1
|
Steensma AK, Kaste JAM, Heo J, Orr DJ, Sung CL, Shachar-Hill Y, Walker BJ. Modeling with uncertainty quantification reveals the essentials of a non-canonical algal carbon-concentrating mechanism. PLANT PHYSIOLOGY 2024:kiae629. [PMID: 39656810 DOI: 10.1093/plphys/kiae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated that C. merolae's cellular affinity for CO2 is stronger than the affinity of its rubisco for CO2. This finding provided additional evidence that C. merolae operates a CCM while lacking the structures and functions characteristic of CCMs in other organisms. To test how such a CCM could function, we created a mathematical compartmental model of a simple CCM, distinct from those we have seen previously described in detail. The results of our modeling supported the feasibility of this proposed minimal and non-canonical CCM in C. merolae. To facilitate the robust modeling of this process, we measured and incorporated physiological and enzymatic parameters into the model. Additionally, we trained a surrogate machine learning model to emulate the mechanistic model and characterized the effects of model parameters on key outputs. This parameter exploration enabled us to identify model features that influenced whether the model met the experimentally derived criteria for functional carbon concentration and efficient energy usage. Such parameters included cytosolic pH, bicarbonate pumping cost and kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, and CO2 membrane permeability. Our exploration thus suggested that a non-canonical CCM could exist in C. merolae and illuminated the essential features generally necessary for CCMs to function.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824
| | - Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824
| | - Junoh Heo
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824
| | - Douglas J Orr
- Lancaster Environment Center, Lancaster University, Lancaster, United Kingdom, LA1 4YQ
| | - Chih-Li Sung
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
2
|
Gregory LM, Scott KF, Sharpe LA, Roze LV, Schmiege SC, Hammer JM, Way DA, Walker BJ. Rubisco activity and activation state dictate photorespiratory plasticity in Betula papyrifera acclimated to future climate conditions. Sci Rep 2024; 14:26340. [PMID: 39487181 PMCID: PMC11530445 DOI: 10.1038/s41598-024-77049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Plant metabolism faces a challenge of investing enough enzymatic capacity to a pathway without overinvestment. As it takes energy and resources to build, operate, and maintain enzymes, there are benefits and drawbacks to accurately matching capacity to the pathway influx. The relationship between functional capacity and physiological load could be explained through symmorphosis, which would quantitatively match enzymatic capacity to pathway influx. Alternatively, plants could maintain excess enzymatic capacity to manage unpredictable pathway influx. In this study, we use photorespiration as a case study to investigate these two hypotheses in Betula papyrifera. This involves altering photorespiratory influx by manipulating the growth environment, via changes in CO2 concentration and temperature, to determine how photorespiratory capacity acclimates to environmental treatments. Surprisingly, the results from these measurements indicate that there is no plasticity in photorespiratory capacity in B. papyrifera, and that a fixed capacity is maintained under each growth condition. The fixed capacity is likely due to the existence of reserve capacity in the pathway that manages unpredictable photorespiratory influx in dynamic environments. Additionally, we found that B. papyrifera had a constant net carbon assimilation under each growth condition due to an adjustment of functional rubisco activity driven by changes in activation state. These results provide insight into the acclimation ability and limitations of B. papyrifera to future climate scenarios currently predicted in the next century.
Collapse
Affiliation(s)
- Luke M Gregory
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kate F Scott
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Luke A Sharpe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ludmila V Roze
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephanie C Schmiege
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Julia M Hammer
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Ermakova M, Fitzpatrick D, Larkum AWD. Cyclic electron flow and Photosystem II-less photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24185. [PMID: 39471160 DOI: 10.1071/fp24185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Oxygenic photosynthesis is characterised by the cooperation of two photo-driven complexes, Photosystem II (PSII) and Photosystem I (PSI), sequentially linked through a series of redox-coupled intermediates. Divergent evolution has resulted in photosystems exhibiting complementary redox potentials, spanning the range necessary to oxidise water and reduce CO2 within a single system. Catalysing nature's most oxidising reaction to extract electrons from water is a highly specialised task that limits PSII's metabolic function. In contrast, potential electron donors in PSI span a range of redox potentials, enabling it to accept electrons from various metabolic processes. This metabolic flexibility of PSI underpins the capacity of photosynthetic organisms to balance energy supply with metabolic demands, which is key for adaptation to environmental changes. Here, we review the phenomenon of 'PSII-less photosynthesis' where PSI functions independently of PSII by operating cyclic electron flow using electrons derived from non-photochemical reactions. PSII-less photosynthesis enables supercharged ATP production and is employed, for example, by cyanobacteria's heterocysts to host nitrogen fixation and by bundle sheath cells of C4 plants to boost CO2 assimilation. We discuss the energetic benefits of this arrangement and the prospects of utilising it to improve the productivity and stress resilience of photosynthetic organisms.
Collapse
Affiliation(s)
- Maria Ermakova
- School of Biological Sciences, Monash University, Melbourne, Vic 3800, Australia; and Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Duncan Fitzpatrick
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, Australian National University, Acton, ACT 2600, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
4
|
Kaste JAM, Walker BJ, Shachar-Hill Y. Reaction-diffusion modeling provides insights into biophysical carbon-concentrating mechanisms in land plants. PLANT PHYSIOLOGY 2024; 196:1374-1390. [PMID: 38857179 PMCID: PMC11444298 DOI: 10.1093/plphys/kiae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/12/2024]
Abstract
Carbon-concentrating mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM (PCCM) of Chlamydomonas reinhardtii or carboxysome systems of cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. We found that the energy efficiency of adding individual CCM components to a C3 land plant is highly dependent on the permeability of lipid membranes to CO2, with values in the range reported in the literature that are higher than those used in previous modeling studies resulting in low light use efficiency. Adding a complete PCCM into the leaf cells of a C3 land plant was predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by photorespiratory losses without a CCM. Two notable exceptions were when substomatal CO2 levels are as low as those found in land plants that already use biochemical CCMs and when gas exchange is limited, such as with hornworts, making the use of a biophysical CCM necessary to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation for the uniqueness of hornworts' CCM among land plants and the evolution of pyrenoids multiple times.
Collapse
Affiliation(s)
- Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48823, USA
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Smith K, Strand DD, Walker BJ. Evaluating the contribution of plant metabolic pathways in the light to the ATP:NADPH demand using a meta-analysis of isotopically non-stationary metabolic flux analyses. PHOTOSYNTHESIS RESEARCH 2024; 161:177-189. [PMID: 38874662 PMCID: PMC11324800 DOI: 10.1007/s11120-024-01106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Balancing the ATP: NADPH demand from plant metabolism with supply from photosynthesis is essential for preventing photodamage and operating efficiently, so understanding its drivers is important for integrating metabolism with the light reactions of photosynthesis and for bioengineering efforts that may radically change this demand. It is often assumed that the C3 cycle and photorespiration consume the largest amount of ATP and reductant in illuminated leaves and as a result mostly determine the ATP: NADPH demand. However, the quantitative extent to which other energy consuming metabolic processes contribute in large ways to overall ATP: NADPH demand remains unknown. Here, we used the metabolic flux networks of numerous recently published isotopically non-stationary metabolic flux analyses (INST-MFA) to evaluate flux through the C3 cycle, photorespiration, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and starch/sucrose synthesis and characterize broad trends in the demand of energy across different pathways and compartments as well as in the overall ATP:NADPH demand. These data sets include a variety of species including Arabidopsis thaliana, Nicotiana tabacum, and Camelina sativa as well as varying environmental factors including high/low light, day length, and photorespiratory levels. Examining these datasets in aggregate reveals that ultimately the bulk of the energy flux occurred in the C3 cycle and photorespiration, however, the energy demand from these pathways did not determine the ATP: NADPH demand alone. Instead, a notable contribution was revealed from starch and sucrose synthesis which might counterbalance photorespiratory demand and result in fewer adjustments in mechanisms which balance the ATP deficit.
