1
|
Büttiker P, Boukherissa A, Weissenberger S, Ptacek R, Anders M, Raboch J, Stefano GB. Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods. Cell Mol Neurobiol 2024; 44:72. [PMID: 39467848 PMCID: PMC11519248 DOI: 10.1007/s10571-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Neurotropic pathogens, notably, herpesviruses, have been associated with significant neuropsychiatric effects. As a group, these pathogens can exploit molecular mimicry mechanisms to manipulate the host central nervous system to their advantage. Here, we present a systematic computational approach that may ultimately be used to unravel protein-protein interactions and molecular mimicry processes that have not yet been solved experimentally. Toward this end, we validate this approach by replicating a set of pre-existing experimental findings that document the structural and functional similarities shared by the human cytomegalovirus-encoded UL144 glycoprotein and human tumor necrosis factor receptor superfamily member 14 (TNFRSF14). We began with a thorough exploration of the Homo sapiens protein database using the Basic Local Alignment Search Tool (BLASTx) to identify proteins sharing sequence homology with UL144. Subsequently, we used AlphaFold2 to predict the independent three-dimensional structures of UL144 and TNFRSF14. This was followed by a comprehensive structural comparison facilitated by Distance-Matrix Alignment and Foldseek. Finally, we used AlphaFold-multimer and PPIscreenML to elucidate potential protein complexes and confirm the predicted binding activities of both UL144 and TNFRSF14. We then used our in silico approach to replicate the experimental finding that revealed TNFRSF14 binding to both B- and T-lymphocyte attenuator (BTLA) and glycoprotein domain and UL144 binding to BTLA alone. This computational framework offers promise in identifying structural similarities and interactions between pathogen-encoded proteins and their host counterparts. This information will provide valuable insights into the cognitive mechanisms underlying the neuropsychiatric effects of viral infections.
Collapse
Affiliation(s)
- Pascal Büttiker
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Amira Boukherissa
- Institute for Integrative Biology of the Cell (I2BC), UMR91918, CNRS, CEA, Paris-Saclay University, Gif-Sur-Yvette, France
- Ecology Systematics Evolution (ESE), CNRS, AgroParisTech, Paris-Saclay University, Orsay, France
| | - Simon Weissenberger
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Anders
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - George B Stefano
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
2
|
Wang SY, Li MM, Wu JT, Sun Y, Pan J, Guan W, Naseem A, Algradi AM, Kuang HX, Jiang YK, Yao HY, He XX, Li H, Yang BY, Liu Y. Lignans of Schisandra chinensis (Turcz.) Baill inhibits Parkinson's disease progression through mediated neuroinflammation-TRPV1 expression in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156146. [PMID: 39454375 DOI: 10.1016/j.phymed.2024.156146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Schisandra chinensis (Turcz.) Baill (S. chinensis), a member of the Magnoliaceae family, is renowned for its distinctive medicinal attributes and is commonly employed in the treatment of disorders affecting the CNS. PURPOSE The potential therapeutic effects of a lignan-enriched extract derived from Schisandra chinensis (Turcz.) Baill (LSC) on PD is assessed, which focuses on its mechanisms of action in addressing neuroinflammation. METHODS The LSC has been obtained by purifying the ethyl alcohol extract of S. chinensis. The Orbitrap-MS method has been employed to analyze the chemical composition of the LSC. In LPS-induced BV2 cells, LSC-induced changes in M1/M2 type inflammatory cytokines have been examined using the Griess reaction, Elisa, JC-1, flow cytometry, IF, and WB methods. A model of PD has been established by treatment of MPTP in C57BL/6 mice. The effect of LSC on behavioral changes, inflammatory factor levels, expression of TH and IBA-1, and production of autophagy in the midbrain has been investigated by TEM, immunohistochemistry, Elisa, and WB. RESULTS LSC has relieved sports injuries and pathological damage, and targeted the TRPV1-AMPK-NLRP3 signaling pathway, which affected neuroinflammation and autophagy in vivo. Furthermore, in vitro investigations demonstrated that LSC has activated M1/M2 transformation, its related inflammatory factors, and protein expressions of the NLRP3-Caspase1 signaling pathway in LPS-BV2 cells. The research notably demonstrated that the LSC promoted autophagy and suppressed inflammation through targeting TRPV1. CONCLUSION In the investigation, LSC focused on TRPV1 and controlled neuroinflammation-autophagy by regulating AMPK-NLRP3, which has been proven for the first time. The study has presented molecular data supporting the use of LSC in treating PD and offers references for developing drugs. Remarkably, LSC has the potential to be utilized as a therapeutic or health medication that could significantly decrease PD.
Collapse
Affiliation(s)
- Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Jia-Tong Wu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Ye Sun
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Juan Pan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Wei Guan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Anam Naseem
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Adnan Mohammed Algradi
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China
| | - Hong-Yan Yao
- Heilongjiang Jiren Pharmaceutical Co., LTD, Harbin 150040, PR China
| | - Xiao-Xue He
- Heilongjiang Jiren Pharmaceutical Co., LTD, Harbin 150040, PR China
| | - Hua Li
- Fujian University of Traditional Chinese Medicine, Fujian 350122, PR China
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, PR China.
| |
Collapse
|
3
|
Wang J, Wang S, Li Q, Liu F, Wan Y, Liang H. Bibliometric and visual analysis of single-cell multiomics in neurodegenerative disease arrest studies. Front Neurol 2024; 15:1450663. [PMID: 39440247 PMCID: PMC11493674 DOI: 10.3389/fneur.2024.1450663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background Neurodegenerative diseases are progressive disorders that severely diminish the quality of life of patients. However, research on neurodegenerative diseases needs to be refined and deepened. Single-cell polyomics is a technique for obtaining transcriptomic, proteomic, and other information from a single cell. In recent years, the heat of single-cell multiomics as an emerging research tool for brain science has gradually increased. Therefore, the aim of this study was to analyze the current status and trends of studies related to the application of single-cell multiomics in neurodegenerative diseases through bibliometrics. Result A total of 596 publications were included in the bibliometric analysis. Between 2015 and 2022, the number of publications increased annually, with the total number of citations increasing significantly, exhibiting the fastest rate of growth between 2019 and 2022. The country/region collaboration map shows that the United States has the most publications and cumulative citations, and that China and the United States have the most collaborations. The institutions that produced the greatest number of articles were Harvard Medical School, Skupin, Alexander, and Wiendl. Among the authors, Heinz had the highest output. Mathys, H accumulated the most citations and was the authoritative author in the field. The journal Nature Communications has published the most literature in this field. A keyword analysis reveals that neurodegenerative diseases and lesions (e.g., Alzheimer's disease, amyloid beta) are the core and foundation of the field. Conversely, single-cell multiomics related research (e.g., single-cell RNA sequencing, bioinformatics) and brain nerve cells (e.g., microglia, astrocytes, neural stem cells) are the hot frontiers of this specialty. Among the references, the article "Single-cell transcriptomic analysis of Alzheimer's disease" is the most frequently cited (1,146 citations), and the article "Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq" was the most cited article in the field. Conclusion The objective of this study is to employ bibliometric methods to visualize studies related to single-cell multiomics in neurodegenerative diseases. This will enable us to summarize the current state of research and to reveal key trends and emerging hotspots in the field.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Shuqing Wang
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Qingyu Li
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Fei Liu
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
4
|
Sangwan M, Chaudhary H, Mehan S, Khan Z, Bahauddin AA, Alrehaili BD, Elbadawy HM, Almikhlafi MA, Narula AS, Kalfin R, Wanas H. Effect of mitochondrial coenzyme-Q10 precursor solanesol in gentamicin-induced experimental nephrotoxicity: Evidence from restoration of ETC-complexes and histopathological alterations. Pharmacol Res Perspect 2024; 12:e70022. [PMID: 39358913 PMCID: PMC11446958 DOI: 10.1002/prp2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Nephrotoxicity occurs when the body is exposed to certain drugs or toxins. When kidney damage occurs, the kidney fails to eliminate excess urine and waste. Solanesol (C45H74O) is a tri-sesquiterpenoid alcohol first isolated from tobacco, and it is widely distributed in plants of the Solanaceae family. Solanesol (SNL) is an intermediate in the synthesis of coenzyme Q10 (CoQ10), an antioxidant which protects nerve cells. This study investigated the protective effect of SNL at doses of 30 and 60 mg/kg in gentamicin-induced nephrotoxicity in Wistar albino rats. Animals were distributed into six groups and administered 100 mg/kg gentamicin-intraperitoneal injection for 14 days. Biochemical assessments were performed on kidney homogenate, blood, and serum. Treatment with SNL was shown as lower serum levels of creatinine, blood urea nitrogen (BUN), thiobarbituric acid reactive substances (TBARS), and Tumor necrosis factor alpha)TNF-α ((p < .001). It also restored reduced glutathione (GSH) and mitochondrial complex enzymatic activity as protective measures against gentamicin-induced nephrotoxicity. SNL were shown to reduce inflammation and oxidative stress markers (p < .001). Histological findings furtherly augmented the protective effects of SNL. Long-term SNL therapy also restored mitochondrial electron transport chain complex enzymes, such as complex-I (p < .001). In conclusion, these findings suggest that SNL can represent a protective therapeutic option for drug-induced nephrotoxicity, a long-term adverse effect of aminoglycoside antibiotics such as gentamicin.
