1
|
Ye T, Tang D, Tao C, Chen X, Wang X, Xie Y. Absorption enhancement of peach kernel oil on hydroxysafflor yellow A in safflower extracts and its mechanisms. Food Chem 2024; 458:140218. [PMID: 38964104 DOI: 10.1016/j.foodchem.2024.140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Carthamus tinctorius L. (Safflower) is extensively used as a functional food and herbal medicine, with its application closely associated with hydroxysafflor yellow A (HSYA). However, the low oral bioavailability of HSYA in safflower extract (SFE) limits its health benefits and application. Our study found that co-administration of 250, 330, and 400 mg/kg peach kernel oil (PKO) increased the oral bioavailability of HSYA in SFE by 1.99-, 2.11-, and 2.49-fold, respectively. The enhanced bioavailability is attributed to improved lipid solubility and intestinal permeability of HSYA in SFE due to PKO. PKO is believed to modify membrane fluidity and tight junctions, increase paracellular penetration, and inhibit the expression and function of P-glycoprotein, enhancing the transcellular transport of substrates. These mechanisms suggest that PKO is an effective absorption enhancer. Our findings provide valuable insights for developing functional foods with improved bioavailability.
Collapse
Affiliation(s)
- Taiwei Ye
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dongyun Tang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Chunxiao Tao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuping Chen
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Limsuwan S, Phonsatta N, Panya A, Asasutjarit R, Tansakul N. Pharmacokinetics behavior of four cannabidiol preparations following single oral administration in dogs. Front Vet Sci 2024; 11:1389810. [PMID: 38725584 PMCID: PMC11080651 DOI: 10.3389/fvets.2024.1389810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cannabidiol (CBD) is a natural phytochemical agent and one of the most abundant found in Cannabis sativa. It is known to exhibit pharmacological properties on various condition such as relieving-inflammation, pain, epilepsy, and anxiety effect. There has been an increasing trend globally in the use of CBD as a supplement in pets. Consequently, there are various CBD products being marketed that are specifically available for pets. Veterinarians and pet owners are concerned that following ingestion, different CBD formulations may result in a CBD level circulating in the blood that may affect the safe use and efficacy of CBD in pets. Several pharmacokinetics studies in animals have been mainly conducted with an oily form of CBD. To date, there is a lack of data regarding direct comparisons in animals among the CBD plasma kinetic profiles from an oral administration of the various preparation forms. Therefore, the current study evaluated and compared the plasma CBD levels from a single oral administration using four different CBD preparations-liquid (an oil-based form, a nanoemulsion form, or a water-soluble form) or a semi-solid form (as CBD mixed in a treat) in dogs. In total, 32 healthy, crossbreed dogs were randomly assigned into 4 groups and treated according to a 1-period, 4-treatment parallel-design. The three liquid forms were dosed at 5 mg/kg body weight, while the single semi-solid form was given at 50 mg/treat/dog. The results showed that the CBD plasma profile from the administration of a water-soluble form was comparable to that of the oil-based group. The nanoemulsion-based form tended to be rapidly absorbed and reached its peak sooner than the others. However, the CBD in all preparations reached the maximum plasma concentration within 3 h post-dose, with an average range of 92-314 μg/L. There were significant differences among certain parameters between the liquid and semi-solid forms. This was the first study to provide pharmacokinetics data regarding CBD in water soluble, nanoemulsion-based, and semi-solid forms for dogs as companion animals. The current data should facilitate the scrutiny of CBD plasma profiles based on different formulations via an oral route in dogs.
Collapse
Affiliation(s)
- Sasithorn Limsuwan
- Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | - Natthaporn Phonsatta
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Atikorn Panya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Rathapon Asasutjarit
- Thammasat University Research Unit in Drug, Health Product Development and Application (DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Gorain B, Karmakar V, Sarkar B, Dwivedi M, Leong JTL, Toh JH, Seah E, Ling KY, Chen KY, Choudhury H, Pandey M. Biomacromolecule-based nanocarrier strategies to deliver plant-derived bioactive components for cancer treatment: A recent review. Int J Biol Macromol 2023; 253:126623. [PMID: 37657573 DOI: 10.1016/j.ijbiomac.2023.126623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.
Collapse
Affiliation(s)
- Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Janelle Tsui Lyn Leong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Even Seah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kang Yi Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Chen
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| |
Collapse
|
5
|
Pandey AK, Sanches Silva A, Chávez-González ML, Singh P. Recent advances in delivering free or nanoencapsulated Curcuma by-products as antimicrobial food additives. Crit Rev Biotechnol 2023; 43:1257-1283. [PMID: 36130809 DOI: 10.1080/07388551.2022.2110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Food commodities are often contaminated by microbial pathogens in transit or during storage. Hence, mitigation of these pathogens is necessary to ensure the safety of food commodities. Globally, researchers used botanicals as natural additives to preserve food commodities from bio-deterioration, and advances were made to meet users' acceptance in this domain, as synthetic preservatives are associated with harmful effects to both consumers and environments. Over the last century, the genus Curcuma has been used in traditional medicine, and its crude and nanoencapsulated essential oils (EOs) and curcuminoids were used to combat harmful pathogens that deteriorate stored foods. Today, more research is needed for solving the problem of pathogen resistance in food commodities and to meet consumer demands. Therefore, Curcuma-based botanicals may provide a source of natural preservatives for food commodities that satisfy the needs both of the food industry and the consumers. Hence, this article discusses the antimicrobial and antioxidant properties of EOs and curcuminoids derived from the genus Curcuma. Further, the action modes of Curcuma-based botanicals are explained, and the latest advances in nanoencapsulation of these compounds in food systems are discussed alongside knowledge gaps and safety assessment where the focus of future research should be placed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Mónica L Chávez-González
- Food Research Departments, School of Chemistry, Autonomous University of Coahuila, Saltillo, México
| | - Pooja Singh
- Bacteriology and Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur, India
| |
Collapse
|
6
|
Borah MS, Tiwari A, Sridhar K, Narsaiah K, Nayak PK, Stephen Inbaraj B. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods 2023; 12:3823. [PMID: 37893717 PMCID: PMC10606574 DOI: 10.3390/foods12203823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Food by-products and waste are a boundless source of bioactives, nutraceuticals, and naturally occurring substances that are good for human health. In fact, a lot of by-products and wastes are generated by several food businesses. Therefore, waste management and by-product utilization are the most important aspects of the food sector. According to various studies, many bioactive compounds such as phenolics, carotenoids, and proteins can be recovered as feed stock from various industries' by-products and wastes using potential technologies. As a result, current trends are shifting attention to the sustainable valorisation of food sector waste management and by-products utilization. Thus, the circular economy principles have been applied to the field of food science. The aim of the circular economy is to ensure environmental protection and promote economic development while minimizing the environmental impact of food production. All of these aspects of the circular economy, at present, have become a challenging area of research for by-product valorisation as well. Hence, this review aims to highlight the emerging trends in the efficient utilization of food industry waste and by-products by focusing on innovative encapsulation techniques and controlled release mechanisms of bioactive compounds extracted from food industry waste and by-products. This review also aims to suggest future research directions, and addresses regulatory and toxicity considerations, by fostering knowledge dissemination and encouraging eco-friendly approaches within the food industry. This review reveals the role of encapsulation strategies for the effective utilization of bioactive compounds extracted from food industry waste and by-products. However, further research is needed to address regulatory and toxicity considerations of encapsulated bioactive compounds and health-related concerns.
