1
|
Hu L, Shen Q, Yin H, Cui L. Time-course effects of exercise intervention on executive function in adolescents with obesity. Front Psychol 2024; 15:1346896. [PMID: 39380755 PMCID: PMC11458460 DOI: 10.3389/fpsyg.2024.1346896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Objective This study was to investigate the developmental characteristics of executive function (EF) in obese adolescents and the time-course effects of a 14-week exercise intervention combining aerobic exercise and resistance training on EF in this population. Methods The experimental group of 28 obese junior high school students participated in the exercise intervention combining aerobic exercise and resistance training, while the control group of 24 healthy weight junior high school students engaged in the regular recess exercise. EF, including inhibition, working memory, and cognitive flexibility, was assessed 1 week prior to the exercise intervention and at 12 and 14 weeks post-intervention. Changes in EF sub-functions in both groups at different time points during the exercise intervention were analyzed. Results The findings revealed that obese junior high school students exhibited lower levels of inhibition (p = 0.003, Cohen's d = 0.848) and cognitive flexibility (p = 0.013, Cohen's d = 0.706) compared to their healthy weight peers. The exercise intervention combining aerobic exercise and resistance training led to significant improvements in EF among obese junior high school students, with inhibition (p < 0.01, Cohen's d = 0.713; p = 0.003, Cohen's d = 0.683) and cognitive flexibility (p = 0.001, Cohen's d = 0.797; p < 0.01, Cohen's d = 0.890) showing significant improvement at 12 and 14 weeks post-intervention, and working memory demonstrating significant improvement at 14 weeks (p = 0.004, Cohen's d = 0.710). No significant differences were observed in EF over time in healthy weight junior high school students. Conclusion Obese adolescents had impaired EF, as evidenced by low levels of the inhibition and cognitive flexibility compared to healthy weight adolescents. The exercise intervention combining aerobic exercise and resistance training had a positive effect on EF of obese adolescents. The time-course effects of the intervention on improvements in inhibition, working memory, and cognitive flexibility varied with intervention duration in obese adolescents, with significant changes in inhibition and cognitive flexibility observed at 12 weeks and significant changes in working memory at 14 weeks.
Collapse
Affiliation(s)
- Lingling Hu
- College of P.E. and Sports, Beijing Normal University, Beijing, China
- Student Affairs Office, China Conservatory of Music, Beijing, China
| | - Qiqi Shen
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Hengchan Yin
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| | - Lei Cui
- College of P.E. and Sports, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Chen B, Lenck S, Thomas JL, Schneeberger M. The glymphatic system as a nexus between obesity and neurological diseases. Nat Rev Endocrinol 2024:10.1038/s41574-024-01042-3. [PMID: 39304738 DOI: 10.1038/s41574-024-01042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| | - Stephanie Lenck
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Jean-Leon Thomas
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Augustine-Wofford K, Connaughton VP, McCarthy E. Are Hyperglycemia-Induced Changes in the Retina Associated with Diabetes-Correlated Changes in the Brain? A Review from Zebrafish and Rodent Type 2 Diabetes Models. BIOLOGY 2024; 13:477. [PMID: 39056672 PMCID: PMC11273949 DOI: 10.3390/biology13070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes is prevalent worldwide, with >90% of the cases identified as Type 2 diabetes. High blood sugar (hyperglycemia) is the hallmark symptom of diabetes, with prolonged and uncontrolled levels contributing to subsequent complications. Animal models have been used to study these complications, which include retinopathy, nephropathy, and peripheral neuropathy. More recent studies have focused on cognitive behaviors due to the increased risk of dementia/cognitive deficits that are reported to occur in older Type 2 diabetic patients. In this review, we collate the data reported from specific animal models (i.e., mouse, rat, zebrafish) that have been examined for changes in both retina/vision (retinopathy) and brain/cognition, including db/db mice, Goto-Kakizaki rats, Zucker Diabetic Fatty rats, high-fat diet-fed rodents and zebrafish, and hyperglycemic zebrafish induced by glucose immersion. These models were selected because rodents are widely recognized as established models for studying diabetic complications, while zebrafish represent a newer model in this field. Our goal is to (1) summarize the published findings relevant to these models, (2) identify similarities in cellular mechanisms underlying the disease progression that occur in both tissues, and (3) address the hypothesis that hyperglycemic-induced changes in retina precede or predict later complications in brain.
