1
|
Li R, Qin M, Yan J, Jia T, Sun X, Pan J, Li W, Liu Z, El-Sheikh MA, Ahmad P, Liu P. Hormesis effect of cadmium on pakchoi growth: Unraveling the ROS-mediated IAA-sugar metabolism from multi-omics perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137265. [PMID: 39827793 DOI: 10.1016/j.jhazmat.2025.137265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Previous research on cadmium (Cd) focused on toxicity, neglecting hormesis and its mechanisms. In this study, pakchoi seedlings exposed to varying soil Cd concentrations (CK, 5, 10, 20, 40 mg/kg) showed an inverted U-shaped growth trend (hormesis characteristics): As Cd concentration increases, biomass exhibited hormesis character (Cd5) and then disappear (Cd40). ROS levels rose in both Cd treatments, with Cd5 being intermediate between CK and Cd40. But Cd5 preserved cellular structure, unlike damaged Cd40, hinting ROS in Cd5 acted as signaling regulators. To clarify ROS controlled subsequent metabolic processes, a multi-omics study was conducted. The results revealed 143 DEGs and 793 DEMs across all Cd treatment. KEGG indicated among all Cd treatments, the functional differences encompass: "plant hormone signal transduction" and "starch and sucrose metabolism". Through further analysis, we found that under the influence of ROS, the expression of IAA synthesis and signaling-related genes was significantly up-regulated, especially under Cd5 treatment. This further facilitated the accumulation of reducing sugars, which provided more energy for plant growth. Our research results demonstrated the signaling pathway involving ROS-IAA-Sugar metabolism, thereby providing a novel theoretical basis for cultivating more heavy metal hyperaccumulator crops and achieving phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaodong Sun
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiawen Pan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wenwen Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguo Liu
- College of Horticulture, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
2
|
Jiao Q, Li G, Li L, Lin D, Xu Z, Fan L, Zhang J, Shen F, Liu S, Seth CS, Liu H. Hormetic responses to cadmium exposure in wheat seedlings: insights into morphological, physiological, and biochemical adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57701-57719. [PMID: 39292310 DOI: 10.1007/s11356-024-34915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Cadmium is commonly recognized as toxic to plant growth, low-level Cd has promoting effects on growth performance, which is so-called hormesis. Although Cd toxicity in wheat has been widely investigated, knowledge of growth response to a broad range of Cd concentrations, especially extremely low concentrations, is still unknown. In this study, the morphological, physiological, and biochemical performance of wheat seedlings to a wide range of Cd concentrations (0-100 µΜ) were explored. Low Cd treatment (0.1-0.5 µM) improved wheat biomass and root development by enhancing the photosynthetic system and antioxidant system ability. Photosynthetic rate (Pn) was improved by 5.72% under lower Cd treatment (1 µΜ), but inhibited by 6.05-49.85% from 5 to 100 µΜ. Excessive Cd accumulation induced oxidative injury manifesting higher MDA content, resulting in lower photosynthetic efficiency, stunted growth, and reduction of biomass. Further, the contents of ascorbate, glutathione, non-protein thiols, and phytochelatins were improved under 5-100 µΜ Cd treatment. The ascorbate peroxidase activity in the leaf showed a hormetic dose-response characteristic. Correlation analysis and partial least squares (PLS) results indicated that antioxidant enzymes and metabolites were closely correlated with Cd tolerance and accumulation. The results of the element network, correlation analysis, and PLS showed a crucial role for exogenous Cd levels in K, Fe, Cu, and Mn uptake and accumulation. These results provided a deeper understanding of the hormetic effect of Cd in wheat, which would be beneficial for improving the quality of hazard and risk assessments.
Collapse
Affiliation(s)
- Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lantao Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Di Lin
- College of Forestry, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zhengyang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengmin Shen
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | | | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
3
|
Boorboori MR, Zhang H. The effect of cadmium on soil and plants, and the influence of Serendipita indica (Piriformospora indica) in mitigating cadmium stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:426. [PMID: 39316191 DOI: 10.1007/s10653-024-02231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Due to environmental pollution, the risk of cadmium stress for crops is soaring, so researchers are exploring inexpensive solutions to enhance cultivated crops in contaminated soil. Using microorganisms to reduce cadmium risk has been one of the most effective strategies in recent decades. Serendipita indica (Piriformospora indica) is one of the best endophyte fungi that, in addition to reducing heavy metal stress for crops, can significantly reduce the threat of other abiotic stresses. As part of this research, cadmium in soil has been investigated, as well as its effects on plants' morphophysiological and biochemical characteristics. The present review has also attempted to identify the role of Serendipita indica in improving the growth and performance of crops, as well as its possible effect on reducing the risk of cadmium. The results showed that Serendipita indica enhance the growth and productivity of plants in contaminated environments by improving soil quality, reducing cadmium absorption, improving the activity of antioxidant enzymes and secondary metabolites, raising water and mineral absorption, and altering morphophysiological structures.
Collapse
Affiliation(s)
- Mohammad Reza Boorboori
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| | - Haiyang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| |
Collapse
|
4
|
Wang S, Chen J, Zhu L. Understanding the phytotoxic effects of organic contaminants on rice through predictive modeling with molecular descriptors: A data-driven analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134953. [PMID: 38908176 DOI: 10.1016/j.jhazmat.2024.134953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.
Collapse
Affiliation(s)
- Shuyuan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Ur Rahman S, Qin A, Zain M, Mushtaq Z, Mehmood F, Riaz L, Naveed S, Ansari MJ, Saeed M, Ahmad I, Shehzad M. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024; 10:e27724. [PMID: 38500979 PMCID: PMC10945279 DOI: 10.1016/j.heliyon.2024.e27724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations. Pb toxicity obstructs seed germination, root/shoot length, plant growth, and final crop-yield. Pb disrupts the nutrient uptake through roots, alters plasma membrane permeability, and disturbs chloroplast ultrastructure that triggers changes in respiration as well as transpiration activities, creates the reactive oxygen species (ROS), and activates some enzymatic and non-enzymatic antioxidants. Pb also impairs photosynthesis, disrupts water balance and mineral nutrients, changes hormonal status, and alters membrane structure and permeability. This review provides consolidated information concentrating on the current studies associated with Pb-induced oxidative stress and toxic conditions in various plants, highlighting the roles of different antioxidants in plants mitigating Pb-stress. Additionally, we discussed detoxification and tolerance responses in plants by regulating different gene expressions, protein, and glutathione metabolisms to resist Pb-induced phytotoxicity. Overall, various approaches to tackle Pb toxicity have been addressed; the phytoremediation techniques and biochar amendments are economical and eco-friendly remedies for improving Pb-contaminated soils.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anzhen Qin
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang, 453002, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zain Mushtaq
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Mehmood
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Sadiq Naveed
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2240, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
6
|
Geras'kin S. Plant adaptation to ionizing radiation: Mechanisms and patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170201. [PMID: 38246389 DOI: 10.1016/j.scitotenv.2024.170201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Adaptation to environmental stressors is an essential property of plants that allows them, despite an immobile lifestyle, to survive in a changeable environment. The chain of successive events culminating in the final radiobiological reaction begins with the absorption of energy of ionizing radiation in the cell. Starting from stochastic acts of molecular injury formation, radiation damage gradually acquires deterministic features, which are expressed in a limited number of phenomena that complete plant radiation damage. As plants undergo specialization, the differences between plants and animals become more pronounced, leading to distinct responses to radiation. Chronic radiation exposure may activate biological mechanisms resulting in increased radioresistance of the population. The higher the level of radiation exposure and the sensitivity of plants to radiation, the more intensive the selection. Depending on the circumstances, enhanced radioresistance of a population can be achieved in different ways or has not evolved at all. High dose rates of chronic irradiation leаd to selection for the efficiency of repair systems, while low dose rates activate epigenetic mechanisms that lead to the maintenance of oxidative balance, additional synthesis of chaperones, and control of TEs transposition. Due to huge differences in the radiosensitivity of organisms that make up the ecosystem, irradiation can result in disruption of connections between components of ecosystems which may lead to consequences that can differ drastically from those expected at the organismal and population levels. Therefore, the use of ecological knowledge is essential for understanding the responses of populations and ecosystems to radiation exposure.