Collapse
Affiliation(s)
- Minakshi Sangwan
- Department of Pharmaceutical SciencePDM UniversityBahadurgarhHaryanaIndia
| | - Hema Chaudhary
- Department of Pharmaceutical SciencePDM UniversityBahadurgarhHaryanaIndia
- School of Medical and Allied SciencesK R Mangalam UniversityGurugramIndia
| | - Sidharth Mehan
- Division of Neuroscience, Department of PharmacologyISF College of Pharmacy (An Autonomous (College)MogaPunjabIndia
| | - Zuber Khan
- Division of Neuroscience, Department of PharmacologyISF College of Pharmacy (An Autonomous (College)MogaPunjabIndia
| | - Ammar A. Bahauddin
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | - Bandar D. Alrehaili
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | - Hossein M. Elbadawy
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
| | | | - Reni Kalfin
- Institute of NeurobiologyBulgarian Academy of SciencesSofiaBulgaria
- Department of HealthcareSouth‐West University BlagoevgradBlagoevgradBulgaria
| | - Hanna Wanas
- Department of Pharmacology and ToxicologyCollege of PharmacyTaibah UniversityMedinaKingdom of Saudi Arabia
- Department of Medical Pharmacology, Faculty of MedicineCairo UniversityGizaEgypt
| |
Collapse
|
5
|
Yang J, Zhao H, Qu S. Therapeutic potential of fucoidan in central nervous system disorders: A systematic review. Int J Biol Macromol 2024; 277:134397. [PMID: 39097066 DOI: 10.1016/j.ijbiomac.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Central nervous system (CNS) disorders have a complicated pathogenesis, and to date, no single mechanism can fully explain them. Most drugs used for CNS disorders primarily aim to manage symptoms and delay disease progression, and none have demonstrated any pathological reversal. Fucoidan is a safe, sulfated polysaccharide from seaweed that exhibits multiple pharmacological effects, and it is anticipated to be a novel treatment for CNS disorders. To assess the possible clinical uses of fucoidan, this review aims to provide an overview of its neuroprotective mechanism in both in vivo and in vitro CNS disease models, as well as its pharmacokinetics and safety. We included 39 articles on the pharmacology of fucoidan in CNS disorders. In vitro and in vivo experiments demonstrate that fucoidan has important roles in regulating lipid metabolism, enhancing the cholinergic system, maintaining the functional integrity of the blood-brain barrier and mitochondria, inhibiting inflammation, and attenuating oxidative stress and apoptosis, highlighting its potential for CNS disease treatment. Fucoidan has a protective effect against CNS disorders. With ongoing research on fucoidan, it is expected that a natural, highly effective, less toxic, and highly potent fucoidan-based drug or nutritional supplement targeting CNS diseases will be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| |
Collapse
|
6
|
Yu SJ, Wang Y, Shen H, Bae EK, Li Y, Sambamurti K, Tones MA, Zaleska MM, Hoffer BJ, Greig NH. DPP-4 inhibitors sitagliptin and PF-00734,200 mitigate dopaminergic neurodegeneration, neuroinflammation and behavioral impairment in the rat 6-OHDA model of Parkinson's disease. GeroScience 2024; 46:4349-4371. [PMID: 38563864 PMCID: PMC11336009 DOI: 10.1007/s11357-024-01116-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Epidemiological studies report an elevated risk of Parkinson's disease (PD) in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed dipeptidyl peptidase 4 (DPP-4) inhibitors. With an objective to characterize clinically translatable doses of DPP-4 inhibitors (gliptins) in a well-characterized PD rodent model, sitagliptin, PF-00734,200 or vehicle were orally administered to rats initiated either 7-days before or 7-days after unilateral medial forebrain bundle 6-hydroxydopamine (6-OHDA) lesioning. Measures of dopaminergic cell viability, dopamine content, neuroinflammation and neurogenesis were evaluated thereafter in ipsi- and contralateral brain. Plasma and brain incretin and DPP-4 activity levels were quantified. Furthermore, brain incretin receptor levels were age-dependently evaluated in rodents, in 6-OHDA challenged animals and human subjects with/without PD. Cellular studies evaluated neurotrophic/neuroprotective actions of combined incretin administration. Pre-treatment with oral sitagliptin or PF-00734,200 reduced methamphetamine (meth)-induced rotation post-lesioning and dopaminergic degeneration in lesioned substantia nigra pars compacta (SNc) and striatum. Direct intracerebroventricular gliptin administration lacked neuroprotective actions, indicating that systemic incretin-mediated mechanisms underpin gliptin-induced favorable brain effects. Post-treatment with a threefold higher oral gliptin dose, likewise, mitigated meth-induced rotation, dopaminergic neurodegeneration and neuroinflammation, and augmented neurogenesis. These gliptin-induced actions associated with 70-80% plasma and 20-30% brain DPP-4 inhibition, and elevated plasma and brain incretin levels. Brain incretin receptor protein levels were age-dependently maintained in rodents, preserved in rats challenged with 6-OHDA, and in humans with PD. Combined GLP-1 and GIP receptor activation in neuronal cultures resulted in neurotrophic/neuroprotective actions superior to single agonists alone. In conclusion, these studies support further evaluation of the repurposing of clinically approved gliptins as a treatment strategy for PD.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan.
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Hui Shen
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Yazhou Li
- National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kumar Sambamurti
- Department of Neurosciences, the Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | | | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Nigel H Greig
- National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Sade O, Fischel D, Barak-Broner N, Halevi S, Gottfried I, Bar-On D, Sachs S, Mirelman A, Thaler A, Gour A, Kestenbaum M, Gana Weisz M, Anis S, Soto C, Roitman MS, Shahar S, Doppler K, Sauer M, Giladi N, Lev N, Alcalay RN, Hassin-Baer S, Ashery U. A novel super-resolution microscopy platform for cutaneous alpha-synuclein detection in Parkinson's disease. Front Mol Neurosci 2024; 17:1431549. [PMID: 39296283 PMCID: PMC11409901 DOI: 10.3389/fnmol.2024.1431549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/26/2024] [Indexed: 09/21/2024] Open
Abstract
Alpha-synuclein (aSyn) aggregates in the central nervous system are the main pathological hallmark of Parkinson's disease (PD). ASyn aggregates have also been detected in many peripheral tissues, including the skin, thus providing a novel and accessible target tissue for the detection of PD pathology. Still, a well-established validated quantitative biomarker for early diagnosis of PD that also allows for tracking of disease progression remains lacking. The main goal of this research was to characterize aSyn aggregates in skin biopsies as a comparative and quantitative measure for PD pathology. Using direct stochastic optical reconstruction microscopy (dSTORM) and computational tools, we imaged total and phosphorylated-aSyn at the single molecule level in sweat glands and nerve bundles of skin biopsies from healthy controls (HCs) and PD patients. We developed a user-friendly analysis platform that offers a comprehensive toolkit for researchers that combines analysis algorithms and applies a series of cluster analysis algorithms (i.e., DBSCAN and FOCAL) onto dSTORM images. Using this platform, we found a significant decrease in the ratio of the numbers of neuronal marker molecules to phosphorylated-aSyn molecules, suggesting the existence of damaged nerve cells in fibers highly enriched with phosphorylated-aSyn molecules. Furthermore, our analysis found a higher number of aSyn aggregates in PD subjects than in HC subjects, with differences in aggregate size, density, and number of molecules per aggregate. On average, aSyn aggregate radii ranged between 40 and 200 nm and presented an average density of 0.001-0.1 molecules/nm2. Our dSTORM analysis thus highlights the potential of our platform for identifying quantitative characteristics of aSyn distribution in skin biopsies not previously described for PD patients while offering valuable insight into PD pathology by elucidating patient aSyn aggregation status.
Collapse
Affiliation(s)
- Ofir Sade
- School of Neurobiology, Biochemistry, Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Fischel
- School of Neurobiology, Biochemistry, Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Barak-Broner
- School of Neurobiology, Biochemistry, Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Shir Halevi
- School of Neurobiology, Biochemistry, Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry, Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Dana Bar-On
- School of Neurobiology, Biochemistry, Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Sachs
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anat Mirelman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviv Gour
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Meir Medical Center, Kfar Saba, Israel
| | - Meir Kestenbaum
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Meir Medical Center, Kfar Saba, Israel
| | - Mali Gana Weisz
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Saar Anis
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Movement Disorders Institute, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School, Houston, TX, United States
| | - Melanie Shanie Roitman
- Department of Neurology, Movement Disorders Institute, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shimon Shahar
- Department of Statistics, Exact Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nirit Lev
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Meir Medical Center, Kfar Saba, Israel
| | - Roy N Alcalay
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Movement Disorders Institute, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry, Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Azevedo EM, Fracaro L, Hochuli AHD, Ilkiw J, Bail EL, Lisboa MDO, Rodrigues LS, Barchiki F, Correa A, Capriglione LGA, Brofman PRS, Lima MMS. Comparative analysis of uninduced and neuronally-induced human dental pulp stromal cells in a 6-OHDA model of Parkinson's disease. Cytotherapy 2024; 26:1052-1061. [PMID: 38739074 DOI: 10.1016/j.jcyt.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Collapse
Affiliation(s)
- Evellyn M Azevedo
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Agner H D Hochuli
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jéssica Ilkiw
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ellen L Bail
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mateus de O Lisboa
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Lais S Rodrigues
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Luiz G A Capriglione
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paulo R S Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo M S Lima
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
9
|
He Q, Zhang S, Wang J, Ma T, Ma D, Wu L, Zhou M, Zhao L, Chen Y, Liu J, Chen W. The Synergistic Effect Study of Lipopolysaccharide (LPS) and A53T-α-Synuclein: Intranasal LPS Exposure on the A53T-α-Synuclein Transgenic Mouse Model of Parkinson's Disease. Mol Neurobiol 2024; 61:7046-7065. [PMID: 38367134 DOI: 10.1007/s12035-024-04020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Aging and interactions between genetic and environmental factors are believed to be involved the chronic development of Parkinson's disease (PD). Among PD patients, abnormally aggregated α-synuclein is a major component of the Lewy body. Generally, the intranasal route is believed to be a gate way to the brain, and it assists environmental neurotoxins in entering the brain and is related to anosmia during early PD. The current study applies the chronic intranasal application of lipopolysaccharides (LPS) in 4-, 8-, 12- and 16-month-old A53T-α-synuclein (A53T-α-Syn) transgenic C57BL/6 mice at 2-day intervals for a 2-month period, for evaluating the behavioral, pathological, and biochemical changes and microglial activation in these animals. According to our results, after intranasal administration of LPS, A53T-α-Syn mice showed severe progressive anosmia, hypokinesia, selective dopaminergic (DAergic) neuronal losses, decreased striatal dopamine (DA) level, and enhanced α-synuclein accumulation within the substantia nigra (SN) in an age-dependent way. In addition, we found obvious NF-кB activation, Nurr1 inhibition, IL-1β, and TNF-α generation within the microglia of the SN. Conversely, the wild-type (WT) mice showed mild, whereas A53T-α-Syn mice had moderate PD-like changes among the old mice. This study demonstrated the synergistic effect of intranasal LPS and α-synuclein burden on PD development. Its underlying mechanism may be associated with Nurr1 inhibition within microglia and the amplification of CNS neuroinflammation. The mice with multiple factors, including aging, neuroinflammation, and α-synuclein mutation, have played a significant role in enhancing our understanding of how inflammation and α-synuclein mutation contribute to the neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Qing He
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Zhang
- Institute of Neuroscience, Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Wang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tengfei Ma
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding Ma
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxi Zhou
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
He S, Chen Y, Wang H, Li S, Wei Y, Zhang H, Gao Q, Wang F, Zhang R. Neuroprotective effects of chlorogenic acid: Modulation of Akt/Erk1/2 signaling to prevent neuronal apoptosis in Parkinson's disease. Free Radic Biol Med 2024; 222:275-287. [PMID: 38925315 DOI: 10.1016/j.freeradbiomed.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
As a prevalent neurodegenerative disorder, Parkinson's disease is associated with oxidative stress. Our recent investigations revealed that reactive oxygen species (ROS) and PD-toxins like 6-hydroxydopamine (6-OHDA) can induce neuronal apoptosis through over-activation of Akt signaling. Chlorogenic acid (CGA), a natural acid phenol abundant in the human diet, is well-documented for its ability to mitigate intracellular ROS. In this study, we utilized CGA to treat experimental models of PD both in vitro and in vivo. Our study results demonstrated that SH-SY5Y and primary neurons exhibited cell apoptosis in response to 6-OHDA. Pretreatment with CGA significantly attenuated PD toxins-induced large amount of ROS, inhibiting Erk1/2 activation, preventing Akt inhibition, and hindering neuronal cell death. Combining the Erk1/2 inhibitor U0126 with CGA could reverse 6-OHDA-induced Akt inhibition, ROS, and apoptosis in the cells. Crucially, the Akt activator SC79 and ROS scavenger NAC both could eliminate excessive ROS via Akt and Erk1/2 signaling pathways, and CGA further potentiated these effects in PD models. Behavioral experiments revealed that CGA could alleviate gait abnormalities in PD model mice. The neuroprotective effects have been demonstrated in several endocrine regions and in the substantia nigra tissue, which shows the positive tyrosine hydroxylase (TH). Overall, our results suggest that CGA prevents the activation of Erk1/2 and inactivation of Akt by removing excess ROS in PD models. These findings propose a potential strategy for mitigating neuronal degeneration in Parkinson's disease by modulating the Akt/Erk1/2 signaling pathway through the administration of CGA and/or the use of antioxidants to alleviate oxidative stress.
