1
|
Ye Z, Sun L, Xiang Q, Hao Y, Liu H, He Q, Yang X, Liao W. Advancements of Biomacromolecular Hydrogel Applications in Food Nutrition and Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23689-23708. [PMID: 39410660 DOI: 10.1021/acs.jafc.4c05903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Hydrogels exhibit remarkable degradability, biocompatibility and functionality, which position them as highly promising materials for applications within the food and pharmaceutical industries. Although many relevant studies on hydrogels have been reported in the chemical industry, materials, and other fields, there have been few reviews on their potential applications in food nutrition and human health. This study aims to address this gap by reviewing the functional properties of hydrogels and assessing their value in terms of food nutrition and human health. The use of hydrogels in preserving bioactive ingredients, food packaging and food distribution is delved into specifically in this review. Hydrogels can serve as cutting-edge materials for food packaging and delivery, ensuring the preservation of nutritional activity within food products, facilitating targeted delivery of bioactive compounds and regulating the digestion and absorption processes in the human body, thereby promoting human health. Moreover, hydrogels find applications in in vitro cell and tissue culture, human tissue repair, as well as chronic disease prevention and treatment. These broad applications have attracted great attention in the fields of human food nutrition and health. Ultimately, this paper serves as a valuable reference for further utilization and exploration of hydrogels in these respective fields.
Collapse
Affiliation(s)
- Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Qi He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
2
|
Isnaini MD, Vanichsetakul B, Phisalaphong M. Alginate-Based Hydrogel Bead Reinforced with Montmorillonite Clay and Bacterial Cellulose-Activated Carbon as an Effective Adsorbent for Removing Dye from Aqueous Solution. Gels 2024; 10:597. [PMID: 39330199 PMCID: PMC11431803 DOI: 10.3390/gels10090597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
According to environmental concerns related to water pollution, this study aims to develop a novel hydrogel bead as a biocompatible and efficient adsorbent by integrating bacterial cellulose-activated carbon (BCAC) and montmorillonite (MT) in alginate hydrogel (ALG). The ionotropic gelation method was applied to the fabrication of BCAC/MT/ALG hydrogel beads. The BCAC/MT/ALG hydrogel bead exhibited significantly higher tensile strength, Young's modulus, and thermal stability, with ~1.4 times higher adsorption uptake of methylene blue (MB) from aqueous solution as compared to the pristine ALG bead. The textural properties, including specific surface area and porosity, were beneficial to accommodate the size of cationic MB as the target molecule. This resulted in a remarkable MB adsorption uptake of 678.2 mg/g at pH 7 and 30 °C. The adsorption isotherm showed the best fit for the nonlinear Redlich-Peterson isotherm model. Experimental adsorption data were well-described by the pseudo-second order kinetic model, with R2 values reaching 0.997. In addition, the adsorbent bead demonstrated easy regeneration with high reusability with approximately 75% of MB removal after being used for six cycles. Therefore, BCAC/MT/ALG bead represents an eco-friendly, cost-effective, and highly efficient adsorbent for MB removal from water and could potentially be used for removal of a wide range of cationic dye pollutants from wastewater.
Collapse
Affiliation(s)
- Muhammad Dody Isnaini
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhawaranchat Vanichsetakul
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Gao S, Nie T, Lin Y, Jiang L, Wang L, Wu J, Jiao Y. 3D printing tissue-engineered scaffolds for auricular reconstruction. Mater Today Bio 2024; 27:101141. [PMID: 39045312 PMCID: PMC11265588 DOI: 10.1016/j.mtbio.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Congenital microtia is the most common cause of auricular defects, with a prevalence of approximately 5.18 per 10,000 individuals. Autologous rib cartilage grafting is the leading treatment modality at this stage of auricular reconstruction currently. However, harvesting rib cartilage may lead to donor site injuries, such as pneumothorax, postoperative pain, chest wall scarring, and deformity. Therefore, in the pursuit of better graft materials, biomaterial scaffolds with great histocompatibility, precise control of morphology, non-invasiveness properties are gradually becoming a new research hotspot in auricular reconstruction. This review collectively presents the exploit and application of 3D printing biomaterial scaffold in auricular reconstruction. Although the tissue-engineered ear still faces challenges before it can be widely applied to patients in clinical settings, and its long-term effects have yet to be evaluated, we aim to provide guidance for future research directions in 3D printing biomaterial scaffold for auricular reconstruction. This will ultimately benefit the translational and clinical application of cartilage tissue engineering and biomaterials in the treatment of auricular defects.
Collapse
Affiliation(s)
- Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Tianqi Nie
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Jinan University, Guangzhou, 510240, China
- Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, 510240, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| |
Collapse
|
4
|
Utoiu E, Manoiu VS, Oprita EI, Craciunescu O. Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering. Gels 2024; 10:387. [PMID: 38920933 PMCID: PMC11203293 DOI: 10.3390/gels10060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Bacterial cellulose is a biocompatible biomaterial with a unique macromolecular structure. Unlike plant-derived cellulose, bacterial cellulose is produced by certain bacteria, resulting in a sustainable material consisting of self-assembled nanostructured fibers with high crystallinity. Due to its purity, bacterial cellulose is appealing for biomedical applications and has raised increasing interest, particularly in the context of 3D printing for tissue engineering and regenerative medicine applications. Bacterial cellulose can serve as an excellent bioink in 3D printing, due to its biocompatibility, biodegradability, and ability to mimic the collagen fibrils from the extracellular matrix (ECM) of connective tissues. Its nanofibrillar structure provides a suitable scaffold for cell attachment, proliferation, and differentiation, crucial for tissue regeneration. Moreover, its mechanical strength and flexibility allow for the precise printing of complex tissue structures. Bacterial cellulose itself has no antimicrobial activity, but due to its ideal structure, it serves as matrix for other bioactive molecules, resulting in a hybrid product with antimicrobial properties, particularly advantageous in the management of chronic wounds healing process. Overall, this unique combination of properties makes bacterial cellulose a promising material for manufacturing hydrogels and 3D-printed scaffolds, advancing the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Elena Iulia Oprita
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (E.U.); (V.S.M.); (O.C.)
| | | |
Collapse
|
5
|
Dermol Š, Borin B, Gregor-Svetec D, Slemenik Perše L, Lavrič G. The Development of a Bacterial Nanocellulose/Cationic Starch Hydrogel for the Production of Sustainable 3D-Printed Packaging Foils. Polymers (Basel) 2024; 16:1527. [PMID: 38891473 PMCID: PMC11174455 DOI: 10.3390/polym16111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Polymers have become an important part of everyday life, but most of the polymers currently used are petroleum-based. This poses an environmental problem, especially with respect to products that are quickly discarded. For this reason, current packaging development focuses on sustainable materials as an alternative to synthetic ones. Nanocellulose, a relatively new material derived from cellulose, has unique properties such as high strength, low density, high surface area, and good barrier properties, making it popular in various applications. Additionally, 3D printing technologies have become an important part of industrial and commercial processes, enabling the realization of innovative ideas and functionalities. The main aim of this research was to develop a hydrogel of bacterial nanocellulose with suitable rheological properties for the 3D printing of polymer foils. Three variations of bacterial nanocellulose hydrogel differing in ratios of bacterial nanocellulose to cationic starch were produced. The rheological studies confirmed the suitability of the hydrogels for 3D printing. Foils were successfully 3D-printed using a modified 3D printer. The physical-mechanical, surface, and optical properties of the foils were determined. All foils were homogeneous with adequate mechanical properties. The 3D-printed foils with the highest amount of cationic starch were the most homogeneous and transparent and, despite their rigidity, very strong. All foils were semi-transparent, had a non-glossy surface, and retained poor water wettability.
