1
|
Saban Güler M, Arslan S, Ağagündüz D, Cerqua I, Pagano E, Berni Canani R, Capasso R. Butyrate: A potential mediator of obesity and microbiome via different mechanisms of actions. Food Res Int 2025; 199:115420. [PMID: 39658184 DOI: 10.1016/j.foodres.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Butyrate, a short-chain fatty acid, is a crucial product of gut microbial fermentation with significant implications for various metabolic and physiological processes. Dietary sources of butyrate are limited, primarily derived from the fermentation of dietary fibers by butyrate-producing gut bacteria. Butyrate exerts its effects primarily as a histone deacetylase (HDAC) inhibitor and through signaling pathways involving G protein-coupled receptors (GPCRs). Its diverse benefits include promoting gut health, enhancing energy metabolism, and potentially alleviating complications associated with obesity. However, the exact role of butyrate in obesity is still under investigation, with a limited number of human trials necessitating further research to determine its efficacy and safety profile. Moreover, butyrate impact on the gut-brain axis and its modulation of microbiome effect on behavior highlight its broader importance in regulating host physiology. A thorough understanding of the metabolic pathways and mechanisms of butyrate is essential for developing targeted interventions for metabolic disorders. Continued research is crucial to fully realize its therapeutic potential and optimize its clinical applications in human health. In summary, this review illuminates the multifaceted role of butyrate as a potential mediator of obesity and related metabolic changes.
Collapse
Affiliation(s)
- Meryem Saban Güler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Sabriye Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey.
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE Biotechnologies Research Center and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy.
| |
Collapse
|
2
|
Coppola S, Paparo L, Bedogni G, Nocerino R, Costabile D, Cuomo M, Chiariotti L, Carucci L, Agangi A, Napolitano M, Messina F, Passariello A, Berni Canani R. Effects of Mediterranean diet during pregnancy on the onset of overweight or obesity in the offspring: a randomized trial. Int J Obes (Lond) 2025; 49:101-108. [PMID: 39289583 DOI: 10.1038/s41366-024-01626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND/OBJECTIVES The PREMEDI study was designed to assess the efficacy of nutritional counseling aimed at promoting Mediterranean Diet (MD) during pregnancy on the incidence of overweight or obesity at 24 months in the offspring. METHODS PREMEDI was a parallel-arm randomized-controlled trial. 104 women in their first trimester of pregnancy were randomly assigned in a 1:1 ratio to standard obstetrical and gynecological care alone (CT) or with nutritional counseling promoting MD. Women enrolled in the MD arm were provided with 3 sessions of nutritional counseling (one session per trimester). The main outcome was the proportion of overweight or obesity among the offspring at the age of 24 months. Maternal MD-adherence and weight gain during pregnancy were also evaluated. Lastly, the evaluation of epigenetic modulation of metabolic pathways in the offspring was analyzed in cord blood. RESULTS Five women in the MD arm and 2 in the CT arm were lost to follow-up, so a total of 97 completed the study. At 24 months, children of MD mothers were less likely to have overweight or obesity than those of the CT mothers (6% vs. 30%, absolute risk difference = -24%, 95% CI -38% to -9%, p = 0.003, number needed to treat 4, 95% CI 2 to 12, per-protocol analysis). A significantly higher increase of MD-adherence during the trial was observed in the MD arm compared to the CT arm. A similar body weight gain at the end of pregnancy was observed in the two arms. The mean (SD) methylation rate of the leptin gene in cord blood was 30.4 (1.02) % and 16.9 (2.99) % in the MD and CT mothers, respectively (p < 0.0001). CONCLUSIONS MD during pregnancy could be an effective strategy for preventing pediatric overweight or obesity at 24 months. This effect involves, at least in part, an epigenetic modification of leptin expression.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Department of Primary Health Care, Internal Medicine Unit Addressed to Frailty and Aging, S. Maria delle Croci Hospital, AUSL Romagna, Viale Randi 5, 48121, Ravenna, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy
| | - Davide Costabile
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy
| | - Mariella Cuomo
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Lorenzo Chiariotti
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy
| | - Annalisa Agangi
- Neonatal Intensive Care Unit, Villa Betania Evangelical Hospital, Via Argine 604, 80147, Naples, Italy
| | - Marcello Napolitano
- Neonatal Intensive Care Unit, Villa Betania Evangelical Hospital, Via Argine 604, 80147, Naples, Italy
| | - Francesco Messina
- Neonatal Intensive Care Unit, Villa Betania Evangelical Hospital, Via Argine 604, 80147, Naples, Italy
| | - Annalisa Passariello
- Department of Pediatric Cardiology, Monaldi Hospital, Via Leonardo Bianchi, 80131, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Via Gaetano Salvatore 486, 80131, Naples, Italy.
| |
Collapse
|
3
|
Costa MADC, Silva Duarte VD, Fraiz GM, Cardoso RR, da Silva A, Martino HSD, Santos D'Almeida CTD, Ferreira MSL, Corich V, Hamaker BR, Giacomini A, Bressan J, Barros FARD. Regular Consumption of Black Tea Kombucha Modulates the Gut Microbiota in Individuals with and Without Obesity. J Nutr 2024:S0022-3166(24)01239-2. [PMID: 39732435 DOI: 10.1016/j.tjnut.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Kombucha, a fermented beverage obtained from a Symbiotic Culture of Bacteria and Yeast (SCOBY), has shown potential in modulating gut microbiota, although no clinical trials have been done. OBJECTIVE We aimed to evaluate the effects of regular black tea kombucha consumption on intestinal health in individuals with and without obesity. METHODS A pre-post clinical intervention study was conducted lasting eight weeks. Forty-six participants were allocated into two groups: normal weight + black tea kombucha (n=23); and obese + black tea kombucha (n=23). Blood, urine, and stool samples were collected at baseline (T0) and after 8 weeks of intervention (T8). RESULTS A total of 145 phenolic compounds were identified in the kombucha, primarily flavonoids (81%) and phenolic acids (19%). Kombucha favored commensal bacteria such as Bacteroidota and Akkermanciaceae, especially in the obese group. Subdoligranulum, a butyrate producer, also increased in the obese group after kombucha consumption (p=0.031). Obesity-associated genera Ruminococcus and Dorea were elevated in the obese group at baseline (p<0.05) and reduced after kombucha consumption, becoming similar to the normal weight group (Ruminococcus: obese T8 x normal weight T8: p=0.27; Dorea: obese T8 x normal weight T0: p=0.57; obese T8 x normal weight T8: p=0.32). Fungal diversity increased, with a greater abundance of Saccharomyces in both groups and reductions in Exophiala and Rhodotorula, particularly in the obese group. Pichia and Dekkera, key microorganisms in kombucha, were identified as biomarkers after the intervention. CONCLUSIONS Regular kombucha consumption positively influenced gut microbiota in both normal and obese groups, with more pronounced effects in the obese group, suggesting that it may be especially beneficial for those individuals. REGISTRATION ID AND URL This study is registered on the Brazilian Clinical Trial Registry - ReBEC (UTN code U1111-1263-9550); available at . CLINICAL TRIAL STATEMENT This study was conducted according to the guidelines established in the Declaration of Helsinki and the procedures were approved by the National Research Ethics Committee - CONEP/Brazil (registration no. 3.948.033). Written informed consent was obtained from all subjects. This study is registered on the Brazilian Clinical Trial Registry (ReBEC), available at (UTN code U1111-1263-9550).
Collapse
Affiliation(s)
- Mirian Aparecida de Campos Costa
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group - Department of Food Science and Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil; Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil; Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - Rodrigo Rezende Cardoso
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group - Department of Food Science and Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Alessandra da Silva
- Public Health Epidemiology Graduate Program, Environmental and Health Education Laboratory. Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro - RJ, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Frederico Augusto Ribeiro de Barros
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group - Department of Food Science and Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
4
|
Huang S, Zhang Z, Li C, Luo Y, Zhang G. Diethyl ethylphosphonate retardants disturbed the gut microbiome and metabolite SCFAs in vitro based on simulator of the human intestinal microbial ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125064. [PMID: 39366448 DOI: 10.1016/j.envpol.2024.125064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Diethyl ethylphosphonate (DEEP) as a novel organophosphorus flame retardant received increasing attention and its structure was discovered. But there are currently insufficient studies on how DEEP exposure affects the gut microbiome. In this study, the effects of DEEP on the structure and function of the human gut microbiota were examined using the SHIME system. Results from high-throughput sequencing of the 16S rRNA gene show that the high dose DEEP exposure reduced the Shannon and Simpson index in the transverse and descending colon. The Bacillota had the highest proportion while the proportion of Proteobacteria gradually decreased at the phylum level. The abundance of Escherichia, Prevotella, and Bilophila at the genus level increased with increasing doses of DEEP exposure. On the contrary, the abundance of Megasphaera, Klebsiella, and Phascolarctobacterium decreased. The short-chain fatty acids had a significant shift. With increasing doses of DEEP exposure, the concentration of acetic acid and propionic acid increased, while the concentration of butyric acid reached the highest at the medium dose of exposure. In addition, Bilophila, Psychrobacter, Escherichia, and Nostoe showed strong beneficial associations with acetic and propionic acids under DEEP exposure. Phocaeicola, Agathobacter, Klebsiella, Megasphaera, Phascolarctobacterium, and Bacteroides were negatively association with acetic and propionic acids. In a word, the study verified that exposure to different doses of DEEP can cause changes in the composition of the gut microbiome and metabolite SCFAs, which provides ideas for the investigation of other potential hazards of DEEP on human beings.