Collapse
Affiliation(s)
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| | - Elizabeth McCarthy
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
4
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
5
|
Das-Earl P, Schreihofer DA, Sumien N, Schreihofer AM. Temporal and region-specific tau hyperphosphorylation in the medulla and forebrain coincides with development of functional changes in male obese Zucker rats. J Neurophysiol 2024; 131:689-708. [PMID: 38416718 PMCID: PMC11305650 DOI: 10.1152/jn.00409.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Metabolic syndrome (MetS) is associated with development of tauopathies that contribute to cognitive decline. Without functional leptin receptors, male obese Zucker rats (OZRs) develop MetS, and they have increased phosphorylated tau (ptau) with impaired cognitive function. In addition to regulating energy balance, leptin enhances activation of the hippocampus, which is essential for spatial learning and memory. Whether spatial learning and memory are always impaired in OZRs or develop with MetS is unknown. We hypothesized that male OZRs develop MetS traits that promote regional increases in ptau and functional deficits associated with those brain regions. In the medulla and cortex, tau-pSer199,202 and tau-pSer396 were comparable in juvenile (7-8 wk old) lean Zucker rats (LZRs) and OZRs but increased in 18- to 19-wk-old OZRs. Elevated tau-pSer396 was concentrated in the dorsal vagal complex of the medulla, and by this age OZRs had hypertension with increased arterial pressure variability. In the hippocampus, tau-pSer199,202 and tau-pSer396 were still comparable in 18- to 19-wk-old OZRs and LZRs but elevated in 28- to 29-wk-old OZRs, with emergence of deficits in Morris water maze performance. Comparable escape latencies observed during acquisition in 18- to 19-wk-old OZRs and LZRs were increased in 28- to 29-wk-old OZRs, with greater use of nonspatial search strategies. Increased ptau developed with changes in the insulin/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the hippocampus and cortex but not medulla, suggesting different underlying mechanisms. These data demonstrate that leptin is not required for spatial learning and memory in male OZRs. Furthermore, early development of MetS-associated autonomic dysfunction by the medulla may be predictive of later hippocampal dysfunction and cognitive impairment.NEW & NOTEWORTHY Male obese Zucker rats (OZRs) lack functional leptin receptors and develop metabolic syndrome (MetS). At 16-19 wk, OZRs are insulin resistant, with increased ptau in dorsal medulla and impaired autonomic regulation of AP. At 28-29 wk OZRs develop increased ptau in hippocampus with deficits in spatial learning and memory. Juvenile OZRs lack elevated ptau and these deficits, demonstrating that leptin is not essential for normal function. Elevated ptau and deficits emerge before the onset of diabetes in insulin-resistant OZRs.
Collapse
Affiliation(s)
- Paromita Das-Earl
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Derek A Schreihofer
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ann M Schreihofer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
6
|
Roeder NM, Penman SL, Richardson BJ, Wang J, Freeman-Striegel L, Khan A, Pareek O, Weiss M, Mohr P, Eiden RD, Chakraborty S, Thanos PK. Vaporized Δ9-THC in utero results in reduced birthweight, increased locomotion, and altered wake-cycle activity dependent on dose, sex, and diet in the offspring. Life Sci 2024; 340:122447. [PMID: 38246518 DOI: 10.1016/j.lfs.2024.122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
AIMS Preclinical studies have found that chronic ∆9-tetrahydrocannabinol (THC) treatment is directly associated with weight gain when introduced during adolescence and adulthood, but the effect of prenatal THC is unclear. Clinical studies have demonstrated prenatal exposure to THC is a prospective predictor of increased health risks associated with obesity. Our study aims to examine prenatal THC impact on obesity risks in males and females throughout adolescence using a clinically relevant inhalation model. METHODS Pregnant rats were exposed to one of the following from gestational day 2 through birth: 10 mg THC, 40 mg THC, or air. Daily 10-min inhalations were conducted in each animal from 0900 to 1200. Offspring from each treatment group were given either a high-fat diet (HFD) or a normal diet (ND). Food and bodyweights were collected daily, while circadian activity, locomotion, and exercise were measured periodically (PND 21-60). Pregnancy weight gain and birth weight were collected to determine early-life developmental effects. RESULTS Rats prenatally treated with low-dose THC (LDTHC) generally had lower dark-cycle activity compared with control counterparts, but this altered activity was not observed at the higher dose of THC (HDTHC). In terms of open-field activity, THC doses displayed a general increase in locomotion. In addition, the LDTHC male rats in the ND showed significantly greater exploratory behavior. Prenatal THC had dose-dependent effects on maternal weight gain and birth weight. CONCLUSIONS Overall, our findings indicate there are some activity-related and developmental effects of prenatal THC, which may be related to obesity risks later in life.