Collapse
Affiliation(s)
- Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology of NRC "Kurchatov Institute", Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia.
| |
Collapse
|
7
|
Trela-Makowej A, Orzechowska A, Szymańska R. Less is more: The hormetic effect of titanium dioxide nanoparticles on plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168669. [PMID: 37989395 DOI: 10.1016/j.scitotenv.2023.168669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Titanium dioxide nanoparticles have attracted considerable attention due to their extensive applications; however, their multifaceted influence on plant physiology and the broader environment remains a complex subject. This review systematically synthesizes recent studies on the hormetic effects of TiO2 nanoparticles on plants - a phenomenon characterized by dual dose-response behavior that impacts various plant functions. It provides crucial insights into the molecular mechanisms underlying these hormetic effects, encompassing their effects on photosynthesis, oxidative stress response and gene regulation. The significance of this article consists in its emphasis on the necessity to establish clear regulatory frameworks and promote international collaboration to standardize the responsible adoption of nano-TiO2 technology within the agricultural sector. The findings are presented with the intention of stimulating interdisciplinary research and serving as an inspiration for further exploration and investigation within this vital and continually evolving field.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
8
|
Zhu C, Jiang R, Wen S, Xia T, Zhu S, Hou X. Foliar spraying of indoleacetic acid (IAA) enhances the phytostabilization of Pb in naturally tolerant ryegrass by limiting the root-to-shoot transfer of Pb and improving plant growth. PeerJ 2023; 11:e16560. [PMID: 38111653 PMCID: PMC10726742 DOI: 10.7717/peerj.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Exogenous addition of IAA has the potential to improve the metal tolerance and phytostabilization of plants, but these effects have not been systematically investigated in naturally tolerant plants. Ryegrass (Lolium perenne L.) is a typical indigenous plant in the Lanping Pb/Zn mining area with high adaptability. This study investigated the phytostabilization ability and Pb tolerance mechanism of ryegrass in response to Pb, with or without foliar spraying of 0.1 mmol L-1 IAA. The results indicated that appropriate IAA treatment could be used to enhance the phytostabilization efficiency of naturally tolerant plants. Foliar spraying of IAA increased the aboveground and belowground biomass of ryegrass and improved root Pb phytostabilization. Compared to Pb-treated plants without exogenous IAA addition, Pb concentration in the shoots of ryegrass significantly decreased, then increased in the roots after the foliar spraying of IAA. In the 1,000 mg kg-1 Pb-treated plants, Pb concentration in the shoots decreased by 69.9% and increased by 79.1% in the roots after IAA treatment. IAA improved plant growth, especially in soils with higher Pb concentration. Foliar spraying of IAA increased shoot biomass by 35.9% and root biomass by 109.4% in 1,000 mg kg-1 Pb-treated plants, and increased shoot biomass by 196.5% and root biomass by 71.5% in 2,000 mg kg-1 Pb-treated plants. In addition, Pb stress significantly decreased the content of photosynthetic pigments and anti-oxidase activities in ryegrass, while foliar spraying of IAA remedied these negative impacts. In summary, foliar spraying of IAA could increase the biomass and improve the Pb tolerance of ryegrass.
Collapse
Affiliation(s)
| | | | | | | | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Huzhou, China
- College of Environmental & Resource Sciences of Zhejiang University, Hangzhou, China
| | | |
Collapse
|
9
|
Godínez-Mendoza PL, Rico-Chávez AK, Ferrusquía-Jimenez NI, Carbajal-Valenzuela IA, Villagómez-Aranda AL, Torres-Pacheco I, Guevara-González RG. Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164883. [PMID: 37348730 DOI: 10.1016/j.scitotenv.2023.164883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon. Sustainable crop production requires a better understanding of hormesis, its basic concepts, and the input variables to make its management feasible. This implies that acknowledging hormesis in plant research could allow specifying beneficial effects to effectively manage environmental stressors according to cultivation goals. Several factors have been useful in this regard, which at low doses show beneficial eustressing effects (biostimulant/elicitor), while at higher doses, they show distressing toxic effects. These insights highlight biostimulants/elicitors as tools to be included in integrated crop management strategies for reaching sustainability in plant science and agricultural studies. In addition, compelling evidence on the inheritance of elicited traits in plants unfolds the possibility of implementing stressors as a tool in plant breeding.
Collapse
Affiliation(s)
- Pablo L Godínez-Mendoza
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Amanda K Rico-Chávez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Noelia I Ferrusquía-Jimenez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ireri A Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana L Villagómez-Aranda
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| | - Ramon G Guevara-González
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| |
Collapse
|
10
|
Fan D, Sun Y, Chen M, Zhu Y, Agathokleous E, Zhu F, Han J. The role of the ABF1 gene in regulation of Cd-induced hormesis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131991. [PMID: 37459756 DOI: 10.1016/j.jhazmat.2023.131991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Hormesis is important in plant performance in contaminated environments, but the underlying genetic mechanisms are poorly understood. This study aimed at mining key genes in regulating Cd-induced hormesis in Arabidopsis thaliana and verifying their biological function. Hormesis of fresh weight, dry weight, and root length occurred at concentrations of 0.003-2.4, 0.03-0.6, and 0.03-0.6 µM Cd, respectively. Superoxide dismutase and catalase activities, and chlorophyll content displayed inverted U-shaped curves, indicating that the antioxidant defense system and photosynthesis system played roles in hormesis. Based on KEGG pathway analysis with the trend chart of differentially expressed genes and weighted correlation network analysis, the key gene ABF1 in the metabolic pathway of abscisic acid was identified. Subsequently, genetic experiments with wild, overexpressing, and knockdown lines of A. thaliana were conducted to further verify the biological function of ABF1 involving Cd-induced hormesis in A. thaliana. The results revealed that the resistance capability of the overexpressing type to Cd stress was significantly enhanced and implicated that the ABF1 gene is essential for Cd-induced hormesis in A. thaliana. Mining key genes that regulate Cd-induced hormesis in plants and stimulate them could have a transformative impact on the phytoremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Diwu Fan
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yong Sun
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Moxian Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongli Zhu
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Fuyuan Zhu
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiangang Han
- College of Ecology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
11
|
Nagdalian AA, Blinov AV, Siddiqui SA, Gvozdenko AA, Golik AB, Maglakelidze DG, Rzhepakovsky IV, Kukharuk MY, Piskov SI, Rebezov MB, Shah MA. Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). Sci Rep 2023; 13:6453. [PMID: 37081125 PMCID: PMC10119286 DOI: 10.1038/s41598-023-33581-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
The purpose of this work was to study the effect of selenium nanoparticles (Se NPs) on the biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.) We used seeds of Hordéum vulgáre L. with reduced morphofunctional characteristics. For the experiment, Se NPs were synthesized and stabilized with didecyldimethylammonium chloride. It was found that Se NPs have a spherical shape and a diameter of about 50 nm. According to dynamic light scattering data, the average hydrodynamic radius of the particles was 28 ± 8 nm. It is observed that the nanoparticles have a positive ζ-potential (+ 27.3 mV). For the experiment, we treated Hordéum vulgáre L. seeds with Se NPs (1, 5, 10 and 20 mg/L). The experiment showed that treatment of Hordéum vulgáre L. seeds with Se NPs has the best effect on the length of roots and sprout at concentration of 5 mg/L and on the number and thickness of roots at 10 mg/L. Germinability and germination energy of Hordéum vulgáre L. seeds were higher in group treated with 5 mg/L Se NPs. Analysis of macrophotographs of samples, histological sections of roots and 3D visualization of seeds by microcomputing tomography confirmed the best effect at 5 mg/L Se NPs. Moreover, no local destructions were detected at concentrations > 5 mg/L, which is most likely due to the inhibition of regulatory and catalytic processes in the germinating seeds. the treatment of Hordéum vulgáre L. seeds with > 5 mg/L Se NPs caused significant stress, coupled with intensive formation of reactive oxygen species, leading to a reorientation of root system growth towards thickening. Based on the results obtained, it was concluded that Se NPs at concentrations > 5 mg/L had a toxic effect. The treatment of barley seeds with 5% Se NPs showed maximum efficiency in the experiment, which allows us to further consider Se NPs as a stimulator for the growth and development of crop seeds under stress and reduced morphofunctional characteristics.
Collapse
Affiliation(s)
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.v.), Prof.-Von-Klitzing-Straße 7, 49610, Quakenbrück, Germany
| | | | | | | | | | | | | | - Maksim Borisovich Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Post Box 250, Somali, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India.
| |
Collapse
|
12
|
Carvalho MEA, Agathokleous E, Nogueira ML, Brunetto G, Brown PH, Azevedo RA. Neutral-to-positive cadmium effects on germination and seedling vigor, with and without seed priming. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130813. [PMID: 36706487 DOI: 10.1016/j.jhazmat.2023.130813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
This review gathered and analyzed data about (i) the Cd-induced impacts on seed germination and seedling vigor, and (ii) the use of different priming agents to mitigate Cd-induced impacts on the early plant development. Critical evaluation of the obtained data revealed intriguing results. First, seeds of diverse species can endure exposures to Cd. Such endurance is exhibited as maintenance of or even improvement in the seed germination and vigor (up to 15% and 70%, respectively). Second, the main factors influencing seed tolerance to Cd toxicity are related to temporal variations in anatomical, physiological, and/or biochemical features. Third, Cd can trigger diverse transgenerational effects on plants by shaping seed endophytes, by modulating seed provisioning with resources and regulatory elements, and/or by altering seed (epi)genomics. Fourth, different chemical, biological and physical priming agents can mitigate Cd-induced impacts on seeds, sometimes enhancing their performance over the control (reference) values. Overall, this review shows that the impacts of Cd on seed germination and vigor encompass not only negative outcomes but also neutral and positive ones, depending upon the Cd dose, media properties, plant species and genotypes, plant developmental stage and organ, and management approaches. Increasing our understanding of plant tolerance mechanisms against the growing background Cd pollution is relevant to support breeding programs, agricultural practices, and health-environmental policies.