Collapse
Affiliation(s)
- Shuyang Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Cong Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yasong Luo
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Horn PA, Zeni ALB, Herkenhoff ME, Curbani L, Pereira Gonçalves GH, Rutkoski CF, Israel NG, de Almeida EA. Brewer's spent yeast improves human gut microbiota and ameliorates clinical blood parameters: A randomized, double-blind, placebo-controlled trial. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2024; 32:100442. [DOI: 10.1016/j.bcdf.2024.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Huang W, Wang J, Xiao Z, Lin J, Tan Z, Sun G. Lingguizhugan decoction alleviates obesity in rats on a high-fat diet through the regulation of lipid metabolism and intestinal microbiota. Front Microbiol 2024; 15:1462173. [PMID: 39606109 PMCID: PMC11600314 DOI: 10.3389/fmicb.2024.1462173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background Individuals with obesity often experience elevated blood lipid levels, leading to a chronic low-grade inflammatory state, exacerbating liver oxidative stress, and increasing the risk of various metabolic diseases. Recent evidence suggests that intestinal microbiota and short-chain fatty acids (SCFAs) play crucial roles in the development and progression of obesity. While the mechanisms by which Lingguizhugan decoction (LGZGD) intervenes in obesity by improving lipid metabolism, enhancing insulin sensitivity, and reducing inflammatory responses are well-documented, its potential in intestinal microbiota and SCFAs remains unclear. This study aims to explore the impact of LGZGD on high-fat diet (HFD) induced obesity in rats and its regulatory effects on intestinal microbiota and SCFAs, providing new insights for obesity prevention and treatment. Methods Fifty-one male SD rats were randomly divided into groups, with six in the normal control group (NC) receiving a ddH2O treatment and a standard diet. The remaining 45 rats were fed a high-fat diet (HFD) using D12451 feed. After 10 weeks, the rats on the HFD gained 20% more weight than the NC group, confirming the successful modeling of obesity. These rats were then randomly divided into the following groups: ddH2O high-fat diet model group (MC), 20 mg/kg/day Orlistat positive control group (Orlistat), 1.62 g/kg/day low-dose LGZGD group (LGZGL), and 3.24 g/kg/day high-dose LGZGD group (LGZGH) for 8 weeks. We evaluated changes in body weight, serum total cholesterol (TC), total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) levels. Fat and liver tissues were collected for pathological analysis. Intestinal contents were aseptically collected for 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) to assess gut microbiota and SCFA levels. Results LGZGD reduces body weight, TC, TG, LDL, and HDL levels, significantly reducing hepatic steatosis. Besides, it restored the richness and diversity of gut microbiota, which was reduced by HFD, altering the overall structure. Specifically, LGZGD significantly promoted the growth of Muribaculaceae and Dubosiella while inhibiting the growth of Christensenellaceae_R_7_group and UCG_005. It also restricts the production of caproic acid. Correlation analysis indicated positive correlations: Muribaculaceae with Butyric acid and Isovaleric acid; UCG_005 with TC, LDL, and HDL; and Christensenellaceae_R_7_group with TC and LDL. Conclusion LGZGD increased the abundance of beneficial gut microbiota in HFD-induced obese rats, improved gut microbiota dysbiosis, and inhibited the increase in caproic acid content. These results suggest that LGZGD can mitigate HFD-induced obesity, and its active components warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Liu X, Qin K, Wang C, Sun X, Li Y, Liu Y, Yang X. Butyric acid reduced lipid deposition in immortalized chicken preadipocyte by inhibiting cell proliferation and differentiation. Poult Sci 2024; 103:104171. [PMID: 39151213 PMCID: PMC11375136 DOI: 10.1016/j.psj.2024.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
The hyperplasia and hypertrophy of preadipocytes were closely related to lipid deposition in animals. Butyric acid was reported to be involved in lipid metabolism. The aim of the current study was to investigate the effect of butyric acid on the proliferation and differentiation of the immortalized chicken preadipocyte 2 (ICP2). ICP2 were treated respectively with 12mM butyric acid for 48h in proliferation trial and 4mM butyric acid plus 200 μM oleic acid for 3 d in differentiation trial. For the proliferation trial, RNA-seq analysis revealed that 2039 genes were significantly up-regulated and 780 genes were significantly down-regulated with 12 mM butyric acid after 48 h treatment. Concurrently, Cell cycle, DNA replication and p53 signaling pathways were down-regulated in Butyric acid group. More importantly, 12 mM butyric acid restrained the expression of cell proliferation genes such as PCNA, CDK1 and CDK2 in Butyric acid group (P < 0.05), and the protein expression levels of PCNA and CDK1 were also significantly decreased (P < 0.05). The Oil red staining revealed a fewer presence of red fat droplets in ICP2 following treatment with 4 mM butyric acid, accompanied by decreased levels of total cholesterol (TC) and triglycerides (TG). RNA-seq analysis shown that the number of up and down-regulated genes were 2095 and 1042 respectively in OAB group (oleic acid+butyric acid) when compared with OA group (oleic acid). Meanwhile the AMPK signaling pathway, FOXO signaling pathway and focal adhesion were significantly enriched in OAB group. Additionally, 4 mM butyric acid inhibited the expression of lipid differentiation genes including FABP4, C/EBPα, PPARγ and LPL in OAB group (P < 0.05), as well as lipogenesis proteins such as FABP4, C/EBP-α and PPARγ (P < 0.05). In conclusion, 12 mM butyric acid effectively inhibited the proliferation of ICP2 by slowing down cell cycle progression, while 4 mM butyric acid alleviated lipid deposition by reducing the production of lipid droplets through inhibiting the expression of lipid differentiation marker genes and proteins.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
9
|
Bianco I, Ferrara C, Romano F, Loperfido F, Sottotetti F, El Masri D, Vincenti A, Cena H, De Giuseppe R. The Influence of Maternal Lifestyle Factors on Human Breast Milk Microbial Composition: A Narrative Review. Biomedicines 2024; 12:2423. [PMID: 39594990 PMCID: PMC11592219 DOI: 10.3390/biomedicines12112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Human breast milk (HBM) is considered the gold standard for infant nutrition due to its optimal nutrient profile and complex composition of cellular and non-cellular components. Breastfeeding positively influences the newborn's gut microbiota and health, reducing the risk of conditions like gastrointestinal infections and chronic diseases (e.g., allergies, asthma, diabetes, and obesity). Research has revealed that HBM contains beneficial microbes that aid gut microbiota maturation through mechanisms like antimicrobial production and pathogen exclusion. The HBM microbiota composition can be affected by several factors, including gestational age, delivery mode, medical treatments, lactation stage, as well as maternal lifestyle habits (e.g., diet, physical activity, sleep quality, smoking, alcohol consumption, stress level). Particularly, lifestyle factors can play a significant role in shaping the HBM microbiota by directly modulating the microbial composition or influencing the maternal gut microbiota and influencing the HBM microbes through the enteromammary pathway. This narrative review of current findings summarized how maternal lifestyle influences HBM microbiota. While the influence of maternal diet on HBM microbiota is well-documented, indicating that dietary patterns, especially those rich in plant-based proteins and complex carbohydrates, can positively influence HBM microbiota, the impact of other lifestyle factors is poorly investigated. Maintaining a healthy lifestyle during pregnancy and breastfeeding is crucial for the health of both mother and baby. Understanding how maternal lifestyle factors influence microbial colonization of HBM, along with their interactions and impact, is key to developing new strategies that support the beneficial maturation of the infant's gut microbiota.
Collapse
Affiliation(s)
- Irene Bianco
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Chiara Ferrara
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Romano
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Sottotetti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Dana El Masri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Alessandra Vincenti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
- Clinical Nutrition Unit, General Medicine, Istituti Clinici Scientifici (ICS) Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 27100 Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| |
Collapse
|
10
|
Zhao J, Alimu A, Li Y, Lin Z, Li J, Wang X, Wang Y, Lv G, Lin H, Lin Z. Potential Anti-Obesity Effect of Hazel Leaf Extract in Mice and Network Pharmacology of Selected Polyphenols. Pharmaceuticals (Basel) 2024; 17:1349. [PMID: 39458990 PMCID: PMC11510286 DOI: 10.3390/ph17101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity is gradually becoming a widespread health problem, and treatment using natural compounds has seen an increasing trend. As a by-product of hazelnut, hazel leaf is usually disposed of as waste, but it is widely used in traditional and folk medicines around the world. Aim of this study: Based on previous studies, the effects of the regulation of lipid metabolism and the mechanism of hazel leaf polyphenol extraction obesity were investigated. Methods: In this study, a high-fat diet-fed mouse model of obesity and 3T3-L1 preadipocytes were established. The ameliorative effects of the hazel leaf polyphenol extract on obesity and the regulating lipid metabolisms were explored based on network pharmacology, gut microbiota, and molecular docking. Results: Network pharmacology showed that hazel leaf polyphenols may play a role by targeting key targets, including PPARγ, and regulating the PPAR signaling pathway. They significantly improved body weight gain, the liver index, and adiposity and lipid levels; regulated the gut microbiota and short-chain fatty acid contents; down-regulated the expression of lipid synthesis proteins SREBP1c, PPARγ, and C/EBP-α; and up-regulated the expression of p-AMPK in obese mice. They inhibited the differentiation of 3T3-L1 cells, and the expression of related proteins is consistent with the results in vivo. The molecular docking results indicated that gallic acid, quercetin-3-O-beta-D-glucopyranoside, quercetin, myricetin, and luteolin-7-O-glucoside in the hazel leaf polyphenol extract had strong binding activities with PPARγ, C/EBP-α, and AMPK. Conclusions: The results demonstrate that the hazel leaf polyphenol extract can improve obesity by regulating lipid metabolism, which provides a valuable basis for developing health products made from hazel leaf polyphenols in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| |
Collapse
|
11
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zhang R, Li Q, Gu Y, Liao W. Harnessing the Power of Fermented Tea to Improve Gut Microbiota and Combat Obesity Epidemic. BIOLOGY 2024; 13:779. [PMID: 39452088 PMCID: PMC11504357 DOI: 10.3390/biology13100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The global rise in obesity rates has prompted a thorough evaluation of dietary strategies that may alleviate this metabolic issue. Fermented tea, a beverage rich in polyphenols and catechins, has emerged as a viable therapeutic option for obesity management. This review discusses the role of fermented tea in modulating the gut microbiome, a critical factor in energy regulation and obesity. We explore how the bioactive components in fermented tea influence gut health and their implications for metabolic health. Fermented tea may inhibit weight gain and fat accumulation in obese animal models, likely by promoting beneficial bacteria and suppressing harmful species. Changes in the production of short-chain fatty acids and improvements in gut barrier integrity are linked to enhanced insulin sensitivity and reduced inflammatory markers, essential for effective obesity management. However, barriers remain in applying these findings in clinical settings, such as the need for standardized fermentation techniques and accurate dosage assessments. This review underscores the therapeutic potential of fermented tea in obesity treatment and advocates for further research to enhance its integration with public health initiatives.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiling Li
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxuan Gu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
13
|
Zhang L, Zhu T, Wang Y, Zhang B, Zhang H, Han L, Liu E, Fu Z. Effects of in vitro simulated digestion and fecal fermentation on the structure and regulating the glucose and lipid activity of a polysaccharide from Mori Folium. Int J Biol Macromol 2024; 280:135595. [PMID: 39276886 DOI: 10.1016/j.ijbiomac.2024.135595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mori folium, as a homologous drug-food, has hypoglycemic and lipid-lowering activity. Polysaccharides are the main bioactive ingredient of the Mori folium that exhibit diverse biological activities. In this study, a homogeneous polysaccharide (MP4) was purified and characterized from Mori folium. The changes of MP4 affected by saliva, simulated gastrointestinal juice, and human fecal fermentation, including physicochemical property or its bioactivity, were systematically investigated. Meanwhile, the influence of fermentation on the bioactivity were evaluated. The results showed that the backbone of MP4 is mainly composed of →4)-α-D-GalpA-(1→ residues. The molecular weight, the levels of reducing sugar content and free monosaccharides of MP4 exhibited no significant differences indicating that gastrointestinal digestion has a minimal effect on the physicochemical characteristics of MP4. However, during in vitro gut microbiota fermentation, MP4 are significantly degraded and utilized by gut microbiota, showing increased the production of short-chain fatty acids, notably acetic acid and propionic acid. The relative abundance of beneficial bacteria such as Bacteroidetes and Actinobacteria were significantly increased, whereas the levels of pathogenic bacteria such as Fusobacteria and Megamonas were significantly decreased, which changed the composition of the gut microbiota. The Firmicutes/Bacteroides ratio was also decreased significantly. Interestingly, after in vitro fermentation, the α-glucosidase inhibitory activity was increased, the lipase inhibitory activity and cholesterol adsorption activity was decreased. Correlation analysis showed that the relative abundance of some bacteria was significantly correlated with the bioactivities. These results provide a basis for the development of Mori folium polysaccharides as functional probiotic products.