Collapse
Affiliation(s)
- Špela Dermol
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia;
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia;
| | - Bojan Borin
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia;
| | - Diana Gregor-Svetec
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia;
| | - Lidija Slemenik Perše
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia;
| | - Gregor Lavrič
- Pulp and Paper Institute, Bogišićeva ulica 8, 1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Mauro F, Corrado B, De Gregorio V, Lagreca E, Di Natale C, Vecchione R, Netti PA. Exploring the evolution of bacterial cellulose precursors and their potential use as cellulose-based building blocks. Sci Rep 2024; 14:11613. [PMID: 38773229 PMCID: PMC11109180 DOI: 10.1038/s41598-024-62462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Natural polymers have found increased use in a wider range of applications due to their less harmful effects. Notably, bacterial cellulose has gained significant consideration due to its exceptional physical and chemical properties and its substantial biocompatibility, which makes it an attractive candidate for several biomedical applications. This study attempts to thoroughly unravel the microstructure of bacterial cellulose precursors, known as bioflocculants, which to date have been poorly characterised, by employing both electron and optical microscopy techniques. Here, starting from bioflocculants from Symbiotic Culture of Bacteria and Yeast (SCOBY), we proved that their microstructural features, such as porosity percentage, cellulose assembly degree, fibres' density and fraction, change in a spatio-temporal manner during their rising toward the liquid-air interface. Furthermore, our research identified a correlation between electron and optical microscopy parameters, enabling the assessment of bioflocculants' microstructure without necessitating offline sample preparation procedures. The ultimate goal was to determine their potential suitability as a novel cellulose-based building block material with tuneable structural properties. Our investigations substantiate the capability of SCOBY bioflocculants, characterized by distinct microstructures, to successfully assemble within a microfluidic device, thereby generating a cellulose sheet endowed with specific and purposefully designed structural features.
Collapse
Affiliation(s)
- Francesca Mauro
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | | | | | - Concetta Di Natale
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | | | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Tabatabaei Hosseini BS, Meadows K, Gabriel V, Hu J, Kim K. Biofabrication of Cellulose-based Hydrogels for Advanced Wound Healing: A Special Emphasis on 3D Bioprinting. Macromol Biosci 2024; 24:e2300376. [PMID: 38031512 DOI: 10.1002/mabi.202300376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Even with the current advancements in wound management, addressing most skin injuries and wounds continues to pose a significant obstacle for the healthcare industry. As a result, researchers are now focusing on creating innovative materials utilizing cellulose and its derivatives. Cellulose, the most abundant biopolymer in nature, has unique properties that make it a promising material for wound healing, such as biocompatibility, tunable physiochemical characteristics, accessibility, and low cost. 3D bioprinting technology has enabled the production of cellulose-based wound dressings with complex structures that mimic the extracellular matrix. The inclusion of bioactive molecules such as growth factors offers the ability to aid in promoting wound healing, while cellulose creates an ideal environment for controlled release of these biomolecules and moisture retention. The use of 3D bioprinted cellulose-based wound dressings has potential benefits for managing chronic wounds, burns, and painful wounds by promoting wound healing and reducing the risk of infection. This review provides an up-to-date summary of cellulose-based dressings manufactured by 3D bioprinting techniques by looking into wound healing biology, biofabrication methods, cellulose derivatives, and the existing cellulose bioinks targeted toward wound healing.
Collapse
Affiliation(s)
| | - Kieran Meadows
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Vincent Gabriel
- Calgary Firefighters Burn Treatment Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jinguang Hu
- Department of Petroleum and Chemical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Keekyoung Kim
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
8
|
Westensee IN, Paffen LJMM, Pendlmayr S, De Dios Andres P, Ramos Docampo MA, Städler B. Artificial Cells and HepG2 Cells in 3D-Bioprinted Arrangements. Adv Healthc Mater 2024; 13:e2303699. [PMID: 38277695 DOI: 10.1002/adhm.202303699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.
Collapse
Affiliation(s)
- Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Lars J M M Paffen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Stefan Pendlmayr
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Paula De Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Miguel A Ramos Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
9
|
Sreedharan M, Vijayamma R, Liyaskina E, Revin VV, Ullah MW, Shi Z, Yang G, Grohens Y, Kalarikkal N, Ali Khan K, Thomas S. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024; 25:2136-2155. [PMID: 38448083 DOI: 10.1021/acs.biomac.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.
Collapse
Affiliation(s)
- Mridula Sreedharan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Raji Vijayamma
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Elena Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Grohens
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56321 Lorient, France
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
10
|
Puertas-Bartolomé M, Venegas-Bustos D, Acosta S, Rodríguez-Cabello JC. Contribution of the ELRs to the development of advanced in vitro models. Front Bioeng Biotechnol 2024; 12:1363865. [PMID: 38650751 PMCID: PMC11033926 DOI: 10.3389/fbioe.2024.1363865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Developing in vitro models that accurately mimic the microenvironment of biological structures or processes holds substantial promise for gaining insights into specific biological functions. In the field of tissue engineering and regenerative medicine, in vitro models able to capture the precise structural, topographical, and functional complexity of living tissues, prove to be valuable tools for comprehending disease mechanisms, assessing drug responses, and serving as alternatives or complements to animal testing. The choice of the right biomaterial and fabrication technique for the development of these in vitro models plays an important role in their functionality. In this sense, elastin-like recombinamers (ELRs) have emerged as an important tool for the fabrication of in vitro models overcoming the challenges encountered in natural and synthetic materials due to their intrinsic properties, such as phase transition behavior, tunable biological properties, viscoelasticity, and easy processability. In this review article, we will delve into the use of ELRs for molecular models of intrinsically disordered proteins (IDPs), as well as for the development of in vitro 3D models for regenerative medicine. The easy processability of the ELRs and their rational design has allowed their use for the development of spheroids and organoids, or bioinks for 3D bioprinting. Thus, incorporating ELRs into the toolkit of biomaterials used for the fabrication of in vitro models, represents a transformative step forward in improving the accuracy, efficiency, and functionality of these models, and opening up a wide range of possibilities in combination with advanced biofabrication techniques that remains to be explored.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Technical Proteins Nanobiotechnology, S.L. (TPNBT), Valladolid, Spain
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Desiré Venegas-Bustos
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), CIBER's Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
11
|
Babaei-Ghazvini A, Vafakish B, Patel R, Falua KJ, Dunlop MJ, Acharya B. Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization. Int J Biol Macromol 2024; 258:128834. [PMID: 38128804 DOI: 10.1016/j.ijbiomac.2023.128834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The escalating demand for sustainable materials has propelled cellulose into the spotlight as a promising alternative to petroleum-based products. As the most abundant organic polymer on Earth, cellulose is ubiquitous, found in plants, bacteria, and even a unique marine animal-the tunicate. Cellulose polymers naturally give rise to microscale semi-crystalline fibers and nanoscale crystalline regions known as cellulose nanocrystals (CNCs). Exhibiting rod-like structures with widths spanning 3 to 50 nm and lengths ranging from 50 nm to several microns, CNC characteristics vary based on the cellulose source. The degree of crystallinity, crucial for CNC properties, fluctuates between 49 and 95 % depending on the source and synthesis method. CNCs, with their exceptional properties such as high aspect ratio, relatively low density (≈1.6 g cm-3), high axial elastic modulus (≈150 GPa), significant tensile strength, and birefringence, emerge as ideal candidates for biodegradable fillers in nanocomposites and functional materials. The percolation threshold, a mathematical concept defining long-range connectivity between filler and polymer, governs the effectiveness of reinforcement in nanocomposites. This threshold is intricately influenced by the aspect ratio and molecular interaction strength, impacting CNC performance in polymeric and pure nanocomposite materials. This comprehensive review explores diverse aspects of CNCs, encompassing their derivation from various sources, methods of modification (both physical and chemical), and hybridization with heterogeneous fillers. Special attention is devoted to the hybridization of CNCs derived from tunicates (TCNC) with those from wood (WCNC), leveraging the distinct advantages of each. The overarching objective is to demonstrate how this hybridization strategy mitigates the limitations of WCNC in composite materials, offering improved interaction and enhanced percolation. This, in turn, is anticipated to elevate the reinforcing effects and pave the way for the development of nanocomposites with tunable viscoelastic, physicochemical, and mechanical properties.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Bahareh Vafakish
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Ravi Patel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| | - Matthew J Dunlop
- Tunistrong Technologies Incorporated, 7207 Route 11, Wellington, Charlottetown, PE C0B 20E, Canada.