Collapse
Affiliation(s)
- Marcia E A Carvalho
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Marina L Nogueira
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Gustavo Brunetto
- Soil Science Department, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Patrick H Brown
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Ricardo A Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture/ University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
13
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
14
|
Kou M, Hou J, Chen C, Xiong J, Wei R, Wang M, Tan W. Quantitative analysis of dose interval effect of Pb-Cd interaction on Oryza sativa L. root. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114622. [PMID: 36764069 DOI: 10.1016/j.ecoenv.2023.114622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Combined pollution of cadmium (Cd) and lead (Pb) occurs frequently in agriculture lands, which has received increasing research attention. However, little is known about the interaction behaviors of Cd and Pb at various concentrations in the mixture. This study evaluated the single and combined effects of Cd and Pb on rice (Oryza sativa L.) root elongation through acute exposure test. The combined pollution was analyzed with the concentration addition (CA) model, independent action (IA) model and mathematical statistical methods. The dose-response results revealed that the interaction could weaken the toxicity of both Pb and Cd, and Cd had a more significant inhibitory effect on Pb toxicity. The predicted values of CA and IA models were consistently lower than the observed values in the relative root elongation range of 0-60%. Further, combining the CA or IA model with mathematical statistical methods, the interaction of Pb and Cd at similar concentrations showed a significant antagonistic effect on rice root elongation. At low Pb concentrations (Cd > 0.0195, Pb < 0.015 mg/L), there was a synergistic effect of the mixture on rice root; at high Pb concentrations (Cd < 0.225, Pb ≥ 1.25 mg/L), Pb dominated the toxicity on rice root. This is the first report of a systematic method for assessing heavy metal interaction at different concentration levels, which may facilitate the formulation of control standards of heavy metal combined pollution in agricultural land.
Collapse
Affiliation(s)
- Meng Kou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Renhao Wei
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
15
|
Wang B, Lin L, Yuan X, Zhu Y, Wang Y, Li D, He J, Xiao Y. Low-level cadmium exposure induced hormesis in peppermint young plant by constantly activating antioxidant activity based on physiological and transcriptomic analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1088285. [PMID: 36755692 PMCID: PMC9899930 DOI: 10.3389/fpls.2023.1088285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
As one of the most toxic environmental pollutants, cadmium (Cd) has lastingly been considered to have negative influences on plant growth and productivity. Recently, increasing studies have shown that low level of Cd exposure could induce hormetic effect which benefits to plants. However, the underlying mechanisms of Cd-triggered hormesis are poorly understood. In this study, we found that Cd stress treatment showed a hormetic effect on peppermint and Cd treatment with 1.6 mg L-1 concertation manifested best stimulative effects. To explore the hormesis mechanisms of Cd treatment, comparative transcriptome analysis of peppermint young plants under low (1.6 mg L-1) and high (6.5 mg L-1) level of Cd exposure at 0 h, 24 h and 72 h were conducted. Twelve of differentially expressed genes (DEGs) were selected for qRT-PCR validation, and the expression results confirmed the credibility of transcriptome data. KEGG analysis of DEGs showed that the phenylpropanoid biosynthesis and photosynthesis were important under both low and high level of Cd treatments. Interestingly, GO and KEGG analysis of 99 DEGs specifically induced by low level of Cd treatment at 72 h indicated that these DEGs were mainly involved in the pathway of phenylpropanoid biosynthesis and their functions were associated with antioxidant activity. The expression pattern of those genes in the phenylpropanoid biosynthesis pathway and encoding antioxidant enzymes during 72 h of Cd exposure showed that low level of Cd treatment induced a continuation in the upward trend but high level of Cd treatment caused an inverted V-shape. The changes of physiological parameters during Cd exposure were highly consistent with gene expression pattern. These results strongly demonstrate that low level of Cd exposure constantly enhanced antioxidant activity of peppermint to avoid oxidative damages caused by Cd ion, while high level of Cd stress just induced a temporary increase in antioxidant activity which was insufficient to cope with lasting Cd toxicity. Overall, the results presented in this study shed a light on the underlying mechanisms of the Cd-mediated hormesis in plant. Moreover, our study provided a safe method for the efficient utilization of mild Cd-contaminated soil as peppermint is an important cash plant.
Collapse
Affiliation(s)
- Bin Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Aromatic Plant Engineering Research Center, Shaoguan University, Shaoguan, China
| | - Lvna Lin
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiao Yuan
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Yunna Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Aromatic Plant Engineering Research Center, Shaoguan University, Shaoguan, China
| | - Yukun Wang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Aromatic Plant Engineering Research Center, Shaoguan University, Shaoguan, China
| | - Donglin Li
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Aromatic Plant Engineering Research Center, Shaoguan University, Shaoguan, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Shaoguan Aromatic Plant Engineering Research Center, Shaoguan University, Shaoguan, China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Shaoguan Aromatic Plant Engineering Research Center, Shaoguan University, Shaoguan, China
| |
Collapse
|
16
|
Liwarska-Bizukojc E. Effect of Innovative Bio-Based Plastics on Early Growth of Higher Plants. Polymers (Basel) 2023; 15:polym15020438. [PMID: 36679317 PMCID: PMC9863774 DOI: 10.3390/polym15020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plastic particles are widespread in the environment including the terrestrial ecosystems. They may change the physicochemical properties of soil and subsequently affect plant growth. In recent decades, traditional, petroleum-derived plastics have been increasingly replaced by more environmentally friendly bio-based plastics. Due to the growing role of bio-based plastics it is necessary to thoroughly study their impact on the biotic part of ecosystems. This work aimed for the assessment of the effect of five innovative bio-based plastics of different chemical composition and application on the early growth of higher plants (sorghum, cress and mustard). Each bio-based plastic was tested individually. It was found that the early stages of growth of monocotyledonous plants were usually not affected by any of plastic materials studied. At the same time, the presence of some kinds of bio-based plastics contributed to the inhibition of root growth and stimulation of shoot growth of dicotyledonous plants. Two PLA-based plastics inhibited root growth of dicotyledonous plants more strongly than other plastic materials; however, the reduction of root length did not exceed 22% compared to the control runs. PBS-based plastic contributed to the stimulation of shoot growth of higher plants (sorghum, cress and mustard) at the concentrations from 0.02 to 0.095% w/w. In the case of cress shoots exposed to this plastic the hormetic effect was observed. Lepidium sativum turned out to be the most sensitive plant to the presence of bio-based plastic particles in the soil. Thus, it should be included in the assessment of the effect of bio-based plastics on plant growth.
Collapse
Affiliation(s)
- Ewa Liwarska-Bizukojc
- Institute of Environmental Engineering and Building Installations, Lodz University of Technology, Al. Politechniki 6, 90-924 Lodz, Poland
| |
Collapse
|
17
|
Qin L, Wang L, Sun X, Yu L, Wang M, Chen S. Ecological toxicity (EC x) of Pb and its prediction models in Chinese soils with different physiochemical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158769. [PMID: 36108869 DOI: 10.1016/j.scitotenv.2022.158769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The lack of toxicological data becomes the main bottleneck of ecological risk assessment of lead (Pb) in Chinese soils. The present study assessed Pb toxicity on three underground test endpoints (barley root elongation, earthworm avoidance response, and substrate-induced respiration (SIR) of microorganism) in 10 different soils. Hormetic dose-response induced by Pb was >118 % for earthworm avoidance response. EC10 and EC50 (the effective concentrations of Pb that inhibit 10 % or 50 % of endpoint bioactivity and also represents the toxicity threshold of Pb) after leaching increased by 0.32-8.73 times, and 1.02-3.75 times, respectively. Leaching factor (LF) prediction models indicated pH and cation exchange capacity (CEC) were the vital predictors for LF10 and LF50, explaining 60.6 % and 73.1 % of variations, respectively. SIR was one sensitive test endpoint for Pb toxicity, with the lowest of EC10 and EC50 values (from 373.7 to 1008.5 mg·kg-1, and from 837.1 to 2869.0 mg·kg-1, respectively). The best prediction models between ECx and soil properties is LogEC50 = 1.324Log(pH) + 0.423Log(CEC) + 1.742 (R2 = 0.761, p < 0.01). The results displayed significant implications for deriving ECx of Pb, and provided a scientific basis for soil ecological risk assessment of Pb.