Collapse
Affiliation(s)
- Lingyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Tongtong Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China
| | - Ying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai district, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
14
|
Li W, Tang H, Xue K, Ying T, Wu M, Qu Z, Dong C, Jin T, Brunius C, Hallmans G, Åman P, Johansson A, Landberg R, Liu Y, He G. Personalized Microbial Fingerprint Associated with Differential Glycemic Effects of a Whole Grain Rye Intervention on Chinese Adults. Mol Nutr Food Res 2024; 68:e2400274. [PMID: 39091068 DOI: 10.1002/mnfr.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Indexed: 08/04/2024]
Abstract
SCOPE This study aims to identify the gut enterotypes that explain differential responses to intervention with whole grain rye by proposing an "enterotype - metabolic" model. METHODS AND RESULTS A 12-week randomized controlled trial is conducted in Chinese adults, with 79 subjects consuming whole grain products with fermented rye bran (FRB) and 77 consuming refined wheat products in this exploratory post-hoc analysis. Responders or non-responders are identified according to whether blood glucose decreased by more than 10% after rye intervention. Compared to non-responders, responders in FRB have higher baseline Bacteroides (p < 0.001), associated with reduced blood glucose (p < 0.001), increased Faecalibacterium (p = 0.020) and Erysipelotrichaceae_UCG.003 (p = 0.022), as well as deceased 7β-hydroxysteroid dehydrogenase (p = 0.033) after intervention. The differentiated gut microbiota and metabolites between responders and non-responders after intervention are enriched in aminoacyl-tRNA biosynthesis. CONCLUSION The work confirms the previously suggested importance of microbial enterotypes in differential responses to whole grain interventions and supports taking enterotypes into consideration for improved efficacy of whole grain intervention for preventing type 2 diabetes. Altered short-chain fatty acids and bile acid metabolism might be a potential mediator for the beneficial effects of whole grain rye on glucose metabolism.
Collapse
Affiliation(s)
- Wenyun Li
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai, 200032, China
| | - Kun Xue
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Tao Ying
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Min Wu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Zheng Qu
- Department of Gastroenterology, Zhongye Hospital, Shanghai, 200003, China
| | - Chenglin Dong
- Department of Clinical Laboratory, Zhongye Hospital, Shanghai, 200003, China
| | - Taiyi Jin
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Carl Brunius
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
| | - Per Åman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Anders Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, 901 87, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| |
Collapse
|
15
|
Chen S, Zeng Q, Cai X, Xue J, Yin G, Song P, Tang L, Klein C, Tacke F, Guillot A, Liu H. Multiomics analyses decipher intricate changes in the cellular and metabolic landscape of steatotic livers upon dietary restriction and sleeve gastrectomy. Int J Biol Sci 2024; 20:4438-4457. [PMID: 39247824 PMCID: PMC11380448 DOI: 10.7150/ijbs.98362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic, progressive liver disease that encompasses a spectrum of steatosis, steatohepatitis (or MASH), and fibrosis. Evidence suggests that dietary restriction (DR) and sleeve gastrectomy (SG) can lead to remission of hepatic steatosis and inflammation through weight loss, but it is unclear whether these procedures induce distinct metabolic or immunological changes in MASLD livers. This study aims to elucidate the intricate hepatic changes following DR, SG or sham surgery in rats fed a high-fat diet as a model of obesity-related MASLD, in comparison to a clinical cohort of patients undergoing SG. Single-cell and single-nuclei transcriptome analysis, spatial metabolomics, and immunohistochemistry revealed the liver landscape, while circulating biomarkers were measured in serum samples. Artificial intelligence (AI)-assisted image analysis characterized the spatial distribution of hepatocytes, myeloid cells and lymphocytes. In patients and experimental MASLD rats, SG improved body mass index, circulating liver injury biomarkers and triglyceride levels. Both DR and SG attenuated liver steatosis and fibrosis in rats. Metabolism-related genes (Ppara, Cyp2e1 and Cyp7a1) were upregulated in hepatocytes upon DR and SG, while SG broadly upregulated lipid metabolism on cholangiocytes, monocytes, macrophages, and neutrophils. Furthermore, SG promoted restorative myeloid cell accumulation in the liver not only ameliorating inflammation but activating liver repair processes. Regions with potent myeloid infiltration were marked with enhanced metabolic capacities upon SG. Additionally, a disruption of periportal hepatocyte functions was observed upon DR. In conclusion, this study indicates a dynamic cellular crosstalk in steatotic livers of patients undergoing SG. Notably, PPARα- and gut-liver axis-related processes, and metabolically active myeloid cell infiltration indicate intervention-related mechanisms supporting the indication of SG for the treatment of MASLD.
Collapse
Affiliation(s)
- Shuai Chen
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Qinghe Zeng
- Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris 75014, France
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | | | - Jiaming Xue
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Guo Yin
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Peng Song
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Liming Tang
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75014, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| | - Hanyang Liu
- Department of General Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin 13353, Germany
| |
Collapse
|
16
|
Cao X, Zolnikova OY, Maslennikov RV, Poluektova EA, Bueverova EL, Reshetova MS, Zharkova MS, Ivashkin VT. Metabolic Profiles of the Gut Microbiota in Patients with Different Stages of Metabolism Dysfunction-Associated Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 34:64-74. [DOI: 10.22416/1382-4376-2024-34-4-64-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Aim: to study the metabolic activity of the intestinal microbiota depending on the stage of metabolic dysfunction-associated fatty liver disease (MAFLD). Materials and methods. The study included 85 patients with MAFLD (27 patients with steatosis without steatohepatitis and fibrosis, 42 patients with steatohepatitis, 16 patients with cirrhosis as an outcome of MAFLD, Child — Pugh class A–B) and 20 healthy people who formed the control group. The level and spectrum of short-chain fatty acids (SCFA) were determined by gas-liquid chromatography. Results. It was found that patients with MAFLD at the stage of steatosis and cirrhosis of the liver have unidirectional changes in the metabolic activity of the intestinal microbiota. We established a decrease in the absolute concentrations of SCFA — their total content, the level of acetate, propionate, butyrate, a decrease in the level of isoacids. The SCFA profiles showed an increase in the proportion of acetate and a decrease in propionate and butyrate. Moreover, changes in the named parameters of SCFAs are aggravated with progression to liver cirrhosis. At the stage of steatohepatitis, we identified two subgroups of patients with different levels of metabolic activity of the microbiota. Patients whose microbiota metabolism for SCFA production was high had correspondingly elevated SCFA levels. And, on the contrary, patients in whom the metabolic activity of the microbiota was reduced were characterized by a steady decrease in SCFAs and disease progression to liver cirrhosis. In the study, we showed an inverse correlation between the calculated prognostic indices of NFS and FIB-4, elastography values with the total level of SCFA, the level of acetate, propionate, butyrate. Thus, a decrease in the content of SCFA for patients with MAFLD can be considered as a prognostic marker of an unfavorable course of liver disease.
Collapse
Affiliation(s)
- X. Cao
- I.M. Sechenov First Moscow University (Sechenov University)
| | | | | | | | | | | | - M. S. Zharkova
- I.M. Sechenov First Moscow University (Sechenov University)
| | - V. T. Ivashkin
- I.M. Sechenov First Moscow University (Sechenov University)
| |
Collapse
|
17
|
Bai M, Huang Z, Zheng X, Hou M, Zhang S. Polysaccharides from Trametes versicolor as a Potential Prebiotic to Improve the Gut Microbiota in High-Fat Diet Mice. Microorganisms 2024; 12:1654. [PMID: 39203496 PMCID: PMC11356736 DOI: 10.3390/microorganisms12081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Polysaccharides derived from Trametes versicolor have been found to exhibit hypolipidemic activity in hyperlipidemic mice, but the mechanism by which they modulate intestinal flora is still unclear. Currently, this study aimed to investigate the regulatory effects of extracellular (EPTV) and intracellular polysaccharides from T. versicolor (IPTV) on the dysbiosis of intestinal flora in mice fed a high-fat diet (HFD). The results showed that the oral administration of T. versicolor polysaccharides significantly ameliorated lipid accumulation and steatosis in hepatocytes. The gut dysbiosis in the HFD mice was characterized by a decrease in abundance and diversity of bacteria and an increase in the Firmicutes/Bacteroidetes ratio. However, T. versicolor polysaccharides attenuated these changes and reduced the relative abundance of bile-salt-hydrolase (BSH)-producing bacteria, such as Bacillus, Enterococcus, Bifidobacterium, and Lactococcus. It is noteworthy that T. versicolor polysaccharides also restored the disorganization of intestinal fungi in HFD mice, with EPTV treatment leading to a higher relative abundance of Basidiomycota and Ascomycota compared to IPTV. Additionally, T. versicolor polysaccharides enhanced the growth of butyrate-producing bacteria via the buk and but pathways, accompanied by an increase in short-chain fatty acids (SCFAs), especially butyrate. IPTV also increased the expression of G-protein-coupled receptors 41 (GPR41) and 43 (GPR43) by 40.52% and 113.24% each, as compared to 62.42% and 110.28%, respectively, for EPTV. It is suggested that IPTV and EPTV have the potential to counteract hyperlipidemia-associated intestinal flora disorders and improve lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Song Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
18
|
Cui X, Anatolevna ST, Wang Y. Deciphering Blood Flow Restriction Training to Aid Lipid Lowering in Obese College Students through Untargeted Metabolomics. Metabolites 2024; 14:433. [PMID: 39195529 DOI: 10.3390/metabo14080433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Objective: The aim of this study was to observe the lipid-lowering effects of blood flow restriction training (BFR) combined with moderate-intensity continuous training (MICT) in obese college students by observing lipid-lowering hormones and untargeted metabolomics. (2) Methods: In this study, 14 obese college students were convened into three groups-MICT, MICT+BFR, and high-intensity interval training (HIIT)-for a crossover experiment. Blood was drawn before and after exercise for the analysis of lipolytic agents and untargeted metabolomics. The study used a paired t-test and ANOVA for statistical analyses. (3) Results: The lipolytic agent results showed that MICT+BFR was superior to the other two groups in terms of two agents (p = 0.000 and p = 0.003), namely, GH and IL-6 (difference between before and after testing: 10,986.51 ± 5601.84 and 2.42 ± 2.49, respectively), and HIIT was superior to the other two groups in terms of one agent (p = 0.000), i.e., EPI (22.81 ± 16.12). No advantage was observed for MICT. The metabolomics results showed that, compared to MICT, MICT+BFR was associated with the upregulated expression of xanthine, succinate, lactate, N-lactoylphenylalanine, citrate, ureido acid, and myristic acid after exercise, with the possibility of the involvement of the citric acid cycle, alanine, aspartic acid, glutamate metabolism, butyric acid metabolism, and the histidylate metabolism pathway. (4) Conclusions: The superior lipid-lowering effect of MICT+BFR over MICT in a group of obese college students may be due to the stronger activation of GH and IL-6 agents, with the citric acid cycle and alanine, aspartate, and glutamate metabolic pathways being associated with this type of exercise.
