1
|
Xu J, Huang S, Fu Z, Zheng W, Luo W, Zhuang N, Liu L, He R, Yang F. Effects of Light and Laser Therapies on the Microecosystem of Sebaceous Glands in Acne Treatment. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2025; 41:e70005. [PMID: 39754335 DOI: 10.1111/phpp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Acne vulgaris (acne) is one of the most common skin diseases with complex pathogenesis. Numerous studies have shown that the microecosystem of sebaceous glands and Cutibacterium acnes play key roles in its pathogenesis. Antibiotics targeting C. acnes have been widely used in acne treatment, but the growing prevalence of antibiotic resistance has become alarming. Further research into the microecosystem of sebaceous glands and the role of specific C. acnes phylotypes in acne pathogenesis has led to a paradigm shift in acne treatment. Currently, non-antibiotic therapies such as light therapy and laser therapy are becoming increasingly popular, opening up new opportunities in acne management. METHODS Studies on the microecosystem of sebaceous glands associated with acne and the effects of light and laser therapies on the microecosystem in acne treatment were retrieved from the PubMed database. RESULTS Dysbiosis of the microecosystem of the pilosebaceous unit is closely related to the pathogenesis of acne. Light and laser therapies have an impact on the microecosystem of the pilosebaceous unit in acne treatment. CONCLUSIONS Light and laser therapies are the popular alternative options in acne treatment. The mechanisms of their effect on the microecosystem of sebaceous glands are not completely clear and require further research, especially for laser therapy.
Collapse
Affiliation(s)
- Jiaoxiong Xu
- Department of Dermatology and Burn, Huangpu People's Hospital of Zhongshan, Zhongshan, Guangdong, China
| | - Shengbo Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
- Department of Dermatology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), Foshan, Guangdong, China
| | - Zhengzheng Fu
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Wen Zheng
- Department of Dermatology, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Wanting Luo
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Niangqiao Zhuang
- Department of Dermatology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong, China
| | - Liuhong Liu
- Department of Dermatology, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Renliang He
- Department of Dermatologic Surgery and Dermatoma, Dermatology Hospital of Southern Medical University (Guangdong Provincial Dermatology Hospital), Guangzhou, Guangdong, China
| | - Fang Yang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Janssens-Böcker C, Doberenz C, Monteiro M, de Oliveira Ferreira M. Influence of Cosmetic Skincare Products with pH < 5 on the Skin Microbiome: A Randomized Clinical Evaluation. Dermatol Ther (Heidelb) 2024:10.1007/s13555-024-01321-x. [PMID: 39709312 DOI: 10.1007/s13555-024-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION The human skin acts as a protective barrier against external pathogens and hosts a diverse microbiome consisting of bacteria, fungi, viruses, and archaea. Disruptions to the skin microbiome can impact immune function, leading to inflammatory and autoimmune conditions. The importance of pH for the microbiome is paramount. Cosmetic skincare products interact with the skin microbiome and skin pH, playing a key role in maintaining microbial balance. Research suggests that products with non-physiological pH levels may disrupt the skin microbiota. Our clinical study aimed to evaluate the effects of low-pH cosmetic products (pH < 5) on the skin microbiome, contributing to improved skin health. METHODS The clinical study focused on evaluating the skin microbiome diversity following the application for 28 days of four different low-pH cosmetic products (vitamin C, resveratrol, a collagen mask, and a native algae mask) on the forearms of post-menopausal women with skin pH > 5.5. RESULTS The diversity of the natural skin microbiome increased consistently throughout the study, evident in both the untreated area and after the application of the Vitamin C Concentrate, Resveratrol Concentrate, Collagen Mask, and Native Algae Mask, as indicated by Shannon's diversity index. The native algae mask notably reduced the Corynebacterium genus and significantly lowered the pH. The skin pH changes corresponded with microbiota stability. CONCLUSIONS In conclusion, enhanced diversity of the natural skin microbiome was observed over the study duration. None of the investigational products caused significant disruption to the skin microbiome diversity, as evidenced by the stable Shannon's diversity index and relative abundance of specific genera. Notably, the native algae mask significantly decreased the presence of the opportunistic pathogenic Corynebacterium genus, which is likely attributable to a minor reduction in skin pH following extended product use. The findings suggest that the use of low-pH skincare products, like the native algae mask, do not disrupt skin microbiome diversity and may have the potential to positively impact skin microbiome diversity and health by reducing certain pathogenic microbial populations.
Collapse
Affiliation(s)
| | | | - Marta Monteiro
- Inovapotek, Pharmaceutical Research & Development, Porto, Portugal
| | | |
Collapse
|
3
|
Handeland K, Wakeman M, Burri L. Krill oil supplementation improves transepidermal water loss, hydration and elasticity of the skin in healthy adults: Results from two randomized, double-blind, placebo-controlled, dose-finding pilot studies. J Cosmet Dermatol 2024; 23:4285-4294. [PMID: 39169540 PMCID: PMC11626371 DOI: 10.1111/jocd.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Dietary marine omega-3 fatty acids and phospholipids have individually shown favorable effects on skin barrier function. Krill oil offers a combination of omega-3 in phospholipid form which might enhance the efficacy in supporting skin health. AIMS The aim was to investigate the impact of two different doses of krill oil on skin transepidermal water loss (TEWL) in healthy adults. Secondary outcomes were skin hydration, elasticity and the omega-3 index. METHODS Two randomized, double-blind, placebo-controlled, pilot studies were conducted in healthy adults with a baseline TEWL of >10 and ≤24.9 g/m2/h. In study 1, 51 participants consumed 1 g of krill oil or placebo daily. In study 2, 50 participants consumed 2 g of krill oil or placebo daily. The outcomes were assessed at baseline, 6 and 12 weeks. RESULTS The krill oil supplemented groups significantly increased their omega-3 index versus placebo in both studies. Furthermore, the krill oil groups in both studies showed statistically significant beneficial reductions in TEWL (from 14.47 ± 3.65 to 13.83 ± 3.78 in study 1 and from 14.25 ± 3.21 to 13.02 ± 2.76 in study 2) and increases in hydration and elasticity when compared to placebo. There were significant linear relationships between changes in the omega-3 index and changes in TEWL, hydration and elasticity in both studies. CONCLUSIONS Daily oral supplementation with 1 and 2 g of krill oil showed significant and dose-dependent improvements in skin TEWL, hydration, and elasticity compared to placebo that correlated with changes in the omega-3 index.
Collapse
Affiliation(s)
| | - Mike Wakeman
- Faculty of Health and WellbeingUniversity of SunderlandSunderlandUK
| | - Lena Burri
- Aker BioMarine Human Ingredients ASLysakerNorway
| |
Collapse
|
4
|
Mahendran MIMS, Gopalakrishnan V, Saravanan V, Dhamodharan R, Jothimani P, Balasubramanian M, Singh AK, Vaithianathan R. Managing drug therapy-related problems and assessment of chronic diabetic wounds. Curr Med Res Opin 2024; 40:2077-2093. [PMID: 39402701 DOI: 10.1080/03007995.2024.2414893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM), responsible for most diabetes cases recorded worldwide, increases the risk of chronic wounds and amputation. Patients with T2DM appear to be more susceptible to delayed wound healing due to their treatment adherence. This review explores the specifics of polypharmacy, side effects, possible drug interactions and the importance of medication adherence for therapeutic efficacy. We discuss the effects of anti-diabetes medications on wound healing as well as the role that biofilms and microbial infections play in diabetic wounds. Inconsistent use of medications can lead to poor glycaemic control, which negatively affects the healing process of diabetic foot ulcers. Managing chronic wounds represents a substantial portion of healthcare expenditures. Biofilm-associated infections are difficult for the immune system to treat and respond inconsistently to antibiotics as these infections are slow growing and persistent. Additionally, we emphasize the critical role pharmacists play in enhancing patient adherence and optimizing diabetes treatment by offering comprehensive coverage of drugs associated with problems related to pharmacological therapy in type 2 diabetes.
Collapse
Affiliation(s)
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Ramasamy Dhamodharan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Pradeep Jothimani
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - M Balasubramanian
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Abhimanyu Kumar Singh
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Rajan Vaithianathan
- Department of Surgery, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| |
Collapse
|
5
|
Kircik L, Tan J, Lain ET, Beleznay K, Chavda R, Lachmann N, Brinkhuizen T, Baldwin H, Layton AM. One Acne™: a holistic management approach to improve overall skin quality and treatment outcomes in acne with or without sensitive skin. Int J Dermatol 2024. [PMID: 39551973 DOI: 10.1111/ijd.17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Acne and sensitive skin can take a profound toll on patients' well-being, which can be exacerbated if the conditions are experienced together. This narrative review aims to identify appropriate treatments to facilitate a holistic management approach to acne (One Acne™), sensitive skin, and acne-induced sequelae and describe the role of treatments in improving skin quality. Topical retinoids are considered the preferred first-line option for acne treatment by dermatologists, either as monotherapy or in combination with other treatments, because of their ability to target various aspects of the disease. Tretinoin, trifarotene, adapalene, and tazarotene have all been assessed in clinical studies for managing acne-associated scarring, with varying success, with the latter three reported to improve skin quality. Moreover, some corrective procedures, e.g., injectable non-animal stabilized hyaluronic acid (NASHA) fillers, have proven effective for treating acne scarring. Both treatment types may complement each other to provide optimal treatment outcomes and patient satisfaction, as observed in several patients receiving concomitant treatment with NASHA fillers/topical trifarotene. Adjunctive use of cleansers, moisturizers, and photoprotection-containing ingredients such as vitamin B3, glycerin, or pro-vitamin B3 may also complement drug/corrective treatments to reduce skin irritation and risk of scarring, as well as improve skin hydration, tone, and overall appearance. This narrative review highlights that comprehensive skincare regimens should be used throughout acne patients' journeys to reduce treatment-related irritation, improve treatment outcomes, adherence, and satisfaction, and enhance overall skin quality. Patients with sensitive skin should choose tailored skincare products to maintain skin barrier integrity and restore skin function.