Collapse
Affiliation(s)
- Shuai He
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Yuxiang Chen
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Hui Wang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Shupei Li
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Yu Wei
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Hui Zhang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Qian Gao
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China
| | - Fengsong Wang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China.
| | - Ruijie Zhang
- College of Life Sciences, Anhui Medical University, Anhui, 230032, PR China.
| |
Collapse
|
12
|
Obeng-Gyasi E, Obeng-Gyasi B. Association of combined lead, cadmium, and mercury with systemic inflammation. Front Public Health 2024; 12:1385500. [PMID: 39267632 PMCID: PMC11390544 DOI: 10.3389/fpubh.2024.1385500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Exposure to environmental metals has been increasingly associated with systemic inflammation, which is implicated in the pathogenesis of various chronic diseases, including those with neurodegenerative aspects. However, the complexity of exposure and response relationships, particularly for mixtures of metals, has not been fully elucidated. Objective This study aims to assess the individual and combined effects of lead, cadmium, and mercury exposure on systemic inflammation as measured by C-reactive protein (CRP) levels, using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Methods We employed Bayesian Kernel Machine Regression (BKMR) to analyze the NHANES 2017-2018 data, allowing for the evaluation of non-linear exposure-response functions and interactions between metals. Posterior Inclusion Probabilities (PIP) were calculated to determine the significance of each metal's contribution to CRP levels. Results The PIP results highlighted mercury's significant contribution to CRP levels (PIP = 1.000), followed by cadmium (PIP = 0.6456) and lead (PIP = 0.3528). Group PIP values confirmed the importance of considering the metals as a collective group in relation to CRP levels. Our BKMR analysis revealed non-linear relationships between metal exposures and CRP levels. Univariate analysis showed a flat relationship between lead and CRP, with cadmium having a positive relationship. Mercury exhibited a U-shaped association, indicating both low and high exposures as potential risk factors for increased inflammation. Bivariate analysis confirmed this relationship when contaminants were combined with lead and cadmium. Analysis of single-variable effects suggested that cadmium and lead are associated with higher values of the h function, a flexible function that takes multiple metals and combines them in a way that captures the complex and potentially nonlinear relationship between the metals and CRP. The overall exposure effect of all metals on CRP revealed that exposures below the 50th percentile exposure level are associated with an increase in CRP levels, while exposures above the 60th percentile are linked to a decrease in CRP levels. Conclusions Our findings suggest that exposure to environmental metals, particularly mercury, is associated with systemic inflammation. These results highlight the need for public health strategies that address the cumulative effects of metal exposure and reinforce the importance of using advanced statistical methods to understand the health impact of environmental contaminants. Future research should focus on the mechanistic pathways of metal-induced inflammation and longitudinal studies to ascertain the long-term effects of these exposures.
Collapse
Affiliation(s)
- Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC, United States
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC, United States
| | | |
Collapse
|
13
|
Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, Scheibel IM, Peixoto DO, Moreira JCF, Outeiro TF, Gelain DP. Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson's disease. J Neurochem 2024; 168:1608-1624. [PMID: 37381043 DOI: 10.1111/jnc.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-β peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Nauana Somensi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Saibro Girardi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Martinewski de Oliveira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Piloneto Hoefel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Daniel Pens Gelain
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Borrajo ML, Quijano A, Lapuhs P, Rodriguez-Perez AI, Anthiya S, Labandeira-Garcia JL, Valenzuela R, Alonso MJ. Ionizable nanoemulsions for RNA delivery into the central nervous system - importance of diffusivity. J Control Release 2024; 372:295-303. [PMID: 38909703 DOI: 10.1016/j.jconrel.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Lipid nanoparticles (LNPs) currently dominate the RNA delivery landscape; however their limited diffusivity hampers targeted tissue dissemination, and, hence, their capacity for intracellular drug delivery. This is especially relevant for tissues such as the central nervous system (CNS), where overcoming proactive brain barriers is crucial for the efficacy of genetic therapeutics. This research aimed to create ionizable nanoemulsions (iNEs), a new generation of RNA delivery systems with enhanced diffusivity. The developed iNEs (consisting of the combination of C12-200, DOPE, Vitamin E, and DMG-PEG) with a size below 100 nm, neutral surface charge, and high RNA loading capacity, showed excellent cell viability and transfection efficiency in various cellular models, including neurons, astrocytes, and microglia. Subsequently, iNEs containing mRNA GFP were tested for CNS transfection, highlighting their exceptional diffusivity and selective transfection of neurons following intra-parenchymal administration.
Collapse
Affiliation(s)
- Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Aloia Quijano
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana I Rodriguez-Perez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L Labandeira-Garcia
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Rita Valenzuela
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center of Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av. Barcelona s/n, Campus Vida, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; IDIS Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Franco GA, Molinari F, Marino Y, Tranchida N, Inferrera F, Fusco R, Di Paola R, Crupi R, Cuzzocrea S, Gugliandolo E, Britti D. Enviromental endocrine disruptor risks in the central nervous system: Neurotoxic effects of PFOS and glyphosate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104496. [PMID: 38959819 DOI: 10.1016/j.etap.2024.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Endocrine disruptors (EDs) pose significant risks to human and environmental health, with potential implications for neurotoxicity. This study investigates the synergistic neurotoxic effects of perfluorooctane sulfonate (PFOS) and glyphosate (GLY), two ubiquitous EDs, using SHSY5Y neuronal and C6 astrocytic cell lines. While individual exposures to PFOS and glyphosate at non-toxic concentrations did not induce significant changes, their combination resulted in a marked increase in oxidative stress and neuroinflammatory responses. Specifically, the co-exposure led to elevated levels of interleukin-6, tumor necrosis factor alpha, and interferon gamma, along with reduced interleukin-10 expression, indicative of heightened neuroinflammatory processes. These findings underscore the importance of considering the synergistic interactions of EDs in assessing neurotoxic risks and highlight the urgent need for further research to mitigate the adverse effects of these compounds on neurological health.
Collapse
Affiliation(s)
| | - Francesco Molinari
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Ylenia Marino
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | - Nicla Tranchida
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | | | - Roberta Fusco
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | - Rosanna Di Paola
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | | | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy.
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, 4 "Magna Græcia University" of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
16
|
Arce-Sillas A, Álvarez-Luquín DD, Leyva-Hernández J, Montes-Moratilla E, Vivas-Almazán V, Pérez-Correa C, Rodríguez-Ortiz U, Espinosa-Cárdenas R, Fragoso G, Sciutto E, Adalid-Peralta L. Increased levels of regulatory T cells and IL-10-producing regulatory B cells are linked to improved clinical outcome in Parkinson's disease: a 1-year observational study. J Neural Transm (Vienna) 2024; 131:901-916. [PMID: 38822829 DOI: 10.1007/s00702-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Whilst the contribution of peripheral and central inflammation to neurodegeneration in Parkinson's disease and the role of the immune response in this disorder are well known, the effects of the anti-inflammatory response on the disease have not been described in depth. This study is aimed to assess the changes in the regulatory/inflammatory immune response in recently diagnosed, untreated PD patients and a year after. Twenty-one PD patients and 19 healthy controls were included and followed-up for 1 year. The levels of immunoregulatory cells (CD4+ Tregs, Bregs, and CD8+ Tregs); classical, nonclassical, and intermediate monocytes, and proinflammatory cells (Th1, Th2, and Th17) were measured by flow cytometry. Cytokine levels were determined by ELISA. Clinical follow-up was based on the Hoehn & Yahr and UDPRS scales. Our results indicate that the regulatory response in PD patients on follow-up was characterized by increased levels of active Tregs, functional Tregs, TR1, IL-10-producing functional Bregs, and IL-10-producing classical monocytes, along with decreased counts of Bregs and plasma cells. With respect to the proinflammatory immune response, peripheral levels of Th1 IFN-γ+ cells were decreased in treated PD patients, whilst the levels of CD4+ TBET+ cells, HLA-DR+ intermediate monocytes, IL-6, and IL-4 were increased after a 1-year follow-up. Our main finding was an increased regulatory T cell response after a 1-year follow-up and its link with clinical improvement in PD patients. In conclusion, after a 1-year follow-up, PD patients exhibited increased levels of regulatory populations, which correlated with clinical improvement. However, a persistent inflammatory environment and active immune response were observed.