Collapse
Affiliation(s)
- Luyao Qin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Lifu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiaoyi Sun
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Lei Yu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Meng Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Shibao Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of cultivated land quality monitoring and evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
18
|
Piršelová B, Galuščáková Ľ, Lengyelová L, Kubová V, Jandová V, Hegrová J. Assessment of the Hormetic Effect of Arsenic on Growth and Physiology of Two Cultivars of Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:3433. [PMID: 36559544 PMCID: PMC9781677 DOI: 10.3390/plants11243433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Although growth stimulation at low arsenic doses was observed in several plants, few studies have focused on this phenomenon in more detail. The effects of different concentrations of arsenic (0-50 mg kg-1 of soil: As0-As50) on the growth and selected physiological parameters of two maize cultivars (Zea mays L. cvs. Chapalu and MvNK 333) were tested. Cultivar MvNK 333 manifested a generally higher tolerance to As than cv. Chapalu, which may be related to the lower content of As in the tissues. The highest stimulatory effect of As was recorded at doses of As1 and As2 (cv. Chapalu), and at the As5 dose (MvNK 333), there was an increase in shoot elongation, biomass, and relative water content (RWC), as well as the content of photosynthetic pigments. The stimulatory effect of lower doses of As apparently represents an adaptation mechanism that is associated with water content regulation in the given conditions. The stomata of the studied cultivars were involved in this regulation in different ways. While cv. Chapalu exhibited increased numbers of stomata on both sides of leaves, cv. MvNK 333 instead responded to the given conditions with decreased stomata size. Although hormetic manifestations closely related to changes in stomatal number and size were observed, a typical stomatal hormetic response was not observed in the given range of As doses.
Collapse
Affiliation(s)
- Beáta Piršelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Ľudmila Galuščáková
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Libuša Lengyelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Veronika Kubová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovakia
| | - Vilma Jandová
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Líšeňská 33a, 636 00 Brno, Czech Republic
| |
Collapse
|
19
|
Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Pacheco-Aguilar JR, Alatorre-Cobos F, Hernández-Morales A. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3743-3764. [PMID: 35022877 DOI: 10.1007/s10653-021-01179-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/05/2021] [Indexed: 05/16/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.
Collapse
Affiliation(s)
- Gisela Adelina Rolón-Cárdenas
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ruth Elena Soria-Guerra
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México
| | | | | | - Alejandro Hernández-Morales
- Posgrado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Avenida Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, San Luis Potosí, México.
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, 79060, Ciudad Valles, San Luis Potosí, México.
| |
Collapse
|
20
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
21
|
Sahebnasagh A, Eghbali S, Saghafi F, Sureda A, Avan R. Neurohormetic phytochemicals in the pathogenesis of neurodegenerative diseases. Immun Ageing 2022; 19:36. [PMID: 35953850 PMCID: PMC9367062 DOI: 10.1186/s12979-022-00292-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 12/02/2022]
Abstract
The world population is progressively ageing, assuming an enormous social and health challenge. As the world ages, neurodegenerative diseases are on the rise. Regarding the progressive nature of these diseases, none of the neurodegenerative diseases are curable at date, and the existing treatments can only help relieve the symptoms or slow the progression. Recently, hormesis has increased attention in the treatment of age-related neurodegenerative diseases. The concept of hormesis refers to a biphasic dose-response phenomenon, where low levels of the drug or stress exert protective of beneficial effects and high doses deleterious or toxic effects. Neurohormesis, as the adaptive aspect of hormetic dose responses in neurons, has been shown to slow the onset of neurodegenerative diseases and reduce the damages caused by aging, stroke, and traumatic brain injury. Hormesis was also observed to modulate anxiety, stress, pain, and the severity of seizure. Thus, neurohormesis can be considered as a potentially innovative approach in the treatment of neurodegenerative and other neurologic disorders. Herbal medicinal products and supplements are often considered health resources with many applications. The hormesis phenomenon in medicinal plants is valuable and several studies have shown that hormetic mechanisms of bioactive compounds can prevent or ameliorate the neurodegenerative pathogenesis in animal models of Alzheimer’s and Parkinson’s diseases. Moreover, the hormesis activity of phytochemicals has been evaluated in other neurological disorders such as Autism and Huntington’s disease. In this review, the neurohormetic dose–response concept and the possible underlying neuroprotection mechanisms are discussed. Different neurohormetic phytochemicals used for the better management of neurodegenerative diseases, the rationale for using them, and the key findings of their studies are also reviewed.
Collapse
|
22
|
Mumtaz MA, Hao Y, Mehmood S, Shu H, Zhou Y, Jin W, Chen C, Li L, Altaf MA, Wang Z. Physiological and Transcriptomic Analysis provide Molecular Insight into 24-Epibrassinolide mediated Cr(VI)-Toxicity Tolerance in Pepper Plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119375. [PMID: 35500717 DOI: 10.1016/j.envpol.2022.119375] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The ever-increasing industrial activities over the decades have generated high toxic metals such as chromium (Cr) that hampers plant growth and development. To counter Cr-toxicity, plants have evolved complex defensive systems including hormonal crosstalk with various signaling pathways. 24-epibrassinolide (24-EBR) lowers oxidative stress and alleviates Cr(VI)-toxicity in plants. In this study, the concealed BR-mediated influences on Cr(VI)-stress tolerance were explored by transcriptome analysis in the Capsicum annuum. Results revealed a linkage between plant development under Cr(VI)-stress and the mitigating effect of 24-epibrassinolide and brassinazole. Growth inhibition, chlorophyll degradation, and a significant rise of malondialdehyde (MDA) were observed after 40 mg/L Cr(VI) treatment in Brz supplemented seedlings, whereas 24-EBR supplemented seedlings exhibited commendatory effect. Comparative transcriptome analysis showed that the expression levels of 6687 genes changed (3846 up-regulated and 2841 downregulated) under Cr(VI)-stress with Brz supplementation. Whereas the expression levels of only 1872 genes changed under Cr(VI)-stress with 24-EBR supplementation (1223 up-regulated and 649 downregulated). The functional categories of the differentially expressed genes (DEGs) by gene ontology (GO) revealed that drug transport, defense responses, and drug catabolic process were the considerable enrichments between 24-EBR and Brz supplemented seedlings under Cr(VI)-stress. Furthermore, auxin signaling, glutathione metabolism, ABC transporters, MAPK pathway, and 36 heavy metal-related genes were significantly differentially expressed components between Cr(VI)-stress, 24-EBR, and Brz supplemented seedlings. Overall, our data demonstrate that employing 24-EBR can commendably act as a growth stimulant in plants subjected to Cr(VI)-stress by modulating the physiological and defense regulatory system.
Collapse
Affiliation(s)
- Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou, 570100, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Yan Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Weiheng Jin
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Chuhao Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Lin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, 570100, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
23
|
Zhang X, Ai S, Wei J, Yang X, Huang Y, Hu J, Wang Q, Wang H. Biphasic effects of typical chlorinated organophosphorus flame retardants on Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113813. [PMID: 36068742 DOI: 10.1016/j.ecoenv.2022.113813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The potential accumulation of chlorinated organophosphorus flame retardants (Cl-OPFRs) in aquatic environments sparked interest in studying the effects of Cl-OPFRs on cyanobacterial blooms. In this work, two common Cl-OPFRs, tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate (TCEP), induced dose-dependent biphasic effect on bloom-forming M. aeruginosa. The hormetic response to low-dose Cl-OPFRs was associated with the upregulation of the type I NADH dehydrogenase (NDH-1) complex and its mediated cyclic electron transfer (CET) pathway, as reflected by a transient post-illumination increase in chlorophyll fluorescence, the dark reduction of P700+ and the change of NDH-1-related gene expression. The increased CET activity and carotenoid content jointly reduced the intracellular ROS production, facilitating cyanobacterial growth. Conversely, a higher concentration of both Cl-OPFRs induced severe inhibition of growth and photosynthetic oxygen-evolving activity through an imbalance between PSII and PSI. Toxic-dose Cl-OPFRs inhibited state transition and fixed cells into the State I with a higher PSII/PSI ratio, as indicated by chlorophyll fluorescence induction, 77 K fluorescence emission spectra and photosystem stoichiometry. The elevated PSII/PSI ratio created an imbalance between the two photosystems and eventually lead to ROS overproduction, which generate adverse effects on cell growth. This work provides important insights into the hormetic mechanism of Cl-OPFRs on Microcystis aeruginosa and their potential roles in harmful cyanobacteria blooms.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Sijie Ai
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jialu Wei
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Xu Yang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Yichen Huang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Haiying Wang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
| |
Collapse
|
24
|
Qu K, Cheng Y, Gao K, Ren W, Fry EL, Yin J, Liu Y. Growth-Defense Trade-Offs Induced by Long-term Overgrazing Could Act as a Stress Memory. FRONTIERS IN PLANT SCIENCE 2022; 13:917354. [PMID: 35720531 PMCID: PMC9201768 DOI: 10.3389/fpls.2022.917354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023]
Abstract
Long-term overgrazing (OG) is one of the key drivers of global grassland degradation with severe loss of productivity and ecosystem functions, which may result in stress memory such as smaller stature of grassland plants. However, how the OG-induced stress memory could be regulated by phytohormones is unknown. In this study, we investigated the changes of four phytohormones of cloned offspring of Leymus chinensis that were developed from no-grazing (NG) plants and OG plants with a grazing history of 30 years. The concentrations of auxin (IAA) and gibberellic acid (GA) in OG plant leaves were 45% and 20% lower than control, respectively. Meanwhile, the level of abscisic acid (ABA) in OG leaves nearly doubled compared with that in NG leaves. The situation was quite similar in roots. Unexpectedly, no significant changes in the jasmonic acid (JA) level were observed between OG and NG plants. The changes in gene expression patterns between OG and NG plants were also investigated by transcriptomic analysis. In total, 302 differentially expressed genes (DEGs) were identified between OG and NG plants, which were mainly classified into the functions of synthesis, receptor, and signal transduction processes of phytohormones. The expression of 24 key genes related to the biosynthesis and signal transduction of IAA and GA was downregulated in OG plants. Among them, OASA1 and AO1 (regulating the biosynthesis of IAA and ABA, respectively) were reduced significantly by 88 and 92%, respectively. In addition, the content of secondary metabolites related to plant defense such as flavonoids and phenols was also increased in leaves. Taken together, the decrease of positive plant growth-related hormones (IAA and GA) together with the increase of plant stress-related hormones or factors (ABA, flavonoids, and phenols) induced the growth-defense trade-offs for L. chinensis adaptation to long-term OG stress. The findings reported in this study shed new light on the mechanism of plant-animal interaction in the grassland ecosystem and provide a deeper insight into optimizing grazing management and sustainable utilization of grassland.