Collapse
Affiliation(s)
- Kaila Smith
- Michigan State Unversity - Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biotechnology for Health and Sustainability Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Michigan State Unversity - Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Berkley J Walker
- Michigan State Unversity - Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Walker B, Schmiege SC, Sharkey TD. Re-evaluating the energy balance of the many routes of carbon flow through and from photorespiration. PLANT, CELL & ENVIRONMENT 2024; 47:3365-3374. [PMID: 38804248 DOI: 10.1111/pce.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Photorespiration is an essential process related to photosynthesis that is initiated following the oxygenation reaction catalyzed by rubisco, the initial enzyme of the Calvin-Benson-Bassham cycle. This reaction produces an inhibitory intermediate that is recycled back into the Calvin-Benson-Bassham cycle by photorespiration which requires the use of energy and the release of a portion of the carbon as CO2. The energy use and CO2 release of canonical photorespiration form a foundation for biochemical models used to describe and predict leaf carbon exchange and energy use (ATP and NAPDH). The ATP and NADPH demand of canonical photorespiration is thought to be different than that of the Calvin-Benson-Bassham cycle, requiring increased flexibility in the ratio of ATP and NADPH from the light reactions. Photorespiration requires many reactions across the chloroplasts, mitochondria and peroxisomes and involves many intermediates. Growing evidence indicates that these intermediates do not all stay in photorespiration as typically assumed and instead feed into other aspects of metabolism and leave as glycine, serine, and methylene-THF. Here we discuss how alternative flux through and from canonical photorespiration alters the ATP and NADPH requirements of metabolism following rubisco oxygenation using additional derivations of biochemical models of leaf photosynthesis and energetics. Using these new derivations, we determine that the ATP and NADPH demands of photorespiration are highly sensitive to alternative flux in ways that fundamentally changes how photorespiration contributes to the ratio of total ATP and NADPH demand. Specifically, alternative flows of carbon through photorespiration could reduce ATP and NADPH demand ratio to values below what is produced from linear electron transport.
Collapse
Affiliation(s)
- Berkley Walker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Biology, Western University, London, Ontario, Canada
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Grebe S, Porcar-Castell A, Riikonen A, Paakkarinen V, Aro EM. Accounting for photosystem I photoinhibition sheds new light on seasonal acclimation strategies of boreal conifers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3973-3992. [PMID: 38572950 PMCID: PMC11233416 DOI: 10.1093/jxb/erae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/30/2024] [Indexed: 04/05/2024]
Abstract
The photosynthetic acclimation of boreal evergreen conifers is controlled by regulatory and photoprotective mechanisms that allow conifers to cope with extreme environmental changes. However, the underlying dynamics of photosystem II (PSII) and photosystem I (PSI) remain unresolved. Here, we investigated the dynamics of PSII and PSI during the spring recovery of photosynthesis in Pinus sylvestris and Picea abies using a combination of chlorophyll a fluorescence, P700 difference absorbance measurements, and quantification of key thylakoid protein abundances. In particular, we derived a new set of PSI quantum yield equations, correcting for the effects of PSI photoinhibition. Using the corrected equations, we found that the seasonal dynamics of PSII and PSI photochemical yields remained largely in balance, despite substantial seasonal changes in the stoichiometry of PSII and PSI core complexes driven by PSI photoinhibition. Similarly, the previously reported seasonal up-regulation of cyclic electron flow was no longer evident, after accounting for PSI photoinhibition. Overall, our results emphasize the importance of considering the dynamics of PSII and PSI to elucidate the seasonal acclimation of photosynthesis in overwintering evergreens. Beyond the scope of conifers, our corrected PSI quantum yields expand the toolkit for future studies aimed at elucidating the dynamic regulation of PSI.
Collapse
Affiliation(s)
- Steffen Grebe
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Anu Riikonen
- Optics of Photosynthesis Laboratory, Viikki Plant Science Center, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Virpi Paakkarinen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
8
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
9
|
Chota A, George BP, Abrahamse H. Apoptotic efficiency of Dicoma anomala biosynthesized silver nanoparticles against A549 lung cancer cells. Biomed Pharmacother 2024; 176:116845. [PMID: 38810403 DOI: 10.1016/j.biopha.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
Lung cancer is one of the common forms of cancer that affects both men and women and is regarded as the leading cause of cancer related deaths. It is characterized by unregulated cell division of altered cells within the lung tissues. Green nanotechnology is a promising therapeutic option that is adopted in cancer research. Dicoma anomala (D. anomala) is one of the commonly used African medicinal plant in the treatment of different medical conditions including cancer. In the present study, silver nanoparticles (AgNPs) were synthesized using D. anomala MeOH root extract. We evaluated the anticancer efficacy of the synthesized AgNPs as an individual treatment as well as in combination with pheophorbide a (PPBa) mediated photodynamic therapy (PDT) in vitro. UV-VIS spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) was used to confirm the formation of D.A AgNPs. Post 24 h treatment, A549 cells were evaluated for ATP proliferation, morphological changes supported by LIVE/DEAD assay, and caspase activities. All experiments were repeated four times (n=4), with findings being analysed using SPSS statistical software version 27 set at 0.95 confidence interval. The results from the present study revealed a dose-dependent decrease in cell proliferation in both individual and combination therapy of PPBa mediated PDT and D.A AgNPs on A549 lung cancer cells with significant morphological changes. Additionally, LIVE/DEAD assay displayed a significant increase in the number of dead cell population in individual treatments (i.e., IC50's treated A549 cells) as well as in combination therapy. In conclusion, the findings from this study demonstrated the anticancer efficacy of green synthesized AgNPs as a mono-therapeutic drug as well as in combination with a chlorophyll derivative PPBa in PDT. Taken together, the findings highlight the therapeutic potential of green nanotechnology in medicine.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
10
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
11
|
Shuyskaya E, Rakhmankulova Z, Prokofieva M, Lunkova N, Voronin P. Salinity Mitigates the Negative Effect of Elevated Temperatures on Photosynthesis in the C 3-C 4 Intermediate Species Sedobassia sedoides. PLANTS (BASEL, SWITZERLAND) 2024; 13:800. [PMID: 38592796 PMCID: PMC10976079 DOI: 10.3390/plants13060800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The adaptation of plants to combined stresses requires unique responses capable of overcoming both the negative effects of each individual stress and their combination. Here, we studied the C3-C4 (C2) halophyte Sedobassia sedoides in response to elevated temperature (35 °C) and salinity (300 mM NaCl) as well as their combined effect. The responses we studied included changes in water-salt balance, light and dark photosynthetic reactions, the expression of photosynthetic genes, the activity of malate dehydrogenase complex enzymes, and the antioxidant system. Salt treatment led to altered water-salt balance, improved water use efficiency, and an increase in the abundance of key enzymes involved in intermediate C3-C4 photosynthesis (i.e., Rubisco and glycine decarboxylase). We also observed a possible increase in the activity of the C2 carbon-concentrating mechanism (CCM), which allowed plants to maintain high photosynthesis intensity and biomass accumulation. Elevated temperatures caused an imbalance in the dark and light reactions of photosynthesis, leading to stromal overreduction and the excessive generation of reactive oxygen species (ROS). In response, S. sedoides significantly activated a metabolic pathway for removing excess NADPH, the malate valve, which is catalyzed by NADP-MDH, without observable activation of the antioxidant system. The combined action of these two factors caused the activation of antioxidant defenses (i.e., increased activity of SOD and POX and upregulation of FDI), which led to a decrease in oxidative stress and helped restore the photosynthetic energy balance. Overall, improved PSII functioning and increased activity of PSI cyclic electron transport (CET) and C2 CCM led to an increase in the photosynthesis intensity of S. sedoides under the combined effect of salinity and elevated temperature relative to high temperature alone.
Collapse
Affiliation(s)
- Elena Shuyskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (M.P.); (N.L.); (P.V.)
| | | | | | | | | |
Collapse
|
12
|
Smith K, Strand DD, Kramer DM, Walker BJ. The role of photorespiration in preventing feedback regulation via ATP synthase in Nicotiana tabacum. PLANT, CELL & ENVIRONMENT 2024; 47:416-428. [PMID: 37937663 PMCID: PMC10842328 DOI: 10.1111/pce.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Photorespiration consumes substantial amounts of energy in the forms of adenosine triphosphate (ATP) and reductant making the pathway an important component in leaf energetics. Because of this high reductant demand, photorespiration is proposed to act as a photoprotective electron sink. However, photorespiration consumes more ATP relative to reductant than the C3 cycle meaning increased flux disproportionally increases ATP demand relative to reductant. Here we explore how energetic consumption from photorespiration impacts the flexibility of the light reactions in nicotiana tabacum. Specifically, we demonstrate that decreased photosynthetic efficiency (ϕII ) at low photorespiratory flux was related to feedback regulation at the chloroplast ATP synthase. Additionally, decreased ϕII at high photorespiratory flux resulted in the accumulation of photoinhibition at photosystem II centers. These results are contrary to the proposed role of photorespiration as a photoprotective electron sink. Instead, our results suggest a novel role of ATP consumption from photorespiration in maintaining ATP synthase activity, with implications for maintaining energy balance and preventing photodamage that will be critical for plant engineering strategies.