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
12
|
Malekpour K, Hazrati A, Khosrojerdi A, Roshangar L, Ahmadi M. An overview to nanocellulose clinical application: Biocompatibility and opportunities in disease treatment. Regen Ther 2023; 24:630-641. [PMID: 38034858 PMCID: PMC10682839 DOI: 10.1016/j.reth.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Recently, the demand for organ transplantation has promptly increased due to the enhanced incidence of body organ failure, the increasing efficiency of transplantation, and the improvement in post-transplant outcomes. However, due to a lack of suitable organs for transplantation to fulfill current demand, significant organ shortage problems have emerged. Developing efficient technologies in combination with tissue engineering (TE) has opened new ways of producing engineered tissue substitutes. The use of natural nanoparticles (NPs) such as nanocellulose (NC) and nano-lignin should be used as suitable candidates in TE due to their desirable properties. Many studies have used these components to form scaffolds and three-dimensional (3D) cultures of cells derived from different tissues for tissue repair. Interestingly, these natural NPs can afford scaffolds a degree of control over their characteristics, such as modifying their mechanical strength and distributing bioactive compounds in a controlled manner. These bionanomaterials are produced from various sources and are highly compatible with human-derived cells as they are derived from natural components. In this review, we discuss some new studies in this field. This review summarizes the scaffolds based on NC, counting nanocrystalline cellulose and nanofibrillated cellulose. Also, the efficient approaches that can extract cellulose with high purity and increased safety are discussed. We concentrate on the most recent research on the use of NC-based scaffolds for the restoration, enhancement, or replacement of injured organs and tissues, such as cartilage, skin, arteries, brain, and bone. Finally, we suggest the experiments and promises of NC-based TE scaffolds.
Collapse
Affiliation(s)
- Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
14
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
15
|
Islam HBMZ, Krishna SBN, Imran AB. Enhancing the mechanical properties of hydrogels with vinyl-functionalized nanocrystalline cellulose as a green crosslinker. NANOTECHNOLOGY 2023; 34:505706. [PMID: 37703871 DOI: 10.1088/1361-6528/acf93b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Hydrogels have gained significant attention in scientific communities for their versatile applications, but several challenges need to be addressed to exploit their potential fully. Conventional hydrogels suffer from poor mechanical strength, limiting their use in many applications. Moreover, the crosslinking agents used to produce them are often toxic, carcinogenic, and not bio-friendly. This study presents a novel approach to overcome these limitations by using bio-friendly modified nanocrystalline cellulose as a crosslinker to prepare highly stretchable and tough thermosensitive hydrogels. The surface of nanocrystalline cellulose was modified with 3-methacryloxypropyltrimethoxysilane (MPTS) to obtain modified nanocrystalline cellulose (M-NCC) crosslinker and used during free radical polymerization of thermosensitiveN-isopropyl acrylamide (NIPA) monomer to synthesize NIPA/M-NCC hydrogel. The resulting nanocomposite hydrogels exhibit superior mechanical, thermal, and temperature-responsive swelling properties compared to conventional hydrogels prepared with traditional bi-functionalN,N'-methylene bis (acrylamide) (MBA) as a crosslinker. The elongation at break, tensile strength, and toughness of the NIPA/M-NCC hydrogels significantly increase and Young's modulus decrease than conventional hydrogel. The designed M-NCC crosslinker could be utilized to improve the mechanical strength of any polymeric elastomer or hydrogel systems produced through chain polymerization.
Collapse
Affiliation(s)
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban 4000, South Africa
- Institute of Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
16
|
Fahma F, Firmanda A, Cabral J, Pletzer D, Fisher J, Mahadik B, Arnata IW, Sartika D, Wulandari A. Three-Dimensional Printed Cellulose for Wound Dressing Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1015-1035. [PMID: 37886399 PMCID: PMC10599445 DOI: 10.1089/3dp.2021.0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Wounds are skin tissue damage due to trauma. Many factors inhibit the wound healing phase (hemostasis, inflammation, proliferation, and alteration), such as oxygenation, contamination/infection, age, effects of injury, sex hormones, stress, diabetes, obesity, drugs, alcoholism, smoking, nutrition, hemostasis, debridement, and closing time. Cellulose is the most abundant biopolymer in nature which is promising as the main matrix of wound dressings because of its good structure and mechanical stability, moisturizes the area around the wound, absorbs excess exudate, can form elastic gels with the characteristics of bio-responsiveness, biocompatibility, low toxicity, biodegradability, and structural similarity with the extracellular matrix (ECM). The addition of active ingredients as a model drug helps accelerate wound healing through antimicrobial and antioxidant mechanisms. Three-dimensional (3D) bioprinting technology can print cellulose as a bioink to produce wound dressings with complex structures mimicking ECM. The 3D printed cellulose-based wound dressings are a promising application in modern wound care. This article reviews the use of 3D printed cellulose as an ideal wound dressing and their properties, including mechanical properties, permeability aspect, absorption ability, ability to retain and provide moisture, biodegradation, antimicrobial property, and biocompatibility. The applications of 3D printed cellulose in the management of chronic wounds, burns, and painful wounds are also discussed.
