1
|
Kamath AP, Nayak PG, John J, Mutalik S, Balaraman AK, Krishnadas N. Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer's disease. Neuropharmacology 2024; 259:110096. [PMID: 39084596 DOI: 10.1016/j.neuropharm.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Neurological disorders pose a huge worldwide challenge to the healthcare system, necessitating innovative strategies for targeted drug delivery to the central nervous system. Alzheimer's disease (AD) is an untreatable neurodegenerative condition characterized by dementia and alterations in a patient's physiological and mental states. Since ancient times, medicinal plants have been an important source of bioactive phytochemicals with immense therapeutic potential. This review investigates new and safer alternatives for prevention and treatment of disease related to inevitable side effects associated with synthetic compounds. This review examines how nanotechnology can help in enhancing the delivery of neuroprotective phytochemicals in AD. Nevertheless, despite their remarkable neuroprotective properties, these natural products often have poor therapeutic efficacy due to low bioavailability, limited solubility and imperfect blood brain barrier (BBB) penetration. Nanotechnology produces personalized drug delivery systems which are necessary for solving such problems. In overcoming these challenges, nanotechnology might be employed as a way forward whereby customized medication delivery systems would be established as a result. The use of nanocarriers in the design and application of important phytochemicals is highlighted by this review, which indicate potential for revolutionizing neuroprotective drug delivery. We also explore the complications and possibilities of using nanocarriers to supply nutraceuticals and improve patients' standard of living, and preclinical as well as clinical investigations displaying that these techniques are effective in mitigating neurodegenerative diseases. In order to fight brain diseases and improve patient's health, scientists and doctors can employ nanotechnology with its possible therapeutic interventions.
Collapse
Affiliation(s)
- Akshatha P Kamath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashok Kumar Balaraman
- Centre for Research and Innovation, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Zyuz'kov GN, Miroshnichenko LA, Polyakova TY, Simanina EV, Chaykovskyi AV, Agafonov VI, Zhdanov VV. Correction of Disorders in Psychoneurological Status and Functioning of Progenitor Cells of the Nervous Tissue with NF-κB Inhibitor under Conditions of Alzheimer's Disease Modeling. Bull Exp Biol Med 2024:10.1007/s10517-024-06258-x. [PMID: 39441440 DOI: 10.1007/s10517-024-06258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 10/25/2024]
Abstract
We studied the effect of NF-κB blockade on the state of various pools of progenitor cells of the nervous tissue and the psychoneurological status of experimental animals with modeled Alzheimer's disease. Administration of scopolamine hydrobromide to C57BL/6 mice for 4 weeks was accompanied by the development of "persistent" disturbances in the orientation and exploratory behavior and mnestic function. An ameliorating effect of the NF-κB inhibitor on these cognitive disorders typical of senile dementia was revealed. At the same time, we observed an increase in the content of neural stem cells and committed neuronal precursors in the subventricular zone of the brain.
Collapse
Affiliation(s)
- G N Zyuz'kov
- Laboratory of Pathophysiology and Experimental Therapy, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - L A Miroshnichenko
- Laboratory of Pathophysiology and Experimental Therapy, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - T Yu Polyakova
- Laboratory of Pathophysiology and Experimental Therapy, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E V Simanina
- Laboratory of Pathophysiology and Experimental Therapy, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A V Chaykovskyi
- Laboratory of Pathophysiology and Experimental Therapy, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V I Agafonov
- Laboratory of Pathophysiology and Experimental Therapy, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V V Zhdanov
- Laboratory of Pathophysiology and Experimental Therapy, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
4
|
Taheri M, Roghani M, Sedaghat R. Metformin Mitigates Trimethyltin-Induced Cognition Impairment and Hippocampal Neurodegeneration. Cell Mol Neurobiol 2024; 44:70. [PMID: 39441380 PMCID: PMC11499442 DOI: 10.1007/s10571-024-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The neurotoxicant trimethyltin (TMT) triggers cognitive impairment and hippocampal neurodegeneration. TMT is a useful research tool for the study of Alzheimer's disease (AD) pathogenesis and treatment. Although the antidiabetic agent metformin has shown promising neuroprotective effects, however, its precise modes of action in neurodegenerative disorders need to be further elucidated. In this study, we investigated whether metformin can mitigate TMT cognition impairment and hippocampal neurodegeneration. To induce an AD-like phenotype, TMT was injected i.p. (8 mg/kg) and metformin was administered daily p.o. for 3 weeks at 200 mg/kg. Our results showed that metformin administration to the TMT group mitigated learning and memory impairment in Barnes maze, novel object recognition (NOR) task, and Y maze, attenuated hippocampal oxidative, inflammatory, and cell death/pyroptotic factors, and also reversed neurodegeneration-related proteins such as presenilin 1 and p-Tau. Hippocampal level of AMP-activated protein kinase (AMPK) as a key regulator of energy homeostasis was also improved following metformin treatment. Additionally, metformin reduced hippocampal acetylcholinesterase (AChE) activity, glial fibrillary acidic protein (GFAP)-positive reactivity, and prevented the loss of CA1 pyramidal neurons. This study showed that metformin mitigated TMT-induced neurodegeneration and this may pave the way to develop new therapeutics to combat against cognitive deficits under neurotoxic conditions.
Collapse
Affiliation(s)
- Mahdieh Taheri
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Reza Sedaghat
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
5
|
Chaubey S, Singh L. Deciphering the mechanisms underlying the neuroprotective potential of kaempferol: a comprehensive investigation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03515-8. [PMID: 39414700 DOI: 10.1007/s00210-024-03515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Neurodegenerative disorders are characterized by neuronal degradation, dysfunction, or death within the CNS. Oxidative and inflammatory stress play crucial roles in the pathogenesis of various neurodegenerative diseases. The interplay between these stressors and dysregulated cellular signaling pathways contributes to neurodegeneration. Downregulation of NRF-2 compromises antioxidant defense, exacerbating neuronal damage, while increased TLR-4/MAPK and TLR-4/NF-κB signaling promotes neuroinflammation. Excessive ROS production by NADPH oxidase leads to oxidative damage and neuronal apoptosis. The strategies targeting NRF-2, TLR-4-mediated inflammatory stress, and NADPH oxidase activity promise to mitigate neuronal damage and halt the progression of the disease. Kaempferol is a flavonoid polyphenol antioxidant found abundantly in various fruits and vegetables, including apples, grapes, tomatoes, and broccoli. It is widely found in medicinal plants including Equisetum spp., Sophora japonica, Ginkgo biloba, and Euphorbia pekinensis (Rupr.). A substantial body of in vitro and in vivo evidences have demonstrated the neuroprotective potential of kaempferol against neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Kaempferol demonstrates multifaceted potential in mitigating neuroinflammation, apoptosis, and oxidative stress in different neurodegenerative diseases through the modulation of various pathways including NRF-2, NADPH oxidase, TLR-4/MAPK, and TLR-4/NF-κB. This review article was developed through a comprehensive analysis and interpretation of research published between 2009 and 2024, sourced from multiple scientific databases, including PubMed, Scopus, ScienceDirect, and Web of Science. This review aims to provide an in-depth overview of the neuroprotective effects of kaempferol, focusing on its underlying molecular mechanisms. A total of 24 research evidence were included to elucidate the molecular pathways by which kaempferol exerts its protective effects against neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyam Chaubey
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
6
|
Pyun JM, Park YH, Kang MJ, Kim S. Cholinesterase inhibitor use in amyloid PET-negative mild cognitive impairment and cognitive changes. Alzheimers Res Ther 2024; 16:210. [PMID: 39358798 PMCID: PMC11448210 DOI: 10.1186/s13195-024-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Cholinesterase inhibitors (ChEIs) are prescribed for Alzheimer's disease (AD) and sometimes for mild cognitive impairment (MCI) without knowing underlying pathologies and its effect on cognition. We investigated the frequency of ChEI prescriptions in amyloid-negative MCI and their association with cognitive changes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. METHODS We included participants with amyloid positron emission tomography (PET)-negative MCI from the ADNI. We analyzed the associations of ChEI use with cognitive changes, brain volume, and cerebrospinal fluid (CSF) total tau (t-tau), hyperphosphorylated tau181 (p-tau181), and p-tau181/t-tau ratio. RESULTS ChEIs were prescribed in 27.4% of amyloid PET-negative MCI and were associated with faster cognitive decline, reduced baseline hippocampal volume and entorhinal cortical thickness, and a longitudinal decrease in the frontal lobe cortical thickness. CONCLUSIONS The association between ChEI use and accelerated cognitive decline may stem from underlying pathologies involving reduced hippocampal volume, entorhinal cortical thickness and faster frontal lobe atrophy. We suggest that ChEI use in amyloid PET-negative MCI patients might need further consideration, and studies investigating the causality between ChEI use and cognitive decline are warranted in the future.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59, Daesagwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, 53, Jinhwangdo-ro 61-gil, Gangdong-gu, Seoul, 05368, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, 13620, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
7
|
Irsal RA, Gholam GM, Dwicesaria MA, Mansyah TF, Chairunisa F. Exploring the potential of Scabiosa columbaria in Alzheimer's disease treatment: An in silico approach. J Taibah Univ Med Sci 2024; 19:947-960. [PMID: 39397872 PMCID: PMC11470288 DOI: 10.1016/j.jtumed.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives Alzheimer's disease (AD) is posing an increasing global threat and currently lacks effective treatments. Therefore, this study was aimed at exploring phytochemicals in Scabiosa columbaria (S. columbaria) as inhibitors of acetylcholinesterase (AChE), β-site APP cleavage enzyme 1 (BACE1), and TNF-α converting enzyme (TACE) in AD. S. columbaria contains various bioactive compounds, such as chlorogenic acid, linalool, and catechins, which are known for their detoxification properties, capacity to resist and manage harmful moisture buildup, and therapeutic roles in COVID-19. Several studies have also shown that S. columbaria extract has strong antioxidant activity, and may potentially decrease neuroinflammation in AD. Therefore, this study investigated the interactions between S. columbaria phytochemicals and key enzymes associated with AD, thus providing opportunities for the development of new therapeutic candidates. Methods A total of 27 phytochemicals were evaluated for their inhibitory activity against AChE, BACE1, and TACE with YASARA Structure. ADMET profiles and toxicity were assessed. The top candidate compounds underwent 100 ns MD simulations. Results All ligands met Lipinski's rule and showed low toxicity. Catechins, compared with the known drug galantamine, showed higher inhibitory activity and interacted with additional active sites on AChE, thus suggesting potentially higher efficacy. Moreover, chlorogenic acid showed stronger inhibitory activity against TACE than the control drug (aryl-sulfonamide), thereby suggesting a different mechanism of action. MD simulation revealed that the formed complexes had good stability. However, further exploration is necessary. Conclusion S. columbaria derivative compounds are promising drug candidates because of their properties, including the affinity of chlorogenic acid toward TACE and hydrogen bond enhancing ligand-receptor interactions. MD simulation indicated stable ligand-protein complexes, and the radius of gyration and MM-PBSA calculations revealed favorable binding and interaction energies. Our findings demonstrate the identified compounds' potential for further drug development.