Collapse
Affiliation(s)
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar 788011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Kairam Narsaiah
- Agriculture Engineering Division, Indian Council of Agricultural Research, New Delhi 110012, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | | |
Collapse
|
7
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
8
|
Řepka D, Kurillová A, Murtaja Y, Lapčík L. Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries. Foods 2023; 12:foods12112189. [PMID: 37297434 DOI: 10.3390/foods12112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.
Collapse
Affiliation(s)
- David Řepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Antónia Kurillová
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Yousef Murtaja
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin, Czech Republic
| |
Collapse
|
9
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Kishore A, Mithul Aravind S, Singh A. Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Bioactive compounds from acerola pomace: A review. Food Chem 2023; 404:134613. [DOI: 10.1016/j.foodchem.2022.134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
12
|
Effectiveness of time and temperature on antioxidant activity and curcumin loss of the prepared nanodispersion using the subcritical water technique. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Berl V, Hurd YL, Lipshutz BH, Roggen M, Mathur EJ, Evans M. A Randomized, Triple-Blind, Comparator-Controlled Parallel Study Investigating the Pharmacokinetics of Cannabidiol and Tetrahydrocannabinol in a Novel Delivery System, Solutech, in Association with Cannabis Use History. Cannabis Cannabinoid Res 2022; 7:777-789. [PMID: 35787693 PMCID: PMC9784610 DOI: 10.1089/can.2021.0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: An oral route of administration for tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) eliminates the harmful effects of smoking and has potential for efficacious cannabis delivery for therapeutic and recreational applications. We investigated the pharmacokinetics of CBD, Δ9-THC, 11-OH-THC, and 11-nor-9-carboxy-Δ9-THC (THC-COOH) in a novel oral delivery system, Solutech™, compared to medium-chain triglyceride-diluted cannabis oil (MCT-oil) in a healthy population. Materials and Methods: Thirty-two participants were randomized and divided into two study arms employing a comparator-controlled, parallel-study design. To evaluate the pharmacokinetics of Δ9-THC, CBD, 11-OH-THC, and THC-COOH, blood was collected at pre-dose (t=0) and 10, 20, 30, and 45, min and 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 12, 24, and 48 h post-dose after a single dose of Solutech (10.0 mg Δ9-THC, 9.76 mg CBD) or MCT (10.0 mg Δ9-THC, 9.92 mg CBD). Heart rate and blood pressure were measured at 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 h. Relationships between cannabis use history, body mass index, sex, and pharmacokinetic parameters were investigated. Safety was assessed before and at 48 h post-acute dose. Results: Acute consumption of Solutech provided a significantly greater maximum concentration (Cmax), larger elimination and absorption rate constants, faster time to Cmax and lag time, and half-life for all analytes compared to MCT-oil (p<0.001). In addition, cannabis use history had a significant influence on the pharmacokinetic parameters of CBD, Δ9-THC, 11-OH-THC, and THC-COOH. On average, participants with later age of first use had higher Δ9-THC, CBD, and THC-COOH Cmax and later time-to-Cmax and half-life for Δ9-THC, CBD, THC-COOH, and 11-OH-THC than those with earlier age of first use (p≤0.032). Those with more years of recreational cannabis use had higher area under the curve for Δ9-THC and CBD, Cmax for CBD, and longer 11-OH-THC half-life than those with less (p≤0.048). Conclusion: This study demonstrated that consumption of Solutech enhanced most pharmacokinetics parameters measured compared to MCT-oil. Participant's cannabis use history, including their age of first use and number of years using cannabis significantly impacted pharmacokinetic parameters investigated. Acute consumption of both products was found to be safe and well tolerated. The results suggest that Solutech may optimize bioavailability from cannabis formulations.
Collapse
Affiliation(s)
- Volker Berl
- New Age Ventures, New York, New York, USA.,Address correspondence to: Volker Berl, PhD, New Age Ventures, 521 Fifth Avenue, Floor 17, New York, NY 10175, USA,
| | - Yasmin L. Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Addiction Institute of Mount Sinai, New York, New York, USA
| | - Bruce H. Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | | | | | | |
Collapse
|
14
|
Elbaset MA, Nasr M, Ibrahim BMM, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. Curcumin nanoemulsion counteracts hepatic and cardiac complications associated with high-fat/high-fructose diet in rats. J Food Biochem 2022; 46:e14442. [PMID: 36165438 DOI: 10.1111/jfbc.14442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The relationship between the incidence of cardiovascular abnormalities and non-alcoholic fatty liver disease (NAFLD) has long been postulated. Curcumin (CUR) is a potential anti-atherosclerotic agent but its poor water solubility hinders its pharmacological use. Therefore, the present study aimed to investigate the effect of formulation of CUR nanoemulsion prepared using the spontaneous emulsification technique on high fat high fructose (HFHF)-induced hepatic and cardiac complications. Fifty Wistar rats were divided into five groups. CUR nanoemulsion at doses of 5 and 10 mg/kg and conventional powdered CUR at a dose of 50 mg/kg were orally administered daily to rats for two weeks, and compared with normal control and HFHF control. Results revealed that the high dose level of CUR nanoemulsion was superior to conventional CUR in ameliorating the HFHF-induced insulin resistance status and hyperlipidemia, with beneficial impact on rats' recorded electrocardiogram (ECG), serum aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels, leptin, adiponectin, creatine phosphokinase, lactate dehydrogenase and cardiac troponin-I. In addition, hepatic and cardiac oxidative and nitrosative stresses, oxidative DNA damage and disrupted cellular energy statuses were counteracted. Results were also confirmed by histopathological examination. PRACTICAL APPLICATIONS: The use of curcumin nanoemulsion could be beneficial in combating hepatic and cardiac complications resulting from HFHF diets.