Collapse
Affiliation(s)
- Farah Fahma
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Jaydee Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, Indonesia
| | - Anting Wulandari
- Department of Agroindustrial Technology, Faculty of Agroindustrial Technology, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
17
|
Saleem A, Rehman R, Hussain S, Salem MA, Ali F, Shah SAA, Younas U, El-Bahy SM, El-Bahy ZM, Iqbal M. Biodegradable and hemocompatible alginate/okra hydrogel films with promising stability and biological attributes. Int J Biol Macromol 2023:125532. [PMID: 37355067 DOI: 10.1016/j.ijbiomac.2023.125532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Currently, combinations of natural polymers and semi-synthetic biomolecules have gained attention for food-packaging, drug delivery, coatings, and biomedical applications. In this work, cross-linking property of two biopolymers was employed for the fabrication of hydrogel films. Sodium alginate (SAlg) and Okra gel (OkG) were used in different ratios (95:05, 75:25 and 85:15) to synthesize hydrogel films by solvent-casting method. Formation of the films was confirmed by FTIR and Raman techniques which specified the interaction between biomolecules of SAlg and OkG. XRD pattern has shown the presence of both amorphous and micro-crystalline phases in the hydrogel films and SEM studies have shown porosity, amorphousness and agglomerated morphology. TGA and DSC analyses revealed degradation of the film at 420 °C and stability studies using PBS buffer indicated stability and hydrophilic nature of hydrogel films. In-vitro degradation test was also performed for 10 weeks through the incubation of hydrogel-films in simulated body fluid and the effect of pH and temperature was also studied. Results have shown worth-some influence of okra gel on the fabricated films. Hemolytic and antioxidant activities of the gels were also determined and being non-toxic, all these ratios were found suitable for biomedical applications; especially 85:15 have shown maximum potential.
Collapse
Affiliation(s)
- Aimon Saleem
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Roeya Rehman
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Sania Hussain
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | | | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Munawar Iqbal
- Department of Chemistry, University of Education Lahore, Faisalabad Campus, Faisalabad, Pakistan
| |
Collapse
|
18
|
Li Y, Ren X, Zhu L, Li C. Biomass 3D Printing: Principles, Materials, Post-Processing and Applications. Polymers (Basel) 2023; 15:2692. [PMID: 37376338 DOI: 10.3390/polym15122692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Under the background of green and low-carbon era, efficiently utilization of renewable biomass materials is one of the important choices to promote ecologically sustainable development. Accordingly, 3D printing is an advanced manufacturing technology with low energy consumption, high efficiency, and easy customization. Biomass 3D printing technology has attracted more and more attentions recently in materials area. This paper mainly reviewed six common 3D printing technologies for biomass additive manufacturing, including Fused Filament Fabrication (FFF), Direct Ink Writing (DIW), Stereo Lithography Appearance (SLA), Selective Laser Sintering (SLS), Laminated Object Manufacturing (LOM) and Liquid Deposition Molding (LDM). A systematic summary and detailed discussion were conducted on the printing principles, common materials, technical progress, post-processing and related applications of typical biomass 3D printing technologies. Expanding the availability of biomass resources, enriching the printing technology and promoting its application was proposed to be the main developing directions of biomass 3D printing in the future. It is believed that the combination of abundant biomass feedstocks and advanced 3D printing technology will provide a green, low-carbon and efficient way for the sustainable development of materials manufacturing industry.
Collapse
Affiliation(s)
- Yongxia Li
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueyong Ren
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lin Zhu
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunmiao Li
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Stiriba SE, Bahsis L, Benhadria E, Oudghiri K, Taourirte M, Julve M. Cellulose Acetate-Supported Copper as an Efficient Sustainable Heterogenous Catalyst for Azide-Alkyne Cycloaddition Click Reactions in Water. Int J Mol Sci 2023; 24:ijms24119301. [PMID: 37298251 DOI: 10.3390/ijms24119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
A new sustainable heterogeneous catalyst for copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) was investigated. The preparation of the sustainable catalyst was carried out through the complexation reaction between the polysaccharide cellulose acetate backbone (CA) and copper(II) ions. The resulting complex [Cu(II)-CA] was fully characterized by using different spectroscopic methods such as Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Ultraviolet-visible (UV-vis), and Inductively Coupled Plasma (ICP) analyses. The Cu(II)-CA complex exhibits high activity in the CuAAC reaction for substituted alkynes and organic azides, leading to a selective synthesis of the corresponding 1,4-isomer 1,2,3-triazoles in water as a solvent and working at room temperature. It is worth noting that this catalyst has several advantages from the sustainable chemistry point of view including no use of additives, biopolymer support, reactions carried out in water at room temperature, and easy recovery of the catalyst. These characteristics make it a potential candidate not only for the CuAAC reaction but also for other catalytic organic reactions.
Collapse
Affiliation(s)
- Salah-Eddine Stiriba
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
- Laboratoire de Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
| | - Elhouceine Benhadria
- Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali, El Jadida 24000, Morocco
| | - Khaoula Oudghiri
- Laboratoire de Recherche en Développement Durable et Santé, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Moha Taourirte
- Laboratoire de Recherche en Développement Durable et Santé, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
20
|
Basu A, Okello LB, Castellanos N, Roh S, Velev OD. Assembly and manipulation of responsive and flexible colloidal structures by magnetic and capillary interactions. SOFT MATTER 2023; 19:2466-2485. [PMID: 36946137 DOI: 10.1039/d3sm00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid-particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid-fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and "active" structures.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Lilian B Okello
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Natasha Castellanos
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
21
|
Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules 2023; 28:2766. [PMID: 36985738 PMCID: PMC10058016 DOI: 10.3390/molecules28062766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Over the last decade, efforts have been oriented toward the development of suitable gels for 3D printing, with controlled morphology and shear-thinning behavior in well-defined conditions. As a multidisciplinary approach to the fabrication of complex biomaterials, 3D bioprinting combines cells and biocompatible materials, which are subsequently printed in specific shapes to generate 3D structures for regenerative medicine or tissue engineering. A major interest is devoted to the printing of biomimetic materials with structural fidelity after their fabrication. Among some requirements imposed for bioinks, such as biocompatibility, nontoxicity, and the possibility to be sterilized, the nondamaging processability represents a critical issue for the stability and functioning of the 3D constructs. The major challenges in the field of printable gels are to mimic at different length scales the structures existing in nature and to reproduce the functions of the biological systems. Thus, a careful investigation of the rheological characteristics allows a fine-tuning of the material properties that are manufactured for targeted applications. The fluid-like or solid-like behavior of materials in conditions similar to those encountered in additive manufacturing can be monitored through the viscoelastic parameters determined in different shear conditions. The network strength, shear-thinning, yield point, and thixotropy govern bioprintability. An assessment of these rheological features provides significant insights for the design and characterization of printable gels. This review focuses on the rheological properties of printable bioinspired gels as a survey of cutting-edge research toward developing printed materials for additive manufacturing.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
22
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
23
|
de Assis SC, Morgado DL, Scheidt DT, de Souza SS, Cavallari MR, Ando Junior OH, Carrilho E. Review of Bacterial Nanocellulose-Based Electrochemical Biosensors: Functionalization, Challenges, and Future Perspectives. BIOSENSORS 2023; 13:142. [PMID: 36671977 PMCID: PMC9856105 DOI: 10.3390/bios13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical biosensing devices are known for their simple operational procedures, low fabrication cost, and suitable real-time detection. Despite these advantages, they have shown some limitations in the immobilization of biochemicals. The development of alternative materials to overcome these drawbacks has attracted significant attention. Nanocellulose-based materials have revealed valuable features due to their capacity for the immobilization of biomolecules, structural flexibility, and biocompatibility. Bacterial nanocellulose (BNC) has gained a promising role as an alternative to antifouling surfaces. To widen its applicability as a biosensing device, BNC may form part of the supports for the immobilization of specific materials. The possibilities of modification methods and in situ and ex situ functionalization enable new BNC properties. With the new insights into nanoscale studies, we expect that many biosensors currently based on plastic, glass, or paper platforms will rely on renewable platforms, especially BNC ones. Moreover, substrates based on BNC seem to have paved the way for the development of sensing platforms with minimally invasive approaches, such as wearable devices, due to their mechanical flexibility and biocompatibility.