Collapse
Affiliation(s)
- Riyan A.P. Irsal
- Biomatics, Bogor, West Java, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Gusnia M. Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Maheswari A. Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Tiyara F. Mansyah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | | |
Collapse
|
8
|
Gursoy S, Satici D, Kuzu B, Turkmenoglu B, Dilek E, Algul O. Exploring new 5-Nitroimidazole Derivatives as Potent Acetylcholinesterase and Butyrylcholinesterase Enzyme Inhibitors. Chem Biodivers 2024; 21:e202400918. [PMID: 38924646 DOI: 10.1002/cbdv.202400918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Discovering new compounds capable of inhibiting physiologically and metabolically significant drug targets or enzymes is of paramount importance in biological chemistry. With this aim, new 5-nitroimidazole derivatives (1-4) were designed and synthesized, and their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were discovered using acetyl (butyryl) thiocholine and Ellman's reagents for spectrophotometric assay. The inhibitory profiles of the synthesized compounds were assessed by comparing their IC50 and Ki values. Results demonstrate significant inhibitory activity of all synthesized compounds against both AChE and BuChE compared to the reference compound, donepezil. Notably, compound 4 exhibited dual inhibition of these enzymes, showing the highest activity against Electrophorus electricus AChE (EeAChE) with a Ki value of 0.024±0.009 nM and against equine BuChE (eqBuChE) with a Ki value of 0.087±0.017 nM. Furthermore, molecular modeling was conducted to study the interaction modes of the most potent compound (4) and donepezil in the active site of their related enzymes' crystal structures (PDB ID: 4EY7 and 4BDS, respectively). Additionally, drug-likeness, ADME, and toxicity profiles of the compounds and metronidazole were predicted. The above results indicated that the dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder especially Alzheimer's disease.
Collapse
Affiliation(s)
- Sule Gursoy
- Department of Biohemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Doruk Satici
- Department of Pharmaceutical Sciences, Institute of Health Sciences, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van, Türkiye
| | - Burcin Turkmenoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Esra Dilek
- Department of Biohemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
- Department of Pharmaceutical Chemistry, Mersin University, Faculty of Pharmacy, Mersin, Türkiye
| |
Collapse
|
9
|
Singh YP, Kumar H. Recent Advances in Medicinal Chemistry of Memantine Against Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e14638. [PMID: 39370170 DOI: 10.1111/cbdd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) is a chronic progressive, age-related neurodegenerative brain disorder characterized by the irreversible decline of memory and other cognitive functions. It is one of the major health threat of the 21st century, which affects around 60% of the population over the age of 60 years. The problem of this disease is even more major because the existing pharmacotherapies only provide symptomatic relief without addressing the basic factors of the disease. It is characterized by the extracellular deposition of amyloid β (Aβ) to form senile plaques, and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (NFTs). Due to the complex pathophysiology of this disease, various hypotheses have been proposed, including the cholinergic, Aβ, tau, oxidative stress, and the metal-ion hypothesis. Among these, the cholinergic and Aβ hypotheses are the primary targets for addressing AD. Therefore, continuous advances have been made in developing potential cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists to delay disease progression and restore cholinergic neurotransmission. In this review article, we tried to comprehensively summarize the recent advancement in NMDA receptor antagonist (memantine) and their hybrid analogs as potential disease-modifying agents for the treatment of AD. Furthermore, we also depicted the design, rationale, and SAR analysis of the memantine-based hybrids used in the last decade for the treatment of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, India
- Government College of Pharmacy, Shimla, India
| |
Collapse
|
10
|
Weishaupt AK, Ruecker L, Meiners T, Schwerdtle T, Silva Avila D, Aschner M, Bornhorst J. Copper-mediated neurotoxicity and genetic vulnerability in the background of neurodegenerative diseases in C. elegans. Toxicol Sci 2024; 201:254-262. [PMID: 39067045 PMCID: PMC11424883 DOI: 10.1093/toxsci/kfae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The mechanisms associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have yet to be fully characterized, and genetic as well as environmental factors in their disease etiology are underappreciated. Although mutations in genes such as PARKIN and LRRK2 have been linked to PD, the idiopathic component of the disease suggests a contribution of environmental risk factors, including metals, such as copper (Cu). Cu overexposure has been reported to cause oxidative stress and neurotoxicity, but its role in neurodegenerative diseases is rarely studied. Using Caenorhabditis elegans (C. elegans) as a model organism for neurotoxicity, we assessed the effects of Cu oversupply in AD and PD models. Our findings reveal that although copper treatment did not induce neurodegeneration in wild-type worms or the AD model, it significantly exacerbated neurodegeneration in the PD-associated mutants PARKIN and LRRK2. These results suggest that genetic predisposition for PD enhances the sensitivity to copper toxicity, highlighting the multifactorial nature of neurodegenerative diseases. Furthermore, our study provides insight into the mechanisms underlying Cu-induced neurotoxicity in PD models, including disruptions in dopamine levels, altered dopamine-dependent behavior and degraded dopaminergic neurons. Overall, our novel findings contribute to a better understanding of the complex interactions between genetic susceptibility, environmental factors, and neurodegenerative disease pathogenesis, emphasizing the importance of a tightly regulated Cu homeostasis in the etiology of PD. Copper oversupply exacerbated neurodegeneration in Caenorhabditis elegans models of Parkinson's disease, highlighting the genetic susceptibility and emphasizing the crucial role of tightly regulated copper homeostasis in Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| | - Lysann Ruecker
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Torben Meiners
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Daiana Silva Avila
- Laboratory of Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, 97501-970 Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Julia Bornhorst
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| |
Collapse
|
11
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
12
|
Zhang YZ, Huo DY, Liu Z, Li XD, Wang Z, Li W. Review on ginseng and its potential active substance G-Rg2 against age-related diseases: Traditional efficacy and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118781. [PMID: 39260708 DOI: 10.1016/j.jep.2024.118781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Shen Nong Herbal Classic, Ginseng (Panax ginseng C.A. Meyer) is documented to possess life-prolonging effects and is extensively utilized in traditional Chinese medicine for the treatment of various ailments such as qi deficiency, temper deficiency, insomnia, and forgetfulness. Ginseng is commonly employed for replenishing qi and nourishing blood, fortifying the body and augmenting immunity; it has demonstrated efficacy in alleviating fatigue, enhancing memory, and retarding aging. Furthermore, it exhibits a notable ameliorative impact on age-related conditions including cardiovascular diseases and neurodegenerative disorders. One of its active constituents - ginsenoside Rg2 (G-Rg2) - exhibits potential therapeutic efficacy in addressing these ailments. AIM OF THE REVIEW The aim of this review is to explore the traditional efficacy of ginseng in anti-aging diseases and the modern pharmacological mechanism of its potential active substance G-Rg2, in order to provide strong theoretical support for further elucidating the mechanism of its anti-aging effect. METHODS This review provides a comprehensive analysis of the traditional efficacy of ginseng and the potential mechanisms underlying the anti-age-related disease properties of G-Rg2, based on an extensive literature review up to March 12, 2024, from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar databases. Potential anti-aging mechanisms of G-Rg2 were predicted using network pharmacology and molecular docking analysis techniques. RESULTS In traditional Chinese medicine theory, ginseng has been shown to improve aging-related diseases with a variety of effects, including tonifying qi, strengthening the spleen and stomach, nourishing yin, regulating yin and yang, as well as calming the mind. Its potential active ingredient G-Rg2 has demonstrated significant therapeutic potential in age-related diseases, especially central nervous system and cardiovascular diseases. G-Rg2 exhibited a variety of pharmacological activities, including anti-apoptotic, anti-inflammatory and antioxidant effects. Meanwhile, the network pharmacological analyses and molecular docking results were consistent with the existing literature review, further validating the potential efficacy of G-Rg2 as an anti-aging agent. CONCLUSION The review firstly explores the ameliorative effects of ginseng on a wide range of age-related diseases based on TCM theories. Secondly, the article focuses on the remarkable significance and value demonstrated by G-Rg2 in age-related cardiovascular and neurodegenerative diseases. Consequently, G-Rg2 has broad prospects for development in intervening in aging and treating age-related health problems.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - De-Yang Huo