Collapse
Affiliation(s)
- Nicole M Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Samantha L Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Brittany J Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jia Wang
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Lily Freeman-Striegel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Anas Khan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ojas Pareek
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Maia Weiss
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Patrick Mohr
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rina D Eiden
- Department of Psychology and Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA
| | - Saptarshi Chakraborty
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Spoelder M, Bright Y, Morrison MC, van Kempen V, de Groodt L, Begalli M, Schuijt N, Kruiger E, Bulthuis R, Gross G, Kleemann R, van Diepen JA, Homberg JR. Cognitive Performance during the Development of Diabetes in the Zucker Diabetic Fatty Rat. Cells 2023; 12:2463. [PMID: 37887307 PMCID: PMC10605915 DOI: 10.3390/cells12202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Increased insulin levels may support the development of neural circuits involved in cognition, while chronic mild inflammation may also result in cognitive impairment. This study aimed to gain more insight into whether cognition is already impacted during adolescence in a genetic rat model for obesity and type 2 diabetes. Visual discrimination learning throughout adolescence and the level of motivation during early adulthood were investigated in Zucker Diabetic Fatty (ZDF) obese and ZDF lean rats using operant touchscreens. Blood glucose, insulin, and lipids were longitudinally analyzed. Histological analyses were performed in the liver, white adipose tissues, and the prefrontal cortex. Prior to the experiments with the genetic ZDF research model, all experimental assays were performed in two groups of outbred Long Evans rats to investigate the effect of different feeding circumstances. Adolescent ZDF obese rats outperformed ZDF lean rats on visual discrimination performance. During the longitudinal cognitive testing period, insulin levels sharply increased over weeks in ZDF obese rats and were significantly enhanced from 6 weeks of age onwards. Early signs of liver steatosis and enlarged adipocytes in white adipose tissue were observed in early adult ZDF obese rats. Histological analyses in early adulthood showed no group differences in the number of prefrontal cortex neurons and microglia, nor PSD95 and SIRT1 mRNA expression levels. Together, our data show that adolescent ZDF obese rats even display enhanced cognition despite their early diabetic profile.
Collapse
Affiliation(s)
- Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Yami Bright
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 CE Leiden, The Netherlands
| | - Veerle van Kempen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Lilian de Groodt
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Malvina Begalli
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Nikita Schuijt
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Eva Kruiger
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Ronald Bulthuis
- Metris B.V., Kruisweg 829c, 2132 NG Hoofddorp, The Netherlands
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 CE Leiden, The Netherlands
| | - Janna A. van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| |
Collapse
|
8
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
9
|
Neuroanatomical correlates of genetic risk for obesity in children. Transl Psychiatry 2023; 13:1. [PMID: 36596778 PMCID: PMC9810659 DOI: 10.1038/s41398-022-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Obesity has a strong genetic component, with up to 20% of variance in body mass index (BMI) being accounted for by common polygenic variation. Most genetic polymorphisms associated with BMI are related to genes expressed in the central nervous system. At the same time, higher BMI is associated with neurocognitive changes. However, the direct link between genetics of obesity and neurobehavioral mechanisms related to weight gain is missing. Here, we use a large sample of participants (n > 4000) from the Adolescent Brain Cognitive Development cohort to investigate how genetic risk for obesity, expressed as polygenic risk score for BMI (BMI-PRS), is related to brain and behavioral measures in adolescents. In a series of analyses, we show that BMI-PRS is related to lower cortical volume and thickness in the frontal and temporal areas, relative to age-expected values. Relatedly, using structural equation modeling, we find that lower overall cortical volume is associated with higher impulsivity, which in turn is related to an increase in BMI 1 year later. In sum, our study shows that obesity might partially stem from genetic risk as expressed in brain changes in the frontal and temporal brain areas, and changes in impulsivity.
Collapse
|
10
|
Henn RE, Noureldein MH, Elzinga SE, Kim B, Savelieff MG, Feldman EL. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis 2022; 170:105766. [PMID: 35584728 PMCID: PMC10071699 DOI: 10.1016/j.nbd.2022.105766] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Collapse
Affiliation(s)
- Rosemary E Henn
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhumsoo Kim
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
11
|
Jenkins TA. Metabolic Syndrome and Vascular-Associated Cognitive Impairment: a Focus on Preclinical Investigations. Curr Diab Rep 2022; 22:333-340. [PMID: 35737273 PMCID: PMC9314301 DOI: 10.1007/s11892-022-01475-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome is associated with an increased risk of vascular cognitive impairment or, in the more extreme, vascular dementia. Animal models are used to investigate the relationship between pathology and behaviour. This review summarizes the latest understanding of the role of the hippocampus and prefrontal cortex in vascular cognitive impairment, the influence of inflammation in this association while also commenting on some of the latest interventions proposed. RECENT FINDINGS Models of vascular cognitive impairment and vascular dementia, whether they develop from an infarct or non-infarct base, demonstrate increased neuroinflammation, reduced neuronal function and deficits in prefrontal and hippocampal-associated cognitive domains. Promising new research shows agents and environmental interventions that inhibit central oxidative stress and inflammation can reverse both pathology and cognitive dysfunction. While preclinical studies suggest that reversal of deficits in vascular cognitive impairment models is possible, replication in patients still needs to be demonstrated.