Collapse
Affiliation(s)
- Kaila Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Biotechnology for Health and Sustainability Program, Michigan State University, East Lansing, MI 48824, USA
| | - Deserah D Strand
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David M. Kramer
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J. Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|
14
|
Kaste JA, Walker BJ, Shachar-Hill Y. Biophysical carbon concentrating mechanisms in land plants: insights from reaction-diffusion modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574220. [PMID: 38260381 PMCID: PMC10802268 DOI: 10.1101/2024.01.04.574220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Carbon Concentrating Mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM of Chlamydomonas reinhardtii or carboxysome systems of cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. We find that the energy efficiency of adding individual CCM components to a C3 land plant is highly dependent on the permeability of lipid membranes to CO2, with values in the range reported in the literature that are higher than used in previous modeling studies resulting in low light use efficiency. Adding a complete pyrenoid-based CCM into the leaf cells of a C3 land plant is predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by photorespiratory losses without a CCM. Two notable exceptions are when substomatal CO2 levels are as low as those found in land plants that already employ biochemical CCMs and when gas exchange is limited such as with hornworts, making the use of a biophysical CCM necessary to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation for the uniqueness of hornworts' CCM among land plants and evolution of pyrenoids multiple times.
Collapse
Affiliation(s)
- Joshua A.M. Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48823
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| | - Berkley J. Walker
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
- Department of Energy Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| |
Collapse
|
15
|
Fu X, Walker BJ. Using Dynamic Gas Exchange Measurements During Oxygen Transients to Study Nonsteady-State Photorespiration. Methods Mol Biol 2024; 2792:175-184. [PMID: 38861087 DOI: 10.1007/978-1-0716-3802-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Leaf-level gas exchange is widely used to investigate the largest carbon fluxes in illuminated leaves, offering a nondestructive way to investigate the impact of photorespiration on plant carbon balance. Modern commercial gas exchange systems allow high temporal resolution measurements under changing environments, aiding the development of nonsteady-state approaches for measuring dynamic photosynthetic responses. Here, we describe a nonsteady-state technique for acquiring the dynamic response of net CO2 assimilation to changes in photorespiratory fluxes manipulated by O2 mole fractions. This technique allows for the screening of plant genotypes with variations in their efficiencies of photorespiration under nonsteady-state conditions.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
16
|
Shomali A, Das S, Sarraf M, Johnson R, Janeeshma E, Kumar V, Aliniaeifard S, Puthur JT, Hasanuzzaman M. Modulation of plant photosynthetic processes during metal and metalloid stress, and strategies for manipulating photosynthesis-related traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108211. [PMID: 38029618 DOI: 10.1016/j.plaphy.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Metals constitute vital elements for plant metabolism and survival, acting as essential co-factors in cellular processes which are indispensable for plant growth and survival. Excess or deficient provision of metal/metalloids puts plant's life and survival at risk, thus considered a potent stress for plants. Chloroplasts as an organelle with a high metal demand form a pivotal site within the metal homeostasis network. Therefore, the metal-mediated electron transport chain (ETC) in chloroplasts is a primary target site of metal/metalloid-induced stresses. Both excess and deficient availability of metal/metalloids threatens plant's photosynthesis in several ways. Energy demands from the photosynthetic carbon reactions should be in balance with energy output of ETC. Malfunctioning of ETC components as a result of metal/metalloid stress initiates photoinhiition. A feedback inhibition from carbon fixation process also impedes the ETC. Metal stress impairs antioxidant enzyme activity, pigment biosynthesis, and stomatal function. However, genetic manipulations, nutrient management, keeping photostasis, and application of phytohormones are among strategies for coping with metal stress. Consequently, a comprehensive understanding of the underlying mechanisms of metal/metalloid stress, as well as the exploration of potential strategies to mitigate its impact on plants are imperative. This review offers a mechanistic insight into the disruption of photosynthesis regulation by metal/metalloids and highlights adaptive approaches to ameliorate their effects on plants. Focus was made on photostasis, nutrient interactions, phytohormones, and genetic interventions for mitigating metal/metalloid stresses.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran; Controlled Environment Agriculture Center, College of Agricultural and Natural Sciences, University of Tehran, Iran
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Vinod Kumar
- Department of Botany, Government College for Women Gandhi Nagar, Jammu 180004, Jammu and Kashmir, India
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, College of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran.
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala 673635, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
17
|
Santos-Merino M, Sakkos JK, Singh AK, Ducat DC. Coordination of carbon partitioning and photosynthesis by a two-component signaling network in Synechococcus elongatus PCC 7942. Metab Eng 2024; 81:38-52. [PMID: 37925065 DOI: 10.1016/j.ymben.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Photosynthetic organisms need to balance the rate of photosynthesis with the utilization of photosynthetic products by downstream reactions. While such "source/sink" pathways are well-interrogated in plants, analogous regulatory systems are unknown or poorly studied in single-celled algal and cyanobacterial species. Towards the identification of energy/sugar sensors in cyanobacteria, we utilized an engineered strain of Synechococcus elongatus PCC 7942 that allows experimental manipulation of carbon status. We conducted a screening of all two-component systems (TCS) and serine/threonine kinases (STKs) encoded in S. elongatus PCC 7942 by analyzing phenotypes consistent with sucrose-induced relaxation of sink inhibition. We narrowed the candidate sensor proteins by analyzing changes observed after sucrose feeding. We show that a clustered TCS network containing RpaA, CikB, ManS and NblS are involved in the regulation of genes related to photosynthesis, pigment synthesis, and Rubisco concentration in response to sucrose. Altogether, these results highlight a regulatory TCS group that may play under-appreciated functions in carbon partitioning and energy balancing in cyanobacteria.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Jonathan K Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Amit K Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
18
|
Gregory LM, Roze LV, Walker BJ. Increased activity of core photorespiratory enzymes and CO 2 transfer conductances are associated with higher and more optimal photosynthetic rates under elevated temperatures in the extremophile Rhazya stricta. PLANT, CELL & ENVIRONMENT 2023; 46:3704-3720. [PMID: 37667571 DOI: 10.1111/pce.14711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Increase photorespiration and optimising intrinsic water use efficiency are unique challenges to photosynthetic carbon fixation at elevated temperatures. To determine how plants can adapt to facilitate high rates of photorespiration at elevated temperatures while also maintaining water-use efficiency, we performed in-depth gas exchange and biochemical assays of the C3 extremophile, Rhazya stricta. These results demonstrate that R. stricta supports higher rates of photorespiration under elevated temperatures and that these higher rates of photorespiration correlate with increased activity of key photorespiratory enzymes; phosphoglycolate phosphatase and catalase. The increased photorespiratory enzyme activities may increase the overall capacity of photorespiration by reducing enzymatic bottlenecks and allowing minimal inhibitor accumulation under high photorespiratory rates. Additionally, we found the CO2 transfer conductances (stomatal and mesophyll) are re-allocated to increase the water-use efficiency in R. stricta but not necessarily the photosynthetic response to temperature. These results suggest important adaptive strategies in R. stricta that maintain photosynthetic rates under elevated temperatures with optimal water loss. The strategies found in R. stricta may inform breeding and engineering efforts in other C3 species to improve photosynthetic efficiency at high temperatures.