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
13
|
Kang S, Lee N, Jung B, Jeong H, Moon C, Park SI, Yun S, Yim T, Oh JM, Kim JW, Song JH, Chae S, Kim JS. Anti-Amnesic Effect of Agastache rugosa on Scopolamine-Induced Memory Impairment in Mice. Pharmaceuticals (Basel) 2024; 17:1173. [PMID: 39338335 PMCID: PMC11435268 DOI: 10.3390/ph17091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Agastache rugosa, a traditional Asian herbal medicine, is primarily used for digestive problems; yet, its cognitive benefits remain unexplored. This study evaluated the anti-amnesic effects of A. rugosa extract (ARE) on scopolamine (SCO)-induced memory impairment in mice. Mice received 100 or 200 mg/kg ARE orally for 5 days, followed by SCO injection. The ARE demonstrated significant antioxidant (DPPH IC50: 75.3 µg/mL) and anti-inflammatory effects (NO reduction). Furthermore, the ARE significantly improved memory performance in the passive avoidance test (escape latency: 157.2 s vs. 536.9 s), the novel object recognition test (novel object preference: 47.6% vs. 66.3%) and the Morris water maze (time spent in the target quadrant: 30.0% vs. 45.1%). The ARE reduced hippocampal acetylcholinesterase activity (1.8-fold vs. 1.1-fold) while increasing choline acetyltransferase (0.4-fold vs. 1.0-fold) and muscarinic acetylcholine receptor subtype I (0.3-fold vs. 1.6-fold) expression. The ARE improved hippocampal neurogenesis via doublecortin- (0.4-fold vs. 1.1-fold) and KI-67-positive (6.3 vs. 12.0) cells. Therefore, the ARE exerts protective effects against cognitive decline through cholinergic system modulation and antioxidant activity, supporting its potential use as a cognitive enhancer.
Collapse
Affiliation(s)
- Sohi Kang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Nari Lee
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Bokyung Jung
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Huiyeong Jeong
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Ik Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seungpil Yun
- Department of Pharmacology and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Teresa Yim
- Global GreenFriends Co., Seocho-gu, Seoul 06569, Republic of Korea
| | - Jung Min Oh
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Jae-Won Kim
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Ji Hoon Song
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
- Vital to Life Co., Seongnam-si 13306, Republic of Korea
| | - Sungwook Chae
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
- KMConvergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
14
|
Zhang H, Cao D, Xu T, Chen E, Li G, Chen Y, Payne P, Province M, Li F. mosGraphFlow: a novel integrative graph AI model mining disease targets from multi-omic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606219. [PMID: 39282361 PMCID: PMC11398418 DOI: 10.1101/2024.08.01.606219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Multi-omic data can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, our novel contributions are that we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of AD, and 3) identified, visualized and evaluated a set of AD associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. Moreover, the signaling sources are highlighted at specific omic levels to facilitate the understanding of the pathogenesis of AD. The proposed model can also be applied and expanded for other studies using multi-omic data. Model code is accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Ryu MS, Yue Y, Li C, Yang HJ, Zhang T, Wu X, Jeong DY, Park S. Moderate capsaicin-containing kochujang alleviates memory impairment through the gut-brain axis in rats with scopolamine-induced amnesia. Biomed Pharmacother 2024; 178:117091. [PMID: 39024840 DOI: 10.1016/j.biopha.2024.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
This study investigated the efficacy and mechanism of traditionally made kochujang(TMK) with different capsaicin levels to alleviate memory impairment in rats with scopolamine-induced amnesia. Sprague-Dawley male rats were administered scopolamine (2 mg/kg bw/day) intraperitoneally to suppress the parasympathetic nervous system(PNS) and induce memory impairment. The rats were divided into four experimental groups, each consuming a diet containing 1 % kochujang in a 43-energy% high-fat diet(HFD) for 8 weeks. The TMK samples used for the study were categorized according to their capsaicin(CPS) content as follows: Low-CPS(0.5 mg%), medium-CPS(1.2 mg%), and high-CPS(1.7 mg%). In addition, factory-made kochujang (FMK; 1.1 mg% capsaicin) was also tested. The effects of kochujang were compared with the Control group(scopolamine), Positive-control(scopolamine+donepezil), and Normal-control(saline) fed HFD. Kochujang consumption reduced body weight and fat mass compared to the Control group. Compared to the Control, memory function measured using passive avoidance, water maze, and novel object recognition tests was enhanced in kochujang-fed rats, especially in the Medium-CPS group, similar to Positive-control. The Medium-CPS and Positive-control groups also exhibited inhibition of hippocampal cell death and increased cholesterol and triglyceride contents and mRNA expression of TNF-α and IL-1β in the brain tissue compared to the Control group. Additionally, TMK elevated short-chain fatty acid, particularly, butyrate concentration in the portal vein. Scopolamine disturbed large intestine cell morphology and gut microbiota composition, and kochujang improved them. Kochujang in the medium-CPS (1.2 mg%) had a more significant impact on the gut microbiota in the interaction analysis between gut microbiota and memory function. In conclusion, kochujang, especially with medium-CPS (1.2 mg%), is a potential dietary intervention to mitigate memory impairment and promote overall cognitive health through improving eubiosis, potentially linked to the gut-brain axis in PNS-suppressed rats.
Collapse
Affiliation(s)
- Myeong Seon Ryu
- Dept. of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun, South Korea
| | - Yu Yue
- Korea Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Chen Li
- Korea Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Hee-Jong Yang
- Dept. of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun, South Korea
| | - Ting Zhang
- Korea Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Xuangao Wu
- Korea Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Do Yeon Jeong
- Dept. of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun, South Korea.
| | - Sunmin Park
- Korea Dept. of Bioconvergence, Hoseo University, Asan, South Korea; Dept. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea.
| |
Collapse
|
16
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
17
|
Shirvani M, Nouri F, Sarihi A, Habibi P, Mohammadi M. Neuroprotective Effects of Dehydroepiandrosterone and Hericium erinaceus in Scopolamine-induced Alzheimer's Diseases-like Symptoms in Male Rats. Cell Biochem Biophys 2024; 82:2853-2864. [PMID: 38990419 DOI: 10.1007/s12013-024-01400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The neuroprotective effects of Dehydroepiandrosterone (DHEA) and Hericium erinaceus (H. erinaceus) mushroom extract against scopolamine-induced Alzheimer's disease-like symptoms in male Wistar rats were investigated. METHODS Sixty-four male Wistar rats were divided into eight groups (n = 8). Scopolamine (SCO) was intraperitoneally injected at a dose of 1 mg/kg/day for 10 days. The treatment groups orally received DHEA (250 mg/kg/day) and/or H. erinaceus (300 mg/kg/day) for 14 days. Afterward, the Morris water maze (MWM) and novel object recognition tests were implemented. Then, animals were anesthetized and the brain tissue samples were separated. Levels of lipid peroxidation (LPO), total antioxidant capacity (TAC), catalase activity (CAT), and brain-derived neurotrophic factor (BDNF) were determined. Also, histopathological studies were evaluated in the brain tissue samples. RESULTS Administration of SCO significantly decreased spatial and cognitive memory (p < 0.001). Not only did SCO injection significantly increase the levels of the LPO but also the SCO markedly reduced the levels of the TAC, CAT activity, and the BDNF in the brain tissue. On the other hand, a combination of the DHEA and H. erinaceus showed higher efficacy than the DHEA or H. erinaceus in attenuating behavioral anomalies and improving the antioxidant defense system and BDNF levels. Histological examination was well correlated with biochemical findings regarding SCO neurodegeneration and DHEA and/or H. erinaceus neuroprotection. CONCLUSION Interestingly, ADHE and/or H. erinaceus may due to their potential neurotrophic properties be used as a new and beneficial concurrent therapy in the treatment of Alzheimer's disease-like symptoms caused by SCO.