Collapse
Affiliation(s)
- Asiel Arce-Sillas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Diana Denisse Álvarez-Luquín
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Jaquelin Leyva-Hernández
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Esteban Montes-Moratilla
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Viridiana Vivas-Almazán
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Citzielli Pérez-Correa
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - Raquel Espinosa-Cárdenas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Laura Adalid-Peralta
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, México.
| |
Collapse
|
17
|
Dong L, Gao L. SP1-Driven FOXM1 Upregulation Induces Dopaminergic Neuron Injury in Parkinson's Disease. Mol Neurobiol 2024; 61:5510-5524. [PMID: 38200349 DOI: 10.1007/s12035-023-03854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
The aberrant expression of Forkhead box M1 (FOXM1) has been associated with the pathological processes of Parkinson's disease (PD), but the upstream and downstream regulators remain poorly understood. This study sought to examine the underlying mechanism of FOXM1 in dopaminergic neuron injury in PD. Bioinformatics analysis was conducted to pinpoint the differential expression of FOXM1, which was verified in the nigral tissues of rotenone-lesioned mice and dopaminergic neuron MN9D cells. Interactions among SP1, FOXM1, SNAI2, and CXCL12 were analyzed. To evaluate their effects on dopaminergic neuron injury, the lentiviral vector-mediated manipulation of FOXM1, SP1, and CXCL12 was introduced in rotenone-lesioned mice and MN9D cells. SP1, FOXM1, SNAI2, and CXCL12 abundant expression occurred in rotenone-lesioned mice and MN9D cells. Silencing of FOXM1 delayed the rotenone-induced dopaminergic neuron injury in vitro. Mechanistically, SP1 was an upstream transcription factor of FOXM1 and upregulated FOXM1 expression, leading to increased SNAI2 and CXCL12 expression. In vivo, data confirmed that SP1 promoted dopaminergic neuron injury by activating the FOXM1/SNAI2/CXCL12 axis. Our data indicate that SP1 silencing has neuroprotective effects on dopaminergic neurons, which is dependent upon the inactivated FOXM1/SNAI2/CXCL12 axis.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| |
Collapse
|
18
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother 2024; 177:116899. [PMID: 38889636 DOI: 10.1016/j.biopha.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Sadowski K, Zając W, Milanowski Ł, Koziorowski D, Figura M. Exploring Fecal Microbiota Transplantation for Modulating Inflammation in Parkinson's Disease: A Review of Inflammatory Markers and Potential Effects. Int J Mol Sci 2024; 25:7741. [PMID: 39062985 PMCID: PMC11277532 DOI: 10.3390/ijms25147741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by numerous motor and non-motor symptoms. Recent data highlight a potential interplay between the gut microbiota and the pathophysiology of PD. The degeneration of dopaminergic neurons in PD leads to motor symptoms (tremor, rigidity, and bradykinesia), with antecedent gastrointestinal manifestations, most notably constipation. Consequently, the gut emerges as a plausible modulator in the neurodegenerative progression of PD. Key molecular changes in PD are discussed in the context of the gut-brain axis. Evidence suggests that the alterations in the gut microbiota composition may contribute to gastroenteric inflammation and influence PD symptoms. Disturbances in the levels of inflammatory markers, including tumor necrosis factor-α (TNF α), interleukin -1β (IL-1β), and interleukin-6 (IL-6), have been observed in PD patients. These implicate the involvement of systemic inflammation in disease pathology. Fecal microbiota transplantation emerges as a potential therapeutic strategy for PD. It may mitigate inflammation by restoring gut homeostasis. Preclinical studies in animal models and initial clinical trials have shown promising results. Overall, understanding the interplay between inflammation, the gut microbiota, and PD pathology provides valuable insights into potential therapeutic interventions. This review presents recent data about the bidirectional communication between the gut microbiome and the brain in PD, specifically focusing on the involvement of inflammatory biomarkers.
Collapse
Affiliation(s)
- Karol Sadowski
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Weronika Zając
- Students Scientific Group NEKON by the Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (K.S.); (W.Z.)
| | - Łukasz Milanowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 03-242 Warsaw, Poland; (Ł.M.); (D.K.)
| |
Collapse
|
20
|
Birreci D, De Riggi M, Costa D, Angelini L, Cannavacciuolo A, Passaretti M, Paparella G, Guerra A, Bologna M. The Role of Non-Invasive Brain Modulation in Identifying Disease Biomarkers for Diagnostic and Therapeutic Purposes in Parkinsonism. Brain Sci 2024; 14:695. [PMID: 39061435 PMCID: PMC11274666 DOI: 10.3390/brainsci14070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Davide Costa
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Luca Angelini
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
- Padova Neuroscience Centre (PNC), University of Padua, 35121 Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| |
Collapse
|
21
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Wang C, Wang J, Zhu Z, Hu J, Lin Y. Spotlight on pro-inflammatory chemokines: regulators of cellular communication in cognitive impairment. Front Immunol 2024; 15:1421076. [PMID: 39011039 PMCID: PMC11247373 DOI: 10.3389/fimmu.2024.1421076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Cognitive impairment is a decline in people's ability to think, learn, and remember, and so forth. Cognitive impairment is a global health challenge that affects the quality of life of thousands of people. The condition covers a wide range from mild cognitive impairment to severe dementia, which includes Alzheimer's disease (AD) and Parkinson's disease (PD), among others. While the etiology of cognitive impairment is diverse, the role of chemokines is increasingly evident, especially in the presence of chronic inflammation and neuroinflammation. Although inflammatory chemokines have been linked to cognitive impairment, cognitive impairment is usually multifactorial. Researchers are exploring the role of chemokines and other inflammatory mediators in cognitive dysfunction and trying to develop therapeutic strategies to mitigate their effects. The pathogenesis of cognitive disorders is very complex, their underlying causative mechanisms have not been clarified, and their treatment is always one of the challenges in the field of medicine. Therefore, exploring its pathogenesis and treatment has important socioeconomic value. Chemokines are a growing family of structurally and functionally related small (8-10 kDa) proteins, and there is growing evidence that pro-inflammatory chemokines are associated with many neurobiological processes that may be relevant to neurological disorders beyond their classical chemotactic function and play a crucial role in the pathogenesis and progression of cognitive disorders. In this paper, we review the roles and regulatory mechanisms of pro-inflammatory chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL20, and CXCL8) in cognitive impairment. We also discuss the intrinsic relationship between the two, hoping to provide some valuable references for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiayi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhichao Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Endocrinology and Metabolism, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesia, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| |
Collapse
|
23
|
Zhang J, Zhu Q, Shi X, Huang Y, Yan L, Zhang G, Pei L, Liu J, Han X, Zhu X. NIR-II light therapy improves cognitive performance in MPTP induced Parkinson's disease rat models: A preliminary experimental study. Heliyon 2024; 10:e32800. [PMID: 38975234 PMCID: PMC11225833 DOI: 10.1016/j.heliyon.2024.e32800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Cognitive impairment is an important component of non motor symptoms in Parkinson's disease (PD), and if not addressed in a timely manner, it can easily progress to dementia. However, no effective method currently exists to completely prevent or reverse cognitive impairment associated with PD. We therefore aimed to investigate the therapeutic effect of near-infrared region II light (NIR-II) region illumination on cognitive impairment in PD through behavioral experiments (water maze and rotary rod) and multiple fluorescence immunohistochemistry techniques. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced group was compared with the MPTP- untreated rat group, showing a significant reduction in escape latency and significant increase in the fall latency in the MPTP-treated group. The horizontal analysis results indicated that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. Post-treatment, the MPTP rats showed significantly shortened, escape latency, prolonged target quadrant residence time, and prolonged fall latency compared with pre-treatment. The longitudinal analysis results reaffirmed that NIR-II phototherapy improved the learning and cognitive abilities as well as coordination and balance abilities of rats. The multiple fluorescence immunohistochemistry analysis trend plot showed that the activated microglia and astrocytes in the hippocampus were highest in MPTP-induced PD untreated group, moderate in MPTP-induced PD treatment group, and lowest in the control group. Our data indicates that NIR-II illumination improves learning and cognitive impairment as well as coordination and balance abilities in PD rats by downregulating the activation of microglia and astrocytes in the hippocampus.
Collapse
Affiliation(s)
- Jiangong Zhang
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Qinqin Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xun Shi
- Department of Nuclear Medicine, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Yang Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linlin Yan
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lei Pei
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xisong Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
24
|
Gabbert C, Blöbaum L, Lüth T, König IR, Caliebe A, Sendel S, Laabs BH, Klein C, Trinh J. The combined effect of lifestyle factors and polygenic scores on age at onset in Parkinson's disease. Sci Rep 2024; 14:14670. [PMID: 38918550 PMCID: PMC11199580 DOI: 10.1038/s41598-024-65640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
The objective of this study was to investigate the association between a Parkinson's disease (PD)-specific polygenic score (PGS) and protective lifestyle factors on age at onset (AAO) in PD. We included data from 4367 patients with idiopathic PD, 159 patients with GBA1-PD, and 3090 healthy controls of European ancestry from AMP-PD, PPMI, and Fox Insight cohorts. The association between PGS and lifestyle factors on AAO was assessed with linear and Cox proportional hazards models. The PGS showed a negative association with AAO (β = - 1.07, p = 6 × 10-7) in patients with idiopathic PD. The use of one, two, or three of the protective lifestyle factors showed a reduction in the hazard ratio by 21% (p = 0.0001), 44% (p < 2 × 10-16), and 55% (p < 2 × 10-16), compared to no use. An additive effect of aspirin (β = 7.62, p = 9 × 10-7) and PGS (β = - 1.58, p = 0.0149) was found for AAO without an interaction (p = 0.9993) in the linear regressions, and similar effects were seen for tobacco. In contrast, no association between aspirin intake and AAO was found in GBA1-PD (p > 0.05). In our cohort, coffee, tobacco, aspirin, and PGS are independent predictors of PD AAO. Additionally, lifestyle factors seem to have a greater influence on AAO than common genetic risk variants with aspirin presenting the largest effect.