Collapse
Affiliation(s)
- Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
15
|
Enhanced microbial, functional and sensory properties of herbal soft cheese with coriander seeds extract nanoemulsion. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers (Basel) 2022; 14:polym14163278. [PMID: 36015535 PMCID: PMC9415603 DOI: 10.3390/polym14163278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nutraceuticals provide many biological benefits besides their basic nutritional value. However, their biological efficacies are often limited by poor absorption and low bioavailability. Nanomaterials have received much attention as potential delivery systems of nutrients and phytonutrients for multiple applications. Nanomicelles are nanosized colloidal structures with a hydrophobic core and hydrophilic shell. Due to their unique characteristics, they have shown great perspectives in food and nutraceutical science. In this review, we discussed the unique properties of nanomicelles. We also emphasized the latest advances on the design of different nanomicelles for efficient delivery and improved bioavailability of various nutrients. The role of nanomicelles in the efficacy improvement of bioactive components from nutraceutical and health foods has been included. Importantly, the safety concerns on nano-processed food products were highlighted.
Collapse
|
17
|
Abd-Allah ER, Abd El-Rahman HA. Ameliorative effects of a curcumin vitamin E nanocomposite coated with olive oil against cadmium chloride-induced testicular damage. Andrologia 2022; 54:e14362. [PMID: 34970779 DOI: 10.1111/and.14362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022] Open
Abstract
In the current study, we synthesized and prepared a curcumin and vitamin E nanocomposite coated with olive oil (CEONC). Curcumin, vitamin E, and olive oil are fundamental organic antioxidants, and forming nanoparticles from these components endows them with special characteristics. We investigated the protective effect of CEONC on reproductive toxicity induced by cadmium chloride (CdCl2 ) in male rats. Forty rats (170-180 g) were randomly assigned to four groups: Group 1 (control) received oral distilled water; Group 2 intraperitoneal injection with CEONC (30 mg/kg); Group 3 received oral CdCl2 (5 mg/kg); and Group 4 received CdCl2 (5 mg/kg) followed by CEONC (30 mg/kg) for 4 weeks. After 50 days, we terminated the experiment and assessed male reproductive hormones, sperm motility, viability and morphology, and testes histopathology and conducted a comet assay. The results revealed that co-administration of CEONC with CdCl2 exposure increased reproductive hormone levels, improved sperm motility and viability, prevented sperm morphological changes, recovered the testicular histology, and decreased DNA damage in the testicular tissue compared to rats exposed to CdCl2 alone. CEONC administration produced no adverse effects and enhanced all sperm parameters. Our findings demonstrate that CEONC is a potential treatment for preventing reproductive damage induced by cadmium exposure.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Faculty of Science, Department of Zoology, Al-Azhar University, Nasr City, Egypt
| | | |
Collapse
|
18
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
19
|
da Silva BD, do Rosário DKA, Weitz DA, Conte-Junior CA. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Liu F, Li M, Wang Q, Yan J, Han S, Ma C, Ma P, Liu X, McClements DJ. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit Rev Food Sci Nutr 2022; 63:6423-6444. [PMID: 35213241 DOI: 10.1080/10408398.2022.2033683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are numerous challenges facing the modern food and agriculture industry that urgently need to be addressed, including feeding a growing global population, mitigating and adapting to climate change, decreasing pollution, waste, and biodiversity loss, and ensuring that people remain healthy. At the same time, foods should be safe, affordable, convenient, and delicious. The latest developments in science and technology are being deployed to address these issues. Some of the most important elements within this modern food design approach are encapsulated by the MATCHING model: Meat-reduced; Automation; Technology-driven; Consumer-centric; Healthy; Intelligent; Novel; and Globalization. In this review article, we focus on four key aspects that will be important for the creation of a new generation of healthier and more sustainable foods: emerging raw materials; structural design principles for creating innovative products; developments in eco-friendly packaging; and precision nutrition and customized production of foods. We also highlight some of the most important new developments in science and technology that are being used to create future foods, including food architecture, synthetic biology, nanoscience, and sensory perception.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2033683.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Moting Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | | |
Collapse
|
21
|
ZHOU M, LI F, CHEN J, WU Q, ZOU Z. Research progress on natural bio-based encapsulation system of curcumin and its stabilization mechanism. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.78422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Man ZHOU
- Sichuan Agricultural University, China
| | - Fuli LI
- Sichuan Agricultural University, China
| | - Jie CHEN
- Sichuan Agricultural University, China
| | | | | |
Collapse
|
22
|
Inapurapu SP, Pullakhandam R, Bodiga S, Yaduvanshi PS, Bodiga VL. Physicochemical studies of sunflower oil based vitamin D nanoemulsions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2016440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Santhi Priya Inapurapu
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Raghu Pullakhandam
- Micronutrient Division, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Sreedhar Bodiga
- Department of Basic and Social Sciences, Forest College and Research Institute, Mulugu, Telangana, India
| | | | - Vijaya Lakshmi Bodiga
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
23
|
Development of Nano Soy Milk through Sensory Attributes and Consumer Acceptability. Foods 2021; 10:foods10123014. [PMID: 34945565 PMCID: PMC8701822 DOI: 10.3390/foods10123014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Nanotechnology is currently applied in food processing and packaging in the food industry. Nano encapsulation techniques could improve sensory perception and nutrient absorption. The purpose of this study was to identify the sensory characteristics and consumer acceptability of three types of commercial and two types of laboratory-developed soy milk. A total of 20 sensory attributes of the five different soy milk samples, including appearance, smell (odor), taste, flavor, and mouthfeel (texture), were developed. The soy milk samples were evaluated by 100 consumers based on their overall acceptance, appearance, color, smell (odor), taste, flavor, mouthfeel (texture), goso flavor (nuttiness), sweetness, repeated use, and recommendation. One-way analysis of variance (ANOVA), principal component analysis (PCA), and partial least square regression (PLSR) were used to perform the statistical analyses. The SM_D sample generally showed the highest scores for overall liking, flavor, taste, mouthfeel, sweetness, repeated consumption, and recommendation among all the consumer samples tested. Consumers preferred sweet, goso (nuttiness), roasted soybean, and cooked soybean (nuttiness) attributes but not grayness, raw soybean flavor, or mouthfeel. Sweetness was closely related to goso (nuttiness) odor and roasted soybean odor and flavor based on partial least square regression (PLSR) analysis. Determination of the sensory attributes and consumer acceptance of soymilk provides insight into consumer needs and desires along with basic data to facilitate the expansion of the consumer market.