Collapse
Affiliation(s)
- Majid Shirvani
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abodrahman Sarihi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
18
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Cardinali CAEF, Martins YA, Moraes RCM, Costa AP, Alencar MB, Silber AM, Torrão AS. Exploring the Therapeutic Potential of Benfotiamine in a Sporadic Alzheimer's-Like Disease Rat Model: Insights into Insulin Signaling and Cognitive function. ACS Chem Neurosci 2024; 15:2982-2994. [PMID: 39007352 PMCID: PMC11342302 DOI: 10.1021/acschemneuro.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process, also considered a metabolic condition due to alterations in glucose metabolism and insulin signaling pathways in the brain, which share similarities with diabetes. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analog, in the early stages of the neurodegenerative process in a sporadic model of Alzheimer's-like disease induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days reversed the cognitive impairment in short- and long-term memories caused by STZ in rodents. We attribute these effects to BFT's ability to modulate glucose transporters type 1 and 3 (GLUT1 and GLUT3) in the hippocampus, inhibit GSK3 activity in the hippocampus, and modulate the insulin signaling in the hippocampus and entorhinal cortex, as well as reduce the activation of apoptotic pathways (BAX) in the hippocampus. Therefore, BFT emerges as a promising and accessible intervention in the initial treatment of conditions similar to AD.
Collapse
Affiliation(s)
- Camila A. E. F. Cardinali
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Yandara A. Martins
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ruan C. M. Moraes
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
- Department
of Psychiatry & Behavioral Neurosciences, The University of Alabama at Birmingham, Birmingham Alabama 35294, United States
| | - Andressa P. Costa
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayke B. Alencar
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ariel M. Silber
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andrea S. Torrão
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
20
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
21
|
Kim YE, Lim JS, Suh CH, Heo H, Roh JH, Cheong EN, Lee Y, Kim JW, Lee JH. Effects of strategic white matter hyperintensities of cholinergic pathways on basal forebrain volume in patients with amyloid-negative neurocognitive disorders. Alzheimers Res Ther 2024; 16:185. [PMID: 39148136 PMCID: PMC11325579 DOI: 10.1186/s13195-024-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The cholinergic neurotransmitter system is crucial to cognitive function, with the basal forebrain (BF) being particularly susceptible to Alzheimer's disease (AD) pathology. However, the interaction of white matter hyperintensities (WMH) in cholinergic pathways and BF atrophy without amyloid pathology remains poorly understood. METHODS We enrolled patients who underwent neuropsychological tests, magnetic resonance imaging, and 18F-florbetaben positron emission tomography due to cognitive impairment at the teaching university hospital from 2015 to 2022. Among these, we selected patients with negative amyloid scans and additionally excluded those with Parkinson's dementia that may be accompanied by BF atrophy. The WMH burden of cholinergic pathways was quantified by the Cholinergic Pathways Hyperintensities Scale (CHIPS) score, and categorized into tertile groups because the CHIPS score did not meet normal distribution. Segmentation of the BF on volumetric T1-weighted MRI was performed using FreeSurfer, then was normalized for total intracranial volume. Multivariable regression analysis was performed to investigate the association between BF volumes and CHIPS scores. RESULTS A total of 187 patients were enrolled. The median CHIPS score was 12 [IQR 5.0; 24.0]. The BF volume of the highest CHIPS tertile group (mean ± SD, 3.51 ± 0.49, CHIPSt3) was significantly decreased than those of the lower CHIPS tertile groups (3.75 ± 0.53, CHIPSt2; 3.83 ± 0.53, CHIPSt1; P = 0.02). In the univariable regression analysis, factors showing significant associations with the BF volume were the CHIPSt3 group, age, female, education, diabetes mellitus, smoking, previous stroke history, periventricular WMH, and cerebral microbleeds. In multivariable regression analysis, the CHIPSt3 group (standardized beta [βstd] = -0.25, P = 0.01), female (βstd = 0.20, P = 0.04), and diabetes mellitus (βstd = -0.22, P < 0.01) showed a significant association with the BF volume. Sensitivity analyses showed a negative correlation between CHIPS score and normalized BF volume, regardless of WMH severity. CONCLUSIONS We identified a significant correlation between strategic WMH burden in the cholinergic pathway and BF atrophy independently of amyloid positivity and WMH severity. These results suggest a mechanism of cholinergic neuronal loss through the dying-back phenomenon and provide a rationale that strategic WMH assessment may help identify target groups that may benefit from acetylcholinesterase inhibitor treatment.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwon Heo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jee Hoon Roh
- Department of Biomedical Sciences, Department of Physiology, Korea University College of Medicine, Seoul, Korea
- Department of Neurology, Korea University Anam Hospital, Seoul, Korea
| | - E-Nae Cheong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoojin Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Woo Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Devi B, Jangid K, Kumar V, Arora T, Kumar N, Dwivedi AR, Parkash J, Kumar V. Phenylstyrylpyrimidine derivatives as potential multipotent therapeutics for Alzheimer's disease. RSC Med Chem 2024; 15:2922-2936. [PMID: 39149109 PMCID: PMC11324047 DOI: 10.1039/d4md00277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder that affects millions of people worldwide. Despite extensive research efforts, there are currently no effective disease-modifying therapeutics available for the complete cure of AD. In the current study, we have designed and synthesized a series of phenyl-styryl-pyrimidine derivatives as potential multifunctional agents against different targets of AD. The compounds were evaluated for their ability to inhibit acetylcholinesterase (AChE), monoamine oxidase (MAO) and β amyloid aggregation which are associated with the initiation and progression of the disease. Several compounds in the series exhibited potent inhibitory activity against AChE and MAO-B, with IC50 values in the low micromolar range. In particular, two compounds, BV-12 and BV-14, were found to exhibit a multipotent profile and showed non-competitive inhibition against MAO-B with IC50 values of 4.93 ± 0.38 & 7.265 ± 0.82 μM, respectively and AChE inhibition with IC50 values of 7.265 and 9.291 μM, respectively. BV-12 and BV-14 also displayed β amyloid self-aggregation inhibition of 32.98% and 23.25%, respectively. Furthermore, molecular modelling studies revealed that BV-14 displayed a docking score of -11.20 kcal mol-1 with MAO-B & -6.767 kcal mol-1 with AChE, forming a stable complex with both proteins. It was concluded that phenyl-styryl-pyrimidine derivatives have the potential to be developed as multitarget directed ligands for the treatment of AD.