Collapse
Affiliation(s)
- Luke M Gregory
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Ludmila V Roze
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
19
|
Lakhneko O, Stasik O, Škultéty Ľ, Kiriziy D, Sokolovska-Sergiienko O, Kovalenko M, Danchenko M. Transient drought during flowering modifies the grain proteome of bread winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1181834. [PMID: 37441186 PMCID: PMC10333505 DOI: 10.3389/fpls.2023.1181834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Drought is among the most limiting factors for sustainable agricultural production. Water shortage at the onset of flowering severely affects the quality and quantity of grain yield of bread wheat (Triticum aestivum). Herein, we measured oxidative stress and photosynthesis-related parameters upon applying transient drought on contrasting wheat cultivars at the flowering stage of ontogenesis. The sensitive cultivar (Darunok Podillia) showed ineffective water management and a more severe decline in photosynthesis. Apparently, the tolerant genotype (Odeska 267) used photorespiration to dissipate excessive light energy. The tolerant cultivar sooner induced superoxide dismutase and showed less inhibited photosynthesis. Such a protective effect resulted in less affected yield and spectrum of seed proteome. The tolerant cultivar had a more stable gluten profile, which defines bread-making quality, upon drought. Water deficit caused the accumulation of medically relevant proteins: (i) components of gluten in the sensitive cultivar and (ii) metabolic proteins in the tolerant cultivar. We propose specific proteins for further exploration as potential markers of drought tolerance for guiding efficient breeding: thaumatin-like protein, 14-3-3 protein, peroxiredoxins, peroxidase, FBD domain protein, and Ap2/ERF plus B3 domain protein.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Oleg Stasik
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dmytro Kiriziy
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Mariia Kovalenko
- Educational and Scientific Centre (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
20
|
Tokarz KM, Makowski W, Tokarz B, Muszyńska E, Gajewski Z, Mazur S, Kunicki E, Jeremiasz O, Sobik P, Nowak P, Miernicka K, Mrzygłód K, Rozpądek P. Performance of the Photosynthetic Apparatus under Glass with a Luminophore Modifying Red-To-Far-Red-Light Ratio-A Case Study. Cells 2023; 12:1552. [PMID: 37296672 PMCID: PMC10252551 DOI: 10.3390/cells12111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to examine the effect of the modified light spectrum of glass containing red luminophore on the performance of the photosynthetic apparatus of two types of lettuce cultivated in soil in a greenhouse. Butterhead and iceberg lettuce were cultivated in two types of greenhouses: (1) covered with transparent glass (control) and (2) covered with glass containing red luminophore (red). After 4 weeks of culture, structural and functional changes in the photosynthetic apparatus were examined. The presented study indicated that the red luminophore used changed the sunlight spectrum, providing an adequate blue:red light ratio, while decreasing the red:far-red radiation ratio. In such light conditions, changes in the efficiency parameters of the photosynthetic apparatus, modifications in the chloroplast ultrastructure, and altered proportions of structural proteins forming the photosynthetic apparatus were observed. These changes led to a decrease of CO2 carboxylation efficiency in both examined lettuce types.
Collapse
Affiliation(s)
- Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159/37, 02-776 Warsaw, Poland
| | - Zbigniew Gajewski
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Stanisław Mazur
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Edward Kunicki
- Department of Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Olgierd Jeremiasz
- Helioenergia Sp. z o.o., ul. Rybnicka 68, 44-238 Czerwionka-Leszczyny, Poland
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland
| | - Piotr Sobik
- Helioenergia Sp. z o.o., ul. Rybnicka 68, 44-238 Czerwionka-Leszczyny, Poland
| | - Paweł Nowak
- Helioenergia Sp. z o.o., ul. Rybnicka 68, 44-238 Czerwionka-Leszczyny, Poland
| | - Karolina Miernicka
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Kinga Mrzygłód
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland
| |
Collapse
|
21
|
Strand DD, Walker BJ. Energetic considerations for engineering novel biochemistries in photosynthetic organisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1116812. [PMID: 36814754 PMCID: PMC9939686 DOI: 10.3389/fpls.2023.1116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humans have been harnessing biology to make valuable compounds for generations. From beer and biofuels to pharmaceuticals, biology provides an efficient alternative to industrial processes. With the continuing advancement of molecular tools to genetically modify organisms, biotechnology is poised to solve urgent global problems related to environment, increasing population, and public health. However, the light dependent reactions of photosynthesis are constrained to produce a fixed stoichiometry of ATP and reducing equivalents that may not match the newly introduced synthetic metabolism, leading to inefficiency or damage. While photosynthetic organisms have evolved several ways to modify the ATP/NADPH output from their thylakoid electron transport chain, it is unknown if the native energy balancing mechanisms grant enough flexibility to match the demands of the synthetic metabolism. In this review we discuss the role of photosynthesis in the biotech industry, and the energetic considerations of using photosynthesis to power synthetic biology.
Collapse
Affiliation(s)
- Deserah D. Strand
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Berkley J. Walker
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Fu X, Gregory LM, Weise SE, Walker BJ. Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine and serine during photorespiration. NATURE PLANTS 2023; 9:169-178. [PMID: 36536013 DOI: 10.1038/s41477-022-01294-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Photorespiration is an essential process juxtaposed between plant carbon and nitrogen metabolism that responds to dynamic environments. Photorespiration recycles inhibitory intermediates arising from oxygenation reactions catalysed by Rubisco back into the C3 cycle, but it is unclear what proportions of its nitrogen-containing intermediates (glycine and serine) are exported into other metabolisms in vivo and how these pool sizes affect net CO2 gas exchange during photorespiratory transients. Here, to address this uncertainty, we measured rates of amino acid export from photorespiration using isotopically non-stationary metabolic flux analysis. This analysis revealed that ~23-41% of the photorespiratory carbon was exported from the pathway as serine under various photorespiratory conditions. Furthermore, we determined that the build-up and relaxation of glycine pools constrained a large portion of photosynthetic acclimation during photorespiratory transients. These results reveal the unique and important roles of glycine and serine in successfully maintaining various photorespiratory fluxes that occur under environmental fluctuations in nature and providing carbon and nitrogen for metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Luke M Gregory
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Sean E Weise
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
24
|
Ermakova M, Heyno E, Woodford R, Massey B, Birke H, von Caemmerer S. Enhanced abundance and activity of the chloroplast ATP synthase in rice through the overexpression of the AtpD subunit. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6891-6901. [PMID: 35904136 PMCID: PMC9629782 DOI: 10.1093/jxb/erac320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 06/02/2023]
Abstract
ATP, produced by the light reactions of photosynthesis, acts as the universal cellular energy cofactor fuelling all life processes. Chloroplast ATP synthase produces ATP using the proton motive force created by solar energy-driven thylakoid electron transport reactions. Here we investigate how increasing abundance of ATP synthase affects leaf photosynthesis and growth of rice, Oryza sativa variety Kitaake. We show that overexpression of AtpD, the nuclear-encoded subunit of the chloroplast ATP synthase, stimulates both abundance of the complex, confirmed by immunodetection of thylakoid complexes separated by Blue Native-PAGE, and ATP synthase activity, detected as higher proton conductivity of the thylakoid membrane. Plants with increased AtpD content had higher CO2 assimilation rates when a stepwise increase in CO2 partial pressure was imposed on leaves at high irradiance. Fitting of the CO2 response curves of assimilation revealed that plants overexpressing AtpD had a higher electron transport rate (J) at high CO2, despite having wild-type-like abundance of the cytochrome b6f complex. A higher maximum carboxylation rate (Vcmax) and lower cyclic electron flow detected in transgenic plants both pointed to an increased ATP production compared with wild-type plants. Our results present evidence that the activity of ATP synthase modulates the rate of electron transport at high CO2 and high irradiance.
Collapse
Affiliation(s)
| | | | - Russell Woodford
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Baxter Massey
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hannah Birke
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Susanne von Caemmerer
- Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
25
|
Broddrick JT, Ware MA, Jallet D, Palsson BO, Peers G. Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:603-621. [PMID: 36053127 PMCID: PMC9826171 DOI: 10.1111/tpj.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/01/2023]
Abstract
Characterizing photosynthetic productivity is necessary to understand the ecological contributions and biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these investigations typically do not consider the metabolic network downstream of light harvesting. By contrast, genome-scale metabolic models capture species-specific metabolic capabilities but have yet to incorporate the rapid regulation of the light harvesting apparatus. Here, we combine chlorophyll fluorescence parameters defining photosynthetic and non-photosynthetic yield of absorbed light energy with a metabolic model of the pennate diatom Phaeodactylum tricornutum. This integration increases the model predictive accuracy regarding growth rate, intracellular oxygen production and consumption, and metabolic pathway usage. Through the quantification of excess electron transport, we uncover the sequential activation of non-radiative energy dissipation processes, cross-compartment electron shuttling, and non-photochemical quenching as the rapid photoacclimation strategy in P. tricornutum. Interestingly, the photon absorption thresholds that trigger the transition between these mechanisms were consistent at low and high incident photon fluxes. We use this understanding to explore engineering strategies for rerouting cellular resources and excess light energy towards bioproducts in silico. Overall, we present a methodology for incorporating a common, informative data type into computational models of light-driven metabolism and show its utilization within the design-build-test-learn cycle for engineering of photosynthetic organisms.