Collapse
Affiliation(s)
- Kairi Qu
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yunxiang Cheng
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kairu Gao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yaling Liu
- Inner Mongolia Mongolian Grass Seed Industry Science and Technology Research Institute Co., Ltd., Hohhot, China
| |
Collapse
|
25
|
Unraveling Cadmium Toxicity in Trifolium repens L. Seedling: Insight into Regulatory Mechanisms Using Comparative Transcriptomics Combined with Physiological Analyses. Int J Mol Sci 2022; 23:ijms23094612. [PMID: 35563002 PMCID: PMC9105629 DOI: 10.3390/ijms23094612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Trifolium repens (T. repens) can accumulate significant amounts of heavy metal ions, and has strong adaptability to wide environmental conditions, and relatively large biomass, which is considered a potential plant for phytoremediation. However, the molecular mechanisms of T. repens involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of T. repens exposed to a high-level CdCl2 by investigating the physiological and transcriptomic analyses. The results suggested that T. repens seedlings had a high degree of tolerance to Cd treatment. The roots accumulated higher Cd concentration than leaves and were mainly distributed in the cell wall. The content of MDA, soluble protein, the relative electrolyte leakage, and three antioxidant enzymes (POD, SOD, and APX) was increased with the Cd treatment time increasing, but the CAT enzymes contents were decreased in roots. Furthermore, the transcriptome analysis demonstrated that the differentially expressed genes (DEGs) mainly enriched in the glutathione (GSH) metabolism pathway and the phenylpropanoid biosynthesis in the roots. Overexpressed genes in the lignin biosynthesis in the roots might improve Cd accumulation in cell walls. Moreover, the DEGs were also enriched in photosynthesis in the leaves, transferase activity, oxidoreductase activity, and ABA signal transduction, which might also play roles in reducing Cd toxicity in the plants. All the above, clearly suggest that T. repens employ several different mechanisms to protect itself against Cd stress, while the cell wall biosynthesis and GSH metabolism could be considered the most important specific mechanisms for Cd retention in the roots of T. repens.
Collapse
|
26
|
Effect of Fungal Endophyte Epichloë bromicola Infection on Cd Tolerance in Wild Barley ( Hordeum brevisubulatum). J Fungi (Basel) 2022; 8:jof8040366. [PMID: 35448597 PMCID: PMC9026929 DOI: 10.3390/jof8040366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
Hydroponic Hordeum brevisubulatum (wild barley) was used as material in the greenhouse to study the effects of endophyte infection on plant growth, Cd absorption and transport, subcellular distribution, and Cd chemical forms under CdCl2 stress. Endophytic fungi respond positively to chlorophyll content and photosynthetic efficiency under Cd stress. The order of Cd absorption in different parts of the plant was: roots > stems > leaves. Endophyte infection increased the plant’s absorption and transport of Cd while causing a significant difference in the stem, which was associated with the distribution density of endophyte hyphae. The proportion of organelle Cd in endophyte-infected wild barley was significantly higher, which facilitated more Cd transport to aboveground. Cd stress showed a slight effect on the chemical forms of Cd in leaves. The proportion of phosphate, oxalate, and residual Cd increased in the stem. Cd existed in the form of inorganic salt, organic acid, pectin, and protein in roots. Endophyte infection reduced the Cd content of the more toxic chemical forms to protect the normal progress of plant physiological functions. Therefore, the isolation of cell walls and vacuoles is a key mechanism for plant Cd tolerance and detoxification. As endophyte infections have more ability to absorb Cd in plants, H. brevisubulatum−Epichloë bromicola symbionts can improve heavy metal contaminated soil and water.
Collapse
|
27
|
|
28
|
|
29
|
Erofeeva EA. Environmental hormesis of non-specific and specific adaptive mechanisms in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150059. [PMID: 34508935 DOI: 10.1016/j.scitotenv.2021.150059] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Adaptive responses of plants are important not only for local processes in populations and communities but also for global processes in the biosphere through the primary production of ecosystems. In recent years, the concept of environmental hormesis has been increasingly used to explain the adaptive responses of living organisms, including plants, to low doses of natural factors, both abiotic and biotic, as well as various anthropogenic impacts. However, the issues of whether plant hormesis is similar/different when it is induced by mild stressors having different specific effects and what is the contribution of hormetic stimulation of non-specific and specific adaptive mechanisms in plant resilience to strong stressors (i.e., preconditioning) remains unclear. This paper analyses hormetic stimulation of non-specific and specific adaptive mechanisms in plants and its significance for preconditioning, the phenomenon of the hormetic trade-off for these mechanisms, and the position of hormetic stimulation of non-specific and specific adaptive mechanisms in the system of plant adaptations to environmental challenges. The analysis has shown that both non-specific and specific adaptive mechanisms of plants can be stimulated hormetically by mild stressors and are important for plant preconditioning. Due to limited plant resources, non-specific and specific adaptive mechanisms have hormetic trades-offs 1 (hormesis accompanied by the deterioration of some plant traits) and 2 (hormesis of some plant traits with the invariability of others). At the same time, hormetic trade-off 2 is observed much more often than hormetic trade-off 1, at least, this was demonstrated here for non-specific adaptive responses of plants. The hormetic stimulation of non-specific and specific adaptive mechanisms is part of the inducible adaptation of plants caused by stress factors and is an adaptation to random (unpredictable) changes in the environment.