Collapse
Affiliation(s)
- Samuel Chagas de Assis
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
| | - Daniella Lury Morgado
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Desiree Tamara Scheidt
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas 13083-970, SP, Brazil
| | - Samara Silva de Souza
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Tecnológica Federal do Paraná—UTFPR, Campus Dois Vizinhos, Dois Vizinhos 85660-000, PR, Brazil
| | - Marco Roberto Cavallari
- School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil
| | - Oswaldo Hideo Ando Junior
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Academic Unit of Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco (UFRPE), Rua Cento e Sessenta e Três, 300-Cohab, Cabo de Santo Agostinho 54518-430, PE, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas 13083-970, SP, Brazil
| |
Collapse
|
24
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
25
|
He X, Lu Q. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review. Carbohydr Polym 2022; 301:120351. [DOI: 10.1016/j.carbpol.2022.120351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
26
|
Zeng J, Jia L, Wang D, Chen Z, Liu W, Yang Q, Liu X, Jiang H. Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage. Int J Bioprint 2022; 9:631. [PMID: 36636133 PMCID: PMC9830992 DOI: 10.18063/ijb.v9i1.631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Tissue-engineered ear cartilage scaffold based on three-dimensional (3D) bioprinting technology presents a new strategy for ear reconstruction in individuals with microtia. Natural hydrogel is a promising material due to its excellent biocompatibility and low immunogenicity. However, insufficient mechanical property required for cartilage is one of the major issues pending to be solved. In this study, the gelatin methacryloyl (GelMA) hydrogel reinforced with bacterial nanocellulose (BNC) was developed to enhance the biomechanical properties and printability of the hydrogel. The results revealed that the addition of 0.375% BNC significantly increased the mechanical properties of the hydrogel and promoted cell migration in the BNC-reinforced hydrogel. Constructs bioprinted with chondrocyte-laden BNC/GelMA hydrogel bio-ink formed mature cartilage in nude mice with higher Young's modulus and glycosaminoglycan content. Finally, an auricle equivalent with a precise shape, high mechanics, and abundant cartilage-specific matrix was developed in vivo. In this study, we developed a potentially useful hydrogel for the manufacture of auricular cartilage grafts for microtia patients.
Collapse
Affiliation(s)
- Jinshi Zeng
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| | - Litao Jia
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| | - Di Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| | - Zhuoqi Chen
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| | - Wenshuai Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| | - Qinghua Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| | - Haiyue Jiang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, PR China
| |
Collapse
|
27
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
28
|
Semba JA, Mieloch AA, Tomaszewska E, Cywoniuk P, Rybka JD. Formulation and evaluation of a bioink composed of alginate, gelatin, and nanocellulose for meniscal tissue engineering. Int J Bioprint 2022; 9:621. [PMID: 36844246 PMCID: PMC9947383 DOI: 10.18063/ijb.v9i1.621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
1The necessity to preserve meniscal function prompts the research and development of novel treatment options, like three-dimensional (3D) bioprinting. However, bioinks for meniscal 3D bioprinting have not been extensively explored. Therefore, in this study, a bioink composed of alginate, gelatin, and carboxymethylated cellulose nanocrystal (CCNC) was formulated and evaluated. Firstly, bioinks with varying concentrations of the aforementioned components were subjected to rheological analysis (amplitude sweep test, temperature sweep test, and rotation). The optimal bioink formulation of 4.0% gelatin, 0.75% alginate, and 1.4% CCNC dissolved in 4.6% D-mannitol was further used for printing accuracy analysis, followed by 3D bioprinting with normal human knee articular chondrocytes (NHAC-kn). The encapsulated cells' viability was > 98%, and collagen II expression was stimulated by the bioink. The formulated bioink is printable, stable under cell culture conditions, biocompatible, and able to maintain the native phenotype of chondrocytes. Aside from meniscal tissue bioprinting, it is believed that this bioink could serve as a basis for the development of bioinks for various tissues.
Collapse
Affiliation(s)
- Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland,Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Ewa Tomaszewska
- Faculty of Mechanical Engineering, Poznan University of Technology, Poznan, Poland
| | - Piotr Cywoniuk
- Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland,Corresponding author: Jakub Dalibor Rybka ()
| |
Collapse
|
29
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Deng Y, Xi J, Meng L, Lou Y, Seidi F, Wu W, Xiao H. Stimuli-Responsive Nanocellulose Hydrogels: An Overview. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Cai Y, Chang SY, Gan SW, Ma S, Lu WF, Yen CC. Nanocomposite bioinks for 3D bioprinting. Acta Biomater 2022; 151:45-69. [PMID: 35970479 DOI: 10.1016/j.actbio.2022.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
Collapse
Affiliation(s)
- Yanli Cai
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soon Yee Chang
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Soo Wah Gan
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Sha Ma
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
| | - Wen Feng Lu
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ching-Chiuan Yen
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore; Division of Industrial Design, National University of Singapore, Singapore 117356, Singapore.
| |
Collapse
|
32
|
Marzi J, Fuhrmann E, Brauchle E, Singer V, Pfannstiel J, Schmidt I, Hartmann H. Non-Invasive Three-Dimensional Cell Analysis in Bioinks by Raman Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30455-30465. [PMID: 35777738 PMCID: PMC9284518 DOI: 10.1021/acsami.1c24463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
3D bioprinting is an emerging biofabrication strategy using bioinks, comprising cells and biocompatible materials, to produce functional tissue models. Despite progress in building increasingly complex objects, biological analyses in printed constructs remain challenging. Especially, methods that allow non-invasive and non-destructive evaluation of embedded cells are largely missing. Here, we implemented Raman imaging for molecular-sensitive investigations on bioprinted objects. Different aspects such as culture formats (2D, 3D-cast, and 3D-printed), cell types (endothelial cells and fibroblasts), and the selection of the biopolymer (alginate, alginate/nanofibrillated cellulose, alginate/gelatin) were considered and evaluated. Raman imaging allowed for marker-independent identification and localization of subcellular components against the surrounding biomaterial background. Furthermore, single-cell analysis of spectral signatures, performed by multivariate analysis, demonstrated discrimination between endothelial cells and fibroblasts and identified cellular features influenced by the bioprinting process. In summary, Raman imaging was successfully established to analyze cells in 3D culture in situ and evaluate them with regard to the localization of different cell types and their molecular phenotype as a valuable tool for quality control of bioprinted objects.