Collapse
Affiliation(s)
- Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda-151401 India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab Bathinda-151401 India
| | - Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda-151401 India
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab Bathinda-151401 India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| |
Collapse
|
23
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Alcohol, HMGB1, and Innate Immune Signaling in the Brain. Alcohol Res 2024; 44:04. [PMID: 39135668 PMCID: PMC11318841 DOI: 10.35946/arcr.v44.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Binge drinking (i.e., consuming enough alcohol to achieve a blood ethanol concentration of 80 mg/dL, approximately 4-5 drinks within 2 hours), particularly in early adolescence, can promote progressive increases in alcohol drinking and alcohol-related problems that develop into compulsive use in the chronic relapsing disease, alcohol use disorder (AUD). Over the past decade, neuroimmune signaling has been discovered to contribute to alcohol-induced changes in drinking, mood, and neurodegeneration. This review presents a mechanistic hypothesis supporting high mobility group box protein 1 (HMGB1) and Toll-like receptor (TLR) signaling as key elements of alcohol-induced neuroimmune signaling across glia and neurons, which shifts gene transcription and synapses, altering neuronal networks that contribute to the development of AUD. This hypothesis may help guide further research on prevention and treatment. SEARCH METHODS The authors used the search terms "HMGB1 protein," "alcohol," and "brain" across PubMed, Scopus, and Embase to find articles published between 1991 and 2023. SEARCH RESULTS The database search found 54 references in PubMed, 47 in Scopus, and 105 in Embase. A total of about 100 articles were included. DISCUSSION AND CONCLUSIONS In the brain, immune signaling molecules play a role in normal development that differs from their functions in inflammation and the immune response, although cellular receptors and signaling are shared. In adults, pro-inflammatory signals have emerged as contributing to brain adaptation in stress, depression, AUD, and neurodegenerative diseases. HMGB1, a cytokine-like signaling protein released from activated cells, including neurons, is hypothesized to activate pro-inflammatory signals through TLRs that contribute to adaptations to binge and chronic heavy drinking. HMGB1 alone and in heteromers with other molecules activates TLRs and other immune receptors that spread signaling across neurons and glia. Both blood and brain levels of HMGB1 increase with ethanol exposure. In rats, an adolescent intermittent ethanol (AIE) binge drinking model persistently increases brain HMGB1 and its receptors; alters microglia, forebrain cholinergic neurons, and neuronal networks; and increases alcohol drinking and anxiety while disrupting cognition. Studies of human postmortem AUD brain have found elevated levels of HMGB1 and TLRs. These signals reduce cholinergic neurons, whereas microglia, the brain's immune cells, are activated by binge drinking. Microglia regulate synapses through complement proteins that can change networks affected by AIE that increase drinking, contributing to risks for AUD. Anti-inflammatory drugs, exercise, cholinesterase inhibitors, and histone deacetylase epigenetic inhibitors prevent and reverse the AIE-induced pathology. Further, HMGB1 antagonists and other anti-inflammatory treatments may provide new therapies for alcohol misuse and AUD. Collectively, these findings suggest that restoring the innate immune signaling balance is central to recovering from alcohol-related pathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A. Macht
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Lee HL, Go MJ, Lee HS, Heo HJ. Ecklonia cava Ameliorates Cognitive Impairment on Amyloid β-Induced Neurotoxicity by Modulating Oxidative Stress and Synaptic Function in Institute of Cancer Research (ICR) Mice. Antioxidants (Basel) 2024; 13:951. [PMID: 39199197 PMCID: PMC11352165 DOI: 10.3390/antiox13080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigated the neuroprotective effect of 70% ethanol extract of Ecklonia cava (EE) in amyloid beta (Aβ)-induced cognitive deficit mice. As a result of analyzing the bioactive compounds in EE, nine compounds were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In particular, the diekcol content was quantified by high-performance liquid chromatography with diode-array detection (DAD-HPLC). Biochemical analysis was performed on brain tissue to determine the mechanism of the cognitive function improvement effect of EE. The result showed that EE ameliorated learning and memory decline in behavioral tests on Aβ-induced mice. EE also attenuated oxidative stress by regulating malondialdehyde (MDA) content, reduced glutathione (GSH), and superoxide dismutase (SOD) levels. Similarly, EE also improved mitochondrial dysfunction as mitochondrial membrane potential, ATP production, and reactive oxygen species (ROS) levels. In addition, EE enhanced synapse function by modulating acetylcholine-related enzymes and synaptic structural proteins in the whole brain, hippocampus, and cerebral cortex tissues. Also, EE regulated Aβ-induced apoptosis and inflammation through the c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways. Furthermore, EE protected neurotoxicity by increasing brain-derived neurotrophic factor (BDNF) production. These results suggest that EE may be used as a dietary supplement for the prevention and treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | | | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.L.L.); (M.J.G.); (H.S.L.)
| |
Collapse
|
25
|
Ajibo DN, Orish CN, Ruggieri F, Bocca B, Battistini B, Frazzoli C, Orish FC, Orisakwe OE. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:3538-3564. [PMID: 38017235 DOI: 10.1007/s12011-023-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.
Collapse
Affiliation(s)
- Doris Nnena Ajibo
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome Viale Regina Elena, 29900161, Rome, Italy
| | | | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
26
|
Koppula S, Wankhede NL, Sammeta SS, Shende PV, Pawar RS, Chimthanawala N, Umare MD, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Kale MB. Modulation of cholesterol metabolism with Phytoremedies in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102389. [PMID: 38906182 DOI: 10.1016/j.arr.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Alzheimer's disease (AD) is a complex neurological ailment that causes cognitive decline and memory loss. Cholesterol metabolism dysregulation has emerged as a crucial element in AD pathogenesis, contributing to the formation of amyloid-beta (Aβ) plaques and tau tangles, the disease's hallmark neuropathological characteristics. Thus, targeting cholesterol metabolism has gained attention as a potential therapeutic method for Alzheimer's disease. Phytoremedies, which are generated from plants and herbs, have shown promise as an attainable therapeutic option for Alzheimer's disease. These remedies contain bioactive compounds like phytochemicals, flavonoids, and polyphenols, which have demonstrated potential in modulating cholesterol metabolism and related pathways. This comprehensive review explores the modulation of cholesterol metabolism by phytoremedies in AD. It delves into the role of cholesterol in brain function, highlighting disruptions observed in AD. Additionally, it examines the underlying molecular mechanisms of cholesterol-related pathology in AD. The review emphasizes the significance of phytoremedies as a potential therapeutic intervention for AD. It discusses the drawbacks of current treatments and the need for alternative strategies addressing cholesterol dysregulation and its consequences. Through an in-depth analysis of specific phytoremedies, the review presents compelling evidence of their potential benefits. Molecular mechanisms underlying phytoremedy effects on cholesterol metabolism are examined, including regulation of cholesterol-related pathways, interactions with Aβ pathology, influence on tau pathology, and anti-inflammatory effects. The review also highlights challenges and future perspectives, emphasizing standardization, clinical evidence, and personalized medicine approaches to maximize therapeutic potential in AD treatment. Overall, phytoremedies offer promise as a potential avenue for AD management, but further research and collaboration are necessary to fully explore their efficacy, safety, and mechanisms of action.
Collapse
Affiliation(s)
- Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Shivkumar S Sammeta
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Rupali S Pawar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | | | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
27
|
Zhou X, Liu Y, Wu Z, Zhang X, Tao H. Alzheimer's disease and epilepsy: Research hotspots for comorbidity in the era of global aging. Epilepsy Behav 2024; 157:109849. [PMID: 38820684 DOI: 10.1016/j.yebeh.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Neurological conditions such as Alzheimer's disease (AD) and epilepsy share a significant clinical overlap, particularly in the elderly, with each disorder potentiating the risk of the other. This interplay is significant amidst an aging global demographic. The review explores the classical pathologies of AD, including amyloid-beta plaques and hyperphosphorylated tau, and their potential role in the genesis of epilepsy. It also delves into the imbalance of glutamate and gamma-amino butyric acid activities, a key mechanism in epilepsy that may be influenced by AD pathology. The impact of age of onset on comorbidity is examined, with early-onset AD and Down syndrome presenting higher risks of epilepsy. The review suggests that epilepsy might precede cognitive symptoms in AD, indicating a complex interaction. Sleep modulation is highlighted as a factor, with sleep disturbances potentially contributing to AD progression. The necessity for cautious medication management is emphasized due to the cognitive effects of certain antiepileptic drugs. Animal models are recognized for their importance in understanding the relationship between AD and epilepsy, though creating fully representative models presents a challenge. The review concludes by noting the efficacy of medications such as lamotrigine, levetiracetam, and memantine in managing both conditions and suggests the ketogenic diet and cannabidiol as emerging treatment options, warranting further investigation for comprehensive patient care strategies.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
28
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
29
|
Sip S, Stasiłowicz-Krzemień A, Sip A, Szulc P, Neumann M, Kryszak A, Cielecka-Piontek J. Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L. Molecules 2024; 29:3574. [PMID: 39124978 PMCID: PMC11314201 DOI: 10.3390/molecules29153574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Białobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (P.S.); (M.N.)
| | - Małgorzata Neumann
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (P.S.); (M.N.)