Collapse
|
24
|
Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 45:100533. [PMID: 34692429 PMCID: PMC8526445 DOI: 10.1016/j.colcom.2021.100533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 05/08/2023]
Abstract
Viral diseases are emerging as global threats. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), that causes coronavirus disease (COVID-19), has severe global impacts. Safety, dosage, and potency of vaccines recently approved for emergency use against SARS-CoV-2 need further evaluation. There is still no effective treatment against COVID-19; therefore, safe, and effective vaccines or therapeutics against SARS-CoV-2 are urgently needed. Oil-in-water nanoemulsions (O/W NEs) are emerging as sophisticated, protective, and therapeutic platforms. Encapsulation capacity, which offers better drug pharmacokinetics, coupled with the tunable surfaces present NEs as promising tools for pharmaceutical applications. The challenges facing drug discovery, and the advancements of NEs in drug delivery demonstrate the potential of NEs against evolving diseases, like COVID-19. Here we summarize current COVID-19 knowledge and discuss the composition, stability, preparation, characterization, and biological fate of O/W NEs. We also provide insights into NE structural-functional properties that may contribute to therapeutic or preventative solutions against COVID-19.
Collapse
Affiliation(s)
- Hossam H Tayeb
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Raed Felimban
- 3D Bioprinting Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sarah Almaghrabi
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Nojod Hasaballah
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
25
|
de Oliveira Filho JG, Miranda M, Ferreira MD, Plotto A. Nanoemulsions as Edible Coatings: A Potential Strategy for Fresh Fruits and Vegetables Preservation. Foods 2021; 10:foods10102438. [PMID: 34681488 PMCID: PMC8535803 DOI: 10.3390/foods10102438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Fresh fruits and vegetables are perishable commodities requiring technologies to extend their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology has emerged as a new strategy for improving coating properties. Coatings based on plant-source nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstructural properties in comparison with coatings based on conventional emulsions. When antimicrobial and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual and controlled release of those compounds over the food storage period better than conventional emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional produce quality. The main goal of this review is to update the available information on the use of nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view and future applications.
Collapse
Affiliation(s)
- Josemar Gonçalves de Oliveira Filho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara—Jaú Km 1, Araraquara 14800-903, SP, Brazil; (J.G.d.O.F.); (M.M.)
| | - Marcela Miranda
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara—Jaú Km 1, Araraquara 14800-903, SP, Brazil; (J.G.d.O.F.); (M.M.)
| | - Marcos David Ferreira
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos 13560-970, SP, Brazil
- Correspondence: (M.D.F.); (A.P.)
| | - Anne Plotto
- ARS Horticultural Research Laboratory, United States Department of Agriculture, 2001 South Rock Road, Fort Pierce, FL 34945, USA
- Correspondence: (M.D.F.); (A.P.)
| |
Collapse
|
26
|
|
27
|
Vilas-Boas AA, Pintado M, Oliveira ALS. Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods 2021; 10:1564. [PMID: 34359434 PMCID: PMC8304211 DOI: 10.3390/foods10071564] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used as food additives to maintain the food quality, food safety and appeal, and as food supplements or nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of nutrients, or to support physiological functions, respectively. Recent studies reveal that numerous food wastes, particularly fruit and vegetables byproducts, are a good source of bioactive compounds that can be extracted and reintroduced into the food chain as natural food additives or in food matrices for obtaining nutraceuticals and functional foods. This review addresses general questions concerning the use of fruit and vegetables byproducts as new sources of natural bioactive compounds that are being addressed to foods as natural additives and supplements. Those bioactive compounds must follow the legal requirements and evaluations to assess the risks for human health and their toxicity must be considered before being launched into the market. To overcome the potential health risk while increasing the biological activity, stability and biodistribution of the supplements' technological alternatives have been studied such as encapsulation of bioactive compounds into micro or nanoparticles or nanoemulsions. This will allow enhancing the stability and release along the gastrointestinal tract in a controlled manner into the specific tissues. This review summarizes the valorization path that a bioactive compound recovered from an agro-food waste can face from the moment their potentialities are exhibited until it reaches the final consumer and the safety and toxicity challenges, they may overcome.
Collapse
Affiliation(s)
| | | | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal; (A.A.V.-B.); (M.P.)
| |
Collapse
|
28
|
de Souza Mesquita LM, Murador DC, Neves BV, Braga ARC, Pisani LP, de Rosso VV. Bioaccessibility and Cellular Uptake of Carotenoids Extracted from Bactris gasipaes Fruit: Differences between Conventional and Ionic Liquid-Mediated Extraction. Molecules 2021; 26:3989. [PMID: 34208810 PMCID: PMC8272118 DOI: 10.3390/molecules26133989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, on an industrial scale, synthetic colorants are used in many fields, as well as those extracted with conventional organic solvents (COSs), leading to several environmental issues. Therefore, we developed a sustainable extraction and purification method mediated by ionic liquids (IL), which is considered an alternative high-performance replacement for COSs. Carotenoids are natural pigments with low bioaccessibility (BCT) and bioavailability (BV) but with huge importance to health. To investigate if the BCT and cellular uptake of the carotenoids are modified by the extraction method, we conducted a comparison assay between both extraction procedures (IL vs. COS). For this, we used the Amazonian fruit Bactris gasipaes, a rich source of pro-vitamin A carotenoids, to obtain the extract, which was emulsified and subjected to an in vitro digestion model followed by the Caco-2 cell absorption assay. The bioaccessibility of carotenoids using IL was better than those using COS (33.25%, and 26.84%, respectively). The cellular uptake of the carotenoids extracted with IL was 1.4-fold higher than those extracted using COS. Thus, IL may be a feasible alternative as extraction solvent in the food industry, replacing COS, since, in this study, no IL was present in the final extract.