Collapse
Affiliation(s)
- Leon Kircik
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerry Tan
- University of Western Ontario, Windsor, ON, Canada
- Windsor Clinical Research Inc, Windsor, ON, Canada
| | | | - Katie Beleznay
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Tjinta Brinkhuizen
- Department of Dermatology, Catharina Hospital Eindhoven, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hilary Baldwin
- Robert Wood Johnson Medical Center, New Brunswick, NJ, USA
- The Acne Treatment and Research Center, Brooklyn, NY, USA
| | - Alison M Layton
- Skin Research Centre, University of York, York, UK
- Department of Dermatology, Harrogate and District NHS Trust, Harrogate, UK
| |
Collapse
|
6
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
7
|
He X, Zhang Z, Jiang H, Luo H, Gan Q, Wei K, Liu Y, Qin Y, Xiao M. Causal association of gut microbes and blood metabolites with acne identified through systematic mendelian randomization. Sci Rep 2024; 14:26816. [PMID: 39501024 PMCID: PMC11538280 DOI: 10.1038/s41598-024-78603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
Acne is a prevalent inflammatory disease in dermatology, and its pathogenesis may be associated with inflammation, immunity, and other mechanisms. It commonly manifests in young individuals and frequently imposes a heavy economic, physical, and psychological burden on patients. Gut microbes and blood metabolites, as significant immune and inflammatory regulators in the body, have been hypothesized to form the "neurocutaneous axis." Nonetheless, the precise causal relationships among the gut microbes, circulating blood metabolites, and acne development have yet to be elucidated. This study employed bidirectional two-sample Mendelian randomization (MR) to probe the causal impacts of 412 distinct gut microbes and 249 blood metabolites on acne. Single nucleotide polymorphisms (SNPs), which are closely associated with gut microbes and blood metabolites, were utilized as instrumental variables. This approach was taken to discern whether these elements serve as pathogenic or protective factors in relation to acne. Furthermore, a mediation analysis encompassing gut microbes, blood metabolites, and acne was conducted to explore potential correlations between gut microbes and blood metabolites, as well as their cumulative effects on acne. This was done to substantiate the notion of causality. Bidirectional two-sample MR analysis revealed 8 gut bacteria, 6 bacterial metabolic abundance pathways determined by birdshot, and 8 blood metabolites significantly associated with acne. The mediation MR analysis revealed 2 potential causal relationships, namely, Bifidobacterium-DHA-Acne and Bifidobacterium-Degree of Unsaturation-Acne. This study identified gut microbes and blood metabolites that are causally associated with acne. A potential causal relationship between gut microbes and blood metabolites was obtained via mediation analysis. These insights pave the way for the identification of new targets and the formulation of innovative approaches for the prevention and treatment of acne.
Collapse
Affiliation(s)
- Xin He
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan Province, P R China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Zhongyi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Hengyu Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Hui Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Qianrong Gan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Kebo Wei
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Ying Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| | - Yuesi Qin
- Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan Province, P R China.
| | - Min Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China.
| |
Collapse
|
8
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Boonpethkaew S, Charoensuksira S, Meephansan J, Sirithanabadeekul P, Chueachavalit C, Ingkaninanda P, Visedthorn S, Chanchaem P, Sivapornnukul P, Payungporn S. The influence of air pollution on skin microbiome: a link to skin barrier dysfunction. Arch Dermatol Res 2024; 316:710. [PMID: 39460761 DOI: 10.1007/s00403-024-03448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
An equilibrium of skin microbiome is crucial for maintaining skin barrier function. However, external factors such as air pollution have the potential to disrupt this equilibrium. Hence, further investigation into the influence of air pollution on the skin microbiome emerges as a critical imperative. Healthy women matched for age from two different ambient air cities in Thailand: Bangkok, characterized by highly polluted air (HPA) (n = 33), and Songkhla, characterized by less polluted air (LPA) (n = 33) were recruited. Skin barrier physiological parameters were measured on the forehead skin. Microbiome samples were collected via the scraping and swabbing technique from the forehead skin and analyzed for microbiome profiles using amplicon sequencing. We found that the abundant microbiome at the phylum level was comparable between HPA- and LPA-exposed skin. However, microbiome diversity was decreased at genus level of fungus and species level of bacteria on HPA-exposed skin. Interestingly, some relatively higher enriched microbiome correlated with skin barrier physiological parameters. Specifically, a higher enrichment of Streptococcus parasanguinis on LPA-exposed skin correlated with both lower skin pH and higher stratum corneum (SC) hydration. Conversely, a higher enrichment of Malassezia spp. and Aureobasidum spp. on HPA-exposed skin was correlated with increased transepidermal water loss and decreased SC hydration, respectively. In conclusion, air pollution potentially affects the skin microbiome by reducing its diversity, disrupting its beneficial correlations with barrier physiology, and promoting the overgrowth of pathogenic microbiome, resulting in decreased hydration and increased pH levels. These factors could ultimately lead to skin barrier dysfunction.
Collapse
Affiliation(s)
- Suphagan Boonpethkaew
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
- Thammasat University, Pattaya Campus, Chonburi, 20150, Thailand
| | - Sasin Charoensuksira
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand.
- Samitivej Sukhumvit Hospital, Bangkok Dusit Medical Services PLC, Bangkok, 10310, Thailand.
| | - Punyaphat Sirithanabadeekul
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
- Samitivej Sukhumvit Hospital, Bangkok Dusit Medical Services PLC, Bangkok, 10310, Thailand
| | - Chutinan Chueachavalit
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani, 12120, Thailand
| | - Patlada Ingkaninanda
- Division of Dermatology, Department of Medicine, Rajavithi Hospital, Ministry of Public Health, Bangkok, 10400, Thailand
| | - Suthida Visedthorn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pavaret Sivapornnukul
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Karimi N, Ahmadi V. Aquaporin Channels in Skin Physiology and Aging Pathophysiology: Investigating Their Role in Skin Function and the Hallmarks of Aging. BIOLOGY 2024; 13:862. [PMID: 39596817 PMCID: PMC11592281 DOI: 10.3390/biology13110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
This study examines the critical role of aquaporins (AQPs) in skin physiology and aging pathophysiology. The skin plays a vital role in maintaining homeostasis by acting as a protective barrier against external pathogens and excessive water loss, while also contributing to the appearance and self-esteem of individuals. Key physiological features, such as elasticity and repair capability, are essential for its proper function. However, with aging, these characteristics deteriorate, reducing the skin's ability to tolerate environmental stressors which contribute to external aging as well as internal aging processes, which negatively affect barrier function, immune response, and overall well-being. AQPs, primarily known for facilitating water transport, are significant for normal skin functions, including hydration and the movement of molecules like glycerol and hydrogen peroxide, which influence various cellular processes and functions. In this context, we categorized aquaporin dysfunction into several hallmarks of aging, including mitochondrial dysfunction, cellular senescence, stem cell depletion, impaired macroautophagy, dysbiosis, and inflamm-aging. Eight aquaporins (AQP1, 3, 5, 7, 8, 9, 10, and 11) are expressed in various skin cells, regulating essential processes such as cell migration, proliferation, differentiation, and also immune response. Dysregulation or altered expression of these proteins can enhance skin aging and related pathologies by activating these hallmarks. This study provides valuable insights into the potential of targeting aquaporins to mitigate skin aging and improve skin physiologic functions.
Collapse
Affiliation(s)
- Nazli Karimi
- Physiology Department, Medical Faculty, Hacettepe University, Ankara 06800, Turkey
| | - Vahid Ahmadi
- Dermatology Department, Beytepe Murat Erdi Eker State Hospital, Ankara 06800, Turkey
| |
Collapse
|
11
|
Zhao Z, Rong Y, Yin R, Zeng R, Xu Z, Lv D, Hu Z, Cao X, Tang B. Skin Microbiota, Immune Cell, and Skin Fibrosis: A Comprehensive Mendelian Randomization Study. Biomedicines 2024; 12:2409. [PMID: 39457721 PMCID: PMC11505207 DOI: 10.3390/biomedicines12102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Microbiota dysbiosis has been reported to lead to leaky epithelia and trigger numerous dermatological conditions. However, potential causal associations between skin microbiota and skin fibrosis and whether immune cells act as mediators remain unclear. METHODS Summary statistics of skin microbiota, immune cells, and skin fibrosis were identified from large-scale genome-wide association studies summary data. Bidirectional Mendelian randomization was performed to ascertain unidirectional causal effects between skin microbiota, immune cells, and skin fibrosis. We performed a mediation analysis to identify the role of immune cells in the pathway from skin microbiota to skin fibrosis. RESULTS Three specific skin microbiotas were positively associated with skin fibrosis, while the other three were negative. A total of 15 immune cell traits were associated with increased skin fibrosis risk, while 27 were associated with a decreased risk. Moreover, two immune cell traits were identified as mediating factors. CONCLUSIONS Causal associations were identified between skin microbiota, immune cells, and skin fibrosis. There is evidence that immune cells exert mediating effects on skin microbiota in skin fibrosis. In addition, some strains exhibit different effects on skin fibrosis in distinct environments.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Rong Yin
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Ruixi Zeng
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Z.Z.); (Y.R.); (Z.X.); (D.L.); (Z.H.)
| |
Collapse
|
12
|
Plázár D, Metyovinyi Z, Kiss N, Bánvölgyi A, Makra N, Dunai Z, Mayer B, Holló P, Medvecz M, Ostorházi E. Microbial imbalance in Darier disease: Dominance of various staphylococcal species and absence of Cutibacteria. Sci Rep 2024; 14:24039. [PMID: 39402279 PMCID: PMC11473830 DOI: 10.1038/s41598-024-74936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Darier disease (DD) is a rare autosomal dominant genodermatosis characterized by erythematous papules and plaques mainly involving sebaceous areas, such as the face, chest and back. Skin microbiome plays an essential role in maintaining skin homeostasis. A disturbed skin microbiome may contribute to the exacerbation of DD. We investigated the bacterial composition of two predilectional sites in DD patients and healthy individuals. We also measured the microbiome composition of deeper skin layers, where diversity was significantly reduced compared to the superficial layer of the skin from the same area. The microbiome of DD patients at lesional sites differed from that of non-lesional skin areas; moreover, non-lesional sites were different from those of the controls. Lesional areas were dominated by Staphylococcus species, such as S. aureus, S. epidermidis, S. hominis, S. sciuri, and S. equorum. However, levels of Cutibacterium acnes (formerly Propionibacterium acnes) and C. acnes subspecies defendens were significantly lower in lesional sites than in non-lesional sites. A significant decrease was measured in the levels of these two bacteria between non-lesional and control samples. Our findings may indicate that alterations in the skin microbiome could contribute to the inflammation of skin lesions in DD.