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
30
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
31
|
Sperdouli I, Adamakis IDS, Dobrikova A, Apostolova E, Hanć A, Moustakas M. Excess Zinc Supply Reduces Cadmium Uptake and Mitigates Cadmium Toxicity Effects on Chloroplast Structure, Oxidative Stress, and Photosystem II Photochemical Efficiency in Salvia sclarea Plants. TOXICS 2022; 10:36. [PMID: 35051078 PMCID: PMC8778245 DOI: 10.3390/toxics10010036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Salvia sclarea L. is a Cd2+ tolerant medicinal herb with antifungal and antimicrobial properties cultivated for its pharmacological properties. However, accumulation of high Cd2+ content in its tissues increases the adverse health effects of Cd2+ in humans. Therefore, there is a serious demand to lower human Cd2+ intake. The purpose of our study was to evaluate the mitigative role of excess Zn2+ supply to Cd2+ uptake/translocation and toxicity in clary sage. Salvia plants were treated with excess Cd2+ (100 μM CdSO4) alone, and in combination with Zn2+ (900 μM ZnSO4), in modified Hoagland nutrient solution. The results demonstrate that S. sclarea plants exposed to Cd2+ toxicity accumulated a significant amount of Cd2+ in their tissues, with higher concentrations in roots than in leaves. Cadmium exposure enhanced total Zn2+ uptake but also decreased its translocation to leaves. The accumulated Cd2+ led to a substantial decrease in photosystem II (PSII) photochemistry and disrupted the chloroplast ultrastructure, which coincided with an increased lipid peroxidation. Zinc application decreased Cd2+ uptake and translocation to leaves, while it mitigated oxidative stress, restoring chloroplast ultrastructure. Excess Zn2+ ameliorated the adverse effects of Cd2+ on PSII photochemistry, increasing the fraction of energy used for photochemistry (ΦPSII) and restoring PSII redox state and maximum PSII efficiency (Fv/Fm), while decreasing excess excitation energy at PSII (EXC). We conclude that excess Zn2+ application eliminated the adverse effects of Cd2+ toxicity, reducing Cd2+ uptake and translocation and restoring chloroplast ultrastructure and PSII photochemical efficiency. Thus, excess Zn2+ application can be used as an important method for low Cd2+-accumulating crops, limiting Cd2+ entry into the food chain.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, 57001 Thessaloniki, Greece
| | | | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland;
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Sitko K, Opała-Owczarek M, Jemioła G, Gieroń Ż, Szopiński M, Owczarek P, Rudnicka M, Małkowski E. Effect of Drought and Heavy Metal Contamination on Growth and Photosynthesis of Silver Birch Trees Growing on Post-Industrial Heaps. Cells 2021; 11:cells11010053. [PMID: 35011615 PMCID: PMC8750922 DOI: 10.3390/cells11010053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023] Open
Abstract
Silver birch trees (Betula pendula Roth) are a pioneering species in post-industrial habitats, and have been associated with an expansive breeding strategy and low habitat requirements. We conducted ecophysiological and dendroclimatological studies to check whether there are any features of which the modification enables birch trees to colonise extreme habitats successfully. We characterised the efficiency of the photosynthetic apparatus, the gas exchange, the content of pigments in leaves, and the growth (leaf thickness and tree-ring width) of birch trees on a post-coal mine heap, a post-smelter heap, and a reference site. Birch growth was limited mainly by temperature and water availability during summer, and the leaves of the birch growing on post-industrial heaps were significantly thicker than the reference leaves. Moreover, birch trees growing on heaps were characterised by a significantly higher content of flavonols and anthocyanins in leaves and higher non-photochemical quenching. In addition, birches growing on the post-coal mine heap accumulated a concentration of Mn in their leaves, which is highly toxic for most plant species. Increasing the thickness of leaves, and the content of flavonols and anthocyanins, as well as efficient non-photochemical quenching seem to be important features that improve the colonization of extreme habitats by birches.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (G.J.); (Ż.G.); (M.S.); (M.R.); (E.M.)
- Correspondence:
| | | | - Gabriela Jemioła
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (G.J.); (Ż.G.); (M.S.); (M.R.); (E.M.)
| | - Żaneta Gieroń
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (G.J.); (Ż.G.); (M.S.); (M.R.); (E.M.)
| | - Michał Szopiński
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (G.J.); (Ż.G.); (M.S.); (M.R.); (E.M.)
| | - Piotr Owczarek
- Institute of Geography and Regional Development, University of Wrocław, 50-137 Wrocław, Poland;
| | - Małgorzata Rudnicka
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (G.J.); (Ż.G.); (M.S.); (M.R.); (E.M.)
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (G.J.); (Ż.G.); (M.S.); (M.R.); (E.M.)
| |
Collapse
|
33
|
Harnessing Chlorophyll Fluorescence for Phenotyping Analysis of Wild and Cultivated Tomato for High Photochemical Efficiency under Water Deficit for Climate Change Resilience. CLIMATE 2021. [DOI: 10.3390/cli9110154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluctuations of the weather conditions, due to global climate change, greatly influence plant growth and development, eventually affecting crop yield and quality, but also plant survival. Since water shortage is one of the key risks for the future of agriculture, exploring the capability of crop species to grow with limited water is therefore fundamental. By using chlorophyll fluorescence analysis, we evaluated the responses of wild tomato accession Solanum pennellii LA0716, Solanum lycopersicum cv. Μ82, the introgression line IL12-4 (from cv. M82 Χ LA0716), and the Greek tomato cultivars cv. Santorini and cv. Zakinthos, to moderate drought stress (MoDS) and severe drought stress (SDS), in order to identify the minimum irrigation level for efficient photosynthetic performance. Agronomic traits (plant height, number of leaves and root/shoot biomass), relative water content (RWC), and lipid peroxidation, were also measured. Under almost 50% deficit irrigation, S. pennellii exhibited an enhanced photosynthetic function by displaying a hormetic response of electron transport rate (ETR), due to an increased fraction of open reaction centers, it is suggested to be activated by the low increase of reactive oxygen species (ROS). A low increase of ROS is regarded to be beneficial by stimulating defense responses and also triggering a more oxidized redox state of quinone A (QA), corresponding in S. pennellii under 50% deficit irrigation, to the lowest stomatal opening, resulting in reduction of water loss. Solanumpennellii was the most tolerant to drought, as it was expected, and could manage to have an adequate photochemical function with almost 30% water regime of well-watered plants. With 50% deficit irrigation, cv. Μ82 and cv. Santorini did not show any difference in photochemical efficiency to control plants and are recommended to be cultivated under deficit irrigation as an effective strategy to enhance agricultural sustainability under a global climate change. We conclude that instead of the previously used Fv/Fm ratio, the redox state of QA, as it can be estimated by the chlorophyll fluorescence parameter 1 - qL, is a better indicator to evaluate photosynthetic efficiency and select drought tolerant cultivars under deficit irrigation.
Collapse
|
34
|
Salinitro M, Mattarello G, Guardigli G, Odajiu M, Tassoni A. Induction of hormesis in plants by urban trace metal pollution. Sci Rep 2021; 11:20329. [PMID: 34645888 PMCID: PMC8514553 DOI: 10.1038/s41598-021-99657-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Hormesis is a dose-response phenomenon observed in numerous living organisms, caused by low levels of a large number of stressors, among which metal ions. In cities, metal levels are usually below toxicity limits for most plant species, however, it is of primary importance to understand whether urban metal pollution can threaten plant survival, or, conversely, be beneficial by triggering hormesis. The effects of Cd, Cr and Pb urban concentrations were tested in hydroponics on three annual plants, Cardamine hirsuta L., Poa annua L. and Stellaria media (L.) Vill., commonly growing in cities. Results highlighted for the first time that average urban trace metal concentrations do not hinder plant growth but cause instead hormesis, leading to a considerable increase in plant performance (e.g., two to five-fold higher shoot biomass with Cd and Cr). The present findings, show that city habitats are more suitable for plants than previously assumed, and that what is generally considered to be detrimental to plants, such as trace metals, could instead be exactly the plus factor allowing urban plants to thrive.
Collapse
Affiliation(s)
- Mirko Salinitro
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Gaia Mattarello
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Giorgia Guardigli
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Mihaela Odajiu
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
35
|
Zhang H, Liu X, Zhang H, Wang Y, Li T, Che Y, Wang J, Guo D, Sun G, Li X. Thioredoxin-like protein CDSP32 alleviates Cd-induced photosynthetic inhibition in tobacco leaves by regulating cyclic electron flow and excess energy dissipation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:831-839. [PMID: 34530327 DOI: 10.1016/j.plaphy.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxin-like protein CDSP32 (Trx CDSP32), a thioredoxin-like (Trx-like) protein located in the chloroplast, can regulate photosynthesis and the redox state of plants under stress. In order to examine the role of Trx CDSP32 in the photosynthetic apparatus of plants exposed to cadmium (Cd), the effects of Trx CDSP32 on photosynthetic function and photoprotection in tobacco leaves under Cd exposure were studied using a proteomics approach with wild-type (WT) and Trx CDSP32 overexpression (OE) tobacco plants. Cd exposure reduced stomatal conductance, blocked PSII photosynthetic electron transport, and inhibited carbon assimilation. Increased water use efficiency (WUE), cyclic electron flow (CEF) of the proton gradient regulation 5 pathway (PGR5-CEF), and regulated energy dissipation [Y(NPQ)] are important mechanisms of Cd adaptation. However, CEF of the NAD(P)H dehydrogenase pathway (NDH-CEF) was inhibited by Cd exposure. Relative to control conditions, the expression levels of violaxanthin de-epoxidase (VDE) and photosystem II 22 kDa protein (PsbS) in OE leaves were significantly increased under Cd exposure, but those in WT leaves did not change significantly. Moreover, the expression of zeaxanthin epoxidase (ZE) under Cd exposure was significantly higher than that in WT leaves. Thus, Trx CDSP32 increased Y(NPQ) and alleviated PSII photoinhibition under Cd exposure. Trx CDSP32 not only increased PGR5-like protein 1A and 1B expression, but also alleviated the down-regulation of NAD(P)H-quinone oxidoreductase subunits induced by Cd exposure. Thus, Trx CDSP32 promotes CEF in Cd-exposed tobacco leaves. Thus, Trx CDSP32 alleviates the Cd-induced photoinhibition in tobacco leaves by regulating two photoprotective mechanisms: CEF and xanthophyll cycle-dependent energy dissipation.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Xiaoqian Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yue Wang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Tong Li
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yanhui Che
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jiechen Wang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Dandan Guo
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guangyu Sun
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Xin Li
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; School of Forestry, State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
36
|
Kumar D, Seth CS. Photosynthesis, lipid peroxidation, and antioxidative responses of Helianthus annuus L. against chromium (VI) accumulation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1-10. [PMID: 34379027 DOI: 10.1080/15226514.2021.1958747] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study was performed to address how Cr(VI) posed its toxicities on photosynthesis, lipid peroxidation, and its retaliation by antioxidative system of Helianthus annuus L. during Cr(VI) accumulation. For this, a pot experiment was performed wherein three different concentrations viz, 15, 30, and 60 mg Cr(VI) kg-1 soil were applied to Helianthus annuus L. at the time of seeds sowing. The results revealed that Cr(VI) accumulation was two to three folds higher in roots than in shoots which suggests that root is the major site for Cr(VI) accumulation. It was observed that with increasing doses of Cr(VI), growth indices hampered significantly, along with closure of stomata and damaged guard and epidermal cells. Photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids), leaf gaseous exchange parameters (A, E, GH2O), and PSII efficiency (Fv/Fm) worsened under Cr(VI) toxicity in dose dependent manner. Cr(VI) accumulation intensified the lipid peroxidation, too by triggering the MDA and H2O2 production, however, the plant responded well against the lipid peroxidation by enhancing the coordinated action of enzymatic (SOD, APX, GR) and non-enzymatic (GSH, AsA) antioxidants. In a nutshell, Helianthus annuus L. could be used as a potential Cr(VI) accumulator because of its good tolerance strategies against Cr(VI) toxicities.NOVELTY STATEMENT The results revealed that Cr(VI) accumulation was two to three folds higher in roots than in shoots which suggests that root is the major site for Cr(VI) accumulation. Photosynthetic pigments, leaf gaseous exchange parameters, and Fv/Fm worsened under Cr(VI) toxicity. Cr(VI) accumulation intensified lipid peroxidation by triggering MDA and H2O2 production, however, the plant responded well against the lipid peroxidation by enhancing the coordinated action of enzymatic and non-enzymatic antioxidants. In a nutshell, Helianthus annuus L. could be used as a potential Cr(VI) accumulator because of its good tolerance strategies against Cr(VI) toxicities.