Collapse
Affiliation(s)
- Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Leonie Blöbaum
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sebastian Sendel
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
25
|
Peng H, Wu L, Chen S, Wu S, Shi X, Ma J, Yang H, Li X. Lymphocyte antigen 96: A new potential biomarker and immune target in Parkinson's disease. Exp Gerontol 2024; 190:112415. [PMID: 38614225 DOI: 10.1016/j.exger.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Lymphocyte antigen 96 (LY96) plays an important role in innate immunity and has been reported to be associated with various neurological diseases. However, its role in Parkinson's disease (PD) remains unclear. METHODS Transcriptome data from a total of 49 patients with PD and 34 healthy controls were downloaded from the Gene Expression Omnibus (GEO) database to analyse the expression pattern of LY96 and its relationship with gene function and immune-related markers. In addition, peripheral blood samples were collected from clinical patients to validate LY96 mRNA expression levels. Finally, an in vitro cell model of PD based on highly differentiated SH-SY5Y cells was constructed, with small interfering RNA-silenced LY96 expression, and LY96 mRNA level, cell viability, flow cytometry, and mitochondrial membrane potential assays were performed. RESULTS The results of the analyses of the GEO database and clinical samples revealed significantly abnormally high LY96 expression in patients with PD compared with healthy controls. The results of cell experiments showed that inhibiting LY96 expression alleviated adverse cellular effects by increasing cell viability, reducing apoptosis, and reducing oxidative stress. Gene set enrichment analysis showed that LY96 was positively correlated with T1 helper cells, T2 helper cells, neutrophils, natural killer T cells, myeloid-derived suppressor cells, macrophages, and activated CD4 cells, and may participate in PD through natural killer cell-mediated cytotoxicity pathways and extracellular matrix receptor interaction pathways. CONCLUSION These findings suggested that LY96 might be a novel potential biomarker for PD, and offer insights into its immunoregulatory role.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Longyu Wu
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Hongqi Yang
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xue Li
- Department of Neurology, People's Hospital of Henan University, Zhengzhou 450003, Henan, China; Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China; Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| |
Collapse
|
26
|
Hu W, Wang M, Sun G, Zhang L, Lu H. RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation. Exp Cell Res 2024; 439:114088. [PMID: 38744409 DOI: 10.1016/j.yexcr.2024.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Neuroinflammation mediated by microglia plays an important role in the etiology of Parkinson's disease (PD). Rho family GTPase 3 (RND3) exerts anti-inflammatory effects and may act as a potential new inducer of neuroprotective phenotypes in microglia. However, whether RND3 can be used to regulate microglia activation or reduce neuroinflammation in PD remains elusive. The study investigated the microglia modulating effects and potential anti-inflammatory effects of RND3 in vivo and in vitro, using animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and cell models of BV-2 cells stimulated by LPS plus IFN-γ with or without RND3-overexpression. The results showed that RND3 was highly expressed in the MPTP-induced PD mouse model and BV-2 cells treated with LPS and IFN-γ. In vivo experiments confirmed that RND3 overexpression could modulate microglia phenotype and ameliorate MPTP-induced neuroinflammation through inhibiting activation of the NLRP3 inflammasome in substantia nigra pars compacta (SNpc). In vitro study showed that RND3 overexpression could attenuate the production of pro-inflammatory factors in BV2 cells stimulated by LPS and IFN-γ. Mechanistically, RND3 reduced the activation of the NLRP3 inflammasome upon LPS and IFN-γ stimulation. Taken together, these findings suggest that RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
27
|
Song LJ, Sui RX, Wang J, Miao Q, He Y, Yin JJ, An J, Ding ZB, Han QX, Wang Q, Yu JZ, Xiao BG, Ma CG. Targeting the differentiation of astrocytes by Bilobalide in the treatment of Parkinson's disease model. Int J Neurosci 2024; 134:274-291. [PMID: 36037147 DOI: 10.1080/00207454.2022.2100778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
Abstract
Background: The etiology of Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, is multifactorial but not fully unknown. Until now, no drug has been proven to have neuroprotective or neuroregenerative effects in patients with PD. Objectives: To observe the therapeutic potential of Bilobalide (BB), a constituent of ginkgo biloba, in MPTP-induced PD model, and explore its possible mechanisms of action. Material and Methods: Mice were randomly divided into three groups: healthy group, MPTP group and MPTP + BB group. PD-related phenotypes were induced by intraperitoneal injection of MPTP into male C57BL/6 mice, and BB (40 mg/kg/day) was intraperitoneally given for 7 consecutive days at the end of modeling. The injection of saline was set up as the control in a similar manner. Results: BB induced M2 polarization of microglia, accompanied by inhibition of neuroinflammation in the brain. Simultaneously, BB promoted the expression of BDNF in astrocytes and neurons, and expression of GDNF in neurons. Most interestingly, BB enhanced the formation of GFAP+ astrocytes expressing nestin, Brn2 and Ki67, as well as the transformation of GFAP+ astrocytes expressing tyrosine hydroxylase around subventricular zone, providing experimental evidence that BB could promote the conversion of astrocytes into TH+ dopamine neurons in vivo and in vitro. Conclusions: These results suggest the natural product BB may utilize multiple pathways to modify degenerative process of TH+ neurons, revealing an exciting opportunity for novel neuroprotective therapeutics. However, its multi-target and important mechanisms need to be further explored.
Collapse
Affiliation(s)
- Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ruo-Xuan Sui
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Qiang Miao
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yan He
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jun An
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhi-Bin Ding
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Qing-Xian Han
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jie-Zhong Yu
- The NO. 1 Affiliated Hospital/Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
- The Department of Neurology, Shanxi Medical University, Taiyuan, China
- The NO. 1 Affiliated Hospital/Institute of Brain Science, Shanxi Datong University, Datong, China
| |
Collapse
|
28
|
Zou Y, Li J, Su H, Dechsupa N, Liu J, Wang L. Mincle as a potential intervention target for the prevention of inflammation and fibrosis (Review). Mol Med Rep 2024; 29:103. [PMID: 38639174 PMCID: PMC11058355 DOI: 10.3892/mmr.2024.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Macrophage‑inducible C‑type lectin receptor (Mincle) is predominantly found on antigen‑presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor‑κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage‑related molecules discharged by injured cells, such as Sin3‑associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis‑associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long‑lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.
Collapse
Affiliation(s)
- Yuanxia Zou
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50000, Thailand
- Department of Newborn Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jianchun Li
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50000, Thailand
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50000, Thailand
| | - Jian Liu
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
29
|
Zhang W, Zhao X, Bhuiyan P, Liu H, Wei H. Neuroprotective effects of dantrolene in neurodegenerative disease: Role of inhibition of pathological inflammation. JOURNAL OF ANESTHESIA AND TRANSLATIONAL MEDICINE 2024; 3:27-35. [PMID: 38826587 PMCID: PMC11138240 DOI: 10.1016/j.jatmed.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neurodegenerative diseases (NDs) refer to a group of diseases in which slow, continuous cell death is the main pathogenic event in the nervous system. Most NDs are characterized by cognitive dysfunction or progressive motor dysfunction. Treatments of NDs mainly target alleviating symptoms, and most NDs do not have disease-modifying drugs. The pathogenesis of NDs involves inflammation and apoptosis mediated by mitochondrial dysfunction. Dantrolene, approved by the US Food and Drug Administration, acts as a RyRs antagonist for the treatment of malignant hyperthermia, spasticity, neuroleptic syndrome, ecstasy intoxication and exertional heat stroke with tolerable side effects. Recently, dantrolene has also shown therapeutic effects in some NDs. Its neuroprotective mechanisms include the reduction of excitotoxicity, apoptosis and neuroinflammation. In summary, dantrolene can be considered as a potential therapeutic candidate for NDs.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Piplu Bhuiyan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Tondo G, De Marchi F, Bonardi F, Menegon F, Verrini G, Aprile D, Anselmi M, Mazzini L, Comi C. Novel Therapeutic Strategies in Alzheimer's Disease: Pitfalls and Challenges of Anti-Amyloid Therapies and Beyond. J Clin Med 2024; 13:3098. [PMID: 38892809 PMCID: PMC11172489 DOI: 10.3390/jcm13113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) causes a significant challenge to global healthcare systems, with limited effective treatments available. This review examines the landscape of novel therapeutic strategies for AD, focusing on the shortcomings of traditional therapies against amyloid-beta (Aβ) and exploring emerging alternatives. Despite decades of research emphasizing the role of Aβ accumulation in AD pathogenesis, clinical trials targeting Aβ have obtained disappointing results, highlighting the complexity of AD pathophysiology and the need for investigating other therapeutic approaches. In this manuscript, we first discuss the challenges associated with anti-Aβ therapies, including limited efficacy and potential adverse effects, underscoring the necessity of exploring alternative mechanisms and targets. Thereafter, we review promising non-Aβ-based strategies, such as tau-targeted therapies, neuroinflammation modulation, and gene and stem cell therapy. These approaches offer new avenues for AD treatment by addressing additional pathological hallmarks and downstream effects beyond Aβ deposition.
