable literature, larger cohort studies with direct measures of exposure are needed to investigate the safety of airborne LC-PCB exposure during pregnancy
Collapse
Affiliation(s)
- Ane Bungum Kofoed
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark.
| | - Laura Deen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Kajsa Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark
| | - Harald William Meyer
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark
| | - Ellen Bøtker Pedersen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark
| | - Niels Erik Ebbehøj
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark
| | - Berit Lilienthal Heitmann
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.,Section for General Practice, Department of Public Health, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, Building 20F, 2400, Copenhagen, Denmark.
| |
Collapse
|