Collapse
Affiliation(s)
- Jared T. Broddrick
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA92093USA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
- Space Biosciences Research BranchNASA Ames Research CenterMoffett FieldCA94035USA
| | - Maxwell A. Ware
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| | - Denis Jallet
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| | - Bernhard O. Palsson
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Graham Peers
- Department of BiologyColorado State UniversityFort CollinsCO80524USA
| |
Collapse
|
26
|
Maroudas‐Sklare N, Kolodny Y, Yochelis S, Keren N, Paltiel Y. Controlling photosynthetic energy conversion by small conformational changes. PHYSIOLOGIA PLANTARUM 2022; 174:e13802. [PMID: 36259916 PMCID: PMC9828261 DOI: 10.1111/ppl.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Control phenomena in biology usually refer to changes in gene expression and protein translation and modification. In this paper, another mode of regulation is highlighted; we propose that photosynthetic organisms can harness the interplay between localization and delocalization of energy transfer by utilizing small conformational changes in the structure of light-harvesting complexes. We examine the mechanism of energy transfer in photosynthetic pigment-protein complexes, first through the scope of theoretical work and then by in vitro studies of these complexes. Next, the biological relevance to evolutionary fitness of this localization-delocalization switch is explored by in vivo experiments on desert crust and marine cyanobacteria, which are both exposed to rapidly changing environmental conditions. These examples demonstrate the flexibility and low energy cost of this mechanism, making it a competitive survival strategy.
Collapse
Affiliation(s)
- Naama Maroudas‐Sklare
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yuval Kolodny
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Shira Yochelis
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yossi Paltiel
- Department of Applied PhysicsHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
27
|
Lempiäinen T, Rintamäki E, Aro E, Tikkanen M. Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery. PLANT, CELL & ENVIRONMENT 2022; 45:2954-2971. [PMID: 35916195 PMCID: PMC9546127 DOI: 10.1111/pce.14400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
Photosynthetic light reactions require strict regulation under dynamic environmental conditions. Still, depending on environmental constraints, photoinhibition of Photosystem (PSII) or PSI occurs frequently. Repair of photodamaged PSI, in sharp contrast to that of PSII, is extremely slow and leads to a functional imbalance between the photosystems. Slow PSI recovery prompted us to take advantage of the PSI-specific photoinhibition treatment and investigate whether the imbalance between functional PSII and PSI leads to acclimation of photosynthesis to PSI-limited conditions, either by short-term or long-term acclimation mechanisms as tested immediately after the photoinhibition treatment or after 24 h recovery in growth conditions, respectively. Short-term acclimation mechanisms were induced directly upon inhibition, including thylakoid protein phosphorylation that redirects excitation energy to PSI as well as changes in the feedback regulation of photosynthesis, which relaxed photosynthetic control and excitation energy quenching. Longer-term acclimation comprised reprogramming of the stromal redox system and an increase in ATP synthase and Cytochrome b6 f abundance. Acclimation to PSI-limited conditions restored the CO2 assimilation capacity of plants without major PSI repair. Response to PSI inhibition demonstrates that plants efficiently acclimate to changes occurring in the photosynthetic apparatus, which is likely a crucial component in plant acclimation to adverse environmental conditions.
Collapse
Affiliation(s)
- Tapio Lempiäinen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| |
Collapse
|
28
|
Miernicka K, Tokarz B, Makowski W, Mazur S, Banasiuk R, Tokarz KM. The Adjustment Strategy of Venus Flytrap Photosynthetic Apparatus to UV-A Radiation. Cells 2022; 11:cells11193030. [PMID: 36230991 PMCID: PMC9564066 DOI: 10.3390/cells11193030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the response of the photosynthetic apparatus of the Venus flytrap (Dionaea muscipula J. Ellis) to UV-A radiation stress as well as the role of selected secondary metabolites in this process. Plants were subjected to 24 h UV-A treatment. Subsequently, chl a fluorescence and gas exchange were measured in living plants. On the collected material, analyses of the photosynthetic pigments and photosynthetic apparatus proteins content, as well as the contents and activity of selected antioxidants, were performed. Measurements and analyses were carried out immediately after the stress treatment (UV plants) and another 24 h after the termination of UV-A exposure (recovery plants). UV plants showed no changes in the structure and function of their photosynthetic apparatus and increased contents and activities of some antioxidants, which led to efficient CO2 carboxylation, while, in recovery plants, a disruption of electron flow was observed, resulting in lower photosynthesis efficiency. Our results revealed that D. muscipula plants underwent two phases of adjustment to UV-A radiation. The first was a regulatory phase related to the exploitation of available mechanisms to prevent the over-reduction of PSII RC. In addition, UV plants increased the accumulation of plumbagin as a potential component of a protective mechanism against the disruption of redox homeostasis. The second was an acclimatization phase initiated after the running down of the regulatory process and decrease in photosynthesis efficiency.
Collapse
Affiliation(s)
- Karolina Miernicka
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Stanisław Mazur
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Rafał Banasiuk
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland
| | - Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| |
Collapse
|
29
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Blanco NE, Gollan PJ, Mengin V, Nikkanen L, Fusari CM. Editorial: A Novel Perspective for Photosystem I: An Emerging Hub for the Functional Integration of Photosynthesis and Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:871623. [PMID: 35498689 PMCID: PMC9039663 DOI: 10.3389/fpls.2022.871623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Nicolás E. Blanco
- Centre of Photosynthetic and Biochemical Studies (CEFOBI-CONICET-UNR), Rosario, Argentina
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Virginie Mengin
- Schools of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Corina M. Fusari
- Centre of Photosynthetic and Biochemical Studies (CEFOBI-CONICET-UNR), Rosario, Argentina
| |
Collapse
|
31
|
Zuo G, Aiken RM, Feng N, Zheng D, Zhao H, Avenson TJ, Lin X. Fresh perspectives on an established technique: Pulsed amplitude modulation chlorophyll a fluorescence. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:41-59. [PMID: 37284008 PMCID: PMC10168060 DOI: 10.1002/pei3.10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/08/2023]
Abstract
Pulsed amplitude modulation (PAM) chlorophyll a fluorescence provides information about photosynthetic energy transduction. When reliably measured, chlorophyll a fluorescence provides detailed information about critical in vivo photosynthetic processes. Such information has recently provided novel and critical insights into how the yield potential of crops can be improved and it is being used to understand remotely sensed fluorescence, which is termed solar-induced fluorescence and will be solely measured by a satellite scheduled to be launched this year. While PAM chlorophyll a fluorometers measure fluorescence intensity per se, herein we articulate the axiomatic criteria by which instrumentally detected intensities can be assumed to assess fluorescence yield, a phenomenon quite different than fluorescence intensity and one that provides critical insight about how solar energy is variably partitioned into the biosphere. An integrated mathematical, phenomenological, and practical discussion of many useful chlorophyll a fluorescence parameters is presented. We draw attention to, and provide examples of, potential uncertainties that can result from incorrect methodological practices and potentially problematic instrumental design features. Fundamentals of fluorescence measurements are discussed, including the major assumptions underlying the signals and the methodological caveats about taking measurements during both dark- and light-adapted conditions. Key fluorescence parameters are discussed in the context of recent applications under environmental stress. Nuanced information that can be gleaned from intra-comparisons of fluorescence-derived parameters and intercomparisons of fluorescence-derived parameters with those based on other techniques is elucidated.