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| |
Collapse
|
30
|
Sobczuk J, Paczkowska K, Andrusiów S, Bolanowski M, Daroszewski J. Are Women with Polycystic Ovary Syndrome at Increased Risk of Alzheimer Disease? Lessons from Insulin Resistance, Tryptophan and Gonadotropin Disturbances and Their Link with Amyloid-Beta Aggregation. Biomolecules 2024; 14:918. [PMID: 39199306 PMCID: PMC11352735 DOI: 10.3390/biom14080918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Joachim Sobczuk
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
| | | | - Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
31
|
Azargoonjahromi A. The duality of amyloid-β: its role in normal and Alzheimer's disease states. Mol Brain 2024; 17:44. [PMID: 39020435 PMCID: PMC11256416 DOI: 10.1186/s13041-024-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD is the accumulation of amyloid-beta (Aβ) plaques, which play pivotal roles in disease progression. These plaques initiate a cascade of events including neuroinflammation, synaptic dysfunction, tau pathology, oxidative stress, impaired protein clearance, mitochondrial dysfunction, and disrupted calcium homeostasis. Aβ accumulation is also closely associated with other hallmark features of AD, underscoring its significance. Aβ is generated through cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its beneficial and detrimental effects.
Collapse
|
32
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Pastene-Burgos S, Muñoz-Nuñez E, Quiroz-Carreño S, Pastene-Navarrete E, Espinoza Catalan L, Bustamante L, Alarcón-Enos J. Ceanothanes Derivatives as Peripheric Anionic Site and Catalytic Active Site Inhibitors of Acetylcholinesterase: Insights for Future Drug Design. Int J Mol Sci 2024; 25:7303. [PMID: 39000410 PMCID: PMC11242892 DOI: 10.3390/ijms25137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system and particularly in the formation of amyloid plaques; therefore, the inhibition of AChE has become one of the most promising strategies for the treatment of AD, particularly concerning AChE inhibitors that interact with the peripheral anionic site (PAS). Ceanothic acid isolated from the Chilean Rhamnaceae plants is an inhibitor of AChE through its interaction with PAS. In this study, six ceanothic acid derivatives were prepared, and all showed inhibitory activity against AChE. The structural modifications were performed starting from ceanothic acid by application of simple synthetic routes: esterification, reduction, and oxidation. AChE activity was determined by the Ellmann method for all compounds. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compounds would be produced by interaction with the PAS of AChE. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the ceanothane derivatives were performed using the Swiss ADME tool.
Collapse
Affiliation(s)
- Sofía Pastene-Burgos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Evelyn Muñoz-Nuñez
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Soledad Quiroz-Carreño
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Edgar Pastene-Navarrete
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Luis Espinoza Catalan
- Departamento de Química, Universidad Federico Santa María, Valparaíso 2340000, Chile;
| | - Luis Bustamante
- Departamento Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4030000, Chile;
| | - Julio Alarcón-Enos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| |
Collapse
|
34
|
Mirzaei F, Agbaria L, Bhatnagar K, Sirimanne N, Omar A'amar N, Jindal V, Gerald Thilagendra A, Tawfiq Raba F. Coffee and Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2024; 289:21-55. [PMID: 39168581 DOI: 10.1016/bs.pbr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee, a universally consumed beverage, is known to contain thousands of bioactive constituents that have garnered interest due to their potential neuroprotective effects against various neurodegenerative disorders, including Alzheimer's disease (AD). Extensive research has been conducted on coffee constituents such as Caffeine, Trigonelline, Chlorogenic acid, and Caffeic acid, focusing on their neuroprotective properties. These compounds have potential to impact key mechanisms in AD development, including amyloidopathy, tauopathy, and neuroinflammation. Furthermore, apart from its neuroprotective effects, coffee consumption has been associated with anticancerogenic and anti-inflammatory effects, thereby enhancing its therapeutic potential. Studies suggest that moderate coffee intake, typically around two to three cups daily, could potentially contribute to mitigating AD progression and lowering the risk of related neurological disorders. This literature underscores the potential neuroprotective properties of coffee compounds, which usually perform their neuronal protective effects via modulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid-derived 2-like 2 (Nrf2), interleukins, tumor necrosis factor-alpha (TNF-α), and many other molecules.
Collapse
Affiliation(s)
- Foad Mirzaei
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia.
| | - Lila Agbaria
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Khushbu Bhatnagar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nethmini Sirimanne
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Nathalie Omar A'amar
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Vaishali Jindal
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Albankha Gerald Thilagendra
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| | - Farah Tawfiq Raba
- MedExplora Scientific Research Society, Yerevan, Armenia; Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, Yerevan, Armenia
| |
Collapse
|
35
|
Zhang Y, Zhang Y, Li S, Liu C, Liang J, Nong Y, Chen M, Sun R. Quaternity method for integrated screening, separation, extraction optimization, and bioactivity evaluation of acetylcholinesterase inhibitors from Sophora flavescens Aiton. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38957046 DOI: 10.1002/pca.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Sophora flavescens Aiton (Fabaceae), a ubiquitous plant species in Asia, contains a wide range of pharmacologically active compounds, such as flavonoids, with potential anti-Alzheimer's disease (anti-AD) effects. OBJECTIVES The objective of the study is to develop a quaternity method for the screening, isolation, extraction optimization, and activity evaluation of acetylcholinesterase (AChE)-inhibiting compounds from S. flavescens to realize high-throughput screening of active substances in traditional Chinese medicine and to provide experimental data for the development of anti-AD drugs. METHODS With AChE as the target molecule, affinity ultrafiltration and liquid chromatography-mass spectrometry were applied to screen for potential inhibitors of the enzyme in S. flavescens. Orthogonal array experiments combined with the multi-objective Non-Dominated Sorting Genetic Algorithm III was used for the first time to optimize the process for extracting the active substances. Enzyme inhibition kinetics and molecular docking studies were performed to verify the potential anti-AD effects of the active compounds. RESULTS Five AChE-inhibiting compounds were identified: kushenol I, kurarinone, sophoraflavanone G, isokurarinone, and kushenol E. These were successfully separated at purities of 72.88%, 98.55%, 96.86%, 96.74%, and 95.84%, respectively, using the n-hexane/ethyl acetate/methanol/water (4.0/5.0/4.0/5.0, v/v/v/v), n-hexane/ethyl acetate/methanol/water (5.0/5.0/6.0/4.0, v/v/v/v), and n-hexane/ethyl acetate/methanol/water (4.9/5.1/5.7/4.3, v/v/v/v) mobile phase systems. Enzyme inhibition kinetics revealed that kushenol E had the best inhibitory effect. CONCLUSION This study elucidates the mechanism of action of five active AChE inhibitors in S. flavescens and provides a theoretical basis for the screening and development of anti-AD and other therapeutic drugs.
Collapse
Affiliation(s)
- Yutong Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Jiaqi Liang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuyu Nong
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Ming Chen
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Ruijun Sun
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
36
|
Ge Y, Ming L, Xu D. Sevoflurane-induced cognitive effect on α7-nicotine receptor and M 1 acetylcholine receptor expression in the hippocampus of aged rats. Neurol Res 2024; 46:593-604. [PMID: 38747300 DOI: 10.1080/01616412.2024.2338031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sevoflurane treatment increases the incidence of postoperative cognitive dysfunction (POCD), and patients with POCD show a decline in cognitive abilities compared to preoperative levels. OBJECTIVES This study aimed to investigate whether the activation of α7 nicotinic acetylcholine receptor (α7nAChR) and the expression of M1 acetylcholine receptor (mAChR M1) in the hippocampus affects the cognitive function of aged rats. METHODS Forty-eight Sprague-Dawley (SD) rats of 1-week- and 12-months-old were divided into eight groups: four groups for α7nAChR and four groups for mAChR M1, respectively. All SD rats received 1.0-02% sevoflurane for α7nAChR and 1.0-02% sevoflurane for mAChR M1 for 2-6 h, respectively. The Y-maze test was used to assess the ability to learn and memory after receiving sevoflurane for 7 days at the same moment portion. RT-PCR was used to determine the expression of α7nAChR and mAChR M1 in the hippocampus of rats. RESULTS The α7nAChR mitigated the formation of sevoflurane-induced memory impairment by modulating the translocation of NR2B from the intracellular reservoir to the cell surface reservoir within the hippocampus. Next, sevoflurane-induced decline of cognitive function and significantly decreased mAChR M1 expression at mRNA levels. CONCLUSION α7nAChR regulates the trafficking of NR2B in the hippocampus of rats via the Src-family tyrosine kinase (SFK) pathway. This regulation is associated with cognitive deficits induced by sevoflurane in hippocampal development. Sevoflurane affects the cognitive function of rats by suppressing the mAChR M1 expression at mRNA levels in the hippocampus.