Collapse
Affiliation(s)
- Julia Marzi
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Institute
of Biomedical Engineering, Department for Medical Technologies &
Regenerative Medicine, Eberhard Karls University, Tübingen 72074, Germany
- Cluster
of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed
Tumor Therapies, University of Tübingen, Tübingen 72074, Germany
| | - Ellena Fuhrmann
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Eva Brauchle
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Institute
of Biomedical Engineering, Department for Medical Technologies &
Regenerative Medicine, Eberhard Karls University, Tübingen 72074, Germany
- Cluster
of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed
Tumor Therapies, University of Tübingen, Tübingen 72074, Germany
| | - Verena Singer
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Jessica Pfannstiel
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Isabelle Schmidt
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Hanna Hartmann
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- . Phone: +49712151530872
| |
Collapse
|
33
|
Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Int J Mol Sci 2022; 23:6564. [PMID: 35743006 PMCID: PMC9223682 DOI: 10.3390/ijms23126564] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.T.); (N.S.L.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| |
Collapse
|
34
|
Shi Y, Jiao H, Sun J, Lu X, Yu S, Cheng L, Wang Q, Liu H, Biranje S, Wang J, Liu J. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review. Carbohydr Polym 2022; 285:119208. [DOI: 10.1016/j.carbpol.2022.119208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 01/21/2023]
|
35
|
Alginate and tunicate nanocellulose composite microbeads – Preparation, characterization and cell encapsulation. Carbohydr Polym 2022; 286:119284. [DOI: 10.1016/j.carbpol.2022.119284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
36
|
Jacob S, R R, Antony S, Madhavan A, Sindhu R, Kumar Awasthi M, Kuddus M, Pillai S, Varjani S, Pandey A, Binod P. Nanocellulose in tissue engineering and bioremediation: mechanism of action. Bioengineered 2022; 13:12823-12833. [PMID: 35609323 PMCID: PMC9275936 DOI: 10.1080/21655979.2022.2074739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nanocellulose are nano-sized components which are biodegradable, biocompatible and renewable. It offers mechanical strength and chemical stability in plants and bacteria. The environmental contamination is reduced by employing various bioremediation techniques which usesmicroorganisms like algae, bacteria and fungi as bio-adsorbents. The bio adsorbent property of nanocellulose contribute more for the bioremediation methods and the detailed study of its mechanism and application is essential which is discussed here. The mechanism happening between the contaminant and nanocellulose adsorbent should be explored in detail in order to develop effective new bioremediation strategies. Nanocellulose structural functionalization helps to modify the nanocellulose structure based on which it can be utilized for specific functions. Exploring the mechanisms that contribute to the implementation of nanocellulose in tissue engineering helps for further developments and advancement in the biomedical application of nanocellulose. Not much studies are available that elucidate and study the basic steps involved in the biomedical and environmental usage of nanocellulose. This review has focussed on the basic mechanisms involved in the use of nanocellulose in tissue engineering and bioremediation processes.
Collapse
Affiliation(s)
- Sherin Jacob
- Department of Biochemistry, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Reshmy R
- Department of Science and Humanities, Providence College of Engineering, Chengannur, India
| | - Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Aravind Madhavan
- Mycobacterium Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest a & F University, Yangling, China
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, Gandhinagar, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), Lucknow, India.,Centre for Energy and Environmental Sustainability, Lucknow, India.,Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| |
Collapse
|
37
|
Jing H, Huang X, Du X, Mo L, Ma C, Wang H. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr Polym 2022; 278:118993. [PMID: 34973796 DOI: 10.1016/j.carbpol.2021.118993] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
In this work, a novel synthesis strategy of sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond was described. The beads were prepared by dropping the blends of two polymers into the citric acid solution. Besides hydrogen bonding, electrostatic interactions were also involved in the formation of the hydrogel beads. The thermal stability experiments revealed that the more the content of carboxymethyl chitosan, the better the thermal stability of the beads. The beads exhibited excellent pH sensitivity, pH reversibility, and lactoferrin loading capacity. The swelling ratio of the bead and its protein releasing profile was pH-dependent, which could prevent premature protein release in the gastric environment. Also, the circular dichroism results demonstrated that lactoferrin could maintain its structure during the loading and releasing process. The obtained results revealed that the hydrogel beads prepared in this work could be used as a potential protein carrier for oral delivery.
Collapse
Affiliation(s)
- Huijuan Jing
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xin Huang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ling Mo
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chaoyang Ma
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
38
|
Ait Benhamou A, Kassab Z, Boussetta A, Salim MH, Ablouh EH, Nadifiyine M, Qaiss AEK, Moubarik A, El Achaby M. Beneficiation of cactus fruit waste seeds for the production of cellulose nanostructures: Extraction and properties. Int J Biol Macromol 2022; 203:302-311. [PMID: 35104469 DOI: 10.1016/j.ijbiomac.2022.01.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
Cactus fruit waste seeds (CWS) are a by-product of the cactus fruit processing industry. Until now, CWS are not recoverable in any sector. The valorization of these residues may reduce their volume in the environment and transform them into valuable products. In this work, CWS have been identified for the first time as a sustainable lignocellulosic source. Cellulose microfibers (CMFs) and nanocrystals (CNCs) were successfully produced via alkali and bleaching treatments followed by sulfuric acid hydrolysis. It was found that the extracted CMFs showed an average diameter of 11 μm, crystallinity of 72%, and a yield of 25%. The as-produced CNCs exhibited a needle-like shape with a diameter of 13 ± 3 nm and length of 419 ± 48 nm, giving rise to an aspect ratio of 30.7, with a zeta potential value of - 30 mV and a charge content of sulfate groups of 287.8 mmol·kg-1. Herein, the obtained cellulosic derivatives with excellent properties from this underutilized waste can draw the attention of researchers towards CWS as a new type of biomass with virtually no hemicellulose, which could be of great interest to isolate and study the effects of how lignin interacts with cellulose.
Collapse
Affiliation(s)
- Anass Ait Benhamou
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco; Materials Science and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000 Marrakech, Morocco; Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000 Beni-Mellal, Morocco.
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000 Beni-Mellal, Morocco
| | - Mohamed Hamid Salim
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mehdi Nadifiyine
- Materials Science and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000 Marrakech, Morocco
| | - Abou El Kacem Qaiss
- Composites and Nanocomposites Center (CNC), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000 Beni-Mellal, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| |
Collapse
|
39
|
Burkholder-Wenger AC, Golzar H, Wu Y, Tang XS. Development of a Hybrid Nanoink for 3D Bioprinting of Heterogeneous Tumor Models. ACS Biomater Sci Eng 2022; 8:777-785. [PMID: 35045252 DOI: 10.1021/acsbiomaterials.1c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the rapid progress in applying three-dimensional (3D) printing in the field of tissue engineering, fabrication of heterogeneous and complex 3D tumor models remains a challenge. In this study, we report a hybrid nanoink (AGC) composed of alginate, gelatin methacryloyl (GelMA), and cellulose nanocrystal (CNC), designed for multinozzle microextrusion 3D printing of tumor models. Our results show that the ink consisting of 2 wt % alginate, 4 wt % GelMA, and 6 wt % cellulose nanocrystals (AGC246) possesses a superior shear-thinning property and little hysteresis in viscosity recovery. The fabrication of a colorectal cancer (CRC) model is demonstrated by printing a 3D topological substrate with AGC246 and then seeding/printing endothelial (EA-hy 926) and colorectal carcinoma (HCT 116) cells on top. Direct seeding of cells by dropping a cell suspension onto the 3D substrate with distinctive topological features (villi and trenches) deemed inadequate in either creating a monolayer of endothelial cells or precise positioning of cancer cell clusters, even with surface treatment to promote cell adhesion. In contrast, 3D biopinting of a CRC model using cell-laden AGC153, coupled with dual ultraviolet (UV) and ionic cross-linking, is shown to be successful. Hence, this study brings advancements in 3D bioprinting technology through innovative material and methodology designs, which could enable the fabrication of complex in vitro models for both fundamental studies of disease processes and applications in drug screening.