Collapse
Affiliation(s)
- Trisha A Jenkins
- Human Biosciences, School of Health and Biomedical Sciences, STEM College, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
12
|
Saiyasit N, Butlig EAR, Chaney SD, Traylor MK, Hawley NA, Randall RB, Bobinger HV, Frizell CA, Trimm F, Crook ED, Lin M, Hill BD, Keller JL, Nelson AR. Neurovascular Dysfunction in Diverse Communities With Health Disparities-Contributions to Dementia and Alzheimer's Disease. Front Neurosci 2022; 16:915405. [PMID: 35844216 PMCID: PMC9279126 DOI: 10.3389/fnins.2022.915405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Evan-Angelo R. Butlig
- Department of Neurology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha D. Chaney
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Miranda K. Traylor
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Nanako A. Hawley
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Ryleigh B. Randall
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Hanna V. Bobinger
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Department of Physician Assistant Studies, University of South Alabama, Mobile, AL, United States
| | - Franklin Trimm
- College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Errol D. Crook
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mike Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
13
|
Palmitoylated prolactin-releasing peptide treatment had neuroprotective but not anti-obesity effect in fa/fa rats with leptin signaling disturbances. Nutr Diabetes 2022; 12:26. [PMID: 35589696 PMCID: PMC9119973 DOI: 10.1038/s41387-022-00205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background/Objective Anorexigenic palmitoylated prolactin-releasing peptide (palm11-PrRP) is able to act centrally after peripheral administration in rat and mouse models of obesity, type 2 diabetes mellitus and/or neurodegeneration. Functional leptin and intact leptin signaling pathways are necessary for the body weight reducing and glucose tolerance improving effect of palm11-PrRP. We have previously shown that palm11-PrRP31 had glucose-lowering properties but not anti-obesity effect in Koletsky rats with leptin signaling disturbances, so improvements in glucose metabolism appear to be completely independent of leptin signaling. The purpose of this study was to describe relationship between metabolic and neurodegenerative pathologies and explore if palm11-PrRP31 could ameliorate them in obese fa/fa rat model with leptin signaling disruption. Subject/Methods The fa/fa rats and their age-matched lean controls at the age 32 weeks were used for this study. The rats were infused for 2 months with saline or palm11-PrRP31 (n = 7–8 per group) at a dose of 5 mg/kg per day using Alzet osmotic pumps. During the dosing period food intake and body weight were monitored. At the end of experiment the oral glucose tolerance test was performed; plasma and tissue samples were collected and arterial blood pressure was measured. Then, markers of leptin and insulin signaling, Tau phosphorylation, neuroinflammation, and synaptogenesis were measured by western blotting and immunohistochemistry. Results Fa/fa rats developed obesity, mild glucose intolerance, and peripheral insulin resistance but not hypertension while palm11-PrRP31 treatment neither lowered body weight nor attenuated glucose tolerance but ameliorated leptin and insulin signaling and synaptogenesis in hippocampus. Conclusion We demonstrated that palm11-PrRP31 had neuroprotective features without anti-obesity and glucose lowering effects in fa/fa rats. This data suggest that this analog has the potential to exert neuroprotective effect despite of leptin signaling disturbances in this rat model.