Collapse
Affiliation(s)
- Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Fabiola De Marchi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Francesca Bonardi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Gaia Verrini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Letizia Mazzini
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy; (G.T.); (F.B.); (F.M.); (G.V.); (D.A.); (M.A.); (L.M.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Sant’Andrea Hospital, University of Piemonte Orientale, Corso Abbiate 21, 13100 Vercelli, Italy;
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
31
|
Xu Q, Chen Y, Chen D, Reddy MB. The Protection of EGCG Against 6-OHDA-Induced Oxidative Damage by Regulating PPARγ and Nrf2/HO-1 Signaling. Nutr Metab Insights 2024; 17:11786388241253436. [PMID: 38800717 PMCID: PMC11128170 DOI: 10.1177/11786388241253436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
6-Hydroxydopamine (6-OHDA) is a classic neurotoxin that has been widely used in Parkinson's disease research. 6-OHDA can increase intracellular reactive oxygen species (ROS) and can cause cell damage, which can be attenuated with (-)-Epigallocatechin-3-gallate (EGCG) treatment. However, the mechanism by which EGCG alters the 6-OHDA toxicity remains unclear; In this study, we found 6-OHDA (25 μM) alone increased intracellular ROS concentration in N27 cells, which was attenuated by pretreating with EGCG (100 μM). We evaluated the intracellular oxidative damage by determining the level of thiobarbituric acid reactive substances (TBARS) and protein carbonyl content. 6-OHDA significantly increased TBARS by 82.7% (P < .05) and protein carbonyl content by 47.8 (P < .05), compared to the control. Pretreatment of EGCG decreased TBARS and protein carbonyls by 36.4% (P < .001) and 27.7% (P < .05), respectively, compared to 6-OHDA alone treatment. Antioxidant effect was tested with E2-related factor 2 (Nrf2), heme oxygenase-1(HO-1) and peroxisome-proliferator activator receptor γ (PPARγ) expression. 6-OHDA increased Nrf2 expression by 69.6% (P < .001), HO-1 by 173.3% (P < .001), and PPARγ by 122.7% (P < .001), compared with untreatment. EGCG pretreatment stabilized these alterations induced by 6-OHDA. Our results suggested that the neurotoxicity of 6-OHDA in N27 cells was associated with ROS pathway, whereas pretreatment of EGCG suppressed the ROS generation and deactivated the Nrf2/HO-1 and PPARγ expression.
Collapse
Affiliation(s)
- Qi Xu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujie Chen
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Chen
- Iowa State University, Ames, IA, USA
| | | |
Collapse
|
32
|
Habermann D, Franz CMAP, Klempt M. Current Research on Small Circular Molecules: A Comprehensive Overview on SPHINX/BMMF. Genes (Basel) 2024; 15:678. [PMID: 38927614 PMCID: PMC11202718 DOI: 10.3390/genes15060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Several years of research into the small circular DNA molecules called SPHINX and BMMF (SPHINX/BMMF) have provided information on several areas of research, medicine, microbiology and nutritional science. But there are still open questions that have not yet been addressed. Due to the unclear classification, evolution and sources of SPHINX/BMMF, a risk assessment is currently not possible. However, risk assessment is necessary as SPHINX/BMMF are suspected to be involved in the development of cancer and neurodegenerative diseases. In order to obtain an overview of the current state of research and to identify research gaps, a review of all the publications on this topic to date was carried out. The focus was primarily on the SPHINX/BMMF group 1 and 2 members, which is the topic of most of the research. It was discovered that the SPHINX/BMMF molecules could be integral components of mammalian cells, and are also inherited. However, their involvement in neurodegenerative and carcinogenic diseases is still unclear. Furthermore, they are probably ubiquitous in food and they resemble bacterial plasmids in parts of their DNA and protein (Rep) sequence. In addition, a connection with bacterial viruses is also suspected. Ultimately, it is still unclear whether SPHINX/BMMF have an infectious capacity and what their host or target is.
Collapse
Affiliation(s)
- Diana Habermann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany; (C.M.A.P.F.); (M.K.)
| | | | | |
Collapse
|
33
|
Abarca-Merlin DM, Martínez-Durán JA, Medina-Pérez JD, Rodríguez-Santos G, Alvarez-Arellano L. From Immunity to Neurogenesis: Toll-like Receptors as Versatile Regulators in the Nervous System. Int J Mol Sci 2024; 25:5711. [PMID: 38891900 PMCID: PMC11171594 DOI: 10.3390/ijms25115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptors (TLRs) are among the main components of the innate immune system. They can detect conserved structures in microorganisms and molecules associated with stress and cellular damage. TLRs are expressed in resident immune cells and both neurons and glial cells of the nervous system. Increasing evidence is emerging on the participation of TLRs not only in the immune response but also in processes of the nervous system, such as neurogenesis and cognition. Below, we present a review of the literature that evaluates the expression and role of TLRs in processes such as neurodevelopment, behavior, cognition, infection, neuroinflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Daniela Melissa Abarca-Merlin
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. Abigail Martínez-Durán
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. David Medina-Pérez
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Guadalupe Rodríguez-Santos
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Lourdes Alvarez-Arellano
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
- CONAHCYT-Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
34
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
35
|
Jabbehdari S, Oganov AC, Rezagholi F, Mohammadi S, Harandi H, Yazdanpanah G, Arevalo JF. Age-related macular degeneration and neurodegenerative disorders: Shared pathways in complex interactions. Surv Ophthalmol 2024; 69:303-310. [PMID: 38000700 DOI: 10.1016/j.survophthal.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the elderly, and neurodegenerative disorders such as Alzheimer disease and Parkinson disease are debilitating conditions that affect millions worldwide. Despite the different clinical manifestations of these diseases, growing evidence suggests that they share common pathways in their pathogenesis including inflammation, oxidative stress, and impaired autophagy. In this review, we explore the complex interactions between AMD and neurodegenerative disorders, focusing on their shared mechanisms and potential therapeutic targets. We also discuss the current opportunities and challenges for developing effective treatments that can target these pathways to prevent or slow down disease progression in AMD. Some of the promising strategies that we explore include modulating the immune response, reducing oxidative stress, enhancing autophagy and lysosomal function, and targeting specific protein aggregates or pathways. Ultimately, a better understanding of the shared pathways between AMD and neurodegenerative disorders may pave the way for novel and more efficacious treatments.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anthony C Oganov
- Department of Ophthalmology, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Fateme Rezagholi
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - J Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Iori E, Mazzoli M, Ariatti A, Salviato T, Rispoli V, Valzania F, Galassi G. Myasthenia Gravis crossing Parkinson's disease: a 20 year study from single Italian center. Int J Neurosci 2024; 134:429-435. [PMID: 35917141 DOI: 10.1080/00207454.2022.2107517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
PURPOSE The concomitant diagnosis of Parkinson's disease (PD) and Myasthenia Gravis (MG) is rare. The aim of the study was to report our experience of patients with both diagnoses. MATERIAL AND METHODS We performed a retrospective analysis of patients with MG and PD, seen at Neurology Department, Modena, Italy from 2000 to 2020. We encountered 12 patients with both diagnoses. All had late onset MG (LOMG) and low Myasthenia Gravis Foundation of America (MGFA) severity scores at baseline. In respect of PD assessement, clinical signs were followed and summarized with modified Hoehn and Yahr staging (mHY). Patients were ranked as progressive or non-progressive, according to any change in mHY staging. We compared characteristics and outcome of the patients with age matched myasthenic subjects without PD. RESULTS The male gender significantly prevailed (p < 0.01) as well as the presence of multiple comorbidities (p < 0.001) in patients with MG associated with PD. In respect of clinical course, MG was benign as most of cases remained stable (66.7%). Six cases showed worsening of mHY scores; only one subject became wheelchair bound by the end of follow up. This uneven progression, at least in our hands, might suggest that MG and PD can evolve independently. CONCLUSION Clinicians should be alert about the association of PD and MG since early diagnosis and treatment are essential.
Collapse
Affiliation(s)
- Erika Iori
- Department of Biomedical, Metabolic Neural Sciences, University of Modena, Modena, Italy
| | - Marco Mazzoli
- Department of Biomedical, Metabolic Neural Sciences, University of Modena, Modena, Italy
| | - Alessandra Ariatti
- Department of Biomedical, Metabolic Neural Sciences, University of Modena, Modena, Italy
| | - Tiziana Salviato
- Department of Anatomy Pathology and Legal Medicine, University of Modena, Modena, Italy
| | - Vittorio Rispoli
- Department of Biomedical, Metabolic Neural Sciences, University of Modena, Modena, Italy
| | - Franco Valzania
- Neuro-Motor Department, S. Maria Nuova Hospital, AUSL-IRCSS, Reggio Emilia, Italy
| | - Giuliana Galassi
- Department of Biomedical, Metabolic Neural Sciences, University of Modena, Modena, Italy
| |
Collapse
|
37
|
Stampanoni Bassi M, Gilio L, Galifi G, Buttari F, Dolcetti E, Bruno A, Belli L, Modugno N, Furlan R, Finardi A, Mandolesi G, Musella A, Centonze D, Olivola E. Mood disturbances in newly diagnosed Parkinson's Disease patients reflect intrathecal inflammation. Parkinsonism Relat Disord 2024; 122:106071. [PMID: 38432021 DOI: 10.1016/j.parkreldis.2024.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In Parkinson's disease (PD), neuroinflammation may be involved in the pathogenesis of mood disorders, contributing to the clinical heterogeneity of the disease. The cerebrospinal fluid (CSF) levels of interleukin (IL)-1β, IL-2, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, interferon (IFN)γ, macrophage inflammatory protein 1-alpha (MIP-1a), MIP-1b, granulocyte colony stimulating factor (GCSF), eotaxin, tumor necrosis factor (TNF), and monocyte chemoattractant protein 1 (MCP-1), were assessed in 45 newly diagnosed and untreated PD patients and in 44 control patients. Spearman's correlations were used to explore possible associations between CSF cytokines and clinical variables including mood. Benjamini-Hochberg (B-H) correction for multiple comparisons was applied. Linear regression was used to test significant associations correcting for other clinical variables. In PD patients, higher CSF concentrations of the inflammatory molecules IL-6, IL-9, IFNγ, and GCSF were found (all B-H corrected p < 0.02). Significant associations were found between BDI-II and the levels of IL-6 (Beta = 0.438; 95%CI 1.313-5.889; p = 0.003) and IL-8 (Beta = 0.471; 95%CI 0.185-0.743; p = 0.002). Positive associations were also observed between STAI-Y state and both IL-6 (Beta = 0.452; 95%CI 1.649-7.366; p = 0.003), and IL-12 (Beta = 0.417; 95%CI 2.238-13.379; p = 0.007), and between STAI-Y trait and IL-2 (Beta = 0.354; 95%CI 1.923-14.796; p = 0.012), IL-6 (Beta = 0.362; 95%CI 0.990-6.734; p = 0.01), IL-8 (Beta = 0.341; 95%CI 0.076-0.796; p = 0.019), IL-12 (Beta = 0.328; 95%CI 0.975-12.135; p = 0.023), and IL-17 (Beta = 0.334; 95CI 0.315-4.455; p = 0.025). An inflammatory CSF milieu may be associated with depression and anxiety in the early phases of PD, supporting a role of neuroinflammation in the pathogenesis of mood disturbances.