Collapse
Affiliation(s)
- Guanqiang Zuo
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | - Robert M. Aiken
- Department of AgronomyKansas State UniversityManhattanKansasUSA
- Northwest Research‐Extension CenterKansas State UniversityColbyKansasUSA
| | - Naijie Feng
- College of Coastal Agricultural ScienceGuangdong Ocean UniversityZhanjiangChina
- Shenzhen Research Institute of Guangdong Ocean UniversityShenzhenChina
| | - Dianfeng Zheng
- College of Coastal Agricultural ScienceGuangdong Ocean UniversityZhanjiangChina
- Shenzhen Research Institute of Guangdong Ocean UniversityShenzhenChina
| | - Haidong Zhao
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| | | | - Xiaomao Lin
- Department of AgronomyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
32
|
Wasilewska-Dębowska W, Zienkiewicz M, Drozak A. How Light Reactions of Photosynthesis in C4 Plants Are Optimized and Protected under High Light Conditions. Int J Mol Sci 2022; 23:ijms23073626. [PMID: 35408985 PMCID: PMC8998801 DOI: 10.3390/ijms23073626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Most C4 plants that naturally occur in tropical or subtropical climates, in high light environments, had to evolve a series of adaptations of photosynthesis that allowed them to grow under these conditions. In this review, we summarize mechanisms that ensure the balancing of energy distribution, counteract photoinhibition, and allow the dissipation of excess light energy. They secure effective electron transport in light reactions of photosynthesis, which will lead to the production of NADPH and ATP. Furthermore, a higher content of the cyclic electron transport components and an increase in ATP production are observed, which is necessary for the metabolism of C4 for effective assimilation of CO2. Most of the data are provided by studies of the genus Flaveria, where species belonging to different metabolic subtypes and intermediate forms between C3 and C4 are present. All described mechanisms that function in mesophyll and bundle sheath chloroplasts, into which photosynthetic reactions are divided, may differ in metabolic subtypes as a result of the different organization of thylakoid membranes, as well as the different demand for ATP and NADPH. This indicates that C4 plants have plasticity in the utilization of pathways in which efficient use and dissipation of excitation energy are realized.
Collapse
|
33
|
Clark TJ, Schwender J. Elucidation of Triacylglycerol Overproduction in the C 4 Bioenergy Crop Sorghum bicolor by Constraint-Based Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:787265. [PMID: 35251073 PMCID: PMC8892208 DOI: 10.3389/fpls.2022.787265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Upregulation of triacylglycerols (TAGs) in vegetative plant tissues such as leaves has the potential to drastically increase the energy density and biomass yield of bioenergy crops. In this context, constraint-based analysis has the promise to improve metabolic engineering strategies. Here we present a core metabolism model for the C4 biomass crop Sorghum bicolor (iTJC1414) along with a minimal model for photosynthetic CO2 assimilation, sucrose and TAG biosynthesis in C3 plants. Extending iTJC1414 to a four-cell diel model we simulate C4 photosynthesis in mature leaves with the principal photo-assimilatory product being replaced by TAG produced at different levels. Independent of specific pathways and per unit carbon assimilated, energy content and biosynthetic demands in reducing equivalents are about 1.3 to 1.4 times higher for TAG than for sucrose. For plant generic pathways, ATP- and NADPH-demands per CO2 assimilated are higher by 1.3- and 1.5-fold, respectively. If the photosynthetic supply in ATP and NADPH in iTJC1414 is adjusted to be balanced for sucrose as the sole photo-assimilatory product, overproduction of TAG is predicted to cause a substantial surplus in photosynthetic ATP. This means that if TAG synthesis was the sole photo-assimilatory process, there could be an energy imbalance that might impede the process. Adjusting iTJC1414 to a photo-assimilatory rate that approximates field conditions, we predict possible daily rates of TAG accumulation, dependent on varying ratios of carbon partitioning between exported assimilates and accumulated oil droplets (TAG, oleosin) and in dependence of activation of futile cycles of TAG synthesis and degradation. We find that, based on the capacity of leaves for photosynthetic synthesis of exported assimilates, mature leaves should be able to reach a 20% level of TAG per dry weight within one month if only 5% of the photosynthetic net assimilation can be allocated into oil droplets. From this we conclude that high TAG levels should be achievable if TAG synthesis is induced only during a final phase of the plant life cycle.
Collapse
Affiliation(s)
- Teresa J. Clark
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, United States
| |
Collapse
|
34
|
Kanazawa A, Chattopadhyay A, Kuhlgert S, Tuitupou H, Maiti T, Kramer DM. Light potentials of photosynthetic energy storage in the field: what limits the ability to use or dissipate rapidly increased light energy? ROYAL SOCIETY OPEN SCIENCE 2021; 8:211102. [PMID: 34925868 PMCID: PMC8672073 DOI: 10.1098/rsos.211102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The responses of plant photosynthesis to rapid fluctuations in environmental conditions are critical for efficient conversion of light energy. These responses are not well-seen laboratory conditions and are difficult to probe in field environments. We demonstrate an open science approach to this problem that combines multifaceted measurements of photosynthesis and environmental conditions, and an unsupervised statistical clustering approach. In a selected set of data on mint (Mentha sp.), we show that 'light potentials' for linear electron flow and non-photochemical quenching (NPQ) upon rapid light increases are strongly suppressed in leaves previously exposed to low ambient photosynthetically active radiation (PAR) or low leaf temperatures, factors that can act both independently and cooperatively. Further analyses allowed us to test specific mechanisms. With decreasing leaf temperature or PAR, limitations to photosynthesis during high light fluctuations shifted from rapidly induced NPQ to photosynthetic control of electron flow at the cytochrome b6f complex. At low temperatures, high light induced lumen acidification, but did not induce NPQ, leading to accumulation of reduced electron transfer intermediates, probably inducing photodamage, revealing a potential target for improving the efficiency and robustness of photosynthesis. We discuss the implications of the approach for open science efforts to understand and improve crop productivity.
Collapse
Affiliation(s)
- Atsuko Kanazawa
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abhijnan Chattopadhyay
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Sebastian Kuhlgert
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Hainite Tuitupou
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - David M. Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2021; 150:179-193. [PMID: 33393064 DOI: 10.1007/s11120-020-00812-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
The frequency and severity of heat waves are expected to increase in the near future, with a significant impact on physiological functions and yield of crop plants. In this study, we assessed the residual post-heat stress effects on photosynthetic responses of six diverse winter wheat (Triticum sp.) genotypes, differing in country of origin, taxonomy and ploidy (tetraploids vs. hexaploids). After 5 days of elevated temperatures (up to 38 °C), the photosynthetic parameters recorded on the first day of recovery (R1) as well as after the next 4-5 days of the recovery (R2) were compared to those of the control plants (C) grown under moderate temperatures. Based on the values of CO2 assimilation rate (A) and the maximum rates of carboxylation (VCmax) in R1, we identified that the hexaploid (HEX) and tetraploid (TET) species clearly differed in the strength of their response to heat stress. Next, the analyses of gas exchange, simultaneous measurements of PSI and PSII photochemistry and the measurements of electrochromic bandshift (ECS) have consistently shown that photosynthetic and photoprotective functions in leaves of TET genotypes were almost fully recovered in R2, whereas the recovery of photosynthetic and photoprotective functions in the HEX group in R2 was still rather low. A poor recovery was associated with an overly reduced acceptor side of photosystem I as well as high values of the electric membrane potential (Δψ component of the proton motive force, pmf) in the chloroplast. On the other hand, a good recovery of photosynthetic capacity and photoprotective functions was clearly associated with an enhanced ΔpH component of the pmf, thus demonstrating a key role of efficient regulation of proton transport to ensure buildup of the transthylakoid proton gradient needed for photosynthesis restoration after high-temperature episodes.
Collapse
Affiliation(s)
- Erik Chovancek
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, People's Republic of China
| | | |
Collapse
|
36
|
Chadee A, Alber NA, Dahal K, Vanlerberghe GC. The Complementary Roles of Chloroplast Cyclic Electron Transport and Mitochondrial Alternative Oxidase to Ensure Photosynthetic Performance. FRONTIERS IN PLANT SCIENCE 2021; 12:748204. [PMID: 34650584 PMCID: PMC8505746 DOI: 10.3389/fpls.2021.748204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 05/29/2023]
Abstract
Chloroplasts use light energy and a linear electron transport (LET) pathway for the coupled generation of NADPH and ATP. It is widely accepted that the production ratio of ATP to NADPH is usually less than required to fulfill the energetic needs of the chloroplast. Left uncorrected, this would quickly result in an over-reduction of the stromal pyridine nucleotide pool (i.e., high NADPH/NADP+ ratio) and under-energization of the stromal adenine nucleotide pool (i.e., low ATP/ADP ratio). These imbalances could cause metabolic bottlenecks, as well as increased generation of damaging reactive oxygen species. Chloroplast cyclic electron transport (CET) and the chloroplast malate valve could each act to prevent stromal over-reduction, albeit in distinct ways. CET avoids the NADPH production associated with LET, while the malate valve consumes the NADPH associated with LET. CET could operate by one of two different pathways, depending upon the chloroplast ATP demand. The NADH dehydrogenase-like pathway yields a higher ATP return per electron flux than the pathway involving PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1). Similarly, the malate valve could couple with one of two different mitochondrial electron transport pathways, depending upon the cytosolic ATP demand. The cytochrome pathway yields a higher ATP return per electron flux than the alternative oxidase (AOX) pathway. In both Arabidopsis thaliana and Chlamydomonas reinhardtii, PGR5/PGRL1 pathway mutants have increased amounts of AOX, suggesting complementary roles for these two lesser-ATP yielding mechanisms of preventing stromal over-reduction. These two pathways may become most relevant under environmental stress conditions that lower the ATP demands for carbon fixation and carbohydrate export.