Collapse
|
14
|
TLR4 mutation protects neurovascular function and cognitive decline in high-fat diet-fed mice. J Neuroinflammation 2022; 19:104. [PMID: 35488354 PMCID: PMC9052472 DOI: 10.1186/s12974-022-02465-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Background Metabolic syndrome (MS) is defined as a low-grade proinflammatory state in which abnormal metabolic and cardiovascular factors increase the risk of developing cardiovascular disease and neuroinflammation. Events, such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in MS may contribute to the direct or indirect activation of Toll-like receptors (TLRs), specifically TLR4, which is thought to be a major component of this syndrome. Activation of the innate immune response via TLR4 may contribute to this state of chronic inflammation and may be related to the neuroinflammation and neurodegeneration observed in MS. In this study, we investigated the role of TLR4 in the brain microcirculation and in the cognitive performance of high-fat diet (HFD)-induced MS mice. Methods Wild-type (C3H/He) and TLR4 mutant (C3H/HeJ) mice were maintained under a normal diet (ND) or a HFD for 24 weeks. Intravital video-microscopy was used to investigate the functional capillary density, endothelial function, and endothelial–leukocyte interactions in the brain microcirculation. Plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), adipokines and metabolic hormones were measured with a multiplex immunoassay. Brain postsynaptic density protein-95 and synaptophysin were evaluated by western blotting; astrocytic coverage of the vessels, microglial activation and structural capillary density were evaluated by immunohistochemistry. Results The HFD-induced MS model leads to metabolic, hemodynamic, and microcirculatory alterations, as evidenced by capillary rarefaction, increased rolling and leukocyte adhesion in postcapillary venules, endothelial dysfunction, and less coverage of astrocytes in the vessels, which are directly related to cognitive decline and neuroinflammation. The same model of MS reproduced in mice deficient for TLR4 because of a genetic mutation does not generate such changes. Furthermore, the comparison of wild-type mice fed a HFD and a normolipid diet revealed differences in inflammation in the cerebral microcirculation, possibly related to lower TLR4 activation. Conclusions Our results demonstrate that TLR4 is involved in the microvascular dysfunction and neuroinflammation associated with HFD-induced MS and possibly has a causal role in the development of cognitive decline. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02465-3.
Collapse
|
15
|
Maiuolo J, Musolino V, Gliozzi M, Carresi C, Oppedisano F, Nucera S, Scarano F, Scicchitano M, Guarnieri L, Bosco F, Macrì R, Ruga S, Cardamone A, Coppoletta AR, Ilari S, Mollace A, Muscoli C, Cognetti F, Mollace V. The Employment of Genera Vaccinium, Citrus, Olea, and Cynara Polyphenols for the Reduction of Selected Anti-Cancer Drug Side Effects. Nutrients 2022; 14:1574. [PMID: 35458136 PMCID: PMC9025632 DOI: 10.3390/nu14081574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most widespread diseases globally and one of the leading causes of death. Known cancer treatments are chemotherapy, surgery, radiation therapy, targeted hormonal therapy, or a combination of these methods. Antitumor drugs, with different mechanisms, interfere with cancer growth by destroying cancer cells. However, anticancer drugs are dangerous, as they significantly affect both cancer cells and healthy cells. In addition, there may be the onset of systemic side effects perceived and mutagenicity, teratogenicity, and further carcinogenicity. Many polyphenolic extracts, taken on top of common anti-tumor drugs, can participate in the anti-proliferative effect of drugs and significantly reduce the side effects developed. This review aims to discuss the current scientific knowledge of the protective effects of polyphenols of the genera Vaccinium, Citrus, Olea, and Cynara on the side effects induced by four known chemotherapy, Cisplatin, Doxorubicin, Tamoxifen, and Paclitaxel. In particular, the summarized data will help to understand whether polyphenols can be used as adjuvants in cancer therapy, although further clinical trials will provide crucial information.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Vincenzo Musolino
- Laboratoy of Pharmaceutical Biology, IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Canzaro, Italy;
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Sara Ilari
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (C.C.); (F.O.); (S.N.); (F.S.); (M.S.); (L.G.); (F.B.); (R.M.); (S.R.); (A.C.); (A.R.C.); (S.I.); (V.M.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| |
Collapse
|
16
|
Obesity-Related Brain Cholinergic System Impairment in High-Fat-Diet-Fed Rats. Nutrients 2022; 14:nu14061243. [PMID: 35334899 PMCID: PMC8948807 DOI: 10.3390/nu14061243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
A link between obesity and cerebral health is receiving growing recognition. Here, we investigate in the frontal cortex and hippocampus the potential involvement of cholinergic markers in brain alterations previously reported in rats with obesity induced by diet (DIO) after long-term exposure (17 weeks) to a high-fat diet (HFD) in comparison with animals fed with a standard diet (CHOW). The obesity developed after 5 weeks of HFD. Bodyweight, systolic blood pressure, glycemia, and insulin levels were increased in DIO rats compared to the CHOW group. Measurements of malondialdehyde (MDA) provided lipid peroxidation in HFD-fed rats. Western blot and immunohistochemical techniques were performed. Our results showed a higher expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in obese rats but not the VAChT expression in the frontal cortex after 17 weeks of HFD. Furthermore, the acetylcholinesterase (AChE) enzyme was downregulated in HFD both in the frontal cortex and hippocampus. In the brain regions analyzed, it was reported a modulation of certain cholinergic receptors expressed pre- and post-synaptically (alpha7 nicotinic receptor and muscarinic receptor subtype 1). Collectively, these findings point out precise changes of cholinergic markers that can be targeted to prevent cerebral injuries related to obesity.