Collapse
Affiliation(s)
- Leonardo M. de Souza Mesquita
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Daniella Carisa Murador
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Bruna Vitória Neves
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Department of Exact and Earth Sciences, Campus Diadema, Federal University of São Paulo (UNIFESP), Diadema, SP 09972-270, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Veridiana Vera de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, SP 11015-020, Brazil
| |
Collapse
|
29
|
Chen C, Zhang M, Xu B, Chen J. Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- R & D Center, Yangzhou Yechun Food Production & Distribution Co, Yangzhou, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Baoguo Xu
- R & D Center, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingjing Chen
- R & D Center, Haitong Food Group Co, Cixi, Zhejiang, China
| |
Collapse
|
30
|
Huang Y, Wang Z, Zhang G, Ren J, Yu L, Liu X, Yang Y, Ravindran A, Wong C, Chen R. A pH/redox-dual responsive, nanoemulsion-embedded hydrogel for efficient oral delivery and controlled intestinal release of magnesium ions. J Mater Chem B 2021; 9:1888-1895. [PMID: 33533362 DOI: 10.1039/d0tb02442b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It remains a major challenge to achieve efficient oral delivery and controlled intestinal release of ions using hydrogels. Herein, we report a novel, pH/redox-dual responsive, nanoemulsion-embedded composite hydrogel to address this issue. The hydrogel was first synthesized by crosslinking a biocompatible, pH-responsive pseudopeptide, poly(l-lysine isophthalamide) (PLP), and redox-sensitive l-cystine dimethyl ester dihydrochloride (CDE). A suitable amount of magnesium acetate was encapsulated into oil-in-water nanoemulsions, which were then embedded into the lysine-based hydrogel. The resulting composite hydrogel collapsed into a compact structure at acidic gastric pH, but became highly swollen or degraded in the neutral and reducing intestinal environment. The ion release profiles indicated that the nanoemulsion-embedded composite hydrogel could well retain and protect magnesium ions in the simulated gastric fluid (SGF) buffer at pH 1.2, but efficiently release them in the simulated intestinal fluid (SIF) buffer at pH 6.8 in the presence of 1,4-dithiothreitol (DTT) as a reducing agent. Moreover, this composite hydrogel system displayed good biocompatibility. These results suggested that the pH/redox-dual responsive, nanoemulsion-embedded composite hydrogel could be a promising candidate for efficient oral delivery and controlled intestinal release of magnesium and other ions.
Collapse
Affiliation(s)
- Yu Huang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Zewei Wang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Guiju Zhang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. and School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| | - Jie Ren
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Li Yu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Xuhan Liu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Yuanxi Yang
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Abirami Ravindran
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Chloe Wong
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
31
|
Li MC, Wu Q, Moon RJ, Hubbe MA, Bortner MJ. Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006052. [PMID: 33870553 DOI: 10.1002/adma.202006052] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/01/2020] [Indexed: 05/20/2023]
Abstract
Cellulose nanomaterials (CNMs), mainly including nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNCs), have attained enormous interest due to their sustainability, biodegradability, biocompatibility, nanoscale dimensions, large surface area, facile modification of surface chemistry, as well as unique optical, mechanical, and rheological performance. One of the most fascinating properties of CNMs is their aqueous suspension rheology, i.e., CNMs helping create viscous suspensions with the formation of percolation networks and chemical interactions (e.g., van der Waals forces, hydrogen bonding, electrostatic attraction/repulsion, and hydrophobic attraction). Under continuous shearing, CNMs in an aqueous suspension can align along the flow direction, producing shear-thinning behavior. At rest, CNM suspensions regain some of their initial structure immediately, allowing rapid recovery of rheological properties. These unique flow features enable CNMs to serve as rheological modifiers in a wide range of fluid-based applications. Herein, the dependence of the rheology of CNM suspensions on test protocols, CNM inherent properties, suspension environments, and postprocessing is systematically described. A critical overview of the recent progress on fluid applications of CNMs as rheology modifiers in some emerging industrial sectors is presented as well. Future perspectives in the field are outlined to guide further research and development in using CNMs as the next generation rheological modifiers.
Collapse
Affiliation(s)
- Mei-Chun Li
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Robert J Moon
- Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695-8005, USA
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA
| |
Collapse
|
32
|
Vitucci D, Amoresano A, Nunziato M, Muoio S, Alfieri A, Oriani G, Scalfi L, Frusciante L, Rigano MM, Pucci P, Fontana L, Buono P, Salvatore F. Nutritional Controlled Preparation and Administration of Different Tomato Purées Indicate Increase of β-Carotene and Lycopene Isoforms, and of Antioxidant Potential in Human Blood Bioavailability: A Pilot Study. Nutrients 2021; 13:nu13041336. [PMID: 33920623 PMCID: PMC8073136 DOI: 10.3390/nu13041336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
The isoforms of lycopene, carotenoids, and their derivatives including precursors of vitamin A are compounds relevant for preventing chronic degenerative diseases such as cardiovascular diseases and cancer. Tomatoes are a major source of these compounds. However, cooking and successive metabolic processes determine the bioavailability of tomatoes in human nutrition. To evaluate the effect of acute/chronic cooking procedures on the bioavailability of lycopene and carotene isoforms in human plasma, we measured the blood levels of these compounds and of the serum antioxidant potential in volunteers after a meal containing two different types of tomato sauce (rustic or strained). Using a randomized cross-over administration design, healthy volunteers were studied, and the above indicated compounds were determined by HPLC. The results indicate an increased bioavailability of the estimated compounds and of the serum antioxidant potential with both types of tomato purée and the subsequently derived sauces (the increase was greater with strained purée). This study sheds light on the content of nutrient precursors of vitamin A and other antioxidant compounds derived from tomatoes cooked with different strategies. Lastly, our study indicates that strained purée should be preferred over rustic purée.
Collapse
Affiliation(s)
- Daniela Vitucci
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, via Cinthia, 80126 Naples, Italy;
| | - Marcella Nunziato
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Sergio Pansini 5, 80131 Naples, Italy
| | - Simona Muoio
- Department of Public Health, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Andreina Alfieri
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Human Movement Sciences and Wellbeing, University of Naples “Parthenope”, Via Medina, 40, 80133 Naples, Italy
| | - Giovannangelo Oriani
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
| | - Luca Scalfi
- Institute of Internal Medicine and Metabolic Diseases, Medical School, University of Naples, Federico II, 80131 Naples, Italy;
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Università 100, Portici, 80055 Naples, Italy; (L.F.); (M.M.R.)
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Università 100, Portici, 80055 Naples, Italy; (L.F.); (M.M.R.)
| | - Piero Pucci
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Chemical Sciences, University of Naples “Federico II”, via Cinthia, 80126 Naples, Italy;
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Science Rd, Camperdown, Sydney, NSW 2050, Australia;
- Department of Endocrinology, Royal Prince Alfred Hospital, 50 Missenden Rd, Camperdown, Sydney, NSW 2050, Australia
- Department of Clinical and Experimental Sciences, Brescia University, Viale Europa, 11, 25123 Brescia, Italy
| | - Pasqualina Buono
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Human Movement Sciences and Wellbeing, University of Naples “Parthenope”, Via Medina, 40, 80133 Naples, Italy
- Correspondence: (P.B.); (F.S.); Tel.: +81-547-4808 (P.B.); +81-373-7826 (F.S.)