Collapse
Affiliation(s)
- Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Nicole A. Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
37
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
38
|
Zendonadi Dos Santos N, Piepho HP, Condorelli GE, Licieri Groli E, Newcomb M, Ward R, Tuberosa R, Maccaferri M, Fiorani F, Rascher U, Muller O. High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. PLANT, CELL & ENVIRONMENT 2021; 44:2858-2878. [PMID: 34189744 DOI: 10.1111/pce.14136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II ( Fq'/Fm' ) and the kinetics of electron transport measured by reoxidation rates ( Fr1' and Fr2' ). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, Fq'/Fm' and Fr2' were little affected, while Fr1' was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis.
Collapse
Affiliation(s)
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Eder Licieri Groli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maria Newcomb
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Richard Ward
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
39
|
Niinemets Ü, Rasulov B, Talts E. CO 2 -responsiveness of leaf isoprene emission: Why do species differ? PLANT, CELL & ENVIRONMENT 2021; 44:3049-3063. [PMID: 34155641 DOI: 10.1111/pce.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Leaf isoprene emission rate, I, decreases with increasing atmospheric CO2 concentration with major implications for global change. There is a significant interspecific variability in [CO2 ]-responsiveness of I, but the extent of this variation is unknown and its reasons are not understood. We hypothesized that the magnitude of emission reduction reflects the size and changeability of precursor pools responsible for isoprene emission (dimethylallyl diphosphate, DMADP and 2-methyl-erythritol 2,4-cyclodiphosphate, MEcDP). Changes in I and intermediate pool sizes upon increase of [CO2 ] from 400 to 1500 μmol/mol were studied in nine woody species spanning boreal to tropical ecosystems. I varied 10-fold, total substrate pool size 37-fold and the ratio of DMADP/MEcDP pool sizes 57-fold. At higher [CO2 ], I was reduced on average by 65%, but [CO2 ]-responsiveness varied an order of magnitude across species. The increase in [CO2 ] resulted in concomitant reductions in both substrate pools. The variation in [CO2 ]-responsiveness across species scaled with the reduction in pool sizes, the substrate pool size supported and the share of DMADP in total substrate pool. This study highlights a major interspecific variation in [CO2 ]-responsiveness of isoprene emission and conclusively links this variation to interspecific variability in [CO2 ] effects on substrate availability and intermediate pool size.
Collapse
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Bahtijor Rasulov
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
40
|
Osei-Bonsu I, McClain AM, Walker BJ, Sharkey TD, Kramer DM. The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. PLANT, CELL & ENVIRONMENT 2021; 44:2290-2307. [PMID: 33555066 PMCID: PMC11176259 DOI: 10.1111/pce.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 05/02/2023]
Abstract
We explored the effects, on photosynthesis in cowpea (Vigna unguiculata) seedlings, of high temperature and light-environmental stresses that often co-occur under field conditions and can have greater impact on photosynthesis than either by itself. We observed contrasting responses in the light and carbon assimilatory reactions, whereby in high temperature, the light reactions were stimulated while CO2 assimilation was substantially reduced. There were two striking observations. Firstly, the primary quinone acceptor (QA ), a measure of the regulatory balance of the light reactions, became more oxidized with increasing temperature, suggesting increased electron sink capacity, despite the reduced CO2 fixation. Secondly, a strong, O2 -dependent inactivation of assimilation capacity, consistent with down-regulation of rubisco under these conditions. The dependence of these effects on CO2 , O2 and light led us to conclude that both photorespiration and an alternative electron acceptor supported increased electron flow, and thus provided photoprotection under these conditions. Further experiments showed that the increased electron flow was maintained by rapid rates of PSII repair, particularly at combined high light and temperature. Overall, the results suggest that photodamage to the light reactions can be avoided under high light and temperatures by increasing electron sink strength, even when assimilation is strongly suppressed.
Collapse
Affiliation(s)
- Isaac Osei-Bonsu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Horticulture Division, CSIR-Crops Research Institute, Kumasi, Ghana
| | - Alan M McClain
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
41
|
Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites 2021; 11:metabo11060391. [PMID: 34203750 PMCID: PMC8232240 DOI: 10.3390/metabo11060391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Photorespiration is an integral component of plant primary metabolism. Accordingly, it has been often observed that impairing the photorespiratory flux negatively impacts other cellular processes. In this study, the metabolic acclimation of the Arabidopsisthaliana wild type was compared with the hydroxypyruvate reductase 1 (HPR1; hpr1) mutant, displaying only a moderately reduced photorespiratory flux. Plants were analyzed during development and under varying photoperiods with a combination of non-targeted and targeted metabolome analysis, as well as 13C- and 14C-labeling approaches. The results showed that HPR1 deficiency is more critical for photorespiration during the vegetative compared to the regenerative growth phase. A shorter photoperiod seems to slowdown the photorespiratory metabolite conversion mostly at the glycerate kinase and glycine decarboxylase steps compared to long days. It is demonstrated that even a moderate impairment of photorespiration severely reduces the leaf-carbohydrate status and impacts on sulfur metabolism. Isotope labeling approaches revealed an increased CO2 release from hpr1 leaves, most likely occurring from enhanced non-enzymatic 3-hydroxypyruvate decarboxylation and a higher flux from serine towards ethanolamine through serine decarboxylase. Collectively, the study provides evidence that the moderate hpr1 mutant is an excellent tool to unravel the underlying mechanisms governing the regulation of metabolic linkages of photorespiration with plant primary metabolism.
Collapse
|
42
|
Stewart JJ, Adams WW, López-Pozo M, Doherty Garcia N, McNamara M, Escobar CM, Demmig-Adams B. Features of the Duckweed Lemna That Support Rapid Growth under Extremes of Light Intensity. Cells 2021; 10:1481. [PMID: 34204703 PMCID: PMC8231585 DOI: 10.3390/cells10061481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
This study addresses the unique functional features of duckweed via comparison of Lemna gibba grown under controlled conditions of 50 versus 1000 µmol photons m-2 s-1 and of a L. minor population in a local pond with a nearby population of the biennial weed Malva neglecta. Principal component analysis of foliar pigment composition revealed that Malva was similar to fast-growing annuals, while Lemna was similar to slow-growing evergreens. Overall, Lemna exhibited traits reminiscent of those of its close relatives in the family Araceae, with a remarkable ability to acclimate to both deep shade and full sunlight. Specific features contributing to duckweed's shade tolerance included a foliar pigment composition indicative of large peripheral light-harvesting complexes. Conversely, features contributing to duckweed's tolerance of high light included the ability to convert a large fraction of the xanthophyll cycle pool to zeaxanthin and dissipate a large fraction of absorbed light non-photochemically. Overall, duckweed exhibited a combination of traits of fast-growing annuals and slow-growing evergreens with foliar pigment features that represented an exaggerated version of that of terrestrial perennials combined with an unusually high growth rate. Duckweed's ability to thrive under a wide range of light intensities can support success in a dynamic light environment with periodic cycles of rapid expansion.
Collapse
Affiliation(s)
- Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (W.W.A.III); (M.L.-P.); (N.D.G.); (M.M.)