Collapse
Affiliation(s)
- Dóra Plázár
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary.
| | - Zseraldin Metyovinyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Nóra Makra
- Institute of Medical Microbiology, Semmelweis University, 4 Nagyvárad Square, Budapest, 1089, Hungary
| | - Zsuzsanna Dunai
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Balázs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Márta Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
| | - Eszter Ostorházi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 41 Mária Street, Budapest, 1085, Hungary
- Institute of Medical Microbiology, Semmelweis University, 4 Nagyvárad Square, Budapest, 1089, Hungary
| |
Collapse
|
13
|
Duda-Madej A, Viscardi S, Pacyga K, Kupczyński R, Mączka W, Grabarczyk M, Pacyga P, Topola E, Ostrówka M, Bania J, Szumny A, Wińska K. Antibiofilm and Antimicrobial Potentials of Novel Synthesized Sulfur Camphor Derivatives. Int J Mol Sci 2024; 25:10895. [PMID: 39456678 PMCID: PMC11507198 DOI: 10.3390/ijms252010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The question being posed by scientists around the world is how different chemical modifications of naturally occurring compounds will affect their antimicrobial properties. In the current study, sulfur derivatives of camphor containing a sulfur atom were tested to detect their antimicrobial and antibiofilm potentials. The new compounds were tested on eight Gram-positive strains (S. aureus (3 isolates), S. epidermidis (4 isolates), and E. faecalis (1 isolate)) and eight Gram-negative strains (E. coli (6 isolates), A. baumannii (1 isolate), and P. aeruginosa (1 isolate)). The ability of the strains to eradicate a biofilm was evaluated under standard stationary and flow-through conditions using the Bioflux system. Two synthesized compounds, namely rac-thiocamphor (1a) and (S, S)-(+)-thiocamphor (2a), exhibited an effect on the 24 h biofilm formed by the Gram-positive strains. Our results are an important contribution to the science of natural compounds and allow us to classify our sulfur derivatives of camphor as potential prophylactic agents in treating skin infections, antiseptics, and disinfectants. The Gram-negative strains were excluded from further stages of the tests due to their high activity (MIC ≥ 512 µg/mL). On the other hand, the compound with the strongest antimicrobial activity against the Gram-positive strains was 2a, as it led led to a reductions in cell viability of 17-52% (for MIC), 37-66% (for 2MIC), and 40-94% (for 4MIC). In addition, the experimental retention index of thiocamphor was calculated for the first time.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.)
| | - Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland (R.K.)
| | - Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland (R.K.)
| | - Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.)
| | - Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| |
Collapse
|
14
|
Radaschin DS, Tatu A, Iancu AV, Beiu C, Popa LG. The Contribution of the Skin Microbiome to Psoriasis Pathogenesis and Its Implications for Therapeutic Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1619. [PMID: 39459406 PMCID: PMC11509136 DOI: 10.3390/medicina60101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with significant morbidity and a considerable negative impact on the patients' quality of life. The complex pathogenesis of psoriasis is still incompletely understood. Genetic predisposition, environmental factors like smoking, alcohol consumption, psychological stress, consumption of certain drugs, and mechanical trauma, as well as specific immune dysfunctions, contribute to the onset of the disease. Mounting evidence indicate that skin dysbiosis plays a significant role in the development and exacerbation of psoriasis through loss of immune tolerance to commensal skin flora, an altered balance between Tregs and effector cells, and an excessive Th1 and Th17 polarization. While the implications of skin dysbiosis in psoriasis pathogenesis are only starting to be revealed, the progress in the characterization of the skin microbiome changes in psoriasis patients has opened a whole new avenue of research focusing on the modulation of the skin microbiome as an adjuvant treatment for psoriasis and as part of a long-term plan to prevent disease flares. The skin microbiome may also represent a valuable predictive marker of treatment response and may aid in the selection of the optimal personalized treatment. We present the current knowledge on the skin microbiome changes in psoriasis and the results of the studies that investigated the efficacy of the different skin microbiome modulation strategies in the management of psoriasis, and discuss the complex interaction between the host and skin commensal flora.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alin Tatu
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
15
|
Radaschin DS, Iancu AV, Ionescu AM, Gurau G, Niculet E, Bujoreanu FC, Beiu C, Tatu AL, Popa LG. Comparative Analysis of the Cutaneous Microbiome in Psoriasis Patients and Healthy Individuals-Insights into Microbial Dysbiosis: Final Results. Int J Mol Sci 2024; 25:10583. [PMID: 39408916 PMCID: PMC11477231 DOI: 10.3390/ijms251910583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Psoriasis is one of the most frequent chronic inflammatory skin diseases and exerts a significant psychological impact, causing stigmatization, low self-esteem and depression. The pathogenesis of psoriasis is remarkably complex, involving genetic, immune and environmental factors, some of which are still incompletely explored. The cutaneous microbiome has become more and more important in the pathogenesis of inflammatory skin diseases such as acne, rosacea, atopic dermatitis and psoriasis. Dysbiosis of the skin microbiome could be linked to acute flare ups in psoriatic disease, as recent studies suggest. Given this hypothesis, we conducted a study in which we evaluated the cutaneous microbiome of psoriasis patients and healthy individuals. In our study, we collected multiple samples using swab sampling, adhesive tape and punch biopsies. Our results are similar to other studies in which the qualitative and quantitative changes found in the cutaneous microbiome of psoriasis patients are different than healthy individuals. Larger, standardized studies are needed in order to elucidate the microbiome changes in psoriasis patients, clarify their role in the pathogenesis of psoriasis, decipher the interactions between the commensal microorganisms of the same and different niches and between microbiomes and the host and identify new therapeutic strategies.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | | | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Florin Ciprian Bujoreanu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Cristina Beiu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| | - Alin Laurentiu Tatu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Liliana Gabriela Popa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| |
Collapse
|
16
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
17
|
Zhu X, Tian X, Wang M, Li Y, Yang S, Kong J. Protective effect of Bifidobacterium animalis CGMCC25262 on HaCaT keratinocytes. Int Microbiol 2024; 27:1417-1428. [PMID: 38278974 DOI: 10.1007/s10123-024-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.
Collapse
Affiliation(s)
- Xiaoce Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Xingfang Tian
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yan Li
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Suzhen Yang
- Shandong Freda Biotech Co., Ltd, Jinan, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| |
Collapse
|
18
|
Pretel-Lara C, Sanabria-de la Torre R, Arias-Santiago S, Montero-Vilchez T. Skin Barrier Function and Microtopography in Patients with Atopic Dermatitis. J Clin Med 2024; 13:5861. [PMID: 39407921 PMCID: PMC11477937 DOI: 10.3390/jcm13195861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease whose incidence is increasing. Skin barrier dysfunction plays an important role in this disease. It has been observed that AD patients have higher transepidermal water loss (TEWL) and lower stratum corneum hydration (SCH); however, there is little information about skin microtopography in this pathology. The objective of this study is to evaluate skin barrier dysfunction and structural changes in patients with AD. Methods: A cross-sectional study was conducted including patients with AD. Parameters of skin barrier function were measured (TEWL, temperature, erythema, pH, skin hydration, elasticity) and also other topographical parameters (scaliness, wrinkles, smoothness, surface, contrast, variance) in both healthy skin and flexural eczematous lesions. Results: A total of 32 patients with AD were included in the study. Flexural eczematous lesions had higher erythema (369.12 arbitrary unit (AU) vs. 223.89 AU, p < 0.001), higher TEWL (27.24 g/h/m2 vs. 13.51 g/h/m2, p < 0.001), lower SCH (20.3 AU vs. 31.88 AU, p < 0.001) and lower elasticity (0.56% vs. 0.65%, p = 0.05). Regarding topographic parameters, flexural eczematous lesions presented greater scaliness (5.57 SEsc vs. 0.29 SEsc, p = 0.02), greater smoothness (316.98 SEsm vs. 220.95 SEsm p < 0.001), more wrinkles (73.33 SEw vs. 62.15 SEw p = 0.03), greater surface area (836.14% vs. 696.31%. p < 0.001), greater contrast (2.02 AU vs. 1.31 AU p = 0.01), greater variance (6.22 AU vs. 4.96 AU p < 0.001) and a lower number of cells (105.5 vs. 132.5 p < 0.001) compared to unaffected healthy skin, reflecting a decrease in skin quality in AD patients. Conclusions: Both skin barrier function and skin topography are damaged in patients with AD, with differences between healthy skin and flexural eczema.
Collapse
Affiliation(s)
- Carlota Pretel-Lara
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain or (C.P.-L.); or (T.M.-V.)
| | - Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria ibs GRANADA, 18012 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18071 Granada, Spain
| | - Salvador Arias-Santiago
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain or (C.P.-L.); or (T.M.-V.)
- Instituto de Investigación Biosanitaria ibs GRANADA, 18012 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Trinidad Montero-Vilchez
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain or (C.P.-L.); or (T.M.-V.)