Collapse
Affiliation(s)
- Yuan Ge
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Ming
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Dedong Xu
- Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
37
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. How calcineurin inhibitors affect cognition. Acta Physiol (Oxf) 2024; 240:e14161. [PMID: 38747643 DOI: 10.1111/apha.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
AIMS With a focus on the discrepancy between preclinical and clinical findings, this review will gather comprehensive information about the effects of calcineurin inhibitors (CNI) on cognitive function and related brain pathology from in vitro, in vivo, and clinical studies. We also summarize the potential mechanisms that underlie the pathways related to CNI-induced cognitive impairment. METHODS We systematically searched articles in PubMed using keywords 'calcineurin inhibitor*' and 'cognition' to identify related articles, which the final list pertaining to underlying mechanisms of CNI on cognition. RESULTS Several studies have reported an association between calcineurin and the neuropathology of Alzheimer's disease (AD). AD is the most common neurocognitive disorder associated with amyloid plaques and neurofibrillary tangles in the brain, leading to cognitive impairment. CNI, including tacrolimus and cyclosporin A, are commonly prescribed for patients with transplantation of solid organs such as kidney, liver, or heart, those drugs are currently being used as long-term immunosuppressive therapy. Although preclinical models emphasize the favorable effects of CNI on the restoration of brain pathology due to the impacts of calcineurin on the alleviation of amyloid-beta deposition and tau hyperphosphorylation, or rescuing synaptic and mitochondrial functions, treatment-related neurotoxicity, resulting in cognitive dysfunctions has been observed in clinical settings of patients who received CNI. CONCLUSION Inconsistent results of CNI on cognition from clinical studies have been observed due to impairment of the blood-brain barrier, neuroinflammation mediated by reactive oxygen species, and alteration in mitochondrial fission, and extended research is required to confirm its promising use in cognitive impairment.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripron C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
38
|
Kalyvas AC, Dimitriou M, Ioannidis P, Grigoriadis N, Afrantou T. Alzheimer's Disease and Epilepsy: Exploring Shared Pathways and Promising Biomarkers for Future Treatments. J Clin Med 2024; 13:3879. [PMID: 38999445 PMCID: PMC11242231 DOI: 10.3390/jcm13133879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Alzheimer's disease (AD) and epilepsy represent two complex neurological disorders with distinct clinical manifestations, yet recent research has highlighted their intricate interplay. This review examines the association between AD and epilepsy, with particular emphasis on late-onset epilepsy of unknown etiology, increasingly acknowledged as a prodrome of AD. It delves into epidemiology, pathogenic mechanisms, clinical features, diagnostic characteristics, treatment strategies, and emerging biomarkers to provide a comprehensive understanding of this relationship. Methods: A comprehensive literature search was conducted, identifying 128 relevant articles published between 2018 and 2024. Results: Findings underscore a bidirectional relationship between AD and epilepsy, indicating shared pathogenic pathways that extend beyond traditional amyloid-beta and Tau protein pathology. These pathways encompass neuroinflammation, synaptic dysfunction, structural and network alterations, as well as molecular mechanisms. Notably, epileptic activity in AD patients may exacerbate cognitive decline, necessitating prompt detection and treatment. Novel biomarkers, such as subclinical epileptiform activity detected via advanced electroencephalographic techniques, offer promise for early diagnosis and targeted interventions. Furthermore, emerging therapeutic approaches targeting shared pathogenic mechanisms hold potential for disease modification in both AD and epilepsy. Conclusions: This review highlights the importance of understanding the relationship between AD and epilepsy, providing insights into future research directions. Clinical data and diagnostic methods are also reviewed, enabling clinicians to implement more effective treatment strategies.
Collapse
Affiliation(s)
- Athanasios-Christos Kalyvas
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Maria Dimitriou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| |
Collapse
|
39
|
Gajowniczek-Ałasa D, Baranowska-Wójcik E, Szwajgier D. Vegan and Vegetarian Soups Are Excellent Sources of Cholinesterase Inhibitors. Nutrients 2024; 16:2025. [PMID: 38999773 PMCID: PMC11243061 DOI: 10.3390/nu16132025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The cholinesterase theory stands as the most popular worldwide therapy for Alzheimer's disease (AD). Given the absence of a cure for AD, a plant-based diet has been repeatedly shown as positive in the prevention of AD, including exploring ready-made products in stores and the development of new functional foods. GOAL This study compared the anti-acetyl- and butyrylcholinesterase activity of thirty-two Polish market soups and five newly formulated soups intended to be functional. Additionally, the research aimed to assess the significance of animal content, distinguishing between vegan and vegetarian options, in cholinesterase inhibition. MATERIALS AND METHODS The anticholinesterase activity was investigated using a spectrophotometric method, and the inhibitory activity was expressed as % inhibition of the enzyme. The study categorized soups into three groups based on ingredients: those containing animal-derived components, vegetarian soups and vegan soups. RESULTS Soups exhibited varying levels of activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), indicating differences in their compositions. Composition appeared to be the primary factor influencing anticholinesterase activity, as soups within each group showed significant variability in activity levels. While some commercial soups demonstrated notable anticholinesterase activity, they did not surpass the effectiveness of the optimized soups developed in the laboratory. Certain ingredients were associated with higher anticholinesterase activity, such as coconut, potato, onion, garlic, parsley and various spices and herbs. CONCLUSIONS Vegetarian and vegan soups exhibited comparable or even superior anticholinesterase activity compared to animal-derived soups, highlighting the importance of plant-based ingredients. The study underscores the need for further research to explore the mechanisms underlying the anticholinesterase activity of soups, including the impact of ingredient combinations and processing methods.
Collapse
Affiliation(s)
- Dorota Gajowniczek-Ałasa
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
40
|
Khedraoui M, Abchir O, Nour H, Yamari I, Errougui A, Samadi A, Chtita S. An In Silico Study Based on QSAR and Molecular Docking and Molecular Dynamics Simulation for the Discovery of Novel Potent Inhibitor against AChE. Pharmaceuticals (Basel) 2024; 17:830. [PMID: 39065681 PMCID: PMC11280381 DOI: 10.3390/ph17070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Acetylcholinesterase (AChE) is one of the main drug targets for treating Alzheimer's disease. This current study relies on multiple molecular modeling approaches to develop new potent inhibitors of AChE. We explored a 2D QSAR study using the statistical method of multiple linear regression based on a set of substituted 5-phenyl-1,3,4-oxadiazole and N-benzylpiperidine analogs, which were recently synthesized and proved their inhibitory activities against acetylcholinesterase (AChE). The molecular descriptors, polar surface area, dipole moment, and molecular weight are the key structural properties governing AChE inhibition activity. The MLR model was selected based on its statistical parameters: R2 = 0.701, R2test = 0.76, Q2CV = 0.638, and RMSE = 0.336, demonstrating its predictive reliability. Randomization tests, VIF tests, and applicability domain tests were adopted to verify the model's robustness. As a result, 11 new molecules were designed with higher anti-Alzheimer's activities than the model molecule. We demonstrated their improved pharmacokinetic properties through an in silico ADMET study. A molecular docking study was conducted to explore their AChE inhibition mechanisms and binding affinities in the active site. The binding scores of compounds M1, M2, and M6 were (-12.6 kcal/mol), (-13 kcal/mol), and (-12.4 kcal/mol), respectively, which are higher than the standard inhibitor Donepezil with a binding score of (-10.8 kcal/mol). Molecular dynamics simulations over 100 ns were used to validate the molecular docking results, indicating that compounds M1 and M2 remain stable in the active site, confirming their potential as promising anti-AChE inhibitors.
Collapse
Affiliation(s)
- Meriem Khedraoui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20670, Morocco; (M.K.); (O.A.); (H.N.); (I.Y.); (A.E.)
| |
Collapse
|
41
|
Shi M, Guo Q, Xiao Z, Sarengaowa, Xiao Y, Feng K. Recent Advances in the Health Benefits and Application of Tangerine Peel ( Citri Reticulatae Pericarpium): A Review. Foods 2024; 13:1978. [PMID: 38998484 PMCID: PMC11241192 DOI: 10.3390/foods13131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations.
Collapse
Affiliation(s)
- Minke Shi
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Qihan Guo
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Zhewen Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Sarengaowa
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Ying Xiao
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| | - Ke Feng
- Medical Sciences Division, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
42
|
Aranda-Abreu GE, Rojas-Durán F, Hernández-Aguilar ME, Herrera-Covarrubias D, Chí-Castañeda LD, Toledo-Cárdenas MR, Suárez-Medellín JM. Alzheimer's Disease: Cellular and Pharmacological Aspects. Geriatrics (Basel) 2024; 9:86. [PMID: 39051250 PMCID: PMC11270425 DOI: 10.3390/geriatrics9040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease was described more than 100 years ago and despite the fact that several molecules are being tested for its treatment, which are in phase III trials, the disease continues to progress. The main problem is that these molecules function properly in healthy neurons, while neuronal pathology includes plasma membrane disruption, malfunction of various organelles, and hyperphosphorylation of Tau and amyloid plaques. The main objective of this article is the discussion of a neuronal restoration therapy, where molecules designed for the treatment of Alzheimer's disease would probably be more effective, and the quality of life of people would be better.