Collapse
Affiliation(s)
- Xianyou Cui
- Zhejiang Guang Sha Vocational and Technical University of Construction, No.1 Guangfu East Street, Dongyang 322103, China
- Moscow State Academy of Physical Education, Liubertsy District, Malakhovka, Shosseynaya St. 33, 140030 Moscow, Russia
| | - Sidorenko Tatiana Anatolevna
- Moscow State Academy of Physical Education, Liubertsy District, Malakhovka, Shosseynaya St. 33, 140030 Moscow, Russia
- Ryazan State University Named for S. A. Yesenin, St. Svobody, 46, 390000 Ryazan, Russia
| | - Yu Wang
- Moscow State University of Sport and Tourism, Kirovogradskaya Street, 21, Building 1 (South Campus), 117519 Moscow, Russia
| |
Collapse
|
19
|
Kattel A, Aro V, Lahtvee P, Kazantseva J, Jõers A, Nahku R, Belouah I. Exploring the resilience and stability of a defined human gut microbiota consortium: An isothermal microcalorimetric study. Microbiologyopen 2024; 13:e1430. [PMID: 39115291 PMCID: PMC11307317 DOI: 10.1002/mbo3.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 08/11/2024] Open
Abstract
The gut microbiota significantly contributes to human health and well-being. The aim of this study was to evaluate the stability and resilience of a consortium composed of three next-generation probiotics (NGPs) candidates originally found in the human gut. The growth patterns of Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Faecalibacterium prausnitzii were studied both individually and consortium. The growth kinetics of Akkermansia muciniphila (A. muciniphila), Bacteroides thetaiotaomicron (B. thetaiotaomicron), and Faecalibacterium prausnitzii (F. prausnitzii) were characterized both individually and in consortium using isothermal microcalorimetry and 16S ribosomal RNA next-generation sequencing. The consortium reached stability after three passages and demonstrated resilience to changes in its initial composition. The concentration of butyrate produced was nearly twice as high in the consortium compared to the monoculture of F. prausnitzii. The experimental conditions and methodologies used in this article are a solid foundation for developing further complex consortia.
Collapse
Affiliation(s)
- Anna Kattel
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Bioprocess OptimizationCenter of Food and Fermentation TechnologiesTallinnEstonia
| | - Valter Aro
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Cell BiologyUniversity of Tartu, Institute of TechnologyTartuEstonia
| | | | | | - Arvi Jõers
- Cell BiologyUniversity of Tartu, Institute of TechnologyTartuEstonia
| | - Ranno Nahku
- Bioprocess OptimizationCenter of Food and Fermentation TechnologiesTallinnEstonia
| | - Isma Belouah
- Bioprocess OptimizationCenter of Food and Fermentation TechnologiesTallinnEstonia
- Cell BiologyUniversity of Tartu, Institute of TechnologyTartuEstonia
| |
Collapse
|
20
|
Hou C, Shi H, Xiao J, Song X, Luo Z, Ma X, Shi L, Wei H, Li J. Pomegranate Juice Supplemented with Inulin Modulates Gut Microbiota and Promotes the Production of Microbiota-Associated Metabolites in Overweight/Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14663-14677. [PMID: 38887904 DOI: 10.1021/acs.jafc.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pomegranate juice (PJ) and inulin have been reported to ameliorate diet-induced metabolic disorders by regulating gut microbiota dysbiosis. However, there was a lack of clinical evidence for the combined effects of PJ and inulin on regulating gut microbiota in individuals with metabolic disorders. A double-blind, parallel, randomized, placebo-controlled trial was conducted, and 68 overweight/obese individuals (25 ≤ BMI ≤ 35 kg/m2) were randomly assigned to receive 200 mL/d PJ, PJ supplemented with inulin, or placebo for 3 weeks. Our results showed that PJ and PJ+inulin did not significantly alter the levels of anthropometric and blood biochemical indicators after 3 weeks of treatment. However, there was an increasingly significant impact from placebo to PJ to PJ+inulin on the composition of gut microbiota. Detailed bacterial abundance analysis further showed that PJ+inulin treatment more profoundly resulted in significant changes in the abundance of gut microbiota at each taxonomic level than PJ. Moreover, PJ+inulin treatment also promoted the production of microbiota-associated short-chain fatty acids and pomegranate polyphenol metabolites, which correlated with the abundance of the bacterial genus. Our results suggested that PJ supplemented with inulin modulates gut microbiota composition and thus promotes the production of microbiota-associated metabolites that exert potential beneficial effects in overweight/obese subjects.
Collapse
Affiliation(s)
- Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Haidan Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyu Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Zhuoting Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Hongliang Wei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
21
|
Quinn-Bohmann N, Wilmanski T, Sarmiento KR, Levy L, Lampe JW, Gurry T, Rappaport N, Ostrem EM, Venturelli OS, Diener C, Gibbons SM. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut. Nat Microbiol 2024; 9:1700-1712. [PMID: 38914826 DOI: 10.1038/s41564-024-01728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024]
Abstract
Microbially derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. Here we use a microbial community-scale metabolic modelling (MCMM) approach to predict individual-specific SCFA production profiles to assess the impact of different dietary, prebiotic and probiotic inputs. We evaluate the quantitative accuracy of our MCMMs using in vitro and ex vivo data, plus published human cohort data. We find that MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic and probiotic interventions aimed at optimizing SCFA production in the gut. Our model represents an approach to direct gut microbiome engineering for precision health and nutrition.
Collapse
Affiliation(s)
- Nick Quinn-Bohmann
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | | | | | - Lisa Levy
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Thomas Gurry
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Myota GmbH, Berlin, Germany
| | - Noa Rappaport
- Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA, USA
| | - Erin M Ostrem
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA.
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Manzo R, Gallardo-Becerra L, Díaz de León-Guerrero S, Villaseñor T, Cornejo-Granados F, Salazar-León J, Ochoa-Leyva A, Pedraza-Alva G, Pérez-Martínez L. Environmental Enrichment Prevents Gut Dysbiosis Progression and Enhances Glucose Metabolism in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:6904. [PMID: 39000013 PMCID: PMC11241766 DOI: 10.3390/ijms25136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome. C57BL/6 male mice with obesity and metabolic syndrome, continuously fed with an HFD, were exposed to EE. We analyzed the gut microbiota of the mice by sequencing the 16s rRNA gene at different intervals, including on day 0 and 12 and 24 weeks after EE exposure. Fasting glucose levels, glucose tolerance, insulin resistance, food intake, weight gain, lipid profile, hepatic steatosis, and inflammatory mediators were evaluated in serum, adipose tissue, and the colon. We demonstrate that EE intervention prevents the progression of HFD-induced dysbiosis, reducing taxa associated with metabolic syndrome (Tepidimicrobium, Acidaminobacteraceae, and Fusibacter) while promoting those linked to healthy physiology (Syntrophococcus sucrumutans, Dehalobacterium, Prevotella, and Butyricimonas). Furthermore, EE enhances intestinal barrier integrity, increases mucin-producing goblet cell population, and upregulates Muc2 expression in the colon. These alterations correlate with reduced systemic lipopolysaccharide levels and attenuated colon inflammation, resulting in normalized glucose metabolism, diminished adipose tissue inflammation, reduced liver steatosis, improved lipid profiles, and a significant reduction in body weight gain despite mice's continued HFD consumption. Our findings highlight EE as a promising anti-inflammatory strategy for managing obesity-related metabolic dysregulation and suggest its potential in developing probiotics targeting EE-modulated microbial taxa.
Collapse
Affiliation(s)
- Rubiceli Manzo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Tomas Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Jonathan Salazar-León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
23
|
Cazzaniga M, Cardinali M, Di Pierro F, Zonzini GB, Palazzi CM, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Bertuccioli A. The Role of Short-Chain Fatty Acids, Particularly Butyrate, in Oncological Immunotherapy with Checkpoint Inhibitors: The Effectiveness of Complementary Treatment with Clostridium butyricum 588. Microorganisms 2024; 12:1235. [PMID: 38930617 PMCID: PMC11206605 DOI: 10.3390/microorganisms12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery of immune checkpoints (CTLA-4, PD-1, and PD-L1) and their impact on the prognosis of oncological diseases have paved the way for the development of revolutionary oncological treatments. These treatments do not combat tumors with drugs "against" cancer cells but rather support and enhance the ability of the immune system to respond directly to tumor growth by attacking the cancer cells with lymphocytes. It has now been widely demonstrated that the presence of an adequate immune response, essentially represented by the number of TILs (tumor-infiltrating lymphocytes) present in the tumor mass decisively influences the response to treatments and the prognosis of the disease. Therefore, immunotherapy is based on and cannot be carried out without the ability to increase the presence of lymphocytic cells at the tumor site, thereby limiting and nullifying certain tumor evasion mechanisms, particularly those expressed by the activity (under positive physiological conditions) of checkpoints that restrain the response against transformed cells. Immunotherapy has been in the experimental phase for decades, and its excellent results have made it a cornerstone of treatments for many oncological pathologies, especially when combined with chemotherapy and radiotherapy. Despite these successes, a significant number of patients (approximately 50%) do not respond to treatment or develop resistance early on. The microbiota, its composition, and our ability to modulate it can have a positive impact on oncological treatments, reducing side effects and increasing sensitivity and effectiveness. Numerous studies published in high-ranking journals confirm that a certain microbial balance, particularly the presence of bacteria capable of producing short-chain fatty acids (SCFAs), especially butyrate, is essential not only for reducing the side effects of chemoradiotherapy treatments but also for a better response to immune treatments and, therefore, a better prognosis. This opens up the possibility that favorable modulation of the microbiota could become an essential complementary treatment to standard oncological therapies. This brief review aims to highlight the key aspects of using precision probiotics, such as Clostridium butyricum, that produce butyrate to improve the response to immune checkpoint treatments and, thus, the prognosis of oncological diseases.