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Naples, Italy; (D.V.); (M.N.); (A.A.); (G.O.); (P.P.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (P.B.); (F.S.); Tel.: +81-547-4808 (P.B.); +81-373-7826 (F.S.)
| |
Collapse
|
33
|
The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
McClements DJ, Das AK, Dhar P, Nanda PK, Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.643208] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is increasing interest in the use of natural preservatives (rather than synthetic ones) for maintaining the quality and safety of foods due to their perceived environmental and health benefits. In particular, plant-based antimicrobials are being employed to protect against microbial spoilage, thereby improving food safety, quality, and shelf-life. However, many natural antimicrobials cannot be utilized in their free form due to their chemical instability, poor dispersibility in food matrices, or unacceptable flavor profiles. For these reasons, encapsulation technologies, such as nanoemulsions, are being developed to overcome these hurdles. Indeed, encapsulation of plant-based preservatives can improve their handling and ease of use, as well as enhance their potency. This review highlights the various kinds of plant-based preservatives that are available for use in food applications. It then describes the methods available for forming nanoemulsions and shows how they can be used to encapsulate and deliver plant-based preservatives. Finally, potential applications of nano-emulsified plant-based preservatives for improving food quality and safety are demonstrated in the meat, fish, dairy, and fresh produce areas.
Collapse
|
35
|
Alpha-Lipoic Acid and Cyanocobalamin Co-Loaded Nanoemulsions: Development, Characterization, and Evaluation of Stability. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09531-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Xiao Y, Yang W, Zhou L, Hao H, Bao Y, Yin Q, Xie C. Growth mechanism of the spherulitic propylthiouracil–kaempferol cocrystal: new perspectives into surface nucleation. CrystEngComm 2021. [DOI: 10.1039/d1ce00022e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A growth mechanism of spherulitic cocrystals shows three stages of single crystal growth, non-crystallographic branching and surface nucleation. Low supersaturation forms loose spherulites, and high temperature causes “spherulites on spherulites”.
Collapse
Affiliation(s)
- Yuntian Xiao
- Equation Chapter 1 Section 1 School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Wenchao Yang
- Equation Chapter 1 Section 1 School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Ling Zhou
- Equation Chapter 1 Section 1 School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
- National Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
| | - Hongxun Hao
- Equation Chapter 1 Section 1 School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
- National Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
| | - Ying Bao
- Equation Chapter 1 Section 1 School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
- National Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
| | - Qiuxiang Yin
- Equation Chapter 1 Section 1 School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
- National Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
| | - Chuang Xie
- Equation Chapter 1 Section 1 School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
- National Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
37
|
Cannabis extract nanoemulsions produced by high-intensity ultrasound: Formulation development and scale-up. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Barkat MA, Harshita, Rizwanullah M, Pottoo FH, Beg S, Akhter S, Ahmad FJ. Therapeutic Nanoemulsion: Concept to Delivery. Curr Pharm Des 2020; 26:1145-1166. [PMID: 32183664 DOI: 10.2174/1381612826666200317140600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/23/2020] [Indexed: 11/22/2022]
Abstract
Nanoemulsions (NEs) or nanometric-scaled emulsions are transparent or translucent, optically isotropic and kinetically stable heterogeneous system of two different immiscible liquids namely, water and oil stabilized with an amphiphilic surfactant having droplet size ranges up to 100 nm. They offer a variety of potential interests for certain applications: improved deep-rooted stability; excellent optical clarity; and, enhanced bioavailability due to its nanoscale of particles. Though there is still comparatively narrow insight apropos design, development, and optimization of NEs, which mainly stems from the fact that conventional characteristics of emulsion development and stabilization only partly apply to NEs. The contemporary article focuses on the nanoemulsion dosage form journey from concept to key application in drug delivery. In addition, industrial scalability of the nanoemulsion, as well as its presence in commercial and clinical practice, are also addressed.
Collapse
Affiliation(s)
- Md A Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Rizwanullah
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faheem H Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), 31441, Dammam, Saudi Arabia
| | - Sarwar Beg
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sohail Akhter
- Le Studium research fellow for Centre de Biophysique Moléculaire (CBM)-CNRS, University of Orléans, UPR4301, Orléans, France
| | - Farhan J Ahmad
- Nanomedicine Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J Control Release 2020; 327:444-455. [DOI: 10.1016/j.jconrel.2020.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
|
40
|
Reddy PRK, Yasaswini D, Reddy PPR, Zeineldin M, Adegbeye MJ, Hyder I. Applications, challenges, and strategies in the use of nanoparticles as feed additives in equine nutrition. Vet World 2020; 13:1685-1696. [PMID: 33061246 PMCID: PMC7522939 DOI: 10.14202/vetworld.2020.1685-1696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023] Open
Abstract
The rapid expansion of nanotechnology has been transforming the food industry by increasing market share and expenditure. Although nanotechnology offers promising benefits as feed additives, their usage in equines is primarily geared toward immunotherapy, hyper-immunization techniques, drug delivery systems, grooming activities, and therapeutic purposes. Nanoparticles could be engaged as alternatives for antibiotic feed additives to prevent foal diarrhea. Gold nanoparticles are proved to provide beneficial effects for racehorses by healing joint and tendon injuries. Because of the poor bioavailability of micro-sized mineral salts, the usage of nano-minerals is highly encourageable to improve the performance of racehorses. Nano-Vitamin E and enzyme CoQ10 for equines are no longer a simple research topic because of the increased commercial availability. Employing nanotechnology-based preservatives may offer a promising alternative to other conventional preservatives in preserving the quality of equine feed items, even during an extended storage period. While nanoparticles as feed additives may provide multitudinous benefits on equines, they could elicit allergic or toxic responses in case of improper synthesis aids or inappropriate dosages. The safety of nano-feed additives remains uninvestigated and necessitates the additional risk assessment, especially during their usage for a prolonged period. To adopt nano-feed additives in horses, there is an extreme paucity of information regarding the validity of various levels or forms of nanoparticles. Further, the currently available toxicological database on the topic of nano-feed additives is not at all related to equines and even inadequate for other livestock species. This review aims to provide new insights into possible future research pertaining to the usage of nano-feed additives in equines.
Collapse
Affiliation(s)
| | - Duvvuru Yasaswini
- Department of Veterinary Medicine, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, India
| | - P Pandu Ranga Reddy
- Livestock Farm Complex, College of Veterinary Science, Sri Venkateswara Veterinary University, Proddatur, Andhra Pradesh, India
| | - Mohamed Zeineldin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.,Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha, Egypt
| | - M J Adegbeye
- Department of Animal Science, College of Agriculture, Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Iqbal Hyder
- Department of Veterinary Physiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram, India.,Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich Loeffler Institute, Neustadt, Hannover, Germany
| |
Collapse
|
41
|
Alyoussef A, Nasr M, Ahmed RF, Ahmed Farid OAH, Bakeer R, Karandikar H, Paradkar A. Nicotinamide extrudates as novel anti-aging and collagen promoting platform: a comparative cosmeceutical study versus the gel form. Pharm Dev Technol 2020; 25:1139-1149. [PMID: 32729753 DOI: 10.1080/10837450.2020.1803908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the study was to explore the potential of a novel nicotinamide extrudate as an anti-aging platform compared to the conventional gel. Nicotinamide extrudates were prepared by hot melt extrusion and characterized pharmaceutically for their thermal behavior, mositure uptake, skin adhesion, and deposition in different skin layers. The pharmacological potential of the extrudates was explored in terms of induction of skin amino acids, cellular energy estimation, 8-hydroxy-2-deoxyguanosine content, Nitrate + nitrite content and histological chacaterization of collagen area percent. Results revealed that the extrusion technique managed to amorphize nicotinamide and enhance its skin deposition (46%) compared to the gel form which only showed about 10% deposition, owing to the mucoadhesive nature of the former. Extrudates were also found superior to the gel form as demonstrated by the increased amino acids level (glycine, proline, hydroxyproline), increased cellular energy, decreased oxidative stress and increased collagen formation. Nictotinamide extrudates were proven to be a scalable promising anti-aging platform which are worthy of entering the cosmeceutical market as products.
Collapse
Affiliation(s)
- Abdullah Alyoussef
- Department of Internal Medicine (Dermatology), Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Omar A H Ahmed Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Cairo, Egypt
| | | | - Anant Paradkar
- Centre for Pharmaceutical Engineering Science, University of Bradford, Bradford, UK
| |
Collapse
|
42
|
Abdel Latif H, Abdel Khalek R, AbdelGalil W, AbdAllah H, Fawzy A, AbdelFattah S. Nanocurcumin versus mesenchymal stem cells in ameliorating the deleterious effects in the cadmium-induced testicular injury: A crosstalk between oxidative and apoptotic markers. Andrologia 2020; 52:e13760. [PMID: 32692431 DOI: 10.1111/and.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd), a grave occupational pollutant, can result in; testicular damage. This study was designed to distinguish the potential effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) versus that of curcumin nanoemulsion on Cd-induced testicular damage. Fifty adult male Sprague Dawley rats were distributed into five groups; control, sham control, Cd-treated, stem cell-treated and nanocurcumin-treated groups. Histological, immune histochemical; caspase 3 and proliferating cell nuclear antigen (PCNA) and CD 68, testosterone levels, nitric oxide, malondialdehyde (MDA)/glutathione (GSH) superoxide, dismutase (SOD), Western blot; B-cell lymphoma (Bcl-2), BCL2-Associated X Protein (BAX), BAX/Bcl-2 ratio and morphometry were done. Cadmium-treated group showed degenerated, detached seminiferous tubules, vacuolations and wide interstitial spaces containing fluid exudates. The same group revealed increased expression of BAX, BAX/Bcl-2 ratio, caspase 3, CD 68 and increased mean values of MDA, NO. Concomitantly, Cd has significant reduction in PCNA, Bcl-2 and sperm cell count when compared to control group. BM-MSCs- and nanocurcumin-treated groups revealed well-structured tubules and were perceived to expressively enhance the deleterious changes induced by Cd. The injurious changes on the testis induced by Cd were obviously improved when treated with either MSCs or nano-curcumin. BM-MSCs exerted more ameliorative changes.
Collapse
Affiliation(s)
- Hany Abdel Latif
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Abdel Khalek
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walid AbdelGalil
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend AbdAllah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Fawzy
- Medical Physiology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen AbdelFattah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Das AK, Nanda PK, Bandyopadhyay S, Banerjee R, Biswas S, McClements DJ. Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2677-2700. [PMID: 33336977 DOI: 10.1111/1541-4337.12604] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been growing interest in implementing innovative nanoscience-based technologies to improve the health, safety, and quality of food products. A major thrust in this area has been to use nanoemulsions because they can easily be formulated with existing food ingredients and technologies. In particular, oil-in-water nanoemulsions, which consist of small oil droplets (<200 nm) dispersed in water, are being utilized as delivery systems for various hydrophobic substances in foods, including nutrients, nutraceuticals, antioxidants, antimicrobials, colors, and flavors. In this article, we focus on the application of nanoemulsion-based delivery systems for improving the quality, safety, nutritional profile, and sensory attributes of muscle foods, such as meat and fish. The article also critically reviews the formulation and fabrication of food-grade nanoemulsions, their potential benefits and limitations in muscle food systems.
Collapse
Affiliation(s)
- Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Rituparna Banerjee
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts, MA 01003, USA
| |
Collapse
|
44
|
Jamali SN, Assadpour E, Jafari SM. Formulation and Application of Nanoemulsions for Nutraceuticals and Phytochemicals. Curr Med Chem 2020; 27:3079-3095. [DOI: 10.2174/0929867326666190620102820] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
:
Recent trends in research and investigation on nanoemulsion based products is the result of
many reasons such as food security as a global concern, increasing demand for highly efficient food and
agricultural products and technological need for products with the ability of manipulation and optimization
in their properties. Nanoemulsions are defined as emulsions made up of nano sized droplets dispersed
in another immiscible liquid which exhibit properties distinguishing them from conventional
emulsions and making them suitable for encapsulation, delivery and formulations of bioactive ingredients
in different fields including drugs, food and agriculture. The objective of this paper is to present a general
overview of nanoemulsions definition, their preparation methods, properties and applications in food and
agricultural sectors. Due to physicochemical properties of the nanoemulsion composition, creating nanosized
droplets requires high/low energy methods that can be supplied by special devices or techniques.
An overview about the mechanisms of these methods is also presented in this paper which are commonly
used to prepare nanoemulsions. Finally, some recent works about the application of nanoemulsions in
food and agricultural sectors along with challenges and legislations restricting their applications is discussed
in the last sections of the current study.