Collapse
Affiliation(s)
| | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy; Faculty of Psychology, Uninettuno Telematic International University, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Lorena Belli
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy; Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy; Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy.
| | | |
Collapse
|
38
|
Ahmadi S, Taghizadieh M, Mehdizadehfar E, Hasani A, Khalili Fard J, Feizi H, Hamishehkar H, Ansarin M, Yekani M, Memar MY. Gut microbiota in neurological diseases: Melatonin plays an important regulatory role. Biomed Pharmacother 2024; 174:116487. [PMID: 38518598 DOI: 10.1016/j.biopha.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
Melatonin is a highly conserved molecule produced in the human pineal gland as a hormone. It is known for its essential biological effects, such as antioxidant activity, circadian rhythm regulator, and immunomodulatory effects. The gut is one of the primary known sources of melatonin. The gut microbiota helps produce melatonin from tryptophan, and melatonin has been shown to have a beneficial effect on gut barrier function and microbial population. Dysbiosis of the intestinal microbiota is associated with bacterial imbalance and decreased beneficial microbial metabolites, including melatonin. In this way, low melatonin levels may be related to several human diseases. Melatonin has shown both preventive and therapeutic effects against various conditions, including neurological diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This review was aimed to discuss the role of melatonin in the body, and to describe the possible relationship between gut microbiota and melatonin production, as well as the potential therapeutic effects of melatonin on neurological diseases.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Department of Neurosciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Khalili Fard
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hammed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masood Ansarin
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Rivas-Arancibia S, Rodríguez-Martínez E, Valdés-Fuentes M, Miranda-Martínez A, Hernández-Orozco E, Reséndiz-Ramos C. Changes in SOD and NF-κB Levels in Substantia Nigra and the Intestine through Oxidative Stress Effects in a Wistar Rat Model of Ozone Pollution. Antioxidants (Basel) 2024; 13:536. [PMID: 38790641 PMCID: PMC11117973 DOI: 10.3390/antiox13050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This work aimed to elucidate how O3 pollution causes a loss of regulation in the immune response in both the brain and the intestine. In this work, we studied the effect of exposing rats to low doses of O3 based on the association between the antioxidant response of superoxide dismutase (SOD) levels and the nuclear factor kappa light chains of activated B cells (NFκB) as markers of inflammation. Method: Seventy-two Wistar rats were used, divided into six groups that received the following treatments: Control and 7, 15, 30, 60, and 90 days of O3. After treatment, tissues were extracted and processed using Western blotting, biochemical, and immunohistochemical techniques. The results indicated an increase in 4-hydroxynonenal (4HNE) and Cu/Zn-SOD and a decrease in Mn-SOD, and SOD activity in the substantia nigra, jejunum, and colon decreased. Furthermore, the translocation of NFκB to the nucleus increased in the different organs studied. In conclusion, repeated exposure to O3 alters the regulation of the antioxidant and inflammatory response in the substantia nigra and the intestine. This indicates that these factors are critical in the loss of regulation in the inflammatory response; they respond to ozone pollution, which can occur in chronic degenerative diseases.
Collapse
Affiliation(s)
- Selva Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.R.-M.); (M.V.-F.); (A.M.-M.); (E.H.-O.); (C.R.-R.)
| | | | | | | | | | | |
Collapse
|
40
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
41
|
Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci 2024; 16:1347987. [PMID: 38681666 PMCID: PMC11045904 DOI: 10.3389/fnagi.2024.1347987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Neuroinflammation refers to a highly complicated reaction of the central nervous system (CNS) to certain stimuli such as trauma, infection, and neurodegenerative diseases. This is a cellular immune response whereby glial cells are activated, inflammatory mediators are liberated and reactive oxygen and nitrogen species are synthesized. Neuroinflammation is a key process that helps protect the brain from pathogens, but inappropriate, or protracted inflammation yields pathological states such as Parkinson's disease, Alzheimer's, Multiple Sclerosis, and other neurodegenerative disorders that showcase various pathways of neurodegeneration distributed in various parts of the CNS. This review reveals the major neuroinflammatory signaling pathways associated with neurodegeneration. Additionally, it explores promising therapeutic avenues, such as stem cell therapy, genetic intervention, and nanoparticles, aiming to regulate neuroinflammation and potentially impede or decelerate the advancement of these conditions. A comprehensive understanding of the intricate connection between neuroinflammation and these diseases is pivotal for the development of future treatment strategies that can alleviate the burden imposed by these devastating disorders.
Collapse
Affiliation(s)
| | | | | | - Guofang Xue
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
42
|
Shan C, Zhang C, Zhang C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem Res 2024; 49:834-846. [PMID: 38227113 DOI: 10.1007/s11064-023-04085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
"Neurodegenerative disorder" is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.
Collapse
Affiliation(s)
- Chen Shan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
43
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
44
|
Binda S, Tremblay A, Iqbal UH, Kassem O, Le Barz M, Thomas V, Bronner S, Perrot T, Ismail N, Parker J. Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here? Microorganisms 2024; 12:634. [PMID: 38674579 PMCID: PMC11052108 DOI: 10.3390/microorganisms12040634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The bidirectional relationship between the gut microbiota and the nervous system is known as the microbiota-gut-brain axis (MGBA). The MGBA controls the complex interactions between the brain, the enteric nervous system, the gut-associated immune system, and the enteric neuroendocrine systems, regulating key physiological functions such as the immune response, sleep, emotions and mood, food intake, and intestinal functions. Psychobiotics are considered tools with the potential to modulate the MGBA through preventive, adjunctive, or curative approaches, but their specific mechanisms of action on many aspects of health are yet to be characterized. This narrative review and perspectives article highlights the key paradigms needing attention as the scope of potential probiotics applications in human health increases, with a growing body of evidence supporting their systemic beneficial effects. However, there are many limitations to overcome before establishing the extent to which we can incorporate probiotics in the management of neuropsychiatric disorders. Although this article uses the term probiotics in a general manner, it remains important to study probiotics at the strain level in most cases.
Collapse
Affiliation(s)
- Sylvie Binda
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Umar Haris Iqbal
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Ola Kassem
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Mélanie Le Barz
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Vincent Thomas
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Blagnac, France; (M.L.B.); (V.T.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (U.H.I.); (O.K.); (S.B.)
| | - Tara Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Nafissa Ismail
- Department of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - J.Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
45
|
Morley-Fletcher S, Gaetano A, Gao V, Gatta E, Van Camp G, Bouwalerh H, Thomas P, Nicoletti F, Maccari S. Postpartum Oxytocin Treatment via the Mother Reprograms Long-Term Behavioral Disorders Induced by Early Life Stress on the Plasma and Brain Metabolome in the Rat. Int J Mol Sci 2024; 25:3014. [PMID: 38474260 DOI: 10.3390/ijms25053014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The rat model of perinatal stress (PRS), in which exposure of pregnant dams to restraint stress reduces maternal behavior, is characterized by a metabolic profile that is reminiscent of the "metabolic syndrome". We aimed to identify plasma metabolomic signatures linked to long-term programming induced by PRS in aged male rats. This study was conducted in the plasma and frontal cortex. We also investigated the reversal effect of postpartum carbetocin (Cbt) on these signatures, along with its impact on deficits in cognitive, social, and exploratory behavior. We found that PRS induced long-lasting changes in biomarkers of secondary bile acid metabolism in the plasma and glutathione metabolism in the frontal cortex. Cbt treatment demonstrated disease-dependent effects by reversing the metabolite alterations. The metabolomic signatures of PRS were associated with long-term cognitive and emotional alterations alongside endocrinological disturbances. Our findings represent the first evidence of how early life stress may alter the metabolomic profile in aged individuals, thereby increasing vulnerability to CNS disorders. This raises the intriguing prospect that the pharmacological activation of oxytocin receptors soon after delivery through the mother may rectify these alterations.