- Instituto de Investigación Biosanitaria ibs GRANADA, 18012 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
19
|
Marsella R. Investigation into the Effects of Allergen Exposure and Topical Vinegar and Water Spray on Skin Barrier Parameters in Atopic Dogs. Vet Sci 2024; 11:459. [PMID: 39453051 PMCID: PMC11512369 DOI: 10.3390/vetsci11100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Increased skin pH and transepidermal water loss (TEWL) are documented in atopic people and dogs but no study has investigated how these parameters change during an allergy flare. Our primary aim was to challenge atopic beagles to dust mites and measure pH and TEWL during a flare of atopic dermatitis and correlate these parameters to clinical signs. A secondary aim was to evaluate in a randomized placebo-controlled study whether the daily application of 50/50 vinegar spray improves clinical signs and affects skin parameters despite the allergen challenge. Fifteen atopic dogs were challenged epicutaneously twice weekly for 2 weeks with allergen application on the inguinal and medial thigh areas. The severity of dermatitis was scored daily (CADESI-03). TEWL and pH were measured daily on the inguinal and medial thigh areas. A repeated measures ANOVA showed the significant effect of time, with increased pH (p < 0.0001), TEWL (p < 0.0001), and CADESI (p < 0.0001) during allergen challenge. Significant positive correlations were found between CADESI and pH (r = 0.3556; p < 0.0001), CADESI and TEWL (r = 0.36; p < 0.0001), and pH and TEWL (r = 0.45; p < 0.0001). Daily application of 50/50 vinegar did not improve dermatitis, pH, and TEWL compared to the control treatment. It can be concluded that both pH and TEWL are markers of disease severity in canine atopic dermatitis.
Collapse
Affiliation(s)
- Rosanna Marsella
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Jung Y, Kim RH, Lee EK, Seo CH, Joo SY, Shin JH, Cho YS. Effect of extracorporeal shock wave therapy on the microbial community in burn scars: retrospective case-control study. Int J Surg 2024; 110:01279778-990000000-01949. [PMID: 39259575 PMCID: PMC11634101 DOI: 10.1097/js9.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The effectiveness of extracorporeal shock wave therapy (ESWT) has been demonstrated in various medical fields, including burn medicine. It promotes wound healing, improves blood flow, and modulates the inflammatory responses. The recovery speed and outcomes of skin diseases are influenced by the skin microbiome; however, studies examining the effects of specific treatments on the skin microbiome are lacking. This study investigated the impact of ESWT on the skin microbiome of burn patients, focusing on the microbial diversity and community structure within burn scars. MATERIALS AND METHODS In the retrospective case-control study, nineteen patients with burn scars were treated with ESWT, and changes in their skin microbiome were evaluated. ESWT was administered weekly for three months, and samples were collected from the ESWT-treated burn scars and untreated normal skin. Blood chemistry, and pain and itching scores were evaluated during sample collection. The collected samples were then subjected to 16S rRNA sequencing. Microbial community analysis was conducted using the QIIME2 and R packages. RESULTS After ESWT, changes in alpha diversity indices were observed in burn scars. Faith phylogenetic diversity (P<0.05) and observed features (P<0.01) increased, whereas the evenness index decreased (P<0.01); no marked changes were noted in untreated skin. Beta diversity analysis showed stable microbial community structures in both the treated and untreated areas. A considerable increase in Micrococcus and Staphylococcus abundance was observed. Network analysis revealed a more open microbial network structure after ESWT, indicating adaptive changes in the microbial community. CONCLUSION ESWT enhances microbial diversity and modifies microbial community structure in burn scars, promoting a more balanced and functionally supportive microbiome. ESWT aids in scar remodeling and positively influences skin microbiome dynamics, contributing to improved skin health and recovery.
Collapse
Affiliation(s)
- Yeongyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine
| | - Ryeong-Hui Kim
- NGS Core Facility, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - Jae-Ho Shin
- NGS Core Facility, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| |
Collapse
|
21
|
Vial IFSG, Voidaleski MF, Lameira RF, Costa FDF, Zanatta DA, Vicente VA, de Carvalho VO. Molecular analysis of cutaneous yeast isolates in the mycobiota of children with atopic dermatitis. Med Mycol 2024; 62:myae090. [PMID: 39215497 DOI: 10.1093/mmy/myae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
The skin of patients with atopic dermatitis (AD) has a greater diversity of mycobiota. An observational, prospective, cross-sectional, analytical, and comparative study was conducted involving 80 patients with AD Group (ADG) and 50 individuals without AD (wADG) in a tertiary hospital in Brazil. Skin scale samples were collected from the frontal, cervical, fossae cubital, and popliteal regions and identified using molecular biology techniques. The results showed that 47.5% of ADG had identified yeasts compared to 0% of wADG (P < .001). The yeasts Rhodotorula mucilaginosa and Candida parapsilosis were the most abundant. The probability of colonization increased with age, showing values of 40% at 60 months and 80% at 220 months (P = .09). The cervical region (12.5%) was colonized to the greatest extent. Our findings revealed that positive mycology was not more probable when the scoring of atopic dermatitis or eczema area and severity index value increased (P = .23 and .53, respectively). The results showed that the sex, age, and different population types directly affected the composition of the mycobiota in the population analyzed. A higher frequency of colonization and greater diversity of yeast species were detected in the cutaneous mycobiota of children with AD.
Collapse
Affiliation(s)
- Iwyna França Souza Gomes Vial
- Child and Adolescent Health Post-Graduation Program, Health Sciences Sector, Federal University of Parana, Curitiba, Paraná 80060-900, Brazil
| | - Morgana Ferreira Voidaleski
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná 81531-980, Brazil
| | - Rosângela Ferreira Lameira
- Clinical Analysis Laboratory Unit at Hospital de Clínicas, Federal University of Parana, Curitiba, Paraná 80060-900, Brazil
| | - Flavia de Fatima Costa
- Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Curitiba, Paraná 81530-000, Brazil
| | - Danielle Arake Zanatta
- Child and Adolescent Health Post-Graduation Program, Health Sciences Sector, Federal University of Parana, Curitiba, Paraná 80060-900, Brazil
| | - Vania Aparecida Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Parana, Curitiba, Paraná 81531-980, Brazil
- Child and Adolescent Health Post-Graduation Program, Health Sciences Sector, Federal University of Parana, Curitiba, Paraná 80060-900, Brazil
| | - Vania Oliveira de Carvalho
- Child and Adolescent Health Post-Graduation Program, Health Sciences Sector, Federal University of Parana, Curitiba, Paraná 80060-900, Brazil
- Department of Pediatrics, Hospital de Clínicas, Federal University of Parana, Curitiba, Paraná 81530-000, Brazil
| |
Collapse
|
22
|
Wang Y, Wang B, Sun S, Wang Z. Mapping the relationship between atopic dermatitis and gut microbiota: a bibliometric analysis, 2014-2023. Front Microbiol 2024; 15:1400657. [PMID: 39296293 PMCID: PMC11408322 DOI: 10.3389/fmicb.2024.1400657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Atopic dermatitis (AD) is a chronic inflammatory skin condition affecting a significant portion of the population, with prevalence rates of 25% in children and 7-10% in adults. AD not only poses physical challenges but also profoundly impacts patients' mental well-being and quality of life. The stability of gut microbiota is crucial for overall health and can influence AD progression by modulating immune function, skin barrier integrity, and neuroendocrine signaling, which may be an effective target for the prevention and treatment of AD. Thus, exploring the interactions between AD and gut microbiota, particularly in infants, can provide insights into potential preventive and therapeutic strategies. This study aimed to explore the correlation between AD and gut microbiota while providing an overview of current research trends and emerging areas of interest in this field. Methods A comprehensive search was conducted on the Web of Science Core Collection (WOSCC) for relevant publications from January 1, 2014, to December 31, 2023. English-language articles and reviews were included. Two investigators independently screened the publications, and visual analysis was performed using CiteSpace, VOSviewer, Scimago Graphica, and Microsoft Excel software. Results A total of 804 articles were included, showing a significant increase in publications over the past decade. The United States, Wageningen University, and University Ulsan (represented by Hong SJ) had the highest number of published papers. Nutrients was the journal with the most publications, while the Journal of Allergy and Clinical Immunology had the highest number of citations and centrality among co-cited journals. Keyword visualization analysis identified "atopic dermatitis" and "gut microbiota" as central themes. Notably, there has been a notable shift in research focus over the years, with early studies concentrating on "Fecal microbiota," "caesarean section," and "first 6 months," while recent studies have highlighted the roles of "cells," "dysbiosis," and "prebiotics." This shift indicates growing interest in the underlying mechanisms and potential therapeutic interventions related to the intestinal microecology in AD treatment. Conclusion The field of AD and gut microbiota research has evolved significantly, with an increasing focus on understanding the intricate interactions between gut microbiota and AD pathogenesis. Recent years have witnessed increased interest in understanding the relationship between AD and gut microbiota, with researchers conducting extensive studies exploring various aspects of this connection. This review analyzes research trends over the past decade, highlighting trends and hotspots in the study of AD, particularly in infants, and the role of microbiota. This review serves as a valuable reference for future investigations, aiming to provide deeper insights into this burgeoning field and suggests directions for future research.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Dermatology, The 83rd Group Army Hospital of the PLA, Xinxiang, China
| | - Bingkun Wang
- Department of Dermatology, The 83rd Group Army Hospital of the PLA, Xinxiang, China
| | - Shiyou Sun
- Department of Dermatology, The 83rd Group Army Hospital of the PLA, Xinxiang, China
| | - Zhongzhi Wang
- Department of Dermatology, Shanghai Fourth People 's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Whittle MJ, Castillo-Fernandez J, Amos GCA, Watson P. Metagenomic characterisation of canine skin reveals a core healthy skin microbiome. Sci Rep 2024; 14:20104. [PMID: 39209855 PMCID: PMC11362342 DOI: 10.1038/s41598-024-63999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Furthering our knowledge of the skin microbiome is essential to understand health and disease in canines. To date, studies into the canine skin microbiome have focused on 16S rRNA high throughput sequencing however, these lack the granularity of species and strain level taxonomic characterisation and their associated functions. The aim of this study was to provide a comprehensive assessment of the skin microbiome by analysing the skin microbiome of 72 healthy adult colony dogs, across four distinct skin sites and four breeds, using metagenomic sequencing. Our analysis revealed that breed and skin site are drivers of variation, and a core group of taxa and genes are present within the skin microbiome of healthy dogs, comprising 230 taxa and 1219 gene families. We identified 15 species within the core microbiome that are represented by more than one strain. The biosynthesis of secondary metabolites pathway was enriched in the core microbiome suggesting the skin microbiome may play a role in colonisation resistance and protection from invading pathogens. Additionally, we uncovered the novelty of the canine skin microbiome and show that further investigation is required to increase the suitability of current databases for metagenomic sequencing of canine skin samples.