Collapse
Affiliation(s)
- Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91192, Mexico; (F.R.-D.); (M.E.H.-A.); (D.H.-C.); (L.D.C.-C.); (M.R.T.-C.); (J.M.S.-M.)
| | | | | | | | | | | | | |
Collapse
|
43
|
Bougea A, Angelopoulou E, Vasilopoulos E, Gourzis P, Papageorgiou S. Emerging Therapeutic Potential of Fluoxetine on Cognitive Decline in Alzheimer's Disease: Systematic Review. Int J Mol Sci 2024; 25:6542. [PMID: 38928248 PMCID: PMC11203451 DOI: 10.3390/ijms25126542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Fluoxetine, a commonly prescribed medication for depression, has been studied in Alzheimer's disease (AD) patients for its effectiveness on cognitive symptoms. The aim of this systematic review is to investigate the therapeutic potential of fluoxetine in cognitive decline in AD, focusing on its anti-degenerative mechanisms of action and clinical implications. According to PRISMA, we searched MEDLINE, up to 1 April 2024, for animal and human studies examining the efficacy of fluoxetine with regard to the recovery of cognitive function in AD. Methodological quality was evaluated using the ARRIVE tool for animal AD studies and the Cochrane tool for clinical trials. In total, 22 studies were analyzed (19 animal AD studies and 3 clinical studies). Fluoxetine promoted neurogenesis and enhanced synaptic plasticity in preclinical models of AD, through a decrease in Aβ pathology and increase in BDNF, by activating diverse pathways (such as the DAF-16-mediated, TGF-beta1, ILK-AKT-GSK3beta, and CREB/p-CREB/BDNF). In addition, fluoxetine has anti-inflammatory properties/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome. Only three clinical studies showed that fluoxetine ameliorated the cognitive performance of people with AD; however, several methodological issues limited the generalizability of these results. Overall, the high-quality preclinical evidence suggests that fluoxetine may have neuroprotective, antioxidant, and anti-inflammatory effects in AD animal models. While more high-quality clinical research is needed to fully understand the mechanisms underlying these effects, fluoxetine is a promising potential treatment for AD patients. If future clinical trials confirm its anti-degenerative and neuroprotective effects, fluoxetine could offer a new therapeutic approach for slowing down the progression of AD.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
| | - Philippos Gourzis
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
- Department of Psychiatry, University of Patras, 26504 Patras, Greece
| | - Sokratis Papageorgiou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| |
Collapse
|
44
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
45
|
Akinrinde AS, Adeoye BO, Samuel ES, Mustapha OA. Protective effect of cholecalciferol against cobalt-induced neurotoxicity in rats: ZO-1/iFABP, ChAT/AchE and antioxidant pathways as potential therapeutic targets. Biol Trace Elem Res 2024:10.1007/s12011-024-04258-6. [PMID: 38836989 DOI: 10.1007/s12011-024-04258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Cobalt (Co) toxicity has been reported to produce central nervous system and gastrointestinal abnormalities. This study assessed the therapeutic effect of cholecalciferol (Cho) supplementation against damages caused by sub-acute (14-day) cobalt chloride (CoCl2) exposure in the brain and intestines. Thirty-five male Wistar rats were divided equally into five groups: Group I (control) received no treatment; Group II received oral CoCl2 (100 mg/kg) only; Groups III, IV, and V received 1000, 3000 and 6000 IU/kg of cholecalciferol, respectively by oral gavage, and concurrently with CoCl2. Cobalt-treated rats showed neuronal vacuolation and presence of pyknotic nuclei in the cerebral cortex and hippocampus, depletion of Purkinje cells in the cerebellum, as well as inflammation and congestion in the intestinal mucosa. Cobalt also increased brain and intestinal hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations, while simultaneously reducing glutathione (GSH) content, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities. Further, CoCl2 induced increases in brain acetylcholinesterase (AchE) activity and serum zonulin (ZO-1) levels. Conversely, Cho administration suppressed CoCl2-induced damages in the brain and intestines by reducing lipid peroxidation and increasing the activities of antioxidant enzymes. Remarkably, Cho produced stimulation of brain choline acetyltransferase (ChAT) and suppression of AchE activity, along with dose-dependent reduction in serum levels of ZO-1, intestinal fatty acid-binding protein (iFABP) and nitric oxide. In conclusion, the protective role of cholecalciferol against cobalt-induced toxicity occurred via modulation of cholinergic, intestinal permeability and antioxidant pathways. The results may prove significant in the context of the role of gut-brain connections in neuroprotection.
Collapse
Affiliation(s)
- A S Akinrinde
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - B O Adeoye
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - E S Samuel
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O A Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun state, Nigeria
| |
Collapse
|
46
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
47
|
Zeki NM, Mustafa YF. Natural linear coumarin-heterocyclic conjugates: A review of their roles in phytotherapy. Fitoterapia 2024; 175:105929. [PMID: 38548026 DOI: 10.1016/j.fitote.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 05/26/2024]
Abstract
Heterocycle conjugates provide a fresh investigative scope to find novel molecules with enhanced phytotherapeutic characteristics. Coumarin-based products are widely used in the synthesis of several compounds with biological and medicinal properties since they are naturally occurring heterocycles with a broad dispersion. The investigation of coumarin-based phytochemicals with annulated heterocyclic rings is a promising approach to discovering novel conjugates with significant phytotherapeutic attributes. Due to the applicable coumarin extraction processes, a range of linear coumarin-heterocyclic conjugates were isolated from different natural resources and exhibited remarkable therapeutic efficacy. This review highlights the phytotherapeutic potential and origins of various natural linear coumarin-heterocyclic conjugates. We searched several databases, including Science Direct, Web of Science, Springer, Google Scholar, and PubMed. After sieving, we ultimately identified and included 118 pertinent studies published between 2000 and the middle of 2023. This will inspire medicinal chemists with extremely insightful ideas for designing and synthesizing therapeutically active lead compounds in the future that are built on the pharmacophores of coumarin-heterocyclic conjugates and have significant therapeutic attributes.
Collapse
Affiliation(s)
- Nameer Mazin Zeki
- Department of Pharmacology, College of Medicine, Ninevah University, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq.
| |
Collapse
|
48
|
Hajimohammadi S, Soodi M, Hajimehdipoor H, Sefidbakht S, Mashhadi Sharif N. Ferulago Angulata methanolic extract ameliorates scopolamine-induced memory impairment through the inhibition of hippocampal monoamine oxidase activity. Metab Brain Dis 2024; 39:691-703. [PMID: 38722561 DOI: 10.1007/s11011-024-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Ferulago angulata is a medicinal herb from the Apiaceae family known for its antioxidant, anti-apoptotic, and neuroprotective properties. This study aimed to assess the effects of F. angulata extract on neurobehavioral and biochemical parameters in scopolamine-induced amnesic rats. Fifty-six male Wistar rats were divided into seven groups and orally treated with F. angulata extract (100, 200, 400 mg/kg) and Rivastigmine (1.5 mg/kg) for 10 days. Starting on the sixth day of treatment, the Morris water maze behavioral study was conducted to evaluate cognitive function, with scopolamine administered 30 min before training. Biochemical assays, including monoamine oxidase and oxidative stress measures, were performed on hippocampal tissue. Results showed that extract treatment significantly attenuated scopolamine-induced memory impairment in a dose-dependent manner. Following scopolamine administration, malondialdehyde levels and monoamine oxidase A/B activity increased, while total thiol content and catalase activity decreased compared to the control group. Pretreatment with F. angulata extracts ameliorated the scopolamine-induced impairment in all factors. Toxicological evaluation of liver, lung, heart, and kidney tissues did not indicate any side effects at high doses. The total extract of F. angulata prevents scopolamine-induced learning and memory impairment through antioxidant mechanisms and inhibition of monoamine oxidase. These results suggest that F. angulata extract is effective in the scopolamine model and could be a promising agent for preventing dementia, especially Alzheimer's disease.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran.
| | - Homa Hajimehdipoor
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salma Sefidbakht
- Department of Pathology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
49
|
Tutuş B, Kaya AZ, Baz Y, Evren AE, Sağlik Özkan BN, Yurttaş L. Synthesis of new N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives and evaluation of their AChE, BChE, and BACE-1 inhibitory activities. Drug Dev Res 2024; 85:e22214. [PMID: 38816986 DOI: 10.1002/ddr.22214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.
Collapse
Affiliation(s)
- Beyzanur Tutuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Kırıkhan Vocational School, Department of Pharmacy Services, Hatay Mustafa Kemal University, Hatay, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Aybüke Züleyha Kaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Yonca Baz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
50
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|