Collapse
Affiliation(s)
- Massimiliano Cazzaniga
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy;
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| |
Collapse
|
24
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Wang J, Dong J, Zhong F, Wu S, An G, Liao W, Qi L, Ma Y. Microbiome-Metabolome Analysis Insight into the Effects of the Extract of Phyllanthus emblica L. on High-Fat Diet-Induced Hyperlipidemia. Metabolites 2024; 14:257. [PMID: 38786734 PMCID: PMC11123125 DOI: 10.3390/metabo14050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The fruit of Phyllanthus emblica L. (FEPE) has a long history of use in Asian folk medicine. The main bioactive compounds in FEPE are polyphenols, known for their potent antioxidant, anti-inflammatory, and hypolipidemic activities. The present study aimed to investigate the intervention effect of FEPE (100 and 200 mg/kg) on hyperlipidemia for 8 weeks and preliminarily explored the potential mechanism by microbiome-metabolome analysis. The results showed that a high-dose FEPE (200 mg/kg) effectively alleviated dyslipidaemic symptoms and body weight gain in hyperlipidemic mice induced by a high-fat diet (HFD). Microbiome analysis showed that FEPE altered the structure of the intestinal microbiota, which included an increase in specific probiotics (such as Akkermansia, Anaerovorax, and Bacteroides) and a decrease in harmful bacteria (including A2, Acetitomaculum, Candidatus_Arthromitus, Lachnospiraceae_NK4A136_group, Lachnospiraceae_NK4B4_group, Rikenella, and Streptococcus), as well as a reduction in the level of short-chain fatty acids (SCFAs). In addition, significant changes in the hepatic metabolome were observed, and eight key metabolites associated with betaine metabolism, lysine degradation, methionine metabolism, and fatty acid metabolism pathways were primarily filtered. The correlated analysis identified several key "microbiota-metabolite" axes in the treatment of hyperlipidemia by FEPE extract. In conclusion, the present study is expected to provide a basis for treating hyperlipidemia with FEPE from the perspective of the microbiome-liver metabolome axis.
Collapse
Affiliation(s)
- Jiahao Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jijing Dong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guangqin An
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wan Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
26
|
Han W, Wang J, Yan X, Liu C, Huang J, Zhang L, Zhang Y, Zhao Y, Hou Y, Zheng W, Li G. Butyrate and iso-butyrate: a new perspective on nutrition prevention of gestational diabetes mellitus. Nutr Diabetes 2024; 14:24. [PMID: 38658555 PMCID: PMC11043397 DOI: 10.1038/s41387-024-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Dietary imbalance, such as a lower proportion of complex carbohydrates and a higher protein diet, may contribute to gestational diabetes mellitus (GDM) risks through their metabolisms. However, there is a lack of knowledge regarding the association between butyrate, iso-butyrate, and GDM, which are metabolisms of the two primary nutrients above. This study aimed to clarify the association of butyrate and iso-butyrate with GDM. METHODS A nested case-control study was conducted based on the Beijing Birth Cohort Study (BBCS) from 2017 to 2018. Totally, 99 singleton women were involved (GDM: n = 49, control: n = 50). All participants provided blood samples twice (in their first and second trimesters). Gas chromatography-mass spectrometry (GC-MS) was used for butyrate and iso-butyrate detection. Unconditional logistic regression and receiver operating characteristic (ROC) curve analysis were used for statistical analysis. RESULTS The results showed that butyrate in the first trimester was negatively correlated with GDM (odds ratio (OR): 0.00, 95% confidential interval (CI): 0.00-0.21, P = 0.008), and iso-butyrate in the second trimester was positively related to GDM (OR: 627.68, 95% CI: 40.51-9724.56, P < 0.001). The ratio (butyrate/iso-butyrate) was negatively associated with GDM, both in the first trimester (OR: 0.00, 95%CI: 0.00-0.05, P < 0.001) and in the second trimester (OR: 0.52, 95% CI: 0.34-0.80, P = 0.003). The area under the curve (AUC) using the ratio in the first trimester combined with clinical risk factors achieved 0.89 (95% CI: 0.83-0.95). Iso-butyrate in the second trimester combined with clinical risk factors achieved an AUC of 0.97 (95% CI: 0.92-1.00). CONCLUSIONS High iso-butyrate and low butyrate levels may be associated with an increased risk of GDM. As they are produced through dietary nutrient formation by gut microbiota, further studies on the association of dietary intake and butyrate or iso-butyrate concentration in plasma may help find a novel approach to nutritional intervention for GDM.
Collapse
Affiliation(s)
- Weiling Han
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jia Wang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xin Yan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Cheng Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Junhua Huang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lirui Zhang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yujie Zhang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yiqing Zhao
- Hyproca Nutrition Co., Ltd, Changsha, Hunan, China
| | - Yanmei Hou
- Hyproca Nutrition Co., Ltd, Changsha, Hunan, China
| | - Wei Zheng
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Guanghui Li
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
27
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
28
|
Chen W, Li X, Bodjrenou DM, Zhang Y, Zeng H. Butyryl group distribution modulates the structure and properties of butyrylated maize starch focused on amylose contents. Int J Biol Macromol 2024; 265:130794. [PMID: 38479661 DOI: 10.1016/j.ijbiomac.2024.130794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
In this study, four types of maize starch with different amylose contents (3 %, 25 %, 40 %, and 70 %) were used to prepare butyrylated starches. Based on amylose contents, the influence of butyryl group distribution on the structure, thermal and digestive properties of butyrylated maize starch was investigated. The butyrylation reaction mainly substituted butyryl groups on amylose, and the butyryl groups were most easily substituted for the hydroxyl group at the C6 position. The degree of substitution of butyrylated starch reached its maximum when the amylose content was 40 %, and the degree of substitution did not correlate linearly with the amylose content. The butyrylation reaction increased the surface roughness, decreased the crystallinity, enthalpy value and molecular weight of native starch granules, resulting in a decrease in the degree of internal order of the starch and inducing the rearrangement of the amylose molecular chains in the amorphous region of the starch. The combination of the amylose content and the substitution of butyryl groups on amylose affected the digestibility of starch and ultimately increased its resistance. The Pearson correlation coefficient further confirmed the correlation between the distribution of butyryl groups and the structure and properties of butyrylated starch.
Collapse
Affiliation(s)
- Wei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - David Mahoudjro Bodjrenou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| |
Collapse
|
29
|
Yang T, Li L, Heng C, Sha P, Wang Y, Shen J, Jiang Z, Qian S, Wei C, Yang H, Zhu X, Wang T, Wu M, Wang J, Lu Q, Yin X. Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating the tight junctions of renal tubular epithelial cells. Food Funct 2024; 15:2628-2644. [PMID: 38358014 DOI: 10.1039/d2fo00940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang 214500, China
| | - Pian Sha
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yiying Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jiaming Shen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Chujing Wei
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Yang
- Department of Pharmacy, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213000, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Mengying Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
30
|
Yang D, Shen J, Tang C, Lu Z, Lu F, Bie X, Meng F, Zhao H. Prevention of high-fat-diet-induced obesity in mice by soluble dietary fiber from fermented and unfermented millet bran. Food Res Int 2024; 179:113974. [PMID: 38342528 DOI: 10.1016/j.foodres.2024.113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Obesity-related diabetes, cardiovascular disease, and hypertension pose many risks to human health. Thus, mice on a high-fat diet were gavaged with millet bran (unfermented/fermented) soluble dietary fiber (RSDF/FSDF, 500 mg·kg-1) for 10 weeks in current research, and then evaluated the various biological indicators. These findings revealed that RSDF and FSDF supplements could prevent fat synthesis by inhibiting sterol regulatory element-binding protein-1c gene expression. The RSDF supplements can also accelerate fat catabolism through enhanced the mRNA expression levels of adipose triglyceride lipase and peroxisome proliferator-activated receptor α. FSDF supplements can prevent obesity by decreasing 3-hydroxy-3-methyl-glutaryl-CoA reductase expression and increasing cholesterol 7α-hydroxylase expression. Moreover, FSDF also controls obesity development by lowering total cholesterol and low-density lipoprotein cholesterol levels in the blood, triglyceride, total cholesterol, and bile acid levels in the liver. Notably, FSDF supplements can promote Bacteroides and Prevotella propagation; excretive propionic acid binds to free fatty acid receptor 2/3 and then stimulates intestinal epithelial cells to generate glucagon-like-peptide-1 and peptide YY, which can reduce food and energy intake and ultimately prevent obesity. All evidence suggests that FSDF supplements play a crucial role in preventing obesity.
Collapse
Affiliation(s)
- Duo Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
31
|
Hu B, Zhou W, Deng X, Sun M, Sun R, Li Q, Ren J, Jiang W, Wang Y, Liu S, Zhan J. Structural analysis of polysaccharide from Inonotus obliquus and investigate combined impact on the sex hormones, intestinal microbiota and metabolism in SPF male mice. Int J Biol Macromol 2024; 262:129686. [PMID: 38331071 DOI: 10.1016/j.ijbiomac.2024.129686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
The dysregulation of sex hormone levels is associated with metabolic disorders such as obesity. Inonotus obliquus polysaccharide (IOP) exhibits a promising therapeutic effect on conditions like obesity and diabetes, potentially linked to its influence on intestinal microbiota and metabolism. The exact cause and mechanisms that link sex hormones, gut microbiota and metabolism are still unknown. In this research, we examined the molecular weight, monosaccharide composition, and glycosidic bond type of IOP. We found that IOP mostly consists of alpha-structured 6‑carbon glucopyranose, with a predominant (1 → 4) linkage to monosaccharides and a uniform distribution. Following this, we administered two different concentrations of IOP to mice through gavage. The results of the enzyme-linked immunosorbent assay (ELISA) demonstrated a significant increase in testosterone (T) levels in the IOP group as compared to the control group. Additionally, the results of tissue immunofluorescence indicated that increased IOP led to a decrease in adiponectin content and an increase in SET protein expression. The study also revealed changes in the intestinal microbiota and metabolic changes in mice through 16S rRNA data and non-targeted LC-MS data, respectively. The study also found that IOP mainly affects pathways linked to glycerophospholipid metabolism. In addition, it has been observed that there is an increase in the number of beneficial bacteria, such as the Eubacterium coprostanoligenes group and g.Lachnospiraceae NK4A136 group, while the levels of metabolites that are linked to obesity or diabetes, such as 1,5-anhydrosorbitol, are reduced. Furthermore, biomarker screening has revealed that the main microorganism responsible for the differences between the three groups is g.Erysipelatoclostridiaceae. In summary, these findings suggest that IOP exerts its therapeutic effects through a synergistic interplay between sex hormones, gut microbiome composition, and metabolic processes.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China.