Collapse
|
37
|
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa-A Plant Species for a Special Purpose. PLANTS (BASEL, SWITZERLAND) 2021; 10:1342. [PMID: 34209450 PMCID: PMC8309363 DOI: 10.3390/plants10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
Abstract
The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.
Collapse
Affiliation(s)
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| |
Collapse
|
38
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
39
|
Li X, Mao X, Xu Y, Li Y, Zhao N, Yao J, Dong Y, Tigabu M, Zhao X, Li S. Comparative transcriptomic analysis reveals the coordinated mechanisms of Populus × canadensis 'Neva' leaves in response to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112179. [PMID: 33798869 DOI: 10.1016/j.ecoenv.2021.112179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 03/20/2021] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd), a heavy metal element has strong toxicity to living organisms. Excessive Cd accumulation directly affects the absorption of mineral elements, inhibits plant tissue development, and even induces mortality. Populus × canadensis 'Neva', the main afforestation variety planted widely in northern China, was a candidate variety for phytoremediation. However, the genes relieving Cd toxicity and increasing Cd tolerance of this species were still unclear. In this study, we employed transcriptome sequencing on two Cd-treated cuttings to identify the key genes involved in Cd stress responses of P. × canadensis 'Neva' induced by 0 (CK), 10 (C10), and 20 (C20) mg/L Cd(NO3)2 4H2O. We discovered a total of 2,656 (1,488 up-regulated and 1,168 down-regulated) and 2,816 DEGs (1,470 up-regulated and 1,346 down-regulated) differentially expressed genes (DEGs) between the CK vs C10 and CK vs C20, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses in response to the Cd stress indicated that many DEGs identified were involved in the catalytic activity, the oxidoreductase activity, the transferase activity, and the biosynthesis of secondary metabolites. Based on the enrichment results, potential candidate genes were identified related to the calcium ion signal transduction, transcription factors, the antioxidant defense system, and transporters and showed divergent expression patterns under the Cd stress. We also validated the reliability of transcriptome data with the real-time PCR. Our findings deeper the understanding of the molecular responsive mechanisms of P. × canadensis 'Neva' on Cd tolerance and further provide critical resources for phytoremediation applications.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiuhong Mao
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry, Jinan 250014, Shandong, China
| | - Yujin Xu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Nan Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Junxiu Yao
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry, Jinan 250014, Shandong, China
| | - Yufeng Dong
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry, Jinan 250014, Shandong, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden.
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Shanwen Li
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry, Jinan 250014, Shandong, China.
| |
Collapse
|
40
|
Ortiz-Luevano R, López-Bucio J, Martínez-Trujillo M, Sánchez-Calderón L. Changes induced by lead in root system architecture of Arabidopsis seedlings are mediated by PDR2-LPR1/2 phosphate dependent way. Biometals 2021; 34:603-620. [PMID: 33772672 DOI: 10.1007/s10534-021-00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
As sessile organisms, plants respond to changing environments modulating their genetic expression, metabolism and postembryonic developmental program (PDP) to adapt. Among environmental stressor, lead (Pb) is one of the most hazardous pollutants which limits crop productivity. Here, we describe in detail the effects of a wide range of concentrations of Pb on growth and development and a possible convergence with phosphate (Pi) starvation response. We found that the response to Pb presents a biphasic curve dose response in biomass accumulation: below 400 µM show a stimulatory effect meanwhile at Pb doses up to 600 µM effects are inhibitory. We found that +Pb (800 µM) modifies root system architecture (RSA) and induces acidification media, according to in silico ion interaction, in the growing medium Pb and Pi coprecipitate and plants grow in both Pi deficiency and Pb stress at the same time, however in spite of seedlings are under Pi starvation AtPT2 expression are Pb downregulated indicating that in addition to Pi starvation stress, Pb regulates physiological responses in root system. Using the mutants stop1, lpr1/2 and lpi3, which are affected in Pi starvation response, we found that changes in RSA by +Pb is genetically regulated and there are shared pathways with Pi starvation response mediated by PDR2-LPR1/2 and LPI3 pathways since lpr1/2 and lpi3 mutants are insensitive to +Pb and Pi starvation. Taking together, these results indicate that similar changes in RSA induced by independent environmental stimuli +Pb and Pi starvation are due to similar mediated response by PDR2-LPR1/2 pathway.
Collapse
Affiliation(s)
- Ricardo Ortiz-Luevano
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R, Ciudad Universitaria, 58030, Morelia, Michoacán, México.,Laboratorio de Genómica Evolutiva, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, 98066, Zacatecas, Zacatecas, México
| | - José López-Bucio
- Instituto de Investigaciones Quıímico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R, Ciudad Universitaria, 58030, Morelia, Michoacán, México
| | - Lenin Sánchez-Calderón
- Laboratorio de Genómica Evolutiva, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, 98066, Zacatecas, Zacatecas, México.
| |
Collapse
|
41
|
Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines 2021; 9:biomedicines9030293. [PMID: 33805626 PMCID: PMC8000639 DOI: 10.3390/biomedicines9030293] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
A dose-response relationship to stressors, according to the hormesis theory, is characterized by low-dose stimulation and high-dose inhibition. It is non-linear with a low-dose optimum. Stress responses by cells lead to adapted vitality and fitness. Physical stress can be exerted through heat, radiation, or physical exercise. Chemical stressors include reactive species from oxygen (ROS), nitrogen (RNS), and carbon (RCS), carcinogens, elements, such as lithium (Li) and silicon (Si), and metals, such as silver (Ag), cadmium (Cd), and lead (Pb). Anthropogenic chemicals are agrochemicals (phytotoxins, herbicides), industrial chemicals, and pharmaceuticals. Biochemical stress can be exerted through toxins, medical drugs (e.g., cytostatics, psychopharmaceuticals, non-steroidal inhibitors of inflammation), and through fasting (dietary restriction). Key-lock interactions between enzymes and substrates, antigens and antibodies, antigen-presenting cells, and cognate T cells are the basics of biology, biochemistry, and immunology. Their rules do not obey linear dose-response relationships. The review provides examples of biologic stressors: oncolytic viruses (e.g., immuno-virotherapy of cancer) and hormones (e.g., melatonin, stress hormones). Molecular mechanisms of cellular stress adaptation involve the protein quality control system (PQS) and homeostasis of proteasome, endoplasmic reticulum, and mitochondria. Important components are transcription factors (e.g., Nrf2), micro-RNAs, heat shock proteins, ionic calcium, and enzymes (e.g., glutathion redox enzymes, DNA methyltransferases, and DNA repair enzymes). Cellular growth control, intercellular communication, and resistance to stress from microbial infections involve growth factors, cytokines, chemokines, interferons, and their respective receptors. The effects of hormesis during evolution are multifarious: cell protection and survival, evolutionary flexibility, and epigenetic memory. According to the hormesis theory, this is true for the entire biosphere, e.g., archaia, bacteria, fungi, plants, and the animal kingdoms.