Collapse
Affiliation(s)
- Michaella J Whittle
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | - Juan Castillo-Fernandez
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
24
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
25
|
Cruel PTE, dos Santos CPC, Cueto TM, Avila LPV, Buchaim DV, Buchaim RL. Calcium Hydroxyapatite in Its Different Forms in Skin Tissue Repair: A Literature Review. SURGERIES 2024; 5:640-659. [DOI: 10.3390/surgeries5030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The skin is crucial for homeostasis and body defense, requiring quick healing to maintain internal balance. Initially used for bone repair, calcium hydroxyapatite (HAp) is now being studied for soft tissue engineering. This literature review investigated HAp’s role in tissue repair through searches on PubMed, Scopus (Elsevier), Science Direct, Springer Link, and Google Scholar databases without time restrictions, using keywords “hydroxyapatite AND skin AND wound” and “hydroxyapatite AND skin repair”. Inclusion criteria encompassed in vivo studies in humans and animals, English publications, full access, and sufficient data on HAp’s role in tissue repair. Exclusions included duplicates, unrelated articles, editor letters, reviews, comments, conference abstracts, dissertations, and theses. Out of the 472 articles initially identified, 139 met the inclusion criteria, with 21 focusing on HAp for tissue repair. Findings indicate that HAp and nano-HAp in skin regeneration are promising, especially when combined with other biomaterials, offering antimicrobial and anti-inflammatory benefits and stimulating angiogenesis. This suggests their potential application in dermatology, surgery, and dentistry, extending HAp’s versatility from hard tissues to enhancing critical properties for soft tissue repair and accelerating healing.
Collapse
Affiliation(s)
- Paola Tatiana Espinosa Cruel
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | | | - Thalia Malave Cueto
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | - Lisbeth Patricia Vasquez Avila
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Applied Dental Sciences, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| |
Collapse
|
26
|
Polito MP, Romaldini A, Rinaldo S, Enzo E. Coordinating energy metabolism and signaling pathways in epithelial self-renewal and differentiation. Biol Direct 2024; 19:63. [PMID: 39113077 PMCID: PMC11308432 DOI: 10.1186/s13062-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Epidermal stem cells (EPSCs) are essential for maintaining skin homeostasis and ensuring a proper wound healing. During in vitro cultivations, EPSCs give rise to transient amplifying progenitors and differentiated cells, finally forming a stratified epithelium that can be grafted onto patients. Epithelial grafts have been used in clinics to cure burned patients or patients affected by genetic diseases. The long-term success of these advanced therapies relies on the presence of a correct amount of EPSCs that guarantees long-term epithelial regeneration. For this reason, a deeper understanding of self-renewal and differentiation is fundamental to fostering their clinical applications.The coordination between energetic metabolism (e.g., glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and amino acid synthesis pathways), molecular signalling pathways (e.g., p63, YAP, FOXM1, AMPK/mTOR), and epigenetic modifications controls fundamental biological processes as proliferation, self-renewal, and differentiation. This review explores how these signalling and metabolic pathways are interconnected in the epithelial cells, highlighting the distinct metabolic demands and regulatory mechanisms involved in skin physiology.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Alessio Romaldini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, 00185, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
27
|
D’Arcangelo S, Di Fermo P, Diban F, Ferrone V, D’Ercole S, Di Giulio M, Di Lodovico S. Staphylococcus aureus/Staphylococcus epidermidis from skin microbiota are balanced by Pomegranate peel extract: An eco-sustainable approach. PLoS One 2024; 19:e0308211. [PMID: 39088519 PMCID: PMC11293756 DOI: 10.1371/journal.pone.0308211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The imbalance in skin microbiota is characterized by an increased number of pathogens in respect to commensal microorganisms. Starting from a skin microbiota collection, the aim of this work was to evaluate the possible role of Pomegranate (Punica granatum L.) Peel Extract (PPE) in restoring the skin microbiota balance acting on Staphylococcus spp. PPE was extracted following green methodology by using n-butane and the Dimethyl Ether (DME) solvents and analyzed for phytochemical composition and antimicrobial activity. The PPE antimicrobial action was evaluated against Gram +, Gram - bacteria and yeast reference strains and the most effective extract was tested against the main skin microbiota isolated strains. PPE extracted with DME showed the best antimicrobial action with MICs ranging from 1 to 128 mg/mL; the main active compounds were Catechin, Quercetin, Vanillic acid and Gallic acid. The PPE in DME anti-adhesive effect was examined against S. epidermidis and S. aureus mono and dual-species biofilm formation by biomass quantification and CFU/mL determination. The extract toxicity was evaluated by using Galleria mellonella larvae in vivo model. The extract displayed a significant anti-adhesive activity with a remarkable species-specific action at 4 and 8 mg/mL against S. epidermidis and S. aureus mono and dual-species biofilms. PPE in DME could represent an eco-sustainable non-toxic strategy to affect the Staphylococcal skin colonization in a species-specific way. The innovation of this work is represented by the reuse of food waste to balance skin microbiota.
Collapse
Affiliation(s)
- Sara D’Arcangelo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paola Di Fermo
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Vincenzo Ferrone
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
28
|
Armari M, Zavattaro E, Trejo CF, Galeazzi A, Grossetti A, Veronese F, Savoia P, Azzimonti B. Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update. Antibiotics (Basel) 2024; 13:697. [PMID: 39199997 PMCID: PMC11350673 DOI: 10.3390/antibiotics13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well.
Collapse
Affiliation(s)
- Marta Armari
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | | | - Alice Galeazzi
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Alessia Grossetti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| | - Federica Veronese
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy; (E.Z.); (F.V.); (P.S.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Department of Health Sciences (DiSS), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (M.A.); (A.G.); (A.G.)
| |
Collapse
|
29
|
Lee SW, Goo BL. High-Intensity Focused Ultrasound Enhances Drug Penetration into the Human Skin in the Franz Diffusion Cell. Clin Cosmet Investig Dermatol 2024; 17:1711-1721. [PMID: 39071845 PMCID: PMC11283244 DOI: 10.2147/ccid.s457145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/23/2024] [Indexed: 07/30/2024]
Abstract
Purpose High-intensity focused ultrasound (HIFU)-assisted drug delivery is a non-invasive tool to deliver drugs to targeted areas, currently used mainly for treating cancer and cardiovascular diseases. However, in terms of transdermal drug delivery, HIFU technology is still poorly understood. Accordingly, this study sought to investigate the effectiveness of HIFU on drug penetration into the skin using human skin tissues. Methods Gel-type drugs whose ingredient is glutathione were labelled with fluorescein isothiocyanate, in turn the drugs were allowed to penetrate to the human skin tissue in the Franz diffusion cell for 24 hours in control and HIFU treatment groups, and their fluorescence intensity was measured using a multiple microplate reader at one, two, six, and 24 hours after drug application. In addition, tissue slice analysis was performed in each tissue slice at 24 hours post-drug application. The % area, fluorescence intensity per area, and penetration depth of the drug were measured using a fluorescence microscope. Results The fluorescence intensity increased with time in all groups. Specifically, at 24 hours after drug application, the fluorescence intensity (a.u). of the 10-shot HIFU treatment group was significantly enhanced compared to that of the control group (p < 0.05). The tissue slice analysis demonstrated that the % area of fluorescent drug and the fluorescence intensity per area (a.u.) were all significantly increased in both HIFU treatment groups compared to the control group (p < 0.05, p < 0.001). In addition, the penetration depth (μm) also markedly rose in both HIFU treatment groups compared to the control group (p < 0.01, p < 0.05). Conclusion It was demonstrated for the first time that HIFU significantly facilitated topical drug penetration into the human skin, strongly implying that HIFU can be a useful option for transdermal drug delivery.
Collapse
Affiliation(s)
- Seung-Won Lee
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Boncheol Leo Goo
- Skin Rehabilitation Center, Naeum Dermatology and Aesthetics Clinic, Seoul, Korea
- Clinical Trial Center, Corederm Inc, Seoul, Korea
| |
Collapse
|
30
|
Lu Y, Wang Y, Wang J, Liang L, Li J, Yu Y, Zeng J, He M, Wei X, Liu Z, Shi P, Li J. A comprehensive exploration of hydrogel applications in multi-stage skin wound healing. Biomater Sci 2024; 12:3745-3764. [PMID: 38959069 DOI: 10.1039/d4bm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hydrogels, as an emerging biomaterial, have found extensive use in the healing of wounds due to their distinctive physicochemical structure and functional properties. Moreover, hydrogels can be made to match a range of therapeutic requirements for materials used in wound healing through specific functional modifications. This review provides a step-by-step explanation of the processes involved in cutaneous wound healing, including hemostasis, inflammation, proliferation, and reconstitution, along with an investigation of the factors that impact these processes. Furthermore, a thorough analysis is conducted on the various stages of the wound healing process at which functional hydrogels are implemented, including hemostasis, anti-infection measures, encouraging regeneration, scar reduction, and wound monitoring. Next, the latest progress of multifunctional hydrogels for wound healing and the methods to achieve these functions are discussed in depth and categorized for elucidation. Finally, perspectives and challenges associated with the clinical applications of multifunctional hydrogels are discussed.