| | - Wenjing Zhou
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Veterinary Medicine, Yangzhou University (Institute of Comparative Medicine), Yangzhou, China
| | - Xin Deng
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengxue Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Rong Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Qing Li
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Jingyuan Ren
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Wei Jiang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Yanping Wang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Songqing Liu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
32
|
Gao Z, Zhang W, He L, Wang H, Li Y, Jiang X, D I S, Wang X, Zhang X, Han L, Liu Y, Gu C, Wu M, He X, Cheng L, Wang J, Tong X, Zhao L. Double-blinded, randomized clinical trial of Gegen Qinlian decoction pinpoints Faecalibacterium as key gut bacteria in alleviating hyperglycemia. PRECISION CLINICAL MEDICINE 2024; 7:pbae003. [PMID: 38495337 PMCID: PMC10941319 DOI: 10.1093/pcmedi/pbae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Accumulating evidence suggests that metabolic disorders, including type 2 diabetes mellitus (T2DM), can be treated with traditional Chinese medicine formulas, such as the Gegen Qinlian decoction (GQD). This study elucidates the mechanisms by which gut microbes mediate the anti-diabetic effects of GQD. Methods We conducted a double-blind randomized clinical trial involving 120 untreated participants with T2DM. During the 12-week intervention, anthropometric measurements and diabetic traits were recorded every 4 weeks. Fecal microbiota and serum metabolites were measured before and after the intervention using 16S rDNA sequencing, liquid chromatography-mass spectrometry, and Bio-Plex panels. Results Anti-diabetic effects were observed in the GQD group in the human trial. Specifically, glycated hemoglobin, fasting plasma glucose, and two-hour postprandial blood glucose levels were significantly lower in the GQD group than in the placebo group. Additionally, Faecalibacterium was significantly enriched in the GQD group, and the short-chain fatty acid levels were higher and the serum inflammation-associated marker levels were lower in the GQD group compared to the placebo group. Moreover, Faecalibacterium abundance negatively correlated with the levels of serum hemoglobin, fasting plasma glucose, and pro-inflammatory cytokines. Finally, the diabetes-alleviating effect of Faecalibacterium was confirmed by oral administration of Faecalibacterium prausnitzii (DSMZ 17677) in T2DM mouse model. Conclusions GQD improved type 2 diabetes primarily by modulating the abundance of Faecalibacterium in the gut microbiota, alleviating metabolic disorders and the inflammatory state. Trial registration Registry No. ChiCTR-IOR-15006626.
Collapse
Affiliation(s)
- Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wenhui Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha He
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yufei Li
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaotian Jiang
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Sha D I
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinmiao Wang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuan Zhang
- Biologicals Science and Technology Institute, Baotou Teacher's College, Baotou 014030, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yanwen Liu
- Department of Endocrinology, Zhengzhou T.C.M. Hospital, Zhengzhou 450007, China
| | - Chengjuan Gu
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Mengyi Wu
- Department of Cardiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xinhui He
- Department of Cardiology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming 650000, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
33
|
Stiernborg M, Prast-Nielsen S, Melas PA, Skott M, Millischer V, Boulund F, Forsell Y, Lavebratt C. Differences in the gut microbiome of young adults with schizophrenia spectrum disorder: using machine learning to distinguish cases from controls. Brain Behav Immun 2024; 117:298-309. [PMID: 38280535 DOI: 10.1016/j.bbi.2024.01.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
While an association between the gut microbiome and schizophrenia spectrum disorders (SSD) has been suggested, the existing evidence is still inconclusive. To this end, we analyzed bacteria and bacterial genes in feces from 52 young adult SSD patients and 52 controls using fecal shotgun metagenomic sequencing. Compared to controls, young SSD patients were found to have significantly lower α-diversity and different β-diversity both regarding bacterial species (i.e., taxonomic diversity) and bacterial genes (i.e., functional diversity). Furthermore, the α-diversity measures 'Pielou's evenness' and 'Shannon' were significantly higher for both bacterial species, bacterial genes encoding enzymes and gut brain modules in young SSD patients on antipsychotic treatment (young SSD not on antipsychotics=9 patients, young SSD on antipsychotics=43 patients). We also applied machine learning classifiers to distinguish between young SSD patients and healthy controls based on their gut microbiome. Results showed that taxonomic and functional data classified young SSD individuals with an accuracy of ≥ 70% and with an area under the receiver operating characteristic curve (AUROC) of ≥ 0.75. Differential abundance analysis on the most important features in the classifier models revealed that most of the species with higher abundance in young SSD patients had their natural habitat in the oral cavity. In addition, many of the modules with higher abundance in young SSD patients were amino acid biosynthesis modules. Moreover, the abundances of gut-brain modules of butyrate synthesis and acetate degradation were lower in the SSD patients compared to controls. Collectively, our findings continue to support the presence of gut microbiome alterations in SSD and provide support for the use of machine learning algorithms to distinguish patients from controls based on gut microbiome profiles.
Collapse
Affiliation(s)
- Miranda Stiernborg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Stefanie Prast-Nielsen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Maria Skott
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
34
|
Dural AŞ, Ergün C, Urhan M. Investigation of the Relationship Between Serum Low-Density Lipoprotein Cholesterol Levels with Genetic Polymorphisms, Gut Microbiota, and Nutrition. Metab Syndr Relat Disord 2024; 22:133-140. [PMID: 37971853 DOI: 10.1089/met.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Background: To prevent cardiovascular disease (CVD), it is important to determine the factors that are associated with its development. High serum low-density lipoprotein (LDL) cholesterol (LDL-C) levels are a modifiable prevention and treatment target known to contribute to the development of CVD, but the factors affecting blood cholesterol levels, including LDL-C, remain controversial. Objective: In this study, the factors (genetic, nutritional, and gut microbiota) thought to be effective on serum LDL-C levels were discussed from a holistic perspective, and the effects of the relationship between these factors on LDL-C levels were examined. Methods: The study was carried out with 609 adults (48% male) who applied to a private health institution between 2016 and 2022. Results: It was observed that serum LDL-C levels were positively correlated with body mass index (BMI) (P = 0.000) and different ApoE alleles had significant effects on LDL-C levels. It was observed that the highest LDL-C levels were in the ɛ4+ group, followed by ɛ3+ and ɛ2+ groups, respectively (P = 0.000). Results showed that dietary cholesterol and fiber consumption did not significantly affect serum LDL-C levels (P = 0.705 and P = 0.722, respectively). It was also observed that enterotypes and the butyrate synthesis potential of intestinal microbiota did not cause significant changes in serum LDL-C levels (P = 0.369 and P = 975, respectively). Conclusion: Serum LDL-C levels are affected by modifiable factors such as BMI and nonmodifiable factors such as APOE genotype. By identifying these factors and conducting further studies on them, new ways to improve serum LDL-C levels, which is an important factor in the development of CVD, can be identified. In addition, no significant effect of gene-nutrient or microbiota-nutrient interactions on serum LDL-C levels was detected. Further research is needed, especially on the relationship between intestinal microbiota and serum LDL levels.
Collapse
Affiliation(s)
- Asu Şevval Dural
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahçeşehir University, İstanbul, Turkey
| | - Can Ergün
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahçeşehir University, İstanbul, Turkey
| | - Murat Urhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ege University, Karşıyaka, Turkey
| |
Collapse
|
35
|
Jeong B, Kim JS, Kwon AR, Lee J, Park S, Koo J, Lee WS, Baek JY, Shin WH, Lee JS, Jeong J, Kim WK, Jung CR, Kim NS, Cho SH, Lee DY. Maternal nanoplastic ingestion induces an increase in offspring body weight through altered lipid species and microbiota. ENVIRONMENT INTERNATIONAL 2024; 185:108522. [PMID: 38401434 DOI: 10.1016/j.envint.2024.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The rapidly increasing prevalence of obesity and overweight, especially in children and adolescents, has become a serious societal issue. Although various genetic and environmental risk factors for pediatric obesity and overweight have been identified, the problem has not been solved. In this study, we examined whether environmental nanoplastic (NP) pollutants can act as environmental obesogens using mouse models exposed to NPs derived from polystyrene and polypropylene, which are abundant in the environment. We found abnormal weight gain in the progeny until 6 weeks of age following the oral administration of NPs to the mother during gestation and lactation. Through a series of experiments involving multi-omic analyses, we have demonstrated that NP-induced weight gain is caused by alterations in the lipid composition (lysophosphatidylcholine/phosphatidylcholine ratio) of maternal breast milk and he gut microbiota distribution of the progeny. These data indicate that environmental NPs can act as obesogens in childhood.
Collapse
Affiliation(s)
- Bohyeon Jeong
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - A Ra Kwon
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea
| | - Jangjae Lee
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea; Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Subin Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jahong Koo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; KRIBB School, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jeong Yeob Baek
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea; KRIBB School, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jinyoung Jeong
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Won Kon Kim
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, South Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Cho-Rok Jung
- KRIBB School, Korea University of Science and Technology (UST), Daejeon, South Korea; Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; KRIBB School, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, South Korea.
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; KRIBB School, Korea University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
36
|
Xiong C, Wu J, Ma Y, Li N, Wang X, Li Y, Ding X. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Gut Microbiota in Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome Mice: Compared Evaluation of Liraglutide and Semaglutide Intervention. Diabetes Metab Syndr Obes 2024; 17:865-880. [PMID: 38406269 PMCID: PMC10894520 DOI: 10.2147/dmso.s451129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose Polycystic ovary syndrome (PCOS) is a frequent cause of infertility in reproductive-age women. Our work aims to evaluate the effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on gut microbiota, with metabolic parameters including body weight and the hormone profile in PCOS. Patients and Methods Dehydroepiandrosterone (DHEA)-induced PCOS mice were established and then treated with two GLP-1RAs: liraglutide and novel form semaglutide for four weeks. Changes in body weight and metabolic parameters were measured. Fecal samples were collected and analyzed using metagenomic sequencing. Results Liraglutide and semaglutide modulated both alpha and beta diversity of the gut microbiota in PCOS. Liraglutide increased the Bacillota-to-Bacteroidota ratio through up-regulating the abundance of butyrate-producing members of Bacillota like Lachnospiraceae. Moreover, liraglutide showed the ability to reverse the altered microbial composition and the disrupted microbiota functions caused by PCOS. Semaglutide increased the abundance of Helicobacter in PCOS mice (p < 0.01) which was the only bacteria found negatively correlated with body weight. Moreover, pathways involving porphyrin and flavonoids were increased after semaglutide intervention. Conclusion Liraglutide and semaglutide improved reproductive and metabolic disorders by modulating the whole structure of gut microbiota in PCOS. The greater efficacy in weight loss compared with liraglutide observed after semaglutide intervention was positively related with Helicobacter. The study may provide new ideas in the treatment and the underlying mechanisms of GLP-1RAs to improve PCOS.