Collapse
|
42
|
Stamelou ML, Sperdouli I, Pyrri I, Adamakis IDS, Moustakas M. Hormetic Responses of Photosystem II in Tomato to Botrytis cinerea. PLANTS 2021; 10:plants10030521. [PMID: 33802218 PMCID: PMC8000511 DOI: 10.3390/plants10030521] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, is damaging more than 200 plant species, and especially tomato. Photosystem II (PSII) responses in tomato (Solanum lycopersicum L.) leaves to Botrytis cinerea spore suspension application were evaluated by chlorophyll fluorescence imaging analysis. Hydrogen peroxide (H2O2) that was detected 30 min after Botrytis application with an increasing trend up to 240 min, is possibly convening tolerance against B. cinerea at short-time exposure, but when increasing at relative longer exposure, is becoming a damaging molecule. In accordance, an enhanced photosystem II (PSII) functionality was observed 30 min after application of B. cinerea, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in a significant decrease in the dissipated non-regulated energy (ΦNO), indicating a possible decreased singlet oxygen (1O2) formation, thus specifying a modified reactive oxygen species (ROS) homeostasis. Therefore, 30 min after application of Botrytis spore suspension, before any visual symptoms appeared, defense response mechanisms were triggered, with PSII photochemistry to be adjusted by NPQ in a such way that PSII functionality to be enhanced, but being fully inhibited at the application spot and the adjacent area, after longer exposure (240 min). Hence, the response of tomato PSII to B. cinerea, indicates a hormetic temporal response in terms of “stress defense response” and “toxicity”, expanding the features of hormesis to biotic factors also. The enhanced PSII functionality 30 min after Botrytis application can possible be related with the need of an increased sugar production that is associated with a stronger plant defense potential through the induction of defense genes.
Collapse
Affiliation(s)
- Maria-Lavrentia Stamelou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ioanna Pyrri
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
43
|
Bai Z, Li D, Zhu L, Tang X, Wang Y, Mao R, Wu J. Nitrate Increases Cadmium Accumulation in Sweet Sorghum for Improving Phytoextraction Efficiency Rather Than Ammonium. FRONTIERS IN PLANT SCIENCE 2021; 12:643116. [PMID: 34093607 PMCID: PMC8172601 DOI: 10.3389/fpls.2021.643116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/26/2021] [Indexed: 05/05/2023]
Abstract
Sweet sorghum has potential for phytoextraction of cadmium (Cd) owning to its large biomass and relatively high Cd tolerance. Nitrogen affects both growth and Cd concentrations in plants. However, different forms of nitrogen effects on Cd accumulation in sweet sorghum to improve efficiency of Cd phytoremediation is still elusive. In this study, nitrate substantially promoted both dry weight and Cd concentrations in leaves, stems + sheaths and roots of sweet sorghum when compared with ammonium. As a result, Cd accumulation in nitrate-supplied sweet sorghum was around 3.7-fold of that in ammonium-supplied plants under unbuffered pH condition, while the fold was about 2.2 under buffered pH condition. We speculated pH values and Cd species in the growth medium to some extent contributed to increased Cd accumulation as affected by nitrate. Net photosynthesis rate and Fv/Fm of nitrate-treated plants under Cd stress were higher than that of ammonium-treated plants when the pH was unbuffered. Responses of antioxidant capacity in roots to Cd stress with nitrate application were stronger than that with ammonium supplementation. Taken together, nitrate is more suitable than ammonium for Cd phytoextraction by using sweet sorghum, which is able to enhance at least double efficiency of phytoextraction.
Collapse
Affiliation(s)
- Zhenqing Bai
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Dan Li
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Lin Zhu
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Xiaoyu Tang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Renjun Mao
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
- *Correspondence: Jiawen Wu, ; orcid.org/0000-0001-8646-126X
| |
Collapse
|
44
|
Adamakis IDS, Sperdouli I, Hanć A, Dobrikova A, Apostolova E, Moustakas M. Rapid Hormetic Responses of Photosystem II Photochemistry of Clary Sage to Cadmium Exposure. Int J Mol Sci 2020; 22:E41. [PMID: 33375193 PMCID: PMC7793146 DOI: 10.3390/ijms22010041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Five-day exposure of clary sage (Salvia sclarea L.) to 100 μM cadmium (Cd) in hydroponics was sufficient to increase Cd concentrations significantly in roots and aboveground parts and affect negatively whole plant levels of calcium (Ca) and magnesium (Mg), since Cd competes for Ca channels, while reduced Mg concentrations are associated with increased Cd tolerance. Total zinc (Zn), copper (Cu), and iron (Fe) uptake increased but their translocation to the aboveground parts decreased. Despite the substantial levels of Cd in leaves, without any observed defects on chloroplast ultrastructure, an enhanced photosystem II (PSII) efficiency was observed, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in an important decrease in the dissipated non-regulated energy (ΦNO), modifying the homeostasis of reactive oxygen species (ROS), through a decreased singlet oxygen (1O2) formation. A basal ROS level was detected in control plant leaves for optimal growth, while a low increased level of ROS under 5 days Cd exposure seemed to be beneficial for triggering defense responses, and a high level of ROS out of the boundaries (8 days Cd exposure), was harmful to plants. Thus, when clary sage was exposed to Cd for a short period, tolerance mechanisms were triggered. However, exposure to a combination of Cd and high light or to Cd alone (8 days) resulted in an inhibition of PSII functionality, indicating Cd toxicity. Thus, the rapid activation of PSII functionality at short time exposure and the inhibition at longer duration suggests a hormetic response and describes these effects in terms of "adaptive response" and "toxicity", respectively.
Collapse
Affiliation(s)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization—Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.D.); (E.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
45
|
Agathokleous E, Kitao M, Calabrese EJ. Hormesis: Highly Generalizable and Beyond Laboratory. TRENDS IN PLANT SCIENCE 2020; 25:1076-1086. [PMID: 32546350 DOI: 10.1016/j.tplants.2020.05.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 05/17/2023]
Abstract
Hormesis is a biphasic dose-response relationship with contrasting effects of low versus high doses of stress. Hormesis is rapidly developing in plant science research and has wide implications for risk assessment, stress biology, and agriculture. Here, we explore selected areas of importance to the concept of hormesis and suggest that hormesis is a highly generalizable phenomenon. We address the questions of whether hormesis occurs in high-risk groups or in response to mixtures of stress-inducing agents, whether there is a single biological mechanism of hormesis, and what the temporal features of hormesis are.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
46
|
Response of Corchorus olitorius Leafy Vegetable to Cadmium in the Soil. PLANTS 2020; 9:plants9091200. [PMID: 32937806 PMCID: PMC7570089 DOI: 10.3390/plants9091200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
Abstract
Corchorus olitorius, a leafy vegetable with high nutrient content, is normally collected from the wild, in areas that are prone to cadmium (Cd) toxicity. However, studies on how Cd accumulation affects vegetative and reproductive traits of leafy vegetables in South Africa are limited. Therefore, this study tested the effect of Cd accumulation on C. olitorius morphological traits. Plants were grown under various Cd concentrations and studied for variation in vegetative and reproductive traits as well as accumulation in roots and shoots. Plants exposed to 5 mg/kg Cd had longer roots with higher moisture content, heavier fresh and dried stems, as well as dried leaves, which indicated a hormetic effect in C. olitorius after exposure to low Cd concentration in the soil. Again, plants treated with 5–10 mg/kg Cd, accumulated toxic (>10 mg/kg dry weight) Cd within shoots and roots, with minor morphological alterations. Plants could survive, with some morphological defects, Cd toxicity up to 20 mg/kg in soil. Only plants exposed to 5 mg/kg could reproduce. Cd accumulation increased with an increase in the soil, with higher accumulation in shoots. The translocation factor was high (>1) in all Cd concentrations. In conclusion, C. olitorius can accumulate toxic Cd, and yet grow and reproduce either normally or better than the control. The proposed dose of Cd that induces hormesis in C. olitorius is 5 mg/kg in the soil. Therefore, C. olitorius is suitable for phytoremediation of Cd contaminated soils, but unsafe for consumption when it grows in such areas.
Collapse
|
47
|
Aprile A, De Bellis L. Editorial for Special Issue "Heavy Metals Accumulation, Toxicity, and Detoxification in Plants". Int J Mol Sci 2020; 21:ijms21114103. [PMID: 32526826 PMCID: PMC7312012 DOI: 10.3390/ijms21114103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023] Open
|