Collapse
Affiliation(s)
- Sara Morley-Fletcher
- Unité de Glycobiologie Structurale et Fonctionnelle, GlycoStress Team, CNRS, UMR 8576, UGSF, Université de Lille, F-59000 Lille, France
| | - Alessandra Gaetano
- Unité de Glycobiologie Structurale et Fonctionnelle, GlycoStress Team, CNRS, UMR 8576, UGSF, Université de Lille, F-59000 Lille, France
| | - Vance Gao
- Unité de Glycobiologie Structurale et Fonctionnelle, GlycoStress Team, CNRS, UMR 8576, UGSF, Université de Lille, F-59000 Lille, France
| | - Eleonora Gatta
- Unité de Glycobiologie Structurale et Fonctionnelle, GlycoStress Team, CNRS, UMR 8576, UGSF, Université de Lille, F-59000 Lille, France
| | - Gilles Van Camp
- Unité de Glycobiologie Structurale et Fonctionnelle, GlycoStress Team, CNRS, UMR 8576, UGSF, Université de Lille, F-59000 Lille, France
| | - Hammou Bouwalerh
- Unité de Glycobiologie Structurale et Fonctionnelle, GlycoStress Team, CNRS, UMR 8576, UGSF, Université de Lille, F-59000 Lille, France
| | - Pierre Thomas
- INSERM (U-1172) Laboratoire Lille Neuroscience & Cognition, équipe Plasticity & Subjectivity, Plateforme CURE, Hôpital Fontan, CHU de Lille, Psychiatry Department, Université de Lille, F-59000 Lille, France
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, 00185 Roma, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Stefania Maccari
- Unité de Glycobiologie Structurale et Fonctionnelle, GlycoStress Team, CNRS, UMR 8576, UGSF, Université de Lille, F-59000 Lille, France
- Department of Science and Medical-Surgical Biotechnology, University Sapienza of Rome, 00185 Roma, Italy
| |
Collapse
|
46
|
Lu Y, Dong W, Xue X, Sun J, Yan J, Wei X, Chang L, Zhao L, Luo B, Qiu C, Zhang W. The severity assessment of Parkinson's disease based on plasma inflammatory factors and third ventricle width by transcranial sonography. CNS Neurosci Ther 2024; 30:e14670. [PMID: 38459662 PMCID: PMC10924109 DOI: 10.1111/cns.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Predicting Parkinson's disease (PD) can provide patients with targeted therapies. However, disease severity can be roughly evaluated in clinical practice based on the patient's symptoms and signs. OBJECTIVE The current study attempted to explore the factors linked with PD severity and construct a predictive model. METHOD The PD patients and healthy controls were recruited from our study center while recording their basic demographic information. The serum inflammatory markers levels, such as Cystatin C (Cys C), C-reactive protein (CRP), RANTES (regulated on activation, normal T cell expressed and secreted), Interleukin-10 (IL-10), and Interleukin-6 (IL-6) were determined for all the participants. PD patients were categorized into early and mid-advanced groups based on the Hoehn and Yahr (H-Y) scale and evaluated using PD-related scales. LASSO logistic regression analysis (Model C) helped select variables based on clinical scale evaluations, serum inflammatory factor levels, and transcranial sonography measurements. The optimal harmonious model coefficient λ was determined via 10-fold cross-validation. Moreover, Model C was compared with multivariate (Model A) and stepwise (Model B) logistic regression. The area under the curve (AUC) of a receiver operator characteristic (ROC), brier score, calibration curve, and decision curve analysis (DCA) helped determine the discrimination and calibration of the predictive model, followed by configuring a forest plot and column chart. RESULTS The study included 113 healthy individuals and 102 PD patients, with 26 early and 76 mid-advanced patients. Univariate analysis of variance screened out statistically significant differences among inflammatory markers Cys C and RANTES. The average Cys C level in the mid-advanced stage was significantly higher than in the early stage (p < 0.001) but not for RANTES (p = 0.740). The LASSO logistic regression model (λ.1se = 0.061) associated with UPDRS-I, UPDRS-II, UPDRS-III, HAMA, PDQ-39, and Cys C as the included independent variables revealed that the Model C discrimination and calibration (AUC = 0.968, Brier = 0.049) were superior to Model A (AUC = 0.926, Brier = 0.079) and Model B (AUC = 0.929, Brier = 0.071) models. CONCLUSION The study results show multiple factors are linked with PD assessment. Moreover, the inflammatory marker Cys C and transcranial sonography measurement could objectively predict PD symptom severity, helping doctors monitor PD evolution in patients while targeting interventions.
Collapse
Affiliation(s)
- Yue Lu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenwen Dong
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingya Xue
- Department of NeurologyNorthwest University First HospitalXi'anChina
| | - Jian Sun
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiuqi Yan
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiang Wei
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Lei Chang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Liang Zhao
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Bei Luo
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Chang Qiu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenbin Zhang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
47
|
Mondal S, Prieto S, Rangasamy SB, Dutta D, Pahan K. Nebulization of low-dose aspirin ameliorates Huntington's pathology in N171-82Q transgenic mice. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:47-59. [PMID: 38532785 PMCID: PMC10961486 DOI: 10.1515/nipt-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 03/28/2024]
Abstract
Huntington Disease (HD), a devastating hereditary neurodegenerative disorder, is caused by expanded CAG trinucleotide repeats in the huntingtin gene (Htt) on chromosome 4. Currently, there is no effective therapy for HD. Although aspirin, acetylsalicylic acid, is one of the most widely-used analgesics throughout the world, it has some side effects. Even at low doses, oral aspirin can cause gastrointestinal symptoms, such as heartburn, upset stomach, or pain. Therefore, to bypass the direct exposure of aspirin to stomach, here, we described a new mode of use of aspirin and demonstrated that nebulization of low-dose of aspirin (10 μg/mouse/d=0.4 mg/kg body wt/d roughly equivalent to 28 mg/adult human/d) alleviated HD pathology in N171-82Q transgenic mice. Our immunohistochemical and western blot studies showed that daily aspirin nebulization significantly reduced glial activation, inflammation and huntingtin pathology in striatum and cortex of N171-82Q mice. Aspirin nebulization also protected transgenic mice from brain volume shrinkage and improved general motor behaviors. Collectively, these results highlight that nebulization of low-dose aspirin may have therapeutic potential in the treatment of HD.
Collapse
Affiliation(s)
- Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Shelby Prieto
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Suresh B. Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Debashis Dutta
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| |
Collapse
|
48
|
Song Z, Li W, Han Y, Xu Y, Ding H, Wang Y. Association of immune cell traits with Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1340110. [PMID: 38455666 PMCID: PMC10917892 DOI: 10.3389/fnagi.2024.1340110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Background Immunity and neuroinflammation play crucial roles in the pathogenesis of Parkinson's disease (PD). Nonetheless, prior investigations into the correlation between immune inflammation and PD have produced varying results. Identifying specific immune cell phenotypes that are truly associated with PD is challenging, and the causal relationship between immune cells and PD remains elusive. Methods This study conducted a comprehensive two-sample Mendelian randomization (MR) analysis, employing five distinct analytical approaches, to clarify the causal connection between immune cell characteristics and the risk of PD. Utilizing GWAS data, we investigated the causal relationship between 731 immune cell traits and PD. These immune cell phenotypes encompass absolute cell (AC) counts, median fluorescence intensity (MFI), and relative cell (RC) counts for B cells, cDCs, mature stage T cells, monocytes, myeloid cells, TBNK (T cells, B cells, and natural killer cells), and Tregs, as well as the logistic parameter (MP) for cDCs and TBNK. Results The inverse variance weighted (IVW) analysis indicated that Myeloid DCs (p = 0.004), HVEM expression on CD45RA- CD4+ T cells (p = 0.007), CD62L- CD86+ Myeloid DCs (p = 0.015), and HLA DR expression on monocytes (p = 0.019) were associated with a reduced risk of PD. CD14+ CD16+ monocytes (p = 0.005), HLA DR+ NK cells within CD3- lymphocytes (p = 0.023), and CD28 expression on activated & secreting Tregs (p = 0.032) were associated with an increased risk of PD. Conclusion This study establishes a causal link between immune cell phenotype and the pathogenesis of PD, identifying several specific immune cell characteristics associated with PD. This could inspire researchers to delve into the pathogenesis of PD at the cellular subtype level, and aid in the identification of potential pharmacological protein targets for PD.
Collapse
Affiliation(s)
- Zhiwei Song
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Wangyu Li
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yupeng Han
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiya Xu
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| |
Collapse
|
49
|
Das S, Ramteke H. A Comprehensive Review of the Role of Biomarkers in Early Diagnosis of Parkinson's Disease. Cureus 2024; 16:e54337. [PMID: 38500934 PMCID: PMC10945043 DOI: 10.7759/cureus.54337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurological, degenerative clinical condition depicted by the advancing loss of dopaminergic neurons in the substantia nigra pars compacta, which manifests itself as a myriad of sensorimotor and non-motor signs in patients. The disease occurs due to the reduced levels of the neurotransmitter dopamine in the brain, which is primarily associated with functional characteristics regarding mobility and cognition. The basal ganglion is mainly involved in the generation of cognitive functions and therefore is the most significantly associated area in PD. Since the classical diagnosis and assessment of PD depends majorly on the appearance of motor characteristics, which only arise when ~60-80% of the dopamine neuronal cell death has already occurred, it is imperative we focus on identifying biomarkers that can help us assess and diagnose PD in the earlier stages of disease progression, thus providing a better prognosis for the patients. This review article will focus on the different biomarkers that are currently available and in use, divided under the headings of clinical, biological, imaging, and genetic biomarkers, and assess their specificity and sensitivity toward providing an early assessment of Parkinson's for the patients and the future of preclinical diagnostics using molecular biomarkers. PD affects over 1% of the population worldwide and only ranks second to Alzheimer's disease in the context of its incidence and consequent socioeconomic burden. While recent breakthroughs in biomarkers have dramatically improved patients' odds of survival and prognosis, it still remains primarily a symptomatic diagnostic tool. It is an area of research that requires to focus on creating more advanced approaches toward diagnosing PD early, involving clinical diagnostics, neuroimaging technology, and molecular biology collaborations to provide the highest degree of care and quality of life that a Parkinson's patient deserves.
Collapse
Affiliation(s)
- Somdutta Das
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Ramteke
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
50
|
Yuan X, Wan L, Chen Z, Long Z, Chen D, Liu P, Fu Y, Zhu S, Peng L, Qiu R, Tang B, Jiang H. Peripheral Inflammatory and Immune Landscape in Multiple System Atrophy: A Cross-Sectional Study. Mov Disord 2024; 39:391-399. [PMID: 38155513 DOI: 10.1002/mds.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Neuroinflammation might contribute to the pathogenesis of multiple systemic atrophy (MSA). However, specific alterations in the peripheral inflammatory and immune profiles of patients with MSA remain unclear. OBJECTIVES To determine the peripheral inflammatory and immune profiles of patients with MSA and their potential value as biomarkers for facilitating clinical diagnosis and monitoring disease severity. METHODS This cross-sectional study included 235, 240, and 235 patients with MSA, patients with Parkinson's disease (PD), and healthy controls (HCs), respectively. Inflammatory and immune parameters were measured in peripheral blood, differences between groups were assessed, and clusters were analyzed. Associations between the parameters and clinical characteristics of MSA were assessed using Spearman and partial correlation analyses. RESULTS Significant differences were observed especially in monocytes, neutrophils-to-lymphocyte ratio (NLR) and neutrophils-to-lymphocyte ratio (MPV) between MSA patients and HCs (P < 0.01). Monocytes and uric acid (UA) levels were also significantly different between the MSA and PD patients (P < 0.05). The combination of NLR and MPV distinguished MSA-P patients from HCs (areas under the curve = 0.824). In addition, complement components C4 and C3 were significantly correlated with the Scale Outcomes in PD for Autonomic Symptoms and Wexner scale, whereas immunoglobulin G (IgG) was significantly correlated with scores of Unified Multiple System Atrophy Rating Scale (P < 0.05). CONCLUSIONS In MSA patients, monocytes, NLR and MPV might serve as potential diagnostic biomarkers, whereas MLR, C3, C4, and IgG significantly correlate with disease severity. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xinrong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daji Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Panyan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - You Fu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|