Collapse
Affiliation(s)
- Andrew C Burkholder-Wenger
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yun Wu
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
40
|
Rybchyn MS, Biazik JM, Charlesworth J, le Coutre J. Nanocellulose from Nata de Coco as a Bioscaffold for Cell-Based Meat. ACS OMEGA 2021; 6:33923-33931. [PMID: 34926939 PMCID: PMC8675045 DOI: 10.1021/acsomega.1c05235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
The three-dimensional formation of bio-engineered tissue for applications such as cell-based meat requires critical interaction between the bioscaffold and cellular biomass. To explore the features underlying this interaction, we have assessed the commercially available bacterial nanocellulose (BNC) product from Cass Materials for its suitability to serve as a bioscaffold for murine myoblast attachment, proliferation, and differentiation. Rigorous application of both scanning electron microscopy and transmission electron microscopy reveals cellular details of this interaction. While the retention rate of myoblast cells appears low, BNC is able to provide effective surface parameters for the formation of anchor points to form mature myotubes. Understanding the principles that govern this interaction is important for the successful scaling of these materials into edible, commercially viable, and nutritious biomass.
Collapse
Affiliation(s)
- Mark S. Rybchyn
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2033, Australia
| | - Joanna M. Biazik
- Electron
Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2033, Australia
| | - James Charlesworth
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2033, Australia
| | - Johannes le Coutre
- School
of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2033, Australia
| |
Collapse
|
41
|
Dai M, Belaïdi JP, Fleury G, Garanger E, Rielland M, Schultze X, Lecommandoux S. Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules 2021; 22:4956-4966. [PMID: 34751573 DOI: 10.1021/acs.biomac.1c00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three-dimensional (3D) bioprinting offers a great alternative to traditional techniques in tissue reconstruction, based on seeding cells manually into a scaffold, to better reproduce organs' complexity. When a suitable bioink is engineered with appropriate physicochemical properties, such a process can advantageously provide a spatial control of the patterning that improves tissue reconstruction. The design of an adequate bioink must fulfill a long list of criteria including biocompatibility, printability, and stability. In this context, we have developed a bioink containing a precisely controlled recombinant biopolymer, namely, elastin-like polypeptide (ELP). This material was further chemoselectively modified with cross-linkable moieties to provide a 3D network through photopolymerization. ELP chains were additionally either functionalized with a peptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS) or combined with collagen I to enable cell adhesion. Our ELP-based bioinks were found to be printable, while providing excellent mechanical properties such as stiffness and elasticity in their cross-linked form. Besides, they were demonstrated to be biocompatible, showing viability and adhesion of dermal normal human fibroblasts (NHF). Expressions of specific extracellular matrix (ECM) protein markers as pro-collagen I, elastin, fibrillin, and fibronectin were revealed within the 3D network containing cells after only 18 days of culture, showing the great potential of ELP-based bioinks for tissue engineering.
Collapse
Affiliation(s)
- Michèle Dai
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.,Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Jean-Philippe Belaïdi
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Maïté Rielland
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Xavier Schultze
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | | |
Collapse
|
42
|
Saddique A, Cheong IW. Recent advances in three-dimensional bioprinted nanocellulose-based hydrogel scaffolds for biomedical applications. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0926-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Ravanbakhsh H, Bao G, Luo Z, Mongeau LG, Zhang YS. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomater Sci Eng 2021; 7:4009-4026. [PMID: 34510905 DOI: 10.1021/acsbiomaterials.0c01158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extrusion-based three-dimensional (3D) printing is an emerging technology for the fabrication of complex structures with various biological and biomedical applications. The method is based on the layer-by-layer construction of the product using a printable ink. The material used as the ink should possess proper rheological properties and desirable performances. Composite materials, which are extensively used in 3D printing applications, can improve the printability and offer superior performances for the printed constructs. Herein, we review composite inks with a focus on composite hydrogels. The properties of different additives including fibers and nanoparticles are discussed. The performances of various composite inks in biological and biomedical systems are delineated through analyzing the synergistic effects between the composite ink components. Different applications, including tissue engineering, tissue model engineering, soft robotics, and four-dimensional printing, are selected to demonstrate how 3D-printable composite inks are exploited to achieve various desired functionality. This review finally presents an outlook of future perspectives on the design of composite inks.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States.,Department of Orthopedics, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Luc G Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A0C3, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Nicu R, Ciolacu F, Ciolacu DE. Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics 2021; 13:1125. [PMID: 34452086 PMCID: PMC8399340 DOI: 10.3390/pharmaceutics13081125] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nanocelluloses (NCs), with their remarkable characteristics, have proven to be one of the most promising "green" materials of our times and have received special attention from researchers in nanomaterials. A diversity of new functional materials with a wide range of biomedical applications has been designed based on the most desirable properties of NCs, such as biocompatibility, biodegradability, and their special physicochemical properties. In this context and under the pressure of rapid development of this field, it is imperative to synthesize the successes and the new requirements in a comprehensive review. The first part of this work provides a brief review of the characteristics of the NCs (cellulose nanocrystals-CNC, cellulose nanofibrils-CNF, and bacterial nanocellulose-BNC), as well as of the main functional materials based on NCs (hydrogels, nanogels, and nanocomposites). The second part presents an extensive review of research over the past five years on promising pharmaceutical and medical applications of nanocellulose-based materials, which have been discussed in three important areas: drug-delivery systems, materials for wound-healing applications, as well as tissue engineering. Finally, an in-depth assessment of the in vitro and in vivo cytotoxicity of NCs-based materials, as well as the challenges related to their biodegradability, is performed.
Collapse
Affiliation(s)
- Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Florin Ciolacu
- Department of Natural and Synthetic Polymers, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Diana E. Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| |
Collapse
|
45
|
Nanomaterials for bioprinting: functionalization of tissue-specific bioinks. Essays Biochem 2021; 65:429-439. [PMID: 34223619 DOI: 10.1042/ebc20200095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) bioprinting is rapidly evolving, offering great potential for manufacturing functional tissue analogs for use in diverse biomedical applications, including regenerative medicine, drug delivery, and disease modeling. Biomaterials used as bioinks in printing processes must meet strict physiochemical and biomechanical requirements to ensure adequate printing fidelity, while closely mimicking the characteristics of the native tissue. To achieve this goal, nanomaterials are increasingly being investigated as a robust tool to functionalize bioink materials. In this review, we discuss the growing role of different nano-biomaterials in engineering functional bioinks for a variety of tissue engineering applications. The development and commercialization of these nanomaterial solutions for 3D bioprinting would be a significant step towards clinical translation of biofabrication.