Collapse
Affiliation(s)
- Chuanhao Xiong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jingzhu Wu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuhang Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Na Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
37
|
Yang X, Xue C, Chen K, Gao D, Wang H, Tang C. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine. Front Pharmacol 2024; 14:1339744. [PMID: 38273819 PMCID: PMC10808572 DOI: 10.3389/fphar.2023.1339744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Diabetes mellitus has become a major public health issue globally, putting an enormous burden on global health systems and people. Among all diseased groups, a considerable part of patients are elderly, while their clinical features, pathogenic processes, and medication regimens are different from patients of other ages. Despite the availability of multiple therapies and techniques, there are still numerous elderly diabetes patients suffering from poor blood glucose control, severe complications, and drug adverse effects, which negatively affect the quality of life in their golden years. Traditional Chinese Medicine (TCM) has been widely used in the treatment of diabetes for several decades, and its relevant clinical practice has confirmed that it has a satisfactory effect on alleviating clinical symptoms and mitigating the progression of complications. Chinese herbal medicine and its active components were used widely with obvious clinical advantages by multiple targets and signaling pathways. However, due to the particular features of elderly diabetes, few studies were conducted to explore Traditional Chinese Medicine intervention on elderly diabetic patients. This study reviews the research on clinical features, pathogenic processes, treatment principles, and TCM treatments, hoping to provide fresh perspectives on the prevention and management strategies for elderly diabetes.
Collapse
Affiliation(s)
- Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chongxiang Xue
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyang Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Xia J, Wang Z, Yu P, Yan X, Zhao J, Zhang G, Gong D, Zeng Z. Effect of Different Medium-Chain Triglycerides on Glucose Metabolism in High-Fat-Diet Induced Obese Rats. Foods 2024; 13:241. [PMID: 38254542 PMCID: PMC10815142 DOI: 10.3390/foods13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity can be associated with significant metabolic disorders. Our previous study found that medium-chain triglycerides (MCTs) improved lipid metabolism in obese rats. However, scant attention has been given to exploring the impact of MCTs on glucose metabolism in obese rats. This study is designed to examine the effects and mechanisms of three distinct MCTs on glucose metabolism in obese rats. To induce obesity, Sprague-Dawley (SD) rats were fed a high-fat diet, followed by a 12-week treatment with caprylic triglyceride (CYT), capric triglyceride (CT), and lauric triglyceride (LT). The results showed that three types of MCT intervention reduced the levels of lipids (TC, TG, LDL-c, and HDL-c), hyperglycemia, insulin resistance (insulin, OGTT, HOMA-IR, and ISI), and inflammatory markers (IL-4, IL-1β, and TNF-α) in obese rats (p < 0.01), The above parameters have been minimally improved in the high-fat restoring group (HR) group. MCTs can modulate the PI3K/AKT signaling pathways to alleviate insulin resistance and improve glucose metabolism in obese rats. Furthermore, MCTs can activate peroxisome proliferator-activated receptor (PPAR) γ and reduce the phosphorylation of PPARγser237 mediated by CDK5, which can improve insulin sensitivity without lipid deposition in obese rats. Among the MCT group, CT administration performed the best in the above pathways, with the lowest blood glucose level and insulin resistance. These findings contribute to a deeper understanding of the connection between health benefits and the specific type of MCT employed.
Collapse
Affiliation(s)
- Jiaheng Xia
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (J.X.); (Z.W.)
| | - Zhixin Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (J.X.); (Z.W.)
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (J.X.); (Z.W.)
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
| | - Xianghui Yan
- School of Resources and Environment, Nanchang University, Nanchang 330031, China;
| | - Junxin Zhao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Guohua Zhang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China;
| | - Deming Gong
- New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand;
| | - Zheling Zeng
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| |
Collapse
|
39
|
Jin S, Chen P, Yang J, Li D, Liu X, Zhang Y, Xia Q, Li Y, Chen G, Li Y, Tong Y, Yu W, Fan X, Lin H. Phocaeicola vulgatus alleviates diet-induced metabolic dysfunction-associated steatotic liver disease progression by downregulating histone acetylation level via 3-HPAA. Gut Microbes 2024; 16:2309683. [PMID: 38312099 PMCID: PMC10854360 DOI: 10.1080/19490976.2024.2309683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder with limited effective interventions available. A novel approach to address this issue is through gut microbiota-based therapy. In our study, we utilized multi-omics analysis to identify Phocaeicola vulgatus (P. vulgatus) as a potential probiotic for the treatment of MASLD. Our findings from murine models clearly illustrate that the supplementation of P. vulgatus mitigates the development of MASLD. This beneficial effect is partly attributed to the metabolite 3-Hydroxyphenylacetic acid (3-HPAA) produced by P. vulgatus, which reduces the acetylation levels of H3K27 and downregulates the transcription of Squalene Epoxidase (SQLE), a rate-limiting enzyme in steroid biosynthesis that promotes lipid accumulation in liver cells. This study underscores the significant role of P. vulgatus in the development of MASLD and the critical importance of its metabolite 3-HPAA in regulating lipid homeostasis. These findings offer a promising avenue for early intervention therapy in the context of MASLD.
Collapse
Affiliation(s)
- Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiling Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixuan Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Gauthier E, Milagro FI, Navas-Carretero S. Effect of low-and non-calorie sweeteners on the gut microbiota: A review of clinical trials and cross-sectional studies. Nutrition 2024; 117:112237. [PMID: 37897982 DOI: 10.1016/j.nut.2023.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/30/2023]
Abstract
Use of non-nutritive sweeteners (NNSs) has increased worldwide in recent decades. However, evidence from preclinical studies shows that sweetener consumption may induce glucose intolerance through changes in the gut microbiota, which raises public health concerns. As studies conducted on humans are lacking, the aim of this review was to gather and summarize the current evidence on the effects of NNSs on human gut microbiota. Only clinical trials and cross-sectional studies were included in the review. Regarding NNSs (i.e, saccharin, sucralose, aspartame, and stevia), only two of five clinical trials showed significant changes in gut microbiota composition after the intervention protocol. These studies concluded that saccharin and sucralose impair glycemic tolerance. In three of the four cross-sectional studies an association between NNSs and the microbial composition was observed. All three clinical trials on polyols (i.e, xylitol) showed prebiotic effects on gut microbiota, but these studies had multiple limitations (publication date, dosage, duration) that jeopardize their validity. The microbial response to NNSs consumption could be strongly mediated by the gut microbial composition at baseline. Further studies in which the potential personalized microbial response to NNSs consumption is acknowledged, and that include longer intervention protocols, larger cohorts, and more realistic sweetener dosage are needed to broaden these findings.
Collapse
Affiliation(s)
- Ellie Gauthier
- School of Nutrition, Université Laval, Quebec City, Quebec, Canada; Centre Nutrition, santé et société (NUTRISS)-Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Fermin I Milagro
- Center for Nutrition Research; Department of Nutrition, Food Sciences and Physiology; School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Santiago Navas-Carretero
- Center for Nutrition Research; Department of Nutrition, Food Sciences and Physiology; School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
41
|
Yang Z, Yang M, Deehan EC, Cai C, Madsen KL, Wine E, Li G, Li J, Liu J, Zhang Z. Dietary fiber for the prevention of childhood obesity: a focus on the involvement of the gut microbiota. Gut Microbes 2024; 16:2387796. [PMID: 39163556 PMCID: PMC11340751 DOI: 10.1080/19490976.2024.2387796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Given the worldwide epidemic of overweight and obesity among children, evidence-based dietary recommendations are fundamentally important for obesity prevention. Although the significance of the human gut microbiome in shaping the physiological effects of diet and obesity has been widely recognized, nutritional therapeutics for the mitigation of pediatric obesity globally are only just starting to leverage advancements in the nutritional microbiology field. In this review, we extracted data from PubMed, EMBASE, Scopus, Web of Science, Google Scholar, CNKI, Cochrane Library and Wiley online library that focuses on the characterization of gut microbiota (including bacteria, fungi, viruses, and archaea) in children with obesity. We further review host-microbe interactions as mechanisms mediating the physiological effects of dietary fibers and how fibers alter the gut microbiota in children with obesity. Contemporary nutritional recommendations for the prevention of pediatric obesity are also discussed from a gut microbiological perspective. Finally, we propose an experimental framework for integrating gut microbiota into nutritional interventions for children with obesity and provide recommendations for the design of future studies on precision nutrition for pediatric obesity.
Collapse
Affiliation(s)
- Zhongmin Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Mingyue Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Edward C. Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, USA
| | - Chenxi Cai
- School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Karen L. Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology, Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian, China
| |
Collapse
|
42
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
43
|
Zhang QR, Dong Y, Fan JG. Early-life exposure to gestational diabetes mellitus predisposes offspring to pediatric nonalcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2023:S1499-3872(23)00245-X. [PMID: 38195352 DOI: 10.1016/j.hbpd.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the prevailing chronic liver disease in the pediatric population due to the global obesity pandemic. Evidence shows that prenatal and postnatal exposure to maternal abnormalities leads to a higher risk of pediatric NAFLD through persistent alterations in developmental programming. Gestational diabetes mellitus (GDM) is a hyperglycemic syndrome which has become the most prevalent complication in pregnant women. An increasing number of both epidemiologic investigations and animal model studies have validated adverse and long-term outcomes in offspring following GDM exposure in utero. Similarly, GDM is considered a crucial risk factor for pediatric NAFLD. This review aimed to summarize currently published studies concerning the inductive roles of GDM in offspring NAFLD development during childhood and adolescence. Dysregulations in hepatic lipid metabolism and gut microbiota in offspring, as well as dysfunctions in the placenta are potential factors in the pathogenesis of GDM-associated pediatric NAFLD. In addition, potentially effective interventions for GDM-associated offspring NAFLD are also discussed in this review. However, most of these therapeutic approaches still require further clinical research for validation.