Collapse
|
17
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
18
|
Tandisehpanah Z, Foroutanfar A, Aziminia A, Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H. Protective effect of aqueous and ethanolic extracts of Lippia citriodora Kunth . on acrylamide-induced neurotoxicity. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:281-294. [PMID: 36186928 PMCID: PMC9482716 DOI: 10.22038/ajp.2021.19173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
Abstract
Objective Acrylamide (ACR) neurotoxicity is induced by different mechanisms such as oxidative stress and apoptosis. Scientific researchs have indicated the antioxidative properties of Lippia citriodora. The protective effect of L. citriodora aqueous and ethanolic extracts on ACR-induced neurotoxicity was investigated. Materials and methods Male Wistar rats were randomly divided into 13 groups: (1) control, (2) ACR (50 mg/kg, i.p.), (3-6) ACR+aqueous extract (12.5, 25, 50, and 100 mg/kg, i.p.), (7-10) ACR+ethanolic extract (12.5, 25, 50, and 100 mg/kg, i.p.), (11) aqueous extract (100 mg/kg), (12) ethanolic extract (100 mg/kg), and (13) ACR+Vitamin E (200 mg/kg, every other day, i.p.). After 11 days, gait score, MDA, and GSH levels in brain cortical tissue were measured. In the in vitro test, the viability of PC12 cells (using MTT test), the amount of reactive oxygen species (ROS; using DCFH-DA method), and the protein levels of Bax, Bcl2 and caspase 3 (by western blotting) were measured. Results In the in vitro study, the IC50 for the treatment of PC 12 cells with ACR after 24 hr was 6 mM. ACR decreased cell viability, but increased ROS level, Bax/Bcl-2 ratio, and caspase-3 protein level. Pre-treatment by L. citriodora extracts (15-120 µg/ml) ameliorated the toxic effects of ACR on PC12 cells. In the in vivo experiment, ACR-induced movement disorders increased MDA but decreased GSH content. The extracts of L. citriodora improved ACR toxic effects. Conclusion Aqueous and ethanolic extracts of L. citriodora were found to reduce ACR-induced neurotoxicity via inhibiting oxidative stress and apoptosis.
Collapse
Affiliation(s)
| | - Amir Foroutanfar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Aziminia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +98-5131801194, Fax: +98-5138823251, . Tel: +98-38819042, Fax: +98-38823251,
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding Author: Tel: +98-5131801194, Fax: +98-5138823251, . Tel: +98-38819042, Fax: +98-38823251,
| |
Collapse
|
19
|
Roy P, Martinelli I, Moruzzi M, Maggi F, Amantini C, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK, Tomassoni D. Ion channels alterations in the forebrain of high-fat diet fed rats. Eur J Histochem 2021; 65:3305. [PMID: 34814650 PMCID: PMC8636841 DOI: 10.4081/ejh.2021.3305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Evidence suggests that transient receptor potential (TRP) ion channels dysfunction significantly contributes to the physiopathology of metabolic and neurological disorders. Dysregulation in functions and expression in genes encoding the TRP channels cause several inherited diseases in humans (the so-called 'TRP channelopathies'), which affect the cardiovascular, renal, skeletal, and nervous systems. This study aimed to evaluate the expression of ion channels in the forebrain of rats with diet-induced obesity (DIO). DIO rats were studied after 17 weeks under a hypercaloric diet (high-fat diet, HFD) and were compared to the control rats with a standard diet (CHOW). To determine the systemic effects of HFD exposure, we examined food intake, fat mass content, fasting glycemia, insulin levels, cholesterol, and triglycerides. qRT-PCR, Western blot, and immunochemistry analysis were performed in the frontal cortex (FC) and hippocampus (HIP). After 17 weeks of HFD, DIO rats increased their body weight significantly compared to the CHOW rats. In DIO rats, TRPC1 and TRPC6 were upregulated in the HIP, while they were downregulated in the FC. In the case of TRPM2 expression, instead was increased both in the HIP and in the FC. These could be related to the increase of proteins and nucleic acid oxidation. TRPV1 and TRPV2 gene expression showed no differences both in the FC and HIP. In general, qRT-PCR analyses were confirmed by Western blot analysis. Immunohistochemical procedures highlighted the expression of the channels in the cell body of neurons and axons, particularly for the TRPC1 and TRPC6. The alterations of TRP channel expression could be related to the activation of glial cells or the neurodegenerative process presented in the brain of the DIO rat highlighted with post synaptic protein (PSD 95) alterations. The availability of suitable animal models may be useful for studying possible pharmacological treatments to counter obesity-induced brain injury. The identified changes in DIO rats may represent the first insight to characterize the neuronal alterations occurring in obesity. Further investigations are necessary to characterize the role of TRP channels in the regulation of synaptic plasticity and obesity-related cognitive decline.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino.