Collapse
Affiliation(s)
- Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, 610003, China
| | - Jie Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yue Yu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Mingfang He
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Xipeng Wei
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhining Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
31
|
Çevik S, Altaş U, Özkars MY. The Skin Sebum and Moisture Levels of Children with Allergic Diseases: How Predictive Are They for House Dust Mite Allergy? Diagnostics (Basel) 2024; 14:1348. [PMID: 39001239 PMCID: PMC11240642 DOI: 10.3390/diagnostics14131348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
The aim was to evaluate the prediction of house dust mite allergy in children diagnosed with allergic disease based on their skin moisture and sebum levels. This is a case-control study including children with asthma, allergic rhinitis (AR), and atopic dermatitis (AD) and a healthy control group. The participants' skin moisture and sebum levels were measured non-invasively using a digital device. A total of 421 patients and 143 healthy children were included. The median value of skin moisture percentage was statistically significantly lower in asthma, AR, and AD patients compared to the control group (p < 0.001 for each). The median value of skin sebum percentage was significantly lower in asthma and AD patients compared to the control group (p = 0.002 and p = 0.003, respectively). ROC analysis was performed to assess the predictive value of skin moisture percentage for house dust mite allergy in respiratory allergic diseases (asthma and AR) and AD separately. Using a cut-off point of 35.5% for skin moisture in asthma and AR patients, the sensitivity and specificity were 81.3% and 56.5%, respectively. Although the specificity is low, the high sensitivity value is promising. The non-invasive measurement of skin sebum and moisture could provide convenience to clinicians in the diagnosis and management of allergic diseases.
Collapse
Affiliation(s)
- Seda Çevik
- Umraniye Training and Research Hospital, Department of Pediatric Allergy and Immunology, University of Health Sciences, Umraniye, 34764 Istanbul, Türkiye; (U.A.); (M.Y.Ö.)
| | | | | |
Collapse
|
32
|
Lunter D, Klang V, Eichner A, Savic SM, Savic S, Lian G, Erdő F. Progress in Topical and Transdermal Drug Delivery Research-Focus on Nanoformulations. Pharmaceutics 2024; 16:817. [PMID: 38931938 PMCID: PMC11207871 DOI: 10.3390/pharmaceutics16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ and a multifunctional interface between the body and its environment. It acts as a barrier against cold, heat, injuries, infections, chemicals, radiations or other exogeneous factors, and it is also known as the mirror of the soul. The skin is involved in body temperature regulation by the storage of fat and water. It is an interesting tissue in regard to the local and transdermal application of active ingredients for prevention or treatment of pathological conditions. Topical and transdermal delivery is an emerging route of drug and cosmetic administration. It is beneficial for avoiding side effects and rapid metabolism. Many pharmaceutical, technological and cosmetic innovations have been described and patented recently in the field. In this review, the main features of skin morphology and physiology are presented and are being followed by the description of classical and novel nanoparticulate dermal and transdermal drug formulations. The biophysical aspects of the penetration of drugs and cosmetics into or across the dermal barrier and their investigation in diffusion chambers, skin-on-a-chip devices, high-throughput measuring systems or with advanced analytical techniques are also shown. The current knowledge about mathematical modeling of skin penetration and the future perspectives are briefly discussed in the end, all also involving nanoparticulated systems.
Collapse
Affiliation(s)
- Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany;
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, 1010 Vienna, Austria;
| | - Adina Eichner
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, 06108 Halle, Germany;
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) e.V., 06108 Halle, Germany
| | - Sanela M. Savic
- Faculty of Technology in Leskovac, University of Niš, 16000 Leskovac, Serbia;
- R&D Sector, DCP Hemigal, 16000 Leskovac, Serbia
| | - Snezana Savic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK;
- Unilever R&D Colworth, Sharnbrook, Bedford MK44 1LQ, UK
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| |
Collapse
|
33
|
Schürer NY, Symanzik C, Kukshausen O, Stürmer R. Correlation of non-invasive psycho-physiological and skin-physiological measures. Skin Res Technol 2024; 30:e13745. [PMID: 38853249 PMCID: PMC11162891 DOI: 10.1111/srt.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Psychological stress alters epidermal barrier function. While intensive studies on the underlying mechanism have been performed in mice, human studies are limited. Non-invasive skin-physiology measures have not yet been directly linked to non-invasive psycho-physiological assessments. METHODS Standard measures of (I) transepidermal water loss prior to and after experimental barrier perturbation via tape stripping, (II) skin surface pH, (III) electrodermal activity, and (IV) heart rate function were taken over a 24 h time period. To document perceived stress, a standardized stress self-assessment questionnaire, namely the Trierer Inventar zum chronischen Stress (TICS), was utilized. RESULTS Twenty healthy, Caucasian (Fitzpatrick skin phototype I-II), female volunteers (21-32 years, mean age 27, SD = 3.67 years) were included in this study (random sample). Significant correlations were shown for 24 h delta transepidermal water loss changes, that is, barrier repair kinetics (sympathetic activity) and heart rate variability (parasympathetic activity). Further correlations were noted for electrodermal activity and skin surface pH. Perceived stress, as documented by the TICS questionnaire, did not correlate with psycho- and skin physiological parameters, respectively. CONCLUSION The presented approaches may provide a basis for non-invasive objective research on the correlation between psychological stressors and epidermal barrier function.
Collapse
Affiliation(s)
- Nanna Y. Schürer
- Department of DermatologyEnvironmental Medicine and Health TheoryOsnabrück UniversityOsnabrückGermany
| | - Cara Symanzik
- Department of DermatologyEnvironmental Medicine and Health TheoryOsnabrück UniversityOsnabrückGermany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at Osnabrück UniversityOsnabrückGermany
| | - Olga Kukshausen
- Department of DermatologyEnvironmental Medicine and Health TheoryOsnabrück UniversityOsnabrückGermany
| | - Ralf Stürmer
- Psyrecon Research & Consulting Institute for Applied Psychophysiological ResearchWuppertalGermany
| |
Collapse
|
34
|
Vitek M, Matjaž MG. Clinical application of hempseed or flaxseed oil-based lyotropic liquid crystals: Evaluation of their impact on skin barrier function. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:301-313. [PMID: 38815204 DOI: 10.2478/acph-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
The principal function of skin is to form an effective barrier between the human body and its environment. Impaired barrier function represents a precondition for the development of skin diseases such as atopic dermatitis (AD), which is the most common inflammatory skin disease characterized by skin barrier dysfunction. AD significantly affects patients' quality of life, thus, there is a growing interest in the development of novel delivery systems that would improve therapeutic outcomes. Herein, eight novel lyotropic liquid crystals (LCCs) were investigated for the first time in a double-blind, interventional, before-after, single-group trial with healthy adult subjects and a twice-daily application regimen. LCCs consisted of constituents with skin regenerative properties and exhibited lamellar micro-structure, especially suitable for dermal application. The short- and long-term effects of LCCs on TEWL, SC hydration, erythema index, melanin index, and tolerability were determined and compared with baseline. LCCs with the highest oil content and lecithin/Tween 80 mixture stood out by providing a remarkable 2-fold reduction in TEWL values and showing the most distinctive decrease in skin erythema levels in both the short- and long-term exposure. Therefore, they exhibit great potential for clinical use as novel delivery systems for AD treatment, capable of repairing skin barrier function.
Collapse
Affiliation(s)
- Mercedes Vitek
- 1University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, 1000 Ljubljana Slovenia
| | - Mirjam Gosenca Matjaž
- 1University of Ljubljana Faculty of Pharmacy, Department of Pharmaceutical Technology, 1000 Ljubljana Slovenia
| |
Collapse
|
35
|
Gilaberte Y, Piquero-Casals J, Schalka S, Leone G, Brown A, Trullàs C, Jourdan E, Lim HW, Krutmann J, Passeron T. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies. Photochem Photobiol 2024. [PMID: 38767119 DOI: 10.1111/php.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
The skin microbiome undergoes constant exposure to solar radiation (SR), with its effects on health well-documented. However, understanding SR's influence on host-associated skin commensals remains nascent. This review surveys existing knowledge on SR's impact on the skin microbiome and proposes innovative sun protection methods that safeguard both skin integrity and microbiome balance. A team of skin photodamage specialists conducted a comprehensive review of 122 articles sourced from PubMed and Research Gateway. Key terms included skin microbiome, photoprotection, photodamage, skin cancer, ultraviolet radiation, solar radiation, skin commensals, skin protection, and pre/probiotics. Experts offered insights into novel sun protection products designed not only to shield the skin but also to mitigate SR's effects on the skin microbiome. Existing literature on SR's influence on the skin microbiome is limited. SR exposure can alter microbiome composition, potentially leading to dysbiosis, compromised skin barrier function, and immune system activation. Current sun protection methods generally overlook microbiome considerations. Tailored sun protection products that prioritize both skin and microbiome health may offer enhanced defense against SR-induced skin conditions. By safeguarding both skin and microbiota, these specialized products could mitigate dysbiosis risks associated with SR exposure, bolstering skin defense mechanisms and reducing the likelihood of SR-mediated skin issues.
Collapse
Affiliation(s)
- Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
| | - Jaime Piquero-Casals
- Department of Dermatology, Dermik Multidisciplinary Dermatology Clinic, Barcelona, Spain
| | - Sergio Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment Unit, Israelite Hospital, Rome, Italy
| | | | | | - Eric Jourdan
- Innovation and Development, ISDIN, Barcelona, Spain
| | - Henry W Lim
- The Henry W. Lim Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Jean Krutmann
- IUF - Leibniz-Institut für umweltmedizinische Forschung, Düsseldorf, Germany
| | - Thierry Passeron
- Department of Dermatology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, Nice, France
| |
Collapse
|
36
|
Golestani P. Lipid-based nanoparticles as a promising treatment for the skin cancer. Heliyon 2024; 10:e29898. [PMID: 38698969 PMCID: PMC11064151 DOI: 10.1016/j.heliyon.2024.e29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The prevalence of skin disorders, especially cancer, is increasing worldwide. Several factors are involved in causing skin cancer, but ultraviolet (UV) light, including sunlight and tanning beds, are considered the leading cause. Different methods such as chemotherapy, radiotherapy, cryotherapy, and photodynamic therapy are mostly used for the skin cancer treatment. However, drug resistance and toxicity against cancer cells are related to these treatments. Lipid-nanoparticles have attracted significant interest as delivery systems due to non-invasive and targeted delivery based on the type of active drug. However, the stratum corneum, the outer layer of the skin, is inherently impervious to drugs. Due to their ability to penetrate the deep layers of the skin, skin delivery systems are capable of delivering drugs to target cells in a protected manner. The aim of this review was to examine the properties and applications of nanoliposomes used in the treatment and prevention of numerous types of skin cancer.