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (W.W.A.III); (M.L.-P.); (N.D.G.); (M.M.)
| | - Marina López-Pozo
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (W.W.A.III); (M.L.-P.); (N.D.G.); (M.M.)
| | - Naiara Doherty Garcia
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (W.W.A.III); (M.L.-P.); (N.D.G.); (M.M.)
| | - Maureen McNamara
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (W.W.A.III); (M.L.-P.); (N.D.G.); (M.M.)
| | - Christine M. Escobar
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80309, USA;
- Space Lab Technologies, LLC, Boulder, CO 80309, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (W.W.A.III); (M.L.-P.); (N.D.G.); (M.M.)
| |
Collapse
|
43
|
Alber NA, Vanlerberghe GC. The flexibility of metabolic interactions between chloroplasts and mitochondria in Nicotiana tabacum leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1625-1646. [PMID: 33811402 DOI: 10.1111/tpj.15259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
To examine the effect of mitochondrial function on photosynthesis, wild-type and transgenic Nicotiana tabacum with varying amounts of alternative oxidase (AOX) were treated with different respiratory inhibitors. Initially, each inhibitor increased the reduction state of the chloroplast electron transport chain, most severely in AOX knockdowns and least severely in AOX overexpressors. This indicated that the mitochondrion was a necessary sink for photo-generated reductant, contributing to the 'P700 oxidation capacity' of photosystem I. Initially, the Complex III inhibitor myxothiazol and the mitochondrial ATP synthase inhibitor oligomycin caused an increase in photosystem II regulated non-photochemical quenching not evident with the Complex III inhibitor antimycin A (AA). This indicated that the increased quenching depended upon AA-sensitive cyclic electron transport (CET). Following 12 h with oligomycin, the reduction state of the chloroplast electron transport chain recovered in all plant lines. Recovery was associated with large increases in the protein amount of chloroplast ATP synthase and mitochondrial uncoupling protein. This increased the capacity for photophosphorylation in the absence of oxidative phosphorylation and enabled the mitochondrion to act again as a sink for photo-generated reductant. Comparing the AA and myxothiazol treatments at 12 h showed that CET optimized photosystem I quantum yield, depending upon the P700 oxidation capacity. When this capacity was too high, CET drew electrons away from other sinks, moderating the P700+ amount. When P700 oxidation capacity was too low, CET acted as an electron overflow, moderating the amount of reduced P700. This study reveals flexible chloroplast-mitochondrion interactions able to overcome lesions in energy metabolism.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences, Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
44
|
Xu Y, Fu X, Sharkey TD, Shachar-Hill Y, Walker ABJ. The metabolic origins of non-photorespiratory CO2 release during photosynthesis: a metabolic flux analysis. PLANT PHYSIOLOGY 2021; 186:297-314. [PMID: 33591309 PMCID: PMC8154043 DOI: 10.1093/plphys/kiab076] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 05/02/2023]
Abstract
Respiration in the light (RL) releases CO2 in photosynthesizing leaves and is a phenomenon that occurs independently from photorespiration. Since RL lowers net carbon fixation, understanding RL could help improve plant carbon-use efficiency and models of crop photosynthesis. Although RL was identified more than 75 years ago, its biochemical mechanisms remain unclear. To identify reactions contributing to RL, we mapped metabolic fluxes in photosynthesizing source leaves of the oilseed crop and model plant camelina (Camelina sativa). We performed a flux analysis using isotopic labeling patterns of central metabolites during 13CO2 labeling time course, gas exchange, and carbohydrate production rate experiments. To quantify the contributions of multiple potential CO2 sources with statistical and biological confidence, we increased the number of metabolites measured and reduced biological and technical heterogeneity by using single mature source leaves and quickly quenching metabolism by directly injecting liquid N2; we then compared the goodness-of-fit between these data and data from models with alternative metabolic network structures and constraints. Our analysis predicted that RL releases 5.2 μmol CO2 g-1 FW h-1 of CO2, which is relatively consistent with a value of 9.3 μmol CO2 g-1 FW h-1 measured by CO2 gas exchange. The results indicated that ≤10% of RL results from TCA cycle reactions, which are widely considered to dominate RL. Further analysis of the results indicated that oxidation of glucose-6-phosphate to pentose phosphate via 6-phosphogluconate (the G6P/OPP shunt) can account for >93% of CO2 released by RL.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
| | - Xinyu Fu
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
- Department of Energy-Plant Research Laboratory, Michigan State University, Michigan 48824, USA
| | - Thomas D Sharkey
- Department of Energy-Plant Research Laboratory, Michigan State University, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
| | - and Berkley J Walker
- Department of Plant Biology, Michigan State University, Michigan 48824, USA
- Department of Energy-Plant Research Laboratory, Michigan State University, Michigan 48824, USA
- Author for communication:
| |
Collapse
|
45
|
Timm S, Arrivault S. Regulation of Central Carbon and Amino Acid Metabolism in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:430. [PMID: 33668292 PMCID: PMC7996223 DOI: 10.3390/plants10030430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023]
Abstract
Fluctuations in the prevailing environmental conditions, including light availability and intensity, CO2/O2 ratio, temperature, and nutrient or water supply, require rapid metabolic switches to maintain proper metabolism [...].
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
46
|
Kalmatskaya OA, Trubitsin BV, Suslichenko IS, Karavaev VA, Tikhonov AN. Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. PHOTOSYNTHESIS RESEARCH 2020; 146:123-141. [PMID: 32594291 DOI: 10.1007/s11120-020-00767-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Using thermoluminescence, PAM-fluorometry, and electron paramagnetic resonance (EPR) for assaying electron transport processes in chloroplasts in situ, we have compared photosynthetic characteristics in Tradescantia fluminensis leaves grown under low light (LL, 50-125 µmol photons m-2 s-1) or high light (HL, 875-1000 µmol photons m-2 s-1) condition. We found differences in the thermoluminescence (TL) spectra of LL- and HL-acclimated leaves. The LL and HL leaves show different proportions of the Q (~ 0 °C) and B (~ 25-30 °C) bands in their TL spectra; the ratios of the "light sums" of the Q and B bands being SQ/SB ≈ 1/1 (LL) and SQ/SB ≈ 1/3 (HL). This suggests the existence of different redox states of electron carriers on the acceptor side of PSII in LL and HL leaves, which may be affected, in particular, by different capacities of their photo-reducible PQ pools. Enhanced content of PQ in chloroplasts of LL leaves may be the reason for an efficient performance of photosynthesis at low irradiance. Kinetic studies of slow induction of Chl a fluorescence and measurements of P700 photooxidation by EPR demonstrate that HL leaves have faster (about 2 times) response to switching on actinic light as compared to LL leaves grown at moderate irradiation. HL leaves also show higher non-photochemical quenching (NPQ) of Chl a fluorescence. These properties of HL leaves (faster response to light and generation of enhanced NPQ) reflect the flexibility of their photosynthetic apparatus, providing sustainability and rapid response to fluctuations of environmental light intensity and solar stress resistance. Analysis of time-courses of the EPR signals of [Formula: see text] induced by far-red (λmax = 707 nm), exciting predominantly PSI, and white light, exciting both PSI and PSII, suggests that there is a contribution of cyclic electron flow around PSI to electron flow through PSI in HL leaves. The data obtained are discussed in terms of photosynthetic apparatus sustainability of HL and LL leaves under variable irradiation conditions.
Collapse
Affiliation(s)
| | - Boris V Trubitsin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Igor S Suslichenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
47
|
Analysis of Photosynthetic Systems and Their Applications with Mathematical and Computational Models. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In biological and life science applications, photosynthesis is an important process that involves the absorption and transformation of sunlight into chemical energy. During the photosynthesis process, the light photons are captured by the green chlorophyll pigments in their photosynthetic antennae and further funneled to the reaction center. One of the most important light harvesting complexes that are highly important in the study of photosynthesis is the membrane-attached Fenna–Matthews–Olson (FMO) complex found in the green sulfur bacteria. In this review, we discuss the mathematical formulations and computational modeling of some of the light harvesting complexes including FMO. The most recent research developments in the photosynthetic light harvesting complexes are thoroughly discussed. The theoretical background related to the spectral density, quantum coherence and density functional theory has been elaborated. Furthermore, details about the transfer and excitation of energy in different sites of the FMO complex along with other vital photosynthetic light harvesting complexes have also been provided. Finally, we conclude this review by providing the current and potential applications in environmental science, energy, health and medicine, where such mathematical and computational studies of the photosynthesis and the light harvesting complexes can be readily integrated.
Collapse
|