1
|
Ojiro R, Zou X, Yamagata H, Ebizuka Y, Kobayashi M, Kigata T, Tang Q, Yoshida T, Yoshinari T, Shibutani M. Emerging mycotoxin moniliformin induces renal tubular necrosis after oral exposure in mice. Food Chem Toxicol 2025; 199:115336. [PMID: 39984025 DOI: 10.1016/j.fct.2025.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Toxicological information on moniliformin (MON), an emerging mycotoxin, is limited. This study examined the acute and 28-day toxicity of orally administered MON in male ICR mice. Regarding the acute toxicity, among single oral doses of 0, 20, 40, and 80 mg/kg body weight (BW), MON caused proximal tubular necrosis in the kidneys at ≥ 40 mg/kg BW, and the lethal dose 50 value was estimated as 68.1 mg/kg BW. Regarding the 28-day toxicity, among oral doses of 0, 10, 20, and 40 mg/kg BW/day, MON increased absolute heart weight at 40 mg/kg BW, but histopathological changes were not evident in the heart. In contrast, 40 mg/kg BW MON induced centrilobular liver cell hypertrophy accompanied by increased absolute liver weight. Moreover, MON dose-dependently increased the absolute kidney weight at ≥ 20 mg/kg BW and increased the incidence of renal tubular regeneration at 40 mg/kg BW. RNA sequencing analysis in the renal cortex after a single dose of 40 mg/kg BW MON revealed upregulation of metabolic response-related genes, such as Cyp3a13, Cyp26b1, and Cyp4f15, and oxidative stress-related Gpx7. These results suggest that MON targets the kidneys in mice. Orally ingested MON may be metabolized in the kidneys as well as in the liver, and active intermediates or reactive oxygen species may induce renal tubular toxicity, causing proximal tubular necrosis. Based on kidney changes, the no-observed-adverse-effect-level of MON in the 28-day oral toxicity study of male mice was determined to be 10 mg/kg BW/day.
Collapse
Affiliation(s)
- Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Hiroshi Yamagata
- Toxicology Division, Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka, 412-0039, Japan.
| | - Yuri Ebizuka
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Tetsuhito Kigata
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Laboratory of Veterinary Anatomy, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- General Toxicology Department, TriApex Laboratories Co., Ltd., No. 9 Xinglong Road, Jiangbei New Area, Nanjing, Jiangsu Province, 211800, China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Juan-García A. Neurotoxic implications of gliotoxin and ochratoxin A in SH-SY5Y cells: ROS-induced apoptosis and genotoxicity. Toxicol Lett 2025; 405:51-58. [PMID: 39947449 DOI: 10.1016/j.toxlet.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/16/2025]
Abstract
Gliotoxin (GTX) and ochratoxin A (OTA) are naturally produced toxins by fungi and are known for their potential health risks. With the aim of shed some light on the mechanisms by which GTX, OTA, and their combination exert toxicity at neuronal level, the following in vitro studies were conducted in SH-SY5Y cells: a) intracellular ROS monitorization by the H2-DCFDA assay b) study of the expression of pro-apoptotic genes Bcl2, Casp-3, and Bax by RT-qPCR c) study of the apoptotic-necrotic progression of SH-SY5Y cells by flow cytometry; d) study of the genotoxic potential through the in vitro micronucleus (MN) assay also by flow cytometry following OECD TG 487 guidelines. ROS production was increased when cells were exposed to mycotoxins at all scenarios tested highlighting the effects of GTX. Regarding gene expression, increases of Bax and Casp-3 genes at 1.3- and 3- folds respectively were observed when cells were exposed to GTX at 0.75 μM, with a more prominent increase after exposure to the binary combination [GTX + OTA] at [0.2 + 0.1] µM, increasing 3 and 5-folds more, respectively when compared to the control. MN formation increased a 30 % compared to control when exposed to GTX at 0.4 μM, 43 % for OTA at 0.8 μM, with the highest increase observed when cells were exposed to the combination [GTX + OTA] at [0.2 + 1.5] μM, obtaining a 65 % more MN formation. Based on the results obtained, we can conclude that for the proposed scenarios of exposure to GTX, OTA, and their combination, genotoxic effects together with oxidative effects at neuronal level in SH-SY5Y cell line, were found to play a key role in their mechanisms of toxic action.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain.
| |
Collapse
|
3
|
Lv Q, Xu W, Yang F, Wei W, Chen X, Zhang Z, Liu Y. Reproductive Toxicity of Zearalenone and Its Molecular Mechanisms: A Review. Molecules 2025; 30:505. [PMID: 39942610 PMCID: PMC11821083 DOI: 10.3390/molecules30030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Zearalenone (ZEA) is one of the common mycotoxins in feeds. ZEA and its metabolites have estrogen-like activity and can competitively bind to estrogen receptors, causing reproductive dysfunction and damage to reproductive organs. The toxicity mechanism of ZEA mainly inhibits the antioxidant pathway and antioxidant enzyme activity, induces cell cycle arrest and DNA damage, and blocks the process of cellular autophagy to produce toxic effects. In animal husbandry practice, when animals ingest ZEA-contaminated feed, it is likely to lead to abortion in females, abnormal sperm viability in males with inflammatory reactions in various organs, and cancerous changes in the reproductive organs of humans when they ingest contaminated animal products. In this paper, we reviewed in detail how ZEA induces oxidative damage by inducing the generation of reactive oxygen species (ROS) and regulating the expression of genes related to oxidative pathways, induces germ cell apoptosis through the mitochondrial and death receptor pathways, and activates the expression of genes related to autophagy in order to induce cellular autophagy. In addition, the molecular detoxification mechanism of ZEA is also explored in this paper, aiming to provide a new direction and theoretical basis for the development of new ZEA detoxification methods to better reduce the global pollution and harm caused by ZEA.