Collapse
Affiliation(s)
- Parisa Golestani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
37
|
Oh S, Kim H, Kim M, Jin X, Zheng S, Yi TH. The effects of Jawoongo soap on skin improvement. J Cosmet Dermatol 2024; 23:1862-1874. [PMID: 38275088 DOI: 10.1111/jocd.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Jawoongo is used to treat and prevent skin issues such as dry and keratinization disorders, burns, trauma, pigmentation, scarring, and inflammatory skin conditions. In this study, the efficacy and safety of 0.47% Jawoongo extract-containing soap (JAUN-CS) were assessed in terms of skin improvement effects such as cleansing, moisturizing, sebum secretion management, and skin elasticity enhancement. METHODS Twenty healthy adult men and women aged 20-60 years old took part in the study. Before and after using JAUN-CS, the participants were divided into groups, and various skin improvement effects were measured utilizing machines such as the Corneometer, Tewameter TM 300, and Visioscan. A dermatologist analyzed the product's safety in accordance with Frosch & Kligman and the Cosmetic, Toiletry, and Fragrance Association (CTFA) rules. RESULTS Using JAUN reduced the amount of base and point makeup by 25.7% and 76.7%, respectively. Also, JAUN showed a great facial exfoliation effect by removing the old and lifted skin keratins by 84.7% and 20.3%, respectively. Impurities in facial pores decreased by 58%, too. Furthermore, JAUN increased the moisture content of deep skin and skin surface by 3.5% and 74.0%, and skin elasticity by 2.8%. Skin tone, skin texture, skin radiance, and skin barrier all showed improvements of 3.3%, 20.0%, 15.0%, and 115.2%, respectively. Lastly, cleansing with JAUN successfully enhanced the condition of the youth triangle by 7.6%, while TEWL significantly decreased by 52.7%. Neither the JAUN nor the control group soap showed any adverse reactions, such as erythema or allergies, during the testing period. CONCLUSIONS The results of this study demonstrated that JAUN is safe for human use and has various skin-improving properties, making Jawoongo a promising natural material for the development of functional cosmetics in the future.
Collapse
Affiliation(s)
- Sarang Oh
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | - Hongyong Kim
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
| | - Myeongju Kim
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
| | - Xiangji Jin
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Shengdao Zheng
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
- Snowwhitefactory Co., Ltd., Seoul, Korea
| | - Tae-Hoo Yi
- College of Life Science, Kyung Hee University, Yongin-si, Gyeong-gi-do, Korea
| |
Collapse
|
38
|
Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and management of dysbiosis. Front Nutr 2024; 11:1330903. [PMID: 38706561 PMCID: PMC11069313 DOI: 10.3389/fnut.2024.1330903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
All microorganisms like bacteria, viruses and fungi that reside within a host environment are considered a microbiome. The number of bacteria almost equal that of human cells, however, the genome of these bacteria may be almost 100 times larger than the human genome. Every aspect of the physiology and health can be influenced by the microbiome living in various parts of our body. Any imbalance in the microbiome composition or function is seen as dysbiosis. Different types of dysbiosis are seen and the corresponding symptoms depend on the site of microbial imbalance. The contribution of the intestinal and extra-intestinal microbiota to influence systemic activities is through interplay between different axes. Whole body dysbiosis is a complex process involving gut microbiome and non-gut related microbiome. It is still at the stage of infancy and has not yet been fully understood. Dysbiosis can be influenced by genetic factors, lifestyle habits, diet including ultra-processed foods and food additives, as well as medications. Dysbiosis has been associated with many systemic diseases and cannot be diagnosed through standard blood tests or investigations. Microbiota derived metabolites can be analyzed and can be useful in the management of dysbiosis. Whole body dysbiosis can be addressed by altering lifestyle factors, proper diet and microbial modulation. The effect of these interventions in humans depends on the beneficial microbiome alteration mostly based on animal studies with evolving evidence from human studies. There is tremendous potential for the human microbiome in the diagnosis, treatment, and prognosis of diseases, as well as, for the monitoring of health and disease in humans. Whole body system-based approach to the diagnosis of dysbiosis is better than a pure taxonomic approach. Whole body dysbiosis could be a new therapeutic target in the management of various health conditions.
Collapse
Affiliation(s)
| | - Joao Morgadinho
- Kaye Edmonton Clinic, Alberta Health Services, Edmonton, AB, Canada
| | - Tyler Halverson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Zhao Z, Xu Z, Lv D, Rong Y, Hu Z, Yin R, Dong Y, Cao X, Tang B. Impact of the gut microbiome on skin fibrosis: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1380938. [PMID: 38695027 PMCID: PMC11061451 DOI: 10.3389/fmed.2024.1380938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Skin fibrosis is a lesion in the dermis causing to itching, pain, and psychological stress. The gut microbiome plays as an essential role in skin diseases developments. We conducted a Mendelian randomization study to determine the causal association between the gut microbiome and skin fibrosis. Methods We retrieved valid instrumental variables from the genome-wide association study (GWAS) files of the gut microbiome (n = 18,340) conducted by the MiBioGen consortium. Skin fibrosis-associated data were downloaded from the GWAS Catalog. Subsequently, a two-sample Mendelian randomization (MR) analysis was performed to determine whether the gut microbiome was related to skin fibrosis. A reverse MR analysis was also performed on the bacterial traits which were causally associated with skin fibrosis in the forward MR analysis. In addition, we performed an MR-Pleiotropy Residual Sum and Outlier analysis to remove outliers and a sensitivity analysis to verify our results. Results According to the inverse variance-weighted estimation, we identified that ten bacterial traits (Class Actinobacteria, Class Bacteroidia, family Bifidobacteriaceae, family Rikenellaceae, genus Lachnospiraceae (UCG004 group), genus Ruminococcaceae (UCG013 group), order Bacteroidales, order Bifidobacteriales, genus Peptococcus and genus Victivallis) were negatively correlated with skin fibrosis while five bacterial traits (genus Olsenella, genus Oscillospira, genus Turicibacter, genus Lachnospiraceae (NK4A136group), and genus Sellimonas) were positively correlated. No results were obtained from reverse MR analysis. No significant heterogeneity or horizontal pleiotropy was observed in MR analysis. Objective conclusion There is a causal association between the gut microbiome and skin fibrosis, indicating the existence of a gut-skin axis. This provides a new breakthrough point for mechanistic and clinical studies of skin fibrosis.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanchao Rong
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Yin
- Department of Dermatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunxian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoling Cao
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Choudhary V, Choudhary M, Bollag WB. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int J Mol Sci 2024; 25:3790. [PMID: 38612601 PMCID: PMC11011291 DOI: 10.3390/ijms25073790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.
Collapse
Affiliation(s)
- Vivek Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mrunal Choudhary
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (V.C.)
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
41
|
Dessì A, Pintus R, Fanos V, Bosco A. Integrative Multiomics Approach to Skin: The Sinergy between Individualised Medicine and Futuristic Precision Skin Care? Metabolites 2024; 14:157. [PMID: 38535317 PMCID: PMC10971992 DOI: 10.3390/metabo14030157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
The skin is a complex ecosystem colonized by millions of microorganisms, the skin microbiota, which are crucial in regulating not only the physiological functions of the skin but also the metabolic changes underlying the onset of skin diseases. The high microbial colonization together with a low diversity at the phylum level and a high diversity at the species level of the skin is very similar to that of the gastrointestinal tract. Moreover, there is an important communication pathway along the gut-brain-skin axis, especially associated with the modulation of neurotransmitters by the microbiota. Therefore, it is evident that the high complexity of the skin system, due not only to the genetics of the host but also to the interaction of the host with resident microbes and between microbe and microbe, requires a multi-omics approach to be deeply understood. Therefore, an integrated analysis, with high-throughput technologies, of the consequences of microbial interaction with the host through the study of gene expression (genomics and metagenomics), transcription (transcriptomics and meta-transcriptomics), and protein production (proteomics and meta-proteomics) and metabolite formation (metabolomics and lipidomics) would be useful. Although to date very few studies have integrated skin metabolomics data with at least one other 'omics' technology, in the future, this approach will be able to provide simple and fast tests that can be routinely applied in both clinical and cosmetic settings for the identification of numerous skin diseases and conditions. It will also be possible to create large archives of multi-omics data that can predict individual responses to pharmacological treatments and the efficacy of different cosmetic products on individual subjects by means of specific allotypes, with a view to increasingly tailor-made medicine. In this review, after analyzing the complexity of the skin ecosystem, we have highlighted the usefulness of this emerging integrated omics approach for the analysis of skin problems, starting with one of the latest 'omics' sciences, metabolomics, which can photograph the expression of the genome during its interaction with the environment.
Collapse
Affiliation(s)
| | | | | | - Alice Bosco
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, AOU Cagliari, 09124 Cagliari, Italy; (A.D.); (R.P.); (V.F.)
| |
Collapse
|
42
|
Wang Y, Wang Z, Lu Q. Microbiome dynamics in rheumatic diseases. Curr Opin Rheumatol 2024; 36:134-141. [PMID: 37976078 DOI: 10.1097/bor.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Rheumatic disease are characterized by their autoimmune nature, frequently affecting joints, bones, muscles, blood vessels, and connective tissues. The onset of these conditions typically unfolds gradually and subtly. It is noteworthy that individuals with rheumatic diseases often experience shifts in their microbiome, specifically on mucosal surfaces. The purpose of this review is to delve into the intricate interplay between the microbiome, encompassing bacteria, viruses and fungi, and its role in the development and aggravation of various rheumatic diseases. Additionally, it aims to offer insights into microbiome-centered therapeutic approaches for patients in the field of rheumatology. RECENT FINDINGS The advent of next-generation sequencing has significantly improved our understanding of microbiome changes. Numerous studies have consistently revealed a strong link between rheumatism and the microbiome, especially in the oral and gut microbiota. SUMMARY A deeper comprehension of the microbiome's connection to rheumatism holds potential for enhancing disease diagnosis and treatment. Targeted therapeutic approaches, including probiotics, fecal microbiota transplantation, and combination therapies with medications, offer promising avenues for disease management.