| | | | | | - Federica Maggi
- Department of Molecular Medicine, La Sapienza University of Rome.
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino.
| | | | | | | | | | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino.
| |
Collapse
|
20
|
Logvinov SV, Naryzhnaya NV, Kurbatov BK, Gorbunov AS, Birulina YG, Maslov LL, Oeltgen PR. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp Gerontol 2021; 154:111543. [PMID: 34455071 DOI: 10.1016/j.exger.2021.111543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Age and diabetes are risk factors for arterial hypertension. However, the relationship between age, connective tissue growth factors, vascular aging and arterial hypertension while on a the high-carbohydrate high-fat diet (HCHFD) remains poorly understood. PURPOSE To estimate the relationship between humoral factors, the morphological changes of aorta and impaired blood pressure regulation under the influence of age and a HCHFD. METHODS A study was carried out in male Wistar rats, which were divided into the following groups: 1st (n = 15) - naive young rats; 2nd (n = 15) - young rats, exposed to HCHFD; 3rd (n = 14) - naive old rats; 4th (n = 12) - old rats exposed to HCHFD. The age of old rats was 540 days, and young rats 150 days at the end of the diet. HCHFD contained proteins 16%, fats 21%, carbohydrates 46%, including 17% fructose, 0.125% cholesterol, 90 days. Blood pressure and body weight were measured weekly, carbohydrate metabolism, histological signs of changes in the aorta, serum transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), fibronectin, and endothelin-1 levels were determined one week after the onset of diet. RESULTS The severity of arterial hypertension and its histological signs in the aortic wall was found to be most pronounced in elderly rats kept on a HCHFD. In young rats kept on a HCHFD, arterial hypertension was transient. An increase in systolic blood pressure has a positive correlation with the degree of obesity, serum fibronectin, and endothelin-1 content, and impaired carbohydrate metabolism. The rise in diastolic blood pressure has a positive correlation with the serum CTGF, endothelin-1, fibronectin levels and aortic wall thickness, and impaired carbohydrate metabolism. A rise in the serum concentration of fibronectin was also associated with increased endothelin-1, TGFβ and CTGF serum levels. CONCLUSION This study indicated that an increase in blood pressure in old rats with a high-carbohydrate high-fat diet is due to a disturbance of a structure of the vascular wall, the release of fibronectin, which can occur under the influence of carbohydrate metabolism disorders, endothelin-1, TGFβ and CTGF.
Collapse
Affiliation(s)
- Sergey V Logvinov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 634012 Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 634012 Tomsk, Russia.
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 634012 Tomsk, Russia
| | | | - Leonid L Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
21
|
Martinelli I, Tomassoni D, Roy P, Amenta F, Tayebati SK. Altered Brain Cholinergic and Synaptic Markers in Obese Zucker Rats. Cells 2021; 10:cells10102528. [PMID: 34685507 PMCID: PMC8534069 DOI: 10.3390/cells10102528] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The association between obesity and loss of cognitive performance has been recognized. Although there are data regarding the metabolic alterations in obese conditions and the development of neuroinflammation, no clear evidence concerning obesity-related cholinergic and synaptic impairments in the frontal cortex and hippocampus has been reported yet. Here, we investigate different cholinergic and synaptic markers in 12-, 16-, and 20-week-old obese Zucker rats (OZRs) compared with lean littermate rats (LZRs), using immunochemical and immunohistochemical analysis. Consequently, OZRs showed body weight gain, hypertension, and dysmetabolism. In 20-week-old OZRs, the reduction of vesicular acetylcholine transporter (VAChT) and alpha7 nicotinic acetylcholine receptors (α7nAChR) occurred both in the frontal cortex and in the hippocampus, suggesting a cognitive dysfunction due to obesity and aging. Among the muscarinic receptors analyzed, the level of expression of type 1 (mAChR1) was lower in the hippocampus of the older OZRs. Finally, we showed synaptic dysfunctions in OZRs, with a reduction of synaptophysin (SYP) and synaptic vesicle glycoprotein 2B (SV2B) in 20-week-old OZRs, both in the frontal cortex and in the hippocampus. Taken together, our data suggest specific alterations of cholinergic and synaptic markers that can be targeted to prevent cognitive deficits related to obesity and aging.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
- Correspondence:
| |
Collapse
|
22
|
Lycopene suppresses palmitic acid-induced brain oxidative stress, hyperactivity of some neuro-signalling enzymes, and inflammation in female Wistar rat. Sci Rep 2021; 11:15038. [PMID: 34294819 PMCID: PMC8298469 DOI: 10.1038/s41598-021-94518-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023] Open
Abstract
Neuroinflammation can be triggered by certain high caloric nutrients such as palmitic acid (PA). The effect of lycopene against PA-induced neuroinflammation in female rats has not been as explored. In the present study, thirty rats (weighing 150–200) g were randomly allotted into six groups (n = 5) comprising normal control, PA control, PA + lycopene (0.24 mg/kg), PA + lycopene (0.48 mg/kg), lycopene (0.24 mg/kg), and lycopene (0.48 mg/kg), respectively. After seven weeks of PA challenge (5 mM) including two weeks of lycopene treatment, the brain was excised for analyses. Palmitic acid overload caused significant (p < 0.05) increases in adenosine deaminase, monoamine oxidase-A, nucleotides tri-phosphatase, 5′-nucleotidase, acetylcholine esterase, and myeloperoxidase activities, and malondialdehyde (MDA) levels which were reduced significantly in the lycopene-treated groups. Conversely, catalase and glutathione peroxidase activities, and reduced glutathione levels concentration decreased by 43%, 34%, and 12%, respectively in the PA control groups compared with the Control. Also, PA triggered a decrease in the brain phospholipids (11.43%) and cholesterol (11.11%), but increased triacylglycerol level (50%). Furthermore, upregulated expressions of Interleukin-1β, Interleukin-6, and NF-ĸB-p65 in the PA control were attenuated, while decreased Interleukine-10 expression was upregulated due to lycopene treatment. Severe brain vacuolation observed in the histology of the PA control rats was normalized by lycopene. This study concludes that lycopene ameliorated PA-induced neuroinflammation, probably via attenuation of oxidative stress, and downregulation of TLR4/ NF-κB -p65 axis.
Collapse
|
23
|
Hashioka S, Wu Z, Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Curr Neuropharmacol 2021; 19:908-924. [PMID: 33176652 PMCID: PMC8686312 DOI: 10.2174/1570159x18666201111104509] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
The neuroinflammatory hypothesis of Alzheimer's disease (AD) was proposed more than 30 years ago. The involvement of the two main types of glial cells microglia and astrocytes, in neuroinflammation, was suggested early on. In this review, we highlight that the exact contributions of reactive glia to AD pathogenesis remain difficult to define, likely due to the heterogeneity of glia populations and alterations in their activation states through the stages of AD progression. In the case of microglia, it is becoming apparent that both beneficially and adversely activated cell populations can be identified at various stages of AD, which could be selectively targeted to either limit their damaging actions or enhance beneficial functions. In the case of astrocytes, less information is available about potential subpopulations of reactive cells; it also remains elusive whether astrocytes contribute to the neuropathology of AD by mainly gaining neurotoxic functions or losing their ability to support neurons due to astrocyte damage. We identify L-type calcium channel blocker, nimodipine, as a candidate drug for AD, which potentially targets both astrocytes and microglia. It has already shown consistent beneficial effects in basic experimental and clinical studies. We also highlight the recent evidence linking peripheral inflammation and neuroinflammation. Several chronic systemic inflammatory diseases, such as obesity, type 2 diabetes mellitus, and periodontitis, can cause immune priming or adverse activation of glia, thus exacerbating neuroinflammation and increasing risk or facilitating the progression of AD. Therefore, reducing peripheral inflammation is a potentially effective strategy for lowering AD prevalence.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| | | | - Andis Klegeris
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| |
Collapse
|
24
|
Ghasemzadeh Rahbardar M, Hemadeh B, Razavi BM, Eisvand F, Hosseinzadeh H. Effect of carnosic acid on acrylamide induced neurotoxicity: in vivo and in vitro experiments. Drug Chem Toxicol 2020; 45:1528-1535. [DOI: 10.1080/01480545.2020.1845715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Batool Hemadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|