Collapse
|
46
|
Jalili AR, Satalov A, Nazari S, Rahmat Suryanto BH, Sun J, Ghasemian MB, Mayyas M, Kandjani AE, Sabri YM, Mayes E, Bhargava SK, Araki J, Zakri C, Poulin P, Esrafilzadeh D, Amal R. Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28627-28638. [PMID: 34110785 DOI: 10.1021/acsami.1c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of three-dimensional (3D) printing promises a disruption in the design and on-demand fabrication of smart structures in applications ranging from functional devices to human organs. However, the scale at which 3D printing excels is within macro- and microlevels and principally lacks the spatial ordering of building blocks at nanolevels, which is vital for most multifunctional devices. Herein, we employ liquid crystal (LC) inks to bridge the gap between the nano- and microscales in a single-step 3D printing. The LC ink is prepared from mixtures of LCs of nanocellulose whiskers and large sheets of graphene oxide, which offers a highly ordered laminar organization not inherently present in the source materials. LC-mediated 3D printing imparts the fine-tuning required for the design freedom of architecturally layered systems at the nanoscale with intricate patterns within the 3D-printed constructs. This approach empowered the development of a high-performance humidity sensor composed of self-assembled lamellar organization of NC whiskers. We observed that the NC whiskers that are flat and parallel to each other in the laminar organization allow facile mass transport through the structure, demonstrating a significant improvement in the sensor performance. This work exemplifies how LC ink, implemented in a 3D printing process, can unlock the potential of individual constituents to allow macroscopic printing architectures with nanoscopic arrangements.
Collapse
Affiliation(s)
- Ali Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Alexandra Satalov
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9, Hannover 30167, Germany
| | - Sahar Nazari
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Bryan Harry Rahmat Suryanto
- Australian Centre for Electromaterials Science, School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Jing Sun
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Mohammad Bagher Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Ahmad E Kandjani
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Ylias M Sabri
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Edwin Mayes
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Suresh K Bhargava
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Jun Araki
- Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano prefecture, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano prefecture, Japan
| | - Cécile Zakri
- Centre de Recherche Paul Pascal-CNRS, University of Bordeaux, Pessac 33600, France
| | - Philippe Poulin
- Centre de Recherche Paul Pascal-CNRS, University of Bordeaux, Pessac 33600, France
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2031, New South Wales, Australia
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| |
Collapse
|
47
|
Sartika D, Syamsu K, Warsiki E, Fahma F, Arnata IW. Nanocrystalline Cellulose from Kapok Fiber (
Ceiba pentandra
) and its Reinforcement Effect on Alginate Hydrogel Bead. STARCH-STARKE 2021. [DOI: 10.1002/star.202100033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dewi Sartika
- Faculty of Agricultural Muhammadiyah University of Makassar Makassar South Sulawesi 90221 Indonesia
| | - Khaswar Syamsu
- Department of Agroindustrial Technology Faculty of Agricultural Engineering and Technology IPB University (Bogor Agricultural University) Bogor West Java 16680 Indonesia
| | - Endang Warsiki
- Department of Agroindustrial Technology Faculty of Agricultural Engineering and Technology IPB University (Bogor Agricultural University) Bogor West Java 16680 Indonesia
| | - Farah Fahma
- Department of Agroindustrial Technology Faculty of Agricultural Engineering and Technology IPB University (Bogor Agricultural University) Bogor West Java 16680 Indonesia
| | - I. Wayan Arnata
- Department of Agroindustrial Technology Faculty of Agricultural Technology Udayana University Badung Bali 80364 Indonesia
| |
Collapse
|
48
|
Abdollahiyan P, Oroojalian F, Baradaran B, de la Guardia M, Mokhtarzadeh A. Advanced mechanotherapy: Biotensegrity for governing metastatic tumor cell fate via modulating the extracellular matrix. J Control Release 2021; 335:596-618. [PMID: 34097925 DOI: 10.1016/j.jconrel.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferation, induce their migratory into remote tissues, and promote chemotherapeutic resistance. As a newly progresses paradigm, nanoparticle-conjunctions (such as magnetic nanoparticles, and graphene derivatives nanoparticles) hold significant promises for remote regulation of cells and their relevant events at molecular scale. Despite outstanding developments in employing nanoparticles for drug targeting studies, the role of nanoparticles on cellular behaviors (proliferation, migration, and differentiation) has still required more evaluations in the field of mechanotherapy. In this paper, the in-depth contribution of mechano-transduction is discussed during tumor progression, and how these consequences can be evaluated in vitro.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Zou Q, Tian X, Luo S, Yuan D, Xu S, Yang L, Ma M, Ye C. Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks. Carbohydr Polym 2021; 269:118222. [PMID: 34294283 DOI: 10.1016/j.carbpol.2021.118222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022]
Abstract
Large, deep, complex, and severe tissue defects and deformities of the face are the problems encountered in clinical practice. Autologous tissue reconstruction or allograft face transplantation has been adopted but has problems such as blood supply difficulties, collateral damage, immune rejection, and ethical disputes. 3D bioprinting enables personalized tissue regeneration. However, simple hydrogels are prone to collapse during printing, are limited in size, and have poor shape and structure. The present study used three polysaccharide hydrogel composites of nanocellulose, agarose, and sodium alginate with seeded cells as bioinks and polyvinyl alcohol (PVA) as sacrificial material to construct the structures that did not collapse (characteristic parts, such as lips and nose). The nutrient network gradually formed a blood vessel-like structure. The hydrogels prepared using these three polysaccharides have great potential in the construction of personalized, complex, and vascularized tissue-engineered anatomical faces and provide a new strategy for autologous full face reconstruction.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China
| | - Xiaobin Tian
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Siwei Luo
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China
| | - Daizhu Yuan
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China
| | - Shunen Xu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China
| | - Long Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China
| | - Minxian Ma
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang 550004, China; National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guiyang 550004, China; Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310000, China.
| |
Collapse
|
50
|
Mettu S, Hathi Z, Athukoralalage S, Priya A, Lam TN, Ong KL, Choudhury NR, Dutta NK, Curvello R, Garnier G, Lin CSK. Perspective on Constructing Cellulose-Hydrogel-Based Gut-Like Bioreactors for Growth and Delivery of Multiple-Strain Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4946-4959. [PMID: 33890783 PMCID: PMC8154558 DOI: 10.1021/acs.jafc.1c00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 05/16/2023]
Abstract
The current perspective presents an outlook on developing gut-like bioreactors with immobilized probiotic bacteria using cellulose hydrogels. The innovative concept of using hydrogels to simulate the human gut environment by generating and maintaining pH and oxygen gradients in the gut-like bioreactors is discussed. Fundamentally, this approach presents novel methods of production as well as delivery of multiple strains of probiotics using bioreactors. The relevant existing synthesis methods of cellulose hydrogels are discussed for producing porous hydrogels. Harvesting methods of multiple strains are discussed in the context of encapsulation of probiotic bacteria immobilized on cellulose hydrogels. Furthermore, we also discuss recent advances in using cellulose hydrogels for encapsulation of probiotic bacteria. This perspective also highlights the mechanism of probiotic protection by cellulose hydrogels. Such novel gut-like hydrogel bioreactors will have the potential to simulate the human gut ecosystem in the laboratory and stimulate new research on gut microbiota.
Collapse
Affiliation(s)
- Srinivas Mettu
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Zubeen Hathi
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Sandya Athukoralalage
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Anshu Priya
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Tsz Nok Lam
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Khai Lun Ong
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Namita Roy Choudhury
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Naba Kumar Dutta
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rodrigo Curvello
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Gil Garnier
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Carol Sze Ki Lin
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| |
Collapse
|