Collapse
Affiliation(s)
- Seyedeh Narges Jamali
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
45
|
Aktas Y, Celik Tekeli M, Celebi N. Development and characterization of exendin-4 loaded self-nanoemulsifying system and in vitro evaluation on Caco-2 cell line. J Microencapsul 2020; 37:41-51. [PMID: 31714163 DOI: 10.1080/02652048.2019.1692945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aim: Aim of this study was to develop exendin-4 and exendin-4/chymostatin loaded self-nanoemulsifying drug delivery system (SNEDDS).Methods: Surfactants and co-surfactants were mixed, oil phase containing exendin-4 or exendin-4/chymostatin was added dropwise for SNEDDS. Short term physical stability test was performed prior to the release, lipolysis and permeability studies.Results: SNEDDS containing ethyl oleate: Cremophor EL®: Labrasol®: propylene glycole (15:42.5:21.25: 21.25) were selected for in vitro release and intestinal permeability studies for suitable parameters and physical stability test results. SNEDDS were obtained which yielded Grade B nanoemulsions having droplet size below 25 nm. In vitro release studies showed that 73.79% of the peptide was released for 2 h at pH 6.8. Both exendin-4 and exendin-4/chymostatin loaded SNEDDS were non-toxic to Caco-2 cells. Permeability coefficients of both exendin-4 loaded SNEDDS and exendin-4/chymostatin loaded SNEDDS were higher than exendin-4 solution.Conclusions: Intestinal permeability of exendin-4 has been improved by SNEDDS formulations.
Collapse
Affiliation(s)
- Yesim Aktas
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey
| | - Merve Celik Tekeli
- Department of Pharmaceutical Technology, Erciyes University Faculty of Pharmacy, Kayseri, Turkey.,Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Nevin Celebi
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
46
|
Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res Int 2020; 132:109035. [PMID: 32331634 DOI: 10.1016/j.foodres.2020.109035] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/27/2022]
Abstract
Curcumin is widely acknowledged for its beneficial activities. However, its application has remained challenging due to its low aqueous solubility, biochemical/structural degradation and poor bioavailability. For these reasons, many researches are aimed at overcoming these limitations using lipid-based nanosystems to encapsulate curcumin, especially nanoemulsions. This review highlights the theoretical aspects and recent advances of preparation technologies (phase inversion temperature, phase inversion composition, ultrasonication, high pressure homogenization and microfluidization) for encapsulation of curcumin in nanoemulsions. Additionally, the specific factors in designing nanoemulsions systems that affect the chemical stability and in vitro bioaccessibility of the encapsulated curcumin are discussed. Also, the importance of nanoemulsions in improving antioxidant, anti-inflammatory and anticancer activities of curcumin is underlined. Curcumin-loaded nanoemulsions preparation technologies have been proposed to provide efficient, systematic, and practical protocols for improved applications of curcumin. Additionally, key factors that influence curcumin delivery include the nature of emulsifier, the type and the amount of carrier oil and emulsifier-curcumin interactions. The pharmacological activities of curcumin including antioxidant, anti-inflammatory and anticancer activities can be improved by nanoemulsions.
Collapse
Affiliation(s)
- Tian Jiang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Wei Liao
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Catherine Charcosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|
47
|
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. NANO-MICRO LETTERS 2020; 12:45. [PMID: 34138283 PMCID: PMC7770847 DOI: 10.1007/s40820-020-0383-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023]
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arti Nile
- Department of Bioresources and Food Science, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, Macau SAR, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
48
|
Barroso da Silva FL, Carloni P, Cheung D, Cottone G, Donnini S, Foegeding EA, Gulzar M, Jacquier JC, Lobaskin V, MacKernan D, Mohammad Hosseini Naveh Z, Radhakrishnan R, Santiso EE. Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations. Annu Rev Food Sci Technol 2020; 11:365-387. [PMID: 31951485 DOI: 10.1146/annurev-food-032519-051640] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure-function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods. This review highlights several examples of advanced computer simulations at molecular, mesoscale, and multiscale levels that shed light on the mechanisms at play in foods, thereby facilitating their control. It includes a practical simulation toolbox for those new to in silico modeling.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, BR-14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Paolo Carloni
- Institute for Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - David Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Grazia Cottone
- Department of Physics and Chemistry, University of Palermo, 90128 Palermo, Italy
| | - Serena Donnini
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - E Allen Foegeding
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Muhammad Gulzar
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | | | - Donal MacKernan
- UCD School of Physics, University College Dublin, Dublin 4, Ireland
| | | | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
49
|
Bhat I, Yathisha UG, Karunasagar I, Mamatha BS. Nutraceutical approach to enhance lutein bioavailability via nanodelivery systems. Nutr Rev 2020; 78:709-724. [DOI: 10.1093/nutrit/nuz096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Lutein, a potent dietary carotenoid, has considerable biological activity and confers protection against age-related macular degeneration. Its bioavailability following consumption, however, depends on its rate of degradation. Nanodelivery systems with improved efficacy and stability are currently being developed to increase the bioavailability of lutein. This review examines nutraceutical approaches used in the development of such nanodelivery systems. It describes the methods of lutein preparation, the characteristics of various delivery systems, and the lutein delivery profile. In order to enhance lutein loading, provide electrostatic stabilization, and achieve the controlled release of lutein, adjuvants such as dextran moieties, whey proteins, medium-chain triglycerides, and chitosan polymers can be used to effectively reduce the particle size (< 70 nm) and improve encapsulation efficiency (to 99.5%). The improved bioavailability of lutein via nanocrystals incorporated into rapidly dissolving films for oral consumption is a new area of exploratory research. This review aims to provide clarity about current research aimed at enhancing the bioavailability of lutein through the development of nanodelivery systems.
Collapse
Affiliation(s)
- Ishani Bhat
- Department of Food Safety and Nutrition, Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Mangaluru, Karnataka, India
| | - Undiganalu Gangadharappa Yathisha
- Department of Food Safety and Nutrition, Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Department of Food Safety and Nutrition, Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
50
|
Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability-The Way of Bioavailability Improvement. Molecules 2019; 24:molecules24213947. [PMID: 31683692 PMCID: PMC6864715 DOI: 10.3390/molecules24213947] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are natural dyes and antioxidants widely used in food processing and in therapeutic formulations. However, their practical application is restricted by their high sensitivity to external factors such as heat, light, oxygen, metal ions and processing conditions, as well as by extremely low water solubility. Various approaches have been developed to overcome these problems. In particular, it was demonstrated that application of supramolecular complexes of “host-guest” type with water-soluble nanoparticles allows minimizing the abovementioned disadvantages. From this point of view, nanoencapsulation of carotenoids is an effective strategy to improve their stability during storage and food processing. Also, nanoencapsulation enhances bioavailability of carotenoids via modulating their release kinetics from the delivery system, influencing the solubility and absorption. In the present paper, we present the state of the art of carotenoid nanoencapsulation and summarize the data obtained during last five years on preparation, analysis and reactivity of carotenoids encapsulated into various nanoparticles. The possible mechanisms of carotenoids bioavailability enhancement by multifunctional delivery systems are also discussed.
Collapse
|