Collapse
Affiliation(s)
- Yiqing Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University
| | - Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University
| |
Collapse
|
43
|
Favero G, Gianò M, Franco C, Pinto D, van Noorden CJ, Rinaldi F, Rezzani R. Relation Between Reactive Oxygen Species Production and Transient Receptor Potential Vanilloid1 Expression in Human Skin During Aging. J Histochem Cytochem 2024; 72:157-171. [PMID: 38440794 PMCID: PMC10956443 DOI: 10.1369/00221554241236537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Skin sensitivity and impaired epidermal barrier function are associated with aging and are at least partly due to increased production of reactive oxygen species (ROS). Transient receptor potential vanilloid1 (TRPV1) is expressed in keratinocytes, fibroblasts, mast cells, and endothelial cells in skin. We investigated in skin biopsies of adult and elderly donors whether TRPV1 expression is involved in the skin aging process. We found that aging skin showed a strongly reduced epidermal thickness, strongly increased oxidative stress, protease expression, and mast cell degranulation and strongly increased TRPV1 expression both in epidermis and dermis. Based on our findings, the aging-related changes observed in the epidermis of the skin level are associated with increased ROS production, and hypothesized alterations in TRPV1 expression are mechanistically linked to this process.
Collapse
Affiliation(s)
- Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Caterina Franco
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubliana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs - ARTO”, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| |
Collapse
|
44
|
Han JH, Kim HS. Skin Deep: The Potential of Microbiome Cosmetics. J Microbiol 2024; 62:181-199. [PMID: 38625646 DOI: 10.1007/s12275-024-00128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024]
Abstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.
Collapse
Affiliation(s)
- Ju Hee Han
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
45
|
Sarandy MM, Gonçalves RV, Valacchi G. Cutaneous Redox Senescence. Biomedicines 2024; 12:348. [PMID: 38397950 PMCID: PMC10886899 DOI: 10.3390/biomedicines12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Our current understanding of skin cell senescence involves the role of environmental stressors (UV, O3, cigarette smoke, particulate matter, etc.), lifestyle (diet, exercise, etc.) as well as genetic factors (metabolic changes, hormonal, etc.). The common mechanism of action of these stressors is the disturbance of cellular redox balance characterized by increased free radicals and reactive oxygen species (ROS), and when these overload the intrinsic antioxidant defense system, it can lead to an oxidative stress cellular condition. The main redox mechanisms that activate cellular senescence in the skin involve (1) the oxidative damage of telomeres causing their shortening; (2) the oxidation of proteomes and DNA damage; (3) an a in lysosomal mass through the increased activity of resident enzymes such as senescence-associated β-galactosidase (SA-β-gal) as well as other proteins that are products of lysosomal activity; (4) and the increased expression of SASP, in particular pro-inflammatory cytokines transcriptionally regulated by NF-κB. However, the main targets of ROS on the skin are the proteome (oxi-proteome), followed by telomeres, nucleic acids (DNAs), lipids, proteins, and cytoplasmic organelles. As a result, cell cycle arrest pathways, lipid peroxidation, increased lysosomal content and dysfunctional mitochondria, and SASP synthesis occur. Furthermore, oxidative stress in skin cells increases the activity of p16INK4A and p53 as inhibitors of Rb and CDks, which are important for maintaining the cell cycle. p53 also promotes the inactivation of mTOR-mediated autophagic and apoptotic pathways, leading to senescence. However, these markers alone cannot establish the state of cellular senescence, and multiple analyses are encouraged for confirmation. An updated and more comprehensive approach to investigating skin senescence should include further assays of ox-inflammatory molecular pathways that can consolidate the understanding of cutaneous redox senescence.
Collapse
Affiliation(s)
- Mariáurea Matias Sarandy
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Biology, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
46
|
Chen Z, Xing F, Yu P, Zhou Y, Luo R, Liu M, Ritz U. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024; 175:27-54. [PMID: 38110135 DOI: 10.1016/j.actbio.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
47
|
Woo YR, Kim HS. Interaction between the microbiota and the skin barrier in aging skin: a comprehensive review. Front Physiol 2024; 15:1322205. [PMID: 38312314 PMCID: PMC10834687 DOI: 10.3389/fphys.2024.1322205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The interplay between the microbes and the skin barrier holds pivotal significance in skin health and aging. The skin and gut, both of which are critical immune and neuroendocrine system, harbor microbes that are kept in balance. Microbial shifts are seen with aging and may accelerate age-related skin changes. This comprehensive review investigates the intricate connection between microbe dynamics, skin barrier, and the aging process. The gut microbe plays essential roles in the human body, safeguarding the host, modulating metabolism, and shaping immunity. Aging can perturb the gut microbiome which in turn accentuates inflammaging by further promoting senescent cell accumulation and compromising the host's immune response. Skin microbiota diligently upholds the epidermal barrier, adeptly fending off pathogens. The aging skin encompasses alterations in the stratum corneum structure and lipid content, which negatively impact the skin's barrier function with decreased moisture retention and increased vulnerability to infection. Efficacious restoration of the skin barrier and dysbiosis with strategic integration of acidic cleansers, emollients with optimal lipid composition, antioxidants, and judicious photoprotection may be a proactive approach to aging. Furthermore, modulation of the gut-skin axis through probiotics, prebiotics, and postbiotics emerges as a promising avenue to enhance skin health as studies have substantiated their efficacy in enhancing hydration, reducing wrinkles, and fortifying barrier integrity. In summary, the intricate interplay between microbes and skin barrier function is intrinsically woven into the tapestry of aging. Sound understanding of these interactions, coupled with strategic interventions aimed at recalibrating the microbiota and barrier equilibrium, holds the potential to ameliorate skin aging. Further in-depth studies are necessary to better understand skin-aging and develop targeted strategies for successful aging.
Collapse
Affiliation(s)
- Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
48
|
Galvan A, Pellicciari C, Calderan L. Recreating Human Skin In Vitro: Should the Microbiota Be Taken into Account? Int J Mol Sci 2024; 25:1165. [PMID: 38256238 PMCID: PMC10816982 DOI: 10.3390/ijms25021165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.
Collapse
Affiliation(s)
- Andrea Galvan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| | - Carlo Pellicciari
- Department of Biology and Biotechnology, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.G.); (L.C.)
| |
Collapse
|
49
|
Jain A, Meshram RJ, Lohiya S, Patel A, Kaplish D. Exploring the Microbial Landscape of Neonatal Skin Flora: A Comprehensive Review. Cureus 2024; 16:e52972. [PMID: 38406113 PMCID: PMC10894447 DOI: 10.7759/cureus.52972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
This comprehensive review explores the intricate landscape of the neonatal skin microbiome, shedding light on its dynamic composition, developmental nuances, and influential factors. The neonatal period represents a critical window during which microbial colonization significantly impacts local skin health and the foundational development of the immune system. Factors such as mode of delivery and gestational age underscore the vulnerability of neonates to disruptions in microbial establishment. Key findings emphasize the broader systemic implications of the neonatal skin microbiome, extending beyond immediate health outcomes to influence susceptibility to infections, allergies, and immune-related disorders. This review advocates for a paradigm shift in neonatal care, proposing strategies to preserve and promote a healthy skin microbiome for long-term health benefits. The implications of this research extend to public health, where interventions targeting the neonatal skin microbiome could potentially mitigate diseases originating in early life. As we navigate the intersection of research and practical applications, bridging the gap between knowledge and implementation becomes imperative for translating these findings into evidence-based practices and improving neonatal well-being on a broader scale.
Collapse
Affiliation(s)
- Aditya Jain
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ankita Patel
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Divyanshi Kaplish
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
50
|
Ariffin NHM, Hasham R, Hamzah MAAM, Park CS. Skin hydration modulatory activities of Ficus deltoidea extract. Fitoterapia 2024; 172:105755. [PMID: 38000761 DOI: 10.1016/j.fitote.2023.105755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Ficus deltoidea was known for its potent antioxidant, anti-melanogenic and photoprotective skin barrier activities. These properties are contributed by its biomarkers which are vitexin and isovitexin. This study aims to optimize the yield of methanolic extraction of Ficus deltoidea leaves (EFD) and evaluate their effects on skin barrier function and hydration. For optimization, Box-Behnken design was utilized to investigate the effects of methanol concentration, sonication time, and solvent-to-sample ratio on the yields of vitexin and isovitexin in EFD. The optimal yields obtained were 32.29 mg/g for vitexin and 35.87 mg/g for isovitexin. The optimum extraction conditions were 77.66% methanol concentration, 20.03 min sonication time, and 19.88 mL/g solvent-to-sample ratio. The quantitative real-time polymerase chain reaction was utilized to measure variant marker genes of transglutaminase-1, caspase 14, ceramide synthase 3, involucrin, and filaggrin of EFD-induced keratinocyte differentiation by in vitro study. Exposure to EFD has elevated the mRNA levels of all tested marker genes by 0.7-9.2 folds. Then, in vivo efficacy study was conducted on 20 female subjects for 14 days to evaluate skin biophysical assessment of hydration. EFD topical formulation treatment successfully increased skin hydration on day 7 (43.74%) and day 14 (47.23%). In silico study by molecular docking was performed to identify intermolecular binding interactions of vitexin and isovitexin with the interested proteins of tested marker genes. The result of molecular docking to the interested proteins revealed a similar trend with real-time PCR data. In conclusion, EFD potentially enhanced the skin barrier function and hydration of human skin cells.
Collapse
Affiliation(s)
- Nor Hazwani Mohd Ariffin
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Rosnani Hasham
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Mohd Amir Asyraf Mohd Hamzah
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Chang Seo Park
- Department of Chemical and Biochemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul 100-715, Republic of Korea.
| |
Collapse
|