Collapse
Affiliation(s)
- Qian-Ren Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Dong
- Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China.
| |
Collapse
|
44
|
Liu J, Liu J, Zhou S, Fu Y, Yang Q, Li Y. Effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids in layers. Front Vet Sci 2023; 10:1301542. [PMID: 38188719 PMCID: PMC10766699 DOI: 10.3389/fvets.2023.1301542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
In this study, the effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids (SCFAs) were compared in layers. Hyline brown layers at 385 days of age with a similar laying rate (81.36% ± 0.62%) and body weight (2.10 kg ± 0.04 kg) were randomly divided into three treatments, six replicates per treatment, and 20 layers per replicate. Layers in control, quercetin, and daidzein treatment were fed by a basal diet supplemented with 0 mg/kg, 500 mg/kg quercetin, and 30 mg/kg of daidzein for 10 weeks. Results showed that eggshell strength and albumen height in week 4, egg yolk diameter in week 10, and eggshell thickness and egg yolk height in weeks 4 and 10 were significantly increased in the quercetin treatment (P ≤ 0.05); contents of phospholipid (PL) and lecithin (LEC) in egg yolk and high-density lipoprotein (HDL) content in serum were significantly increased; however, contents of malondialdehyde (MDA), total cholesterol (TC), and triglyceride (TG) in egg yolk, contents of TC, TG, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) in serum, and contents of TC and TG in the liver were significantly decreased in the quercetin treatment (P ≤ 0.05); contents of isobutyric acid and valeric acid were significantly increased in the cecum of the quercetin treatment (P ≤ 0.05), compared with control. Moreover, egg yolk height in week 10 and eggshell thickness in weeks 4 and 10 were significantly increased in the daidzein treatment (P ≤ 0.05); contents of MDA, TC, and TG in egg yolk, TC, TG, and VLDL in serum, and TC and TG in liver were significantly decreased in the daidzein treatment (P ≤ 0.05); and HDL content was significantly increased in serum of the daidzein treatment (P ≤ 0.05) compared with control. However, daidzein did not affect SCFA content in the cecum. In conclusion, egg quality was improved by quercetin and daidzein by increasing the antioxidant ability of egg yolk and by regulating lipid metabolism in layers. Quercetin worked better than daidzein in improving egg quality under this experimental condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
45
|
Yavorov-Dayliev D, Milagro FI, López-Yoldi M, Clemente I, Riezu-Boj JI, Ayo J, Oneca M, Aranaz P. Pediococcus acidilactici (pA1c®) alleviates obesity-related dyslipidemia and inflammation in Wistar rats by activating beta-oxidation and modulating the gut microbiota. Food Funct 2023; 14:10855-10867. [PMID: 37987083 DOI: 10.1039/d3fo01651j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Due to the importance of the gut microbiota in the regulation of energy homeostasis, probiotics have emerged as an alternative therapy to ameliorate obesity-related disturbances, including cholesterol metabolism dysregulation, dyslipidemia and inflammation. Therefore, the objectives of this study were to evaluate the effect of the probiotic strain Pediococcus acidilactici (pA1c®) on the regulation of adiposity, cholesterol and lipid metabolism, inflammatory markers and gut microbiota composition in diet-induced obese rats. Twenty-nine four-week-old male Wistar rats were divided into three groups: rats fed a control diet (CNT group, n = 8), rats fed a high fat/high sucrose diet (HFS group, n = 11), and rats fed a HFS diet supplemented with pA1c® (pA1c®group, n = 10). Organs and fat depots were weighed, and different biochemical parameters were analysed in serum. Gene expression analyses in the adipose tissue were conducted using real-time quantitative-PCR. Faecal microbiota composition was evaluated using 16S metagenomics. Animals supplemented with pA1c® exhibited a lower proportion of visceral adiposity, a higher proportion of muscle, an improvement in the total-cholesterol/HDL-cholesterol ratio and a decrease in the total cholesterol, triglyceride and aspartate aminotransaminase (AST) serum levels, together with a decrease in several inflammation-related molecules. The expression of key genes related to adipose (Adipoq, Cebpa and Pparg) and glucose (Slc2a1 and Slc2a4) metabolism in the adipose tissue was normalized by pA1c®. Moreover, it was demonstrated that pA1c® supplementation activated fatty acid β-oxidation in the adipose tissue and the liver. Metagenomics demonstrated the presence of pA1c® in the faecal samples, an increase in alpha diversity, an increase in the abundance of beneficial bacteria, and a decrease in the abundance of harmful micro-organisms, including the Streptococcus genus. Thus, our data suggest the potential of pA1c® in the prevention of obesity-related disturbances including hypercholesterolemia, hypertriglyceridemia, inflammation and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Madrid, Spain
| | - Miguel López-Yoldi
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Iñigo Clemente
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - José Ignacio Riezu-Boj
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Josune Ayo
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - María Oneca
- Genbioma Aplicaciones SL, Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
46
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
47
|
Nevzorova YA, Cubero FJ. Obesity under the moonlight of c-MYC. Front Cell Dev Biol 2023; 11:1293218. [PMID: 38116204 PMCID: PMC10728299 DOI: 10.3389/fcell.2023.1293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
The moonlighting protein c-Myc is a master regulator of multiple biological processes including cell proliferation, differentiation, angiogenesis, apoptosis and metabolism. It is constitutively and aberrantly expressed in more than 70% of human cancers. Overwhelming evidence suggests that c-Myc dysregulation is involved in several inflammatory, autoimmune, metabolic and other non-cancerous diseases. In this review, we addressed the role of c-Myc in obesity. Obesity is a systemic disease, accompanied by multi-organ dysfunction apart from white adipose tissue (WAT), such as the liver, the pancreas, and the intestine. c-Myc plays a big diversity of functions regulating cellular proliferation, the maturation of progenitor cells, fatty acids (FAs) metabolism, and extracellular matrix (ECM) remodeling. Moreover, c-Myc drives the expression of a wide range of metabolic genes, modulates the inflammatory response, induces insulin resistance (IR), and contributes to the regulation of intestinal dysbiosis. Altogether, c-Myc is an interesting diagnostic tool and/or therapeutic target in order to mitigate obesity and its consequences.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
48
|
Divyashri G, Karthik P, Murthy TPK, Priyadarshini D, Reddy KR, Raghu AV, Vaidyanathan VK. Non-digestible oligosaccharides-based prebiotics to ameliorate obesity: Overview of experimental evidence and future perspectives. Food Sci Biotechnol 2023; 32:1993-2011. [PMID: 37860742 PMCID: PMC10581984 DOI: 10.1007/s10068-023-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 10/21/2023] Open
Abstract
The diverse populations reportedly suffer from obesity on a global scale, and inconclusive evidence has indicated that both environmental and genetic factors are associated with obesity development. Therefore, a need exists to examine potential therapeutic or prophylactic molecules for obesity treatment. Prebiotics with non-digestible oligosaccharides (NDOs) have the potential to treat obesity. A limited number of prebiotic NDOs have demonstrated their ability as a convincing therapeutic solution to encounter obesity through various mechanisms, viz., stimulating beneficial microorganisms, reducing the population of pathogenic microorganisms, and also improving lipid metabolism and glucose homeostasis. NDOs include pectic-oligosaccharides, fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides and other oligosaccharides which significantly influence the overall human health by different mechanisms. This review provides the treatment of obesity benefits by incorporating these prebiotic NDOs, according to established scientific research, which shows their good effects extend beyond the colon.
Collapse
Affiliation(s)
- G. Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641 021 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Dey Priyadarshini
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Anjanapura V. Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-Be University), Vijayapura, 586103 Karnataka India
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology (SRM IST), 603 203 Kattankulathur, India
| |
Collapse
|
49
|
Quinn-Bohmann N, Wilmanski T, Sarmiento KR, Levy L, Lampe JW, Gurry T, Rappaport N, Ostrem EM, Venturelli OS, Diener C, Gibbons SM. Microbial community-scale metabolic modeling predicts personalized short chain fatty acid production profiles in the human gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530516. [PMID: 36909644 PMCID: PMC10002715 DOI: 10.1101/2023.02.28.530516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Microbially-derived short chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation, and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. We present a microbial community-scale metabolic modeling (MCMM) approach to predict individual-specific SCFA production profiles. We assess the quantitative accuracy of our MCMMs using in vitro, ex vivo, and in vivo data. Next, we show how MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic, and probiotic interventions that optimize SCFA production in the gut. Our results represent an important advance in engineering gut microbiome functional outputs for precision health and nutrition.
Collapse
Affiliation(s)
- Nick Quinn-Bohmann
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
| | | | | | - Lisa Levy
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Thomas Gurry
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Switzerland
- Myota GmbH, Berlin, Germany
| | - Noa Rappaport
- Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Erin M. Ostrem
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
50
|
Kang Y, Oba PM, Gaulke CA, Sánchez-Sánchez L, Swanson KS. Dietary Inclusion of Yellow Mealworms (T. molitor) and Lesser Mealworms (A. diaperinus) Modifies Intestinal Microbiota Populations of Diet-Induced Obesity Mice. J Nutr 2023; 153:3220-3236. [PMID: 37714334 DOI: 10.1016/j.tjnut.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Insect-based proteins are high-quality alternatives to support the shift toward more sustainable and healthy diets. Additionally, insects contain chitin and have unique fatty acid profiles. Studies have shown that mealworms may beneficially affect metabolism, but limited information is known regarding their effects on gut microbiota. OBJECTIVES We determined the effects of defatted yellow mealworm (Tenebrio molitor) and whole lesser mealworm (Alphitobius diaperinus) meals on the intestinal microbiota of diet-induced obesity mice. METHODS Male C57BL/6J mice were fed a high-fat diet (HFD; 46% kcal) to induce obesity. Obese mice were then randomly assigned to treatments (n = 10/group) and fed for 8 wk: HFD, HFD with casein protein; B50, HFD with 50% protein from whole lesser mealworm; B100, HFD with 100% protein from whole lesser mealworm; Y50, HFD with 50% protein from defatted yellow mealworm; Y100, HFD with 100% protein from defatted yellow mealworm. Lean mice (n = 10) fed a low-fat-diet (10% kcal) were included. Fresh feces were collected at baseline and every 2 wk, with cecal digesta collected at kill. Fecal and cecal DNA was analyzed for microbiota using 16S rRNA MiSeq Illumina sequencing. RESULTS In feces and cecal digesta, mice fed mealworms had greater (P < 0.05) bacterial alpha diversity, with changes occurring in a time-dependent manner (P < 0.05). Beta diversity analyses of cecal samples showed a clear separation of treatments, with a time-based separation shown in fecal samples. Widespread microbial differences were observed, with over 45 genera altered (P < 0.05) by diet in cecal digesta. In feces, over 50 genera and 40 genera were altered (P < 0.05) by diet and time, respectively. CONCLUSION Mealworm consumption changes the intestinal microbiota of obese mice, increasing alpha diversity measures and shifting bacterial taxa. More investigation is required to determine what mealworm components are responsible and how they may be linked with the metabolic benefits observed in mealworm-fed mice.
Collapse
Affiliation(s)
- Yifei Kang
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|