Collapse
Affiliation(s)
- Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luoyang 471023, China; (W.X.); (W.W.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins (Basel) 2025; 17:43. [PMID: 39852996 PMCID: PMC11768593 DOI: 10.3390/toxins17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = -0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = -0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (H.C.); (Y.G.-D.); (A.R.G.)
| |
Collapse
|
5
|
Fiorbelli E, Lapris M, Errico M, Della Badia A, Riahi I, Rocchetti G, Gallo A. Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins (Basel) 2024; 16:490. [PMID: 39591245 PMCID: PMC11598721 DOI: 10.3390/toxins16110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
To protect ruminants from the harmful effects of mycotoxins, anti-mycotoxin agents can be added to the dietary ration, thus guaranteeing animal health and production. Therefore, the objective of this study was to evaluate the in vitro ruminal initial sequestration (weak binding) and subsequent desorption (strong binding) of an anti-mycotoxin agent based on a mixture of adsorbing material, turmeric and milk thistle extracts and yeast-based components to adsorb or bio-convert aflatoxins (AF), fumonisins B1 and B2 (FB), trichothecene deoxynivalenol (DON), T-2 and HT-2 toxins, and zearalenone (ZEN). Two doses were tested: Dose 1 simulated 30 mg/cow/d, while Dose 2 simulated 90 mg/cow/d of the anti-mycotoxin agent. Each treatment involved three analytical replicates at each of three incubation times (1, 4, and 24 h post-incubation), with two independent experimental runs providing experimental replicates. Analytical methods, including UHPLC-HRMS and multivariate analyses, were used to both quantify mycotoxin concentrations and reveal dose-dependent reductions, with statistical validations indicating significant changes in mycotoxin levels across both dose and time. The results indicated that the anti-mycotoxin agent was able to highly bind AFB1, T2, and HT-2 toxins since its concentration was always under the limit of detection (<1 ppb). Regarding ZEN (weak binding mean: 94.6%; strong binding mean: 62.4%) and FBs (weak binding mean: 58.7%; strong binding mean: 32.3%), orthogonal contrasts indicated that the anti-mycotoxin agent was able to effectively bind these toxins using Dose 1 (p < 0.05). This finding suggests that Dose 1 may be sufficient to achieve the targeted effect and that a further increase does not significantly improve the outcome. Regarding DON, a strong linear relationship was observed between dose and adsorption. However, the complex interactions between the mycotoxin, the ruminal environment, and the anti-mycotoxin agent made it difficult to establish a clear dose-effect relationship (p > 0.10). UHPLC-HRMS analysis identified over 1500 mass features in rumen samples, which were further analyzed to assess the effects of the anti-mycotoxin agent. Hierarchical clustering analysis (HCA) revealed significant changes in the untargeted metabolomic profiles of samples treated with mycotoxins compared to control samples, particularly after 24 h with the anti-mycotoxin treatments. Clear differences were noted between strong binding and weak binding samples. Further analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted distinct metabolomic profiles, with stronger predictive ability in the strong binding group (Q2 cumulative value of 0.57) compared to the weak binding group (0.30). The analysis identified 44 discriminant compounds in the strong binding model and 16 in the weak binding model. Seven compounds were common to both groups, while silibinin, known for its antioxidant and anti-inflammatory properties, was found among the unique compounds in the weak binding group. Overall, the findings suggest that both doses of the anti-mycotoxin agent significantly influenced the chemical profiles in the rumen, particularly enhancing the binding of mycotoxins, thereby supporting the role of phytogenic extracts in mitigating mycotoxin effects.
Collapse
Affiliation(s)
- Erica Fiorbelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Michela Errico
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | | | - Insaf Riahi
- Technical Department, BIŌNTE Nutrition S.L., 43204 Reus, Spain; (A.D.B.); (I.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| |
Collapse
|
6
|
Zhou G, Hu S, Xie L, Huang H, Huang W, Zheng Q, Zhang N. Individual and combined occurrences of the prevalent mycotoxins in commercial feline and canine food. Mycotoxin Res 2024; 40:547-558. [PMID: 38990416 DOI: 10.1007/s12550-024-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mycotoxins, such as aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisins (FBs), ochratoxin A (OTA), T-2 toxin (T-2), and zearalenone (ZEN), can contaminate animal feeds and pose risks to animal health and production performance. These mycotoxins are commonly found in cereals and grains, with the increased use of cereals in pet food, there is a rising concern about mycotoxin contamination among pet owners. To address this, we analyzed imported brands of feline and canine food from the Chinese market produced in 2021-2022. Ninety-three samples were analyzed, comprising 45 feline food and 48 canine food samples. Among them, 14 were canned food and 79 were dry food. The results indicate that AFB1, DON, FBs, OTA, T-2, and ZEN occurred in 32.26%, 98.92%, 22.58%, 73.12%, 55.91%, and 7.53% of the samples, respectively. The most prevalent mycotoxin was DON, followed by OTA, T-2, AFB1, and FBs, whereas ZEN was less frequently detected. The mean concentrations of the six mycotoxins in pet feed samples were 3.17 μg/kg for AFB1, 0.65 mg/kg for DON, 2.15 mg/kg for FBs, 6.27 μg/kg for OTA, 20.00 μg/kg for T-2, and 30.00 μg/kg for ZEN. The levels of mycotoxins were generally below the limits of the Pet Feed Hygiene Regulations of China and the EU. Notably, a substantial majority of the pet food samples (88 out of 93) were contaminated by two or more mycotoxins. AFB1, FBs, OTA, and ZEN occurred slightly more often in feline food than in canine food. Except for OTA, the contamination rates for the other five mycotoxins in canned food were lower than those in dry food. Moreover, except for AFB1, the levels of the other five mycotoxins in canned foods were lower than those in dry foods. This study highlights the widespread contamination of pet foods with mycotoxins, which poses a significant risk to pets from continuous exposure to multiple mycotoxins.
Collapse
Affiliation(s)
- Guangteng Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Shen Hu
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Hao Huang
- Department of Animal Genetics, Breeding and Reproduction Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Qiang Zheng
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
7
|
Yuan S, Chen Y, Wen A, Liu Q, He Y, Yu H, Guo Y, Cheng Y, Qian H, Xie Y, Yao W. Deciphering the interactions between altertoxins and glutenin based on molecular dynamic simulation: inspiration from detection. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8813-8822. [PMID: 38967243 DOI: 10.1002/jsfa.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Mycotoxin contamination of food has been gaining increasing attention. Hidden mycotoxins that interact with biological macromolecules in food could make the detection of mycotoxins less accurate, potentially leading to the underestimation of the total exposure risk. Interactions of the mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) with high-molecular glutenin were explored in this study. RESULTS The recovery rates of AOH and AME (1, 2, and 10 μg kg-1) in three types of grains (rice, corn, and wheat) were relatively low. Molecular dynamics (MD) simulations indicated that AOH and AME bound to glutenin spontaneously. Hydrogen bonds and π-π stacking were the primary interaction forces at the binding sites. Alternariol with one additional hydroxyl group exhibited stronger binding affinity to glutenin than AME when analyzing average local ionization energy. The average interaction energy between AOH and glutenin was -80.68 KJ mol-1, whereas that of AME was -67.11 KJ mol-1. CONCLUSION This study revealed the mechanisms of the interactions between AOH (or AME) and high-molecular glutenin using MD and molecular docking. This could be useful in the development of effective methods to detect pollution levels. These results could also play an important role in the evaluation of the toxicological properties of bound altertoxins. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yingying He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Marhaba M, Nagendla NK, Anjum S, Ganneru S, Singh V, Pal S, Mudiam MKR, Ansari KM. Liquid chromatography-high-resolution mass spectrometry-based metabolomics revealing the effects of zearalenone and alpha-zearalenol on human endometrial cancer cells. Toxicol Res (Camb) 2024; 13:tfae169. [PMID: 39417035 PMCID: PMC11474235 DOI: 10.1093/toxres/tfae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Human exposure to mycotoxins through food involve a mixture of compounds, which can be harmful to human health. The Fusarium fungal species are known to produce zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, and its metabolite alpha-zearalenol (α-ZEL), both of which possess endocrine-disruptive properties. Given their potential harm to human health through food exposure, investigating the combined effects of ZEN and α-ZEL becomes crucial. Hence, the combined impact of ZEN and α-ZEL study hold significant importance. This in vitro study delves into the critical area, examining their combined impact on the proliferation and metabolic profile of endometrial cancer Ishikawa cells via sulforhodamine, clonogenic, proliferating cell nuclear antigen (PCNA) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) based untargeted metabolomics. Low concentrations of ZEN (25 nm), α-ZEL (10 nm), or a combination of both were observed to significantly enhance cell proliferation of Ishikawa cells, as evidenced by PCNA immunostaining, immunoblotting as well and clonogenic assays. The metabolomics revealed the perturbations in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and phenylalanine, tyrosine, tryptophan biosynthesis provides valuable insights into potential mechanism by which these mycotoxins may facilitate cell proliferation. However, further investigations are warranted to comprehensively understand the implications of these findings and their possible implications for human health.
Collapse
Affiliation(s)
- Marhaba Marhaba
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Narendra Kumar Nagendla
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Saria Anjum
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Sireesha Ganneru
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Varsha Singh
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Saurabh Pal
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
- Advanced Research Methodologies, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
9
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
10
|
Marin DE, Bulgaru VC, Pertea A, Grosu IA, Pistol GC, Taranu I. Alternariol Monomethyl-Ether Induces Toxicity via Cell Death and Oxidative Stress in Swine Intestinal Epithelial Cells. Toxins (Basel) 2024; 16:223. [PMID: 38787075 PMCID: PMC11125839 DOI: 10.3390/toxins16050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Alternariol monomethyl-ether (AME), together with altenuene and alternariol, belongs to the Alternaria mycotoxins group, which can contaminate different substrates, including cereals. The aim of the present study was to obtain a deeper understanding concerning the effects of AME on pig intestinal health using epithelial intestinal cell lines as the data concerning the possible effects of Alternaria toxins on swine are scarce and insufficient for assessing the risk represented by Alternaria toxins for animal health. Our results have shown a dose-related effect on IPEC-1 cell viability, with an IC50 value of 10.5 μM. Exposure to the toxin induced an increase in total apoptotic cells, suggesting that AME induces programmed cell death through apoptosis based on caspase-3/7 activation in IPEC-1 cells. DNA and protein oxidative damage triggered by AME were associated with an alteration of the antioxidant response, as shown by a decrease in the enzymatic activity of catalase and superoxide dismutase. These effects on the oxidative response can be related to an inhibition of the Akt/Nrf2/HO-1 signaling pathway; however, further studies are needed in order to validate these in vitro data using in vivo trials in swine.
Collapse
Affiliation(s)
- Daniela Eliza Marin
- National Research and Development Institute for Biology and Animal Nutrition (INCDBNA-IBNA-Balotesti), Calea Bucuresti nr.1, 077015 Balotesti Ilfov, Romania; (V.C.B.); (A.P.); (I.A.G.); (G.C.P.); (I.T.)
| | | | | | | | | | | |
Collapse
|
11
|
Lu Y, Wen J, Wang C, Wang M, Jiang F, Miao L, Xu M, Li Y, Chen X, Chen Y. Mesophilic Argonaute-Based Single Polystyrene Sphere Aptamer Fluorescence Platform for the Multiplexed and Ultrasensitive Detection of Non-Nucleic Acid Targets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308424. [PMID: 38081800 DOI: 10.1002/smll.202308424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Indexed: 01/04/2024]
Abstract
The rapid, simultaneous, and accurate identification of multiple non-nucleic acid targets in clinical or food samples at room temperature is essential for public health. Argonautes (Agos) are guided, programmable, target-activated, next-generation nucleic acid endonucleases that could realize one-pot and multiplexed detection using a single enzyme, which cannot be achieved with CRISPR/Cas. However, currently reported thermophilic Ago-based multi-detection sensors are mainly employed in the detection of nucleic acids. Herein, this work proposes a Mesophilic Argonaute Report-based single millimeter Polystyrene Sphere (MARPS) multiplex detection platform for the simultaneous analysis of non-nucleic acid targets. The aptamer is utilized as the recognition element, and a single millimeter-sized polystyrene sphere (PSmm) with a large concentration of guide DNA on the surface served as the microreactor. These are combined with precise Clostridium butyricum Ago (CbAgo) cleavage and exonuclease I (Exo I) signal amplification to achieve the efficient and sensitive recognition of non-nucleic acid targets, such as mycotoxins (<60 pg mL-1) and pathogenic bacteria (<102 cfu mL-1). The novel MARPS platform is the first to use mesophilic Agos for the multiplex detection of non-nucleic acid targets, overcoming the limitations of CRISPR/Cas in this regard and representing a major advancement in non-nucleic acid target detection using a gene-editing-based system.
Collapse
Affiliation(s)
- Yingying Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junping Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mengjiao Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Feng Jiang
- Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan, 430075, China
| | - Lin Miao
- Department of Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, 430070, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Minggao Xu
- Department of Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohua Chen
- Department of Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, 430070, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
12
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
13
|
Atanasoff-Kardjalieff AK, Berger H, Steinert K, Janevska S, Ponts N, Humpf HU, Kalinina S, Studt-Reinhold L. Incorporation of the histone variant H2A.Z counteracts gene silencing mediated by H3K27 trimethylation in Fusarium fujikuroi. Epigenetics Chromatin 2024; 17:7. [PMID: 38509556 PMCID: PMC10953111 DOI: 10.1186/s13072-024-00532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Fusarium fujikuroi is a pathogen of rice causing diverse disease symptoms such as 'bakanae' or stunting, most likely due to the production of various natural products (NPs) during infection. Fusaria have the genetic potential to synthesize a plethora of these compounds with often diverse bioactivity. The capability to synthesize NPs exceeds the number of those being produced by far, implying a gene regulatory network decisive to induce production. One such regulatory layer is the chromatin structure and chromatin-based modifications associated with it. One prominent example is the exchange of histones against histone variants such as the H2A variant H2A.Z. Though H2A.Z already is well studied in several model organisms, its regulatory functions are not well understood. Here, we used F. fujikuroi as a model to explore the role of the prominent histone variant FfH2A.Z in gene expression within euchromatin and facultative heterochromatin. RESULTS Through the combination of diverse '-omics' methods, we show the global distribution of FfH2A.Z and analyze putative crosstalks between the histone variant and two prominent histone marks, i.e., H3K4me3 and H3K27me3, important for active gene transcription and silencing, respectively. We demonstrate that, if FfH2A.Z is positioned at the + 1-nucleosome, it poises chromatin for gene transcription, also within facultative heterochromatin. Lastly, functional characterization of FfH2A.Z overexpression and depletion mutants revealed that FfH2A.Z is important for wild type-like fungal development and secondary metabolism. CONCLUSION In this study, we show that the histone variant FfH2A.Z is a mark of positive gene transcription and acts independently of the chromatin state most likely through the stabilization of the + 1-nucleosome. Furthermore, we demonstrate that FfH2A.Z depletion does not influence the establishment of both H3K27me3 and H3K4me3, thus indicating no crosstalk between FfH2A.Z and both histone marks. These results highlight the manifold functions of the histone variant FfH2A.Z in the phytopathogen F. fujikuroi, which are distinct regarding gene transcription and crosstalk with the two prominent histone marks H3K27me3 and H3K4me3, as proposed for other model organisms.
Collapse
Affiliation(s)
- Anna K Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Katharina Steinert
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Slavica Janevska
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, 07745, Jena, Germany
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), Villenave d'Ornon, 33882, France
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria.
| |
Collapse
|
14
|
Alijani Mamaghani N, Masiello M, Somma S, Moretti A, Saremi H, Haidukowski M, Altomare C. Endophytic Alternaria and Fusarium species associated to potato plants ( Solanum tuberosum L.) in Iran and their capability to produce regulated and emerging mycotoxins. Heliyon 2024; 10:e26385. [PMID: 38434378 PMCID: PMC10907534 DOI: 10.1016/j.heliyon.2024.e26385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Endophytic fungi live inside virtually every plant species, without causing any apparent disease or damage to the host. Nevertheless, under particular conditions, mutualistic lifestyle of endophytes may change to pathogenic. In this study, the biodiversity of Alternaria and Fusarium species, the two most abundant endophytic fungi isolated from healthy potato plants in two climatically different regions of Iran, Ardebil in the north-west and Kerman in the south-east, was investigated. Seventy-five Fusarium strains and 83 Alternaria strains were molecularly characterized by multi-locus gene sequencing. Alternaria strains were characterized by the sequences of gpd and caM gene fragments and the phylogenetic tree was resolved in 3 well-separated clades. Seventy-three strains were included in the clade A, referred as Alternaria section, 6 strains were included in clade B, referred as Ulocladioides section, and 4 strains were included in clade C, referred as Infectoriae section. Fusarium strains, identified by sequencing the translation elongation factor 1α (tef1), β-tubulin (tub2) and internal transcribed spacer (ITS) genomic regions, were assigned to 13 species, viz. F. brachygibosum, F. clavum, F. equiseti, F. flocciferum, F. incarnatum, F. nirenbergiae, F. nygamai, F. oxysporum, F. proliferatum, F. redolens, F. sambucinum, F. solani and F. thapsinum. Twenty-six selected strains, representative of F. equiseti, F. nirenbergiae, F. oxysporum, F. nygamai, F. proliferatum, and F. sambucinum, were also tested for production of the mycotoxins deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS), T-2 toxin (T-2), beauvericin (BEA), enniatins (ENNs), fumonisins (FBs), fusaric acid (FA) and moniliformin (MON). None of the tested strains produced trichothecene toxins (DON, NIV, DAS and T-2). Two out of 2 F. equiseti isolates, 1/6 F. oxysporum, 1/3 F. proliferatum, and 1/9 F. nygamai did not produce any of the tested toxins; the rest of strains produced one or more BEA, ENNs, FBs, FA and MON toxins. The most toxigenic strain, F. nygamai ITEM-19012, produced the highest quantities of FBs (7946, 4693 and 4333 μg/g of B1, B2, and B3 respectively), along with the highest quantities of both BEA (4190 μg/g) and MON (538 μg/g). These findings suggest that contamination of potato tubers with mycotoxins in the field or at post-harvest, due to a change in lifestyle of endophytic microflora, should be carefully considered and furtherly investigated.
Collapse
Affiliation(s)
- Nasim Alijani Mamaghani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Mario Masiello
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Stefania Somma
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Hossein Saremi
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 77871-31587, Karaj, Iran
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, 70126, Bari, Italy
| |
Collapse
|
15
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Juan-García A. Involvement of pro-inflammatory mediators and cell cycle disruption in neuronal cells induced by gliotoxin and ochratoxin A after individual and combined exposure. Toxicol Lett 2024; 393:24-32. [PMID: 38244709 DOI: 10.1016/j.toxlet.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Mycotoxins such as gliotoxin (GTX) and ochratoxin A (OTA) are secondary metabolites of Aspergillus and Penicillum found in food and feed. Both mycotoxins have shown to exert a detrimental effect on neuronal activity. The following study was carried out to elucidate the mechanisms by which GTX and OTA exert their toxicity. Non-differentiated SH-SY5Y neuronal-like cells were treated with GTX, OTA and their combinations to assess their cytotoxic effect using the MTT assay during 24, 48 and 72 h of exposure. Based on the results of the cytotoxic assays, cell cycle proliferation and immunological mediators were measured by determining the production of IL-6 and TNF-α using flow cytometry and ELISA, respectively. The IC50 values obtained were 1.24 and 1.35 µM when SH-SY5Y cells were treated with GTX at 48 h and 72 h, respectively. IC50 values of 8.25, 5.49 and 4.5 µM were obtained for OTA treatment at 24 h, 48 h and 72 h, respectively. The SubG0 phase increased in both treatments at 24 and 48 h. On the other hand, IL-6 and TNF-α production was increased in all mycotoxin treatments studied and was more pronounced for [GTX + OTA] after 48 h exposure. The additive and synergistic effect observed by the isobologram analysis between GTX and OTA resulted to a higher cytotoxicity which can be explained by the increased production of IL-6 and TNF-α inflammatory mediators that play an important role in the toxicity mechanism of these mycotoxins.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
16
|
Martins D, Lemos A, Silva J, Rodrigues M, Simões J. Mycotoxins evaluation of total mixed ration (TMR) in bovine dairy farms: An update. Heliyon 2024; 10:e25693. [PMID: 38370215 PMCID: PMC10867658 DOI: 10.1016/j.heliyon.2024.e25693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The total mixed ration (TMR) is currently a widespread method to feed dairy cows. It is a mixture of raw fodder and concentrate feed that can be contaminated by several mycotoxins. The main aim of this paper was to provide a critical review on TMR mycotoxin occurrence and its usefulness to monitor and control them on-farm. Aflatoxins, zearalenone, deoxynivalenol, T-2 toxin and fumonisins (regulated mycotoxins) are the most prevalent mycotoxins evaluated in TMR. Nonetheless, several emerging mycotoxins represent a health risk at the animal level regarding their prevalence and level in TMR. Even when measured at low levels, the co-occurrence of mycotoxins is frequent and synergistic effects on animal health are still underevaluated. Similar to the animal feed industry, on-farm plans monitoring mycotoxin feed contamination can be developed as a herd health management program. The estimated daily intake of mycotoxins should be implemented, but thresholds for each mycotoxin are not currently defined in dairy farms.
Collapse
Affiliation(s)
- Daniela Martins
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Ana Lemos
- Animal Nutrition, DSM-Firmenich, the Netherlands
| | - João Silva
- CapêloVet, Lda, 4755-252, Barcelos, Portugal
| | | | - João Simões
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
17
|
Goessens T, Mouchtaris-Michailidis T, Tesfamariam K, Truong NN, Vertriest F, Bader Y, De Saeger S, Lachat C, De Boevre M. Dietary mycotoxin exposure and human health risks: A protocol for a systematic review. ENVIRONMENT INTERNATIONAL 2024; 184:108456. [PMID: 38277998 PMCID: PMC10895515 DOI: 10.1016/j.envint.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Mycotoxins are toxic fungal secondary metabolites that contaminate a wide spectrum of essential foods worldwide, such as grain-based products, nuts and spices, causing adverse health effects pertaining to their carcinogenic, nephrotoxic and hepatotoxic nature, among others. AIM The aim of this systematic review (SR) is to systematically search for, appraise and synthesize primary research evidence to identify what is known about dietary mycotoxin-related health effects and what remains unknown, as well as the uncertainty around findings and the recommendations for the future. SEARCH STRATEGY AND ELIGIBILITY CRITERIA Search strategies, as well as eligibility criteria were structured according to a predefined PECO (population, exposure, comparison, and outcome) research question and developed in an iterative scoping process. Several bibliographic databases, including Embase, Cochrane Library, Pubmed, Web of Science Core Collection and Scopus, will be searched. Primary research on any measured or modelled dietary exposure to a single or multiple mycotoxins, and adverse human health outcomes (i.e. cancer, non-carcinogenic diseases, and reproductive & developmental adverse outcomes) will be included, and references will be imported into Covidence. In vitro, ex vivo, in silico, animal and review studies, as well as expert's opinions, secondary literature, conference abstracts, presentations, posters, book chapters, dissertations and studies involving non-dietary mycotoxin exposure, will be excluded. STUDY SELECTION Two independent reviewers will screen titles and abstracts, and review full-texts. Any disagreements will be resolved by a third reviewer based on two-third majority. DATA EXTRACTION Data from retained eligible studies will be extracted by the principal reviewer, and peer-checked by a second reviewer. STUDY QUALITY ASSESSMENT Eligible studies will be evaluated for risk of bias (Overall High-Quality Assessment Tool, OHAT) and certainty of evidence (Grading of Recommendations Assessment, Development and Evaluation, GRADE). EVIDENCE SYNTHESIS A detailed summary of the included studies will be provided within a tabular format and narratively discussed. Heat maps will be constructed to provide information on available knowledge (gaps), and a meta-analysis may be performed based on the variability in predefined PECO elements and depending on the heterogeneity of studies. CONCLUSION This protocol describes the methodology for the conduct of a SR on mycotoxin-related human health risks, that could guide future research and inform regulatory decisions, as emphasized by the European Commission within the field of regulatory risk assessment for emerging chemicals.
Collapse
Affiliation(s)
- T Goessens
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - T Mouchtaris-Michailidis
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - K Tesfamariam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - N N Truong
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - F Vertriest
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Ghent University, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent, Belgium.
| | - Y Bader
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - S De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - C Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - M De Boevre
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Saifi IJ, Kumar M, Maurya K, Mandal P, Srivastava V, Ansari KM. Development of an immunoassay for the detection of mycotoxins using xMAP technology and its evaluation in black tea samples. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:385-396. [PMID: 38196712 PMCID: PMC10772045 DOI: 10.1007/s13197-023-05848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/05/2023] [Accepted: 09/11/2023] [Indexed: 01/11/2024]
Abstract
Mycotoxins, a natural food contaminant, are secondary metabolites of fungi. Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are two major mycotoxins found in various food commodities. These mycotoxins are hepatotoxic, nephrotoxic, cytotoxic, mutagenic and carcinogenic, thus they are a public health concern and their monitoring in food commodities is necessary. There are several conventional techniques available for mycotoxin detection, such as HPLC, LCMS, and ELISA. However, extensive nature and huge cost allowances make it challenging to deploy these techniques for monitoring of mycotoxins in the large sample size. Therefore, a robust, responsive and high-throughput technique is required. Here, we aimed to develop a multiplexed Luminex suspension assay based on multi analyte profiling (xMAP) technology for the simultaneous detection of AFB1 and OTA in the black tea, which is found to be contaminated with these mycotoxins during the cultivation or processing steps. Limit of detection for AFB1 and OTA, was 0.06 ng/ml and 0.49 ng/ml, respectively without any cross-reactivity with other mycotoxins and this assay is suitable for simultaneous detection of AFB1 and OTA in the same sample. Collectively, based on the results, we suggest that the developed Luminex suspension assay is sensitive, accurate, rapid and suitable for high-throughput screening of multiple mycotoxins. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05848-3.
Collapse
Affiliation(s)
- Ishrat Jahan Saifi
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002 India
| | - Manoj Kumar
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Kamlesh Maurya
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Payal Mandal
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Vikas Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002 India
- Systems Toxicology and Health Risk Assessment, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
19
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
20
|
Leite M, Freitas A, Barbosa J, Ramos F. Regulated and Emerging Mycotoxins in Bulk Raw Milk: What Is the Human Risk? Toxins (Basel) 2023; 15:605. [PMID: 37888636 PMCID: PMC10610745 DOI: 10.3390/toxins15100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Mycotoxins are abiotic hazards whose contamination occurs at the pre- and post-harvest stages of the maize value chain, with animal exposure through contaminated feed leading to their excretion into milk. Currently, only aflatoxin M1 is regulated in milk products. Since feed materials and complete feed present a multi-mycotoxin composition and are the main mycotoxin source into milk, it is important to recognize the occurrence of multiple toxins and their co-occurrence in this highly consumed food product. The aim of this study was to determine the content of regulated and emerging mycotoxins in milk samples, which allowed for evaluating the occurrence and co-occurrence patterns of different mycotoxins known to contaminate feed materials and complete animal feed. Human exposure considering the occurrence patterns obtained was also estimated. Aflatoxins, fumonisins, zearalenone, and emerging mycotoxins were among the mycotoxins found to be present in the 100 samples analyzed. Concentrations ranged from 0.006 to 16.3 μg L-1, with no sample exceeding the AFM1 maximum level. Though several mycotoxins were detected, no exceeding values were observed considering the TDI or PMTDI. It can be concluded that the observed exposure does not pose a health risk to milk consumers, though it is important to recognize vulnerable age groups.
Collapse
Affiliation(s)
- Marta Leite
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Jorge Barbosa
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| |
Collapse
|
21
|
Hasuda AL, Person E, Khoshal A, Bruel S, Puel S, Oswald IP, Bracarense APFRL, Pinton P. Emerging mycotoxins induce hepatotoxicity in pigs' precision-cut liver slices and HepG2 cells. Toxicon 2023; 231:107195. [PMID: 37315815 DOI: 10.1016/j.toxicon.2023.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Emerging mycotoxins are currently gaining more attention due to their high frequency of contamination in foods and grains. However, most data available in the literature are in vitro, with few in vivo results that prevent establishing their regulation. Beauvericin (BEA), enniatins (ENNs), emodin (EMO), apicidin (API) and aurofusarin (AFN) are emerging mycotoxins frequently found contaminating food and there is growing interest in studying their impact on the liver, a key organ in the metabolization of these components. We used an ex vivo model of precision-cut liver slices (PCLS) to verify morphological and transcriptional changes after acute exposure (4 h) to these mycotoxins. The human liver cell line HepG2 was used for comparison purposes. Most of the emerging mycotoxins were cytotoxic to the cells, except for AFN. In cells, BEA and ENNs were able to increase the expression of genes related to transcription factors, inflammation, and hepatic metabolism. In the explants, only ENN B1 led to significant changes in the morphology and expression of a few genes. Overall, our results demonstrate that BEA, ENNs, and API have the potential to be hepatotoxic.
Collapse
Affiliation(s)
- Amanda Lopes Hasuda
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil; TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Elodie Person
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Abdullah Khoshal
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Sandrine Bruel
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France
| | - Sylvie Puel
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Isabelle P Oswald
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Philippe Pinton
- TOXALIM (UMR 1331), Institute National de Recherche pour L'Agriculture L'Alimentation et L'Environnement Centre Occitanie-Toulouse, UPS, 31027, Toulouse, France.
| |
Collapse
|
22
|
Xiao Z, Huang G, Lu D. A MAPK signaling cascade regulates the fusaric acid-induced cell death in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154049. [PMID: 37423042 DOI: 10.1016/j.jplph.2023.154049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Mycotoxin contamination of foods and feeds is a global problem. Fusaric acid (FA) is a mycotoxin produced by Fusarium species that are phytopathogens of many economically important plant species. FA can cause programmed cell death (PCD) in several plant species. However, the signaling mechanisms of FA-induced cell death in plants are largely unknown. Here we showed that FA induced cell death in the model plant Arabidopsis thaliana, and MPK3/6 phosphorylation was triggered by FA in Arabidopsis. Both the acid nature and the radical of FA are required for its activity in inducing MPK3/6 activation and cell death. Expression of the constitutively active MKK5DD resulted in the activation of MPK3/6 and promoted the FA-induced cell death. Our work demonstrates that the MKK5-MPK3/6 cascade positively regulates FA-induced cell death in Arabidopsis and also provides insight into the mechanisms of how cell death is induced by FA in plants.
Collapse
Affiliation(s)
- Zejun Xiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhong Huang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Dongping Lu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Kleber A, Gruber-Dorninger C, Platzer A, Payet C, Novak B. Effect of Fungicide Treatment on Multi-Mycotoxin Occurrence in French Wheat during a 4-Year Period. Toxins (Basel) 2023; 15:443. [PMID: 37505712 PMCID: PMC10467151 DOI: 10.3390/toxins15070443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Wheat represents one of the most widely consumed cereals worldwide. Cultivated in winter and spring, it is vulnerable to an array of different pathogens, including fungi, which are managed largely through the in-field application of fungicides. During this study, a 4-year field investigation (2018-2021) was performed in France, aiming to assess the efficacy of fungicide treatment to reduce mycotoxin contamination in common and durum wheat. Several different commercially available fungicides were applied via sprayers. Concentrations of mycotoxins and fungal metabolites in wheat were determined using a multi-analyte liquid-chromatography-tandem-mass-spectrometry-based method. The highest contamination levels and strongest effects of fungicides were observed in 2018, followed by 2021. A significant fungicide-mediated reduction was observed for the trichothecenes deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, and nivalenol-3-glucoside. Furthermore, fungicide treatment also reduced levels of culmorin and its hydroxy metabolites 5- and 15-hydroxy-culmorin, as well as aurofusarin. Interestingly, the Alternaria metabolite infectopyron was increased following fungicide treatment. In conclusion, fungicide treatment was effective in reducing mycotoxin levels in wheat. However, as complete prevention of mycotoxin contamination was not achieved, fungicide treatment should always be combined with other pre- and post-harvest mycotoxin mitigation strategies to improve food and feed safety.
Collapse
Affiliation(s)
- Alexandra Kleber
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Alexander Platzer
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Barbara Novak
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| |
Collapse
|
24
|
Garcia I, Valente D, Carolino N, Dinis H, Sousa R, Duarte SC, Silva LJG, Pereira AMPT, Pena A. Occurrence of zearalenone in dairy farms - A study on the determinants of exposure and risk assessment. Toxicon 2023; 225:107051. [PMID: 36804606 DOI: 10.1016/j.toxicon.2023.107051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/21/2023]
Abstract
The Azorean dairy industry is based on a semi-intensive model. Due to the few storage facilities and the large climatic fluctuations that characterize the Azores, the complete feed mixture (total mixed ration - TMR) is susceptible to the proliferation of a variety of fungi and mycotoxin contamination. Thus, chronic ingestion of these xenobiotics may lead to increased susceptibility to disease, loss of reproductive performance and, in the case of dairy cattle, decreased productivity and quality of milk produced. Since it is impossible to eliminate completely the presence of mycotoxins, it is essential to ensure the implementation of strategies to reduce their concentration in products intended for food and feed, as well as to monitor and control the levels present in food. This study aimed to evaluate the occurrence zearalenone (ZEA) in feed (TMR) in four dairy cattle farms on the Azorean Island of São Miguel and relate it to the occurrence of this mycotoxin in the milk produced, by associating several production and health indicators translated by the monthly milk contrast. To this end, the monthly milk contrast data, the determination of ZEA in the ingested feed and the (individual) milk samples from the four farms included in the study were used. Eighty-three (98.8%) of the milk samples under study had detectable ZEA levels (1.56 ± 1.36 μg/L), higher than reported in previous similar studies. Although ZEA concentration was not significantly associated with any production indicator analyzed (days in milk, age at calving, milk yield, protein content, butyrate content, somatic cell concentration and urea), it was found that the production regime and type of feed management is a major factor in the exposure of animals to high mycotoxin contents. Further studies are recommended to ensure continued monitoring and reduction of the risk associated with exposure of animals and humans to ZEA.
Collapse
Affiliation(s)
- Inês Garcia
- Departamento de Ciências Veterinárias/ Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário- Bloco E, Lordemão, 3020-210, Coimbra, Portugal
| | - Diana Valente
- Departamento de Ciências Veterinárias/ Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário- Bloco E, Lordemão, 3020-210, Coimbra, Portugal
| | - Nuno Carolino
- Departamento de Ciências Veterinárias/ Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário- Bloco E, Lordemão, 3020-210, Coimbra, Portugal; Centre for Interdisciplinary Research in Animal Health (CIISA), Universidade de Lisboa.Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Hélder Dinis
- Departamento de Nutrição Animal, Associação Agrícola de São Miguel - Cooperativa União Agrícola (AASM-CUA), Recinto da Feira - Campo de Santana, 9600-096, Vila de Rabo de Peixe - Ribeira Grande, São Miguel, Açores, Portugal
| | - Rui Sousa
- Departamento de Nutrição Animal, Associação Agrícola de São Miguel - Cooperativa União Agrícola (AASM-CUA), Recinto da Feira - Campo de Santana, 9600-096, Vila de Rabo de Peixe - Ribeira Grande, São Miguel, Açores, Portugal
| | - Sofia C Duarte
- Departamento de Ciências Veterinárias/ Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário- Bloco E, Lordemão, 3020-210, Coimbra, Portugal; LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - Liliana J G Silva
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - André M P T Pereira
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Polo III, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
25
|
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins (Basel) 2023; 15:146. [PMID: 36828460 PMCID: PMC9958648 DOI: 10.3390/toxins15020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxin risk in the feed supply chain poses a concern to animal and human health, economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points. Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed for an efficient mycotoxin management. This review provides an overview of the use of the electronic nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better understanding of the needs of the feed industry for a safety and quality management of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be designed for each specific application. Robust and suitable e-nose method and advancements in signal processing algorithms must be validated for specific needs.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| |
Collapse
|
26
|
Schincaglia A, Aspromonte J, Franchina FA, Chenet T, Pasti L, Cavazzini A, Purcaro G, Beccaria M. Current Developments of Analytical Methodologies for Aflatoxins' Determination in Food during the Last Decade (2013-2022), with a Particular Focus on Nuts and Nut Products. Foods 2023; 12:527. [PMID: 36766055 PMCID: PMC9914313 DOI: 10.3390/foods12030527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques.
Collapse
Affiliation(s)
- Andrea Schincaglia
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA, CONICET, Calle 47 Esq. 115, La Plata 1900, Argentina
| | - Flavio A. Franchina
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
27
|
Puvača N, Avantaggiato G, Merkuri J, Vuković G, Bursić V, Cara M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins (Basel) 2022; 14:791. [PMID: 36422965 PMCID: PMC9695878 DOI: 10.3390/toxins14110791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The Alternaria mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME), and tentoxin (TEN) are mycotoxins, which can contaminate cereal-based raw materials. Today, wheat is one of the most important crops in temperate zones, and it is in increasing demand in the Western Balkans countries that are urbanizing and industrializing. This research aimed to investigate the occurrence and determine the concentration of Alternaria mycotoxins AOH, AME, and TEN in wheat samples from the Republic of Serbia and the Republic of Albania, harvested in the year 2020 in the period between 15 June and 15 July. A total of 80 wheat grain samples, 40 from each country, were analyzed by an QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. From the obtained results, it can be seen that the mean concentration of AOH was 3.3 µg/kg and AME was 2.2 µg/kg in wheat samples from Serbia, while TEN from both Serbia and Albania was under the limit of quantification (
Collapse
Affiliation(s)
- Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy
| | - Jordan Merkuri
- Department of Plant Protection, Faculty of Agriculture and Environment, Agricultural University of Tirana, Koder Kamez, 1029 Tirana, Albania
| | - Gorica Vuković
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade-Zemun, Serbia
| | - Vojislava Bursić
- Department for Phytomedicine and Environmental Protection, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Magdalena Cara
- Department of Plant Protection, Faculty of Agriculture and Environment, Agricultural University of Tirana, Koder Kamez, 1029 Tirana, Albania
| |
Collapse
|
28
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
29
|
Ji J, Yu J, Ye Y, Sheng L, Fang J, Yang Y, Sun X. Biodegradation methods and product analysis of zearalenone and its future development trend: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Resveratrol Protects against Zearalenone-Induced Mitochondrial Defects during Porcine Oocyte Maturation via PINK1/Parkin-Mediated Mitophagy. Toxins (Basel) 2022; 14:toxins14090641. [PMID: 36136579 PMCID: PMC9503427 DOI: 10.3390/toxins14090641] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria hold redox homeostasis and energy metabolism as a crucial factor during oocyte maturation, while the exposure of estrogenic mycotoxin zearalenone causes developmental incapacity in porcine oocyte. This study aimed to reveal a potential resistance of phytoalexin resveratrol against zearalenone during porcine oocyte maturation and whether its mechanism was related with PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. Porcine oocytes were exposed to 20 μM zearalenone with or without 2 μM resveratrol during in vitro maturation. As for the results, zearalenone impaired ultrastructure of mitochondria, causing mitochondrial depolarization, oxidative stress, apoptosis and embryonic developmental incapacity, in which mitophagy was induced in response to mitochondrial dysfunction. Phytoalexin resveratrol enhanced mitophagy through PINK1/Parkin in zearalenone-exposed oocytes, manifesting as enhanced mitophagy flux, upregulated PINK1, Parkin, microtubule-associated protein light-chain 3 beta-II (LC3B-II) and downregulated substrates mitofusin 2 (MFN2), voltage-dependent anion channels 1 (VDAC1) and p62 expressions. Resveratrol redressed zearalenone-induced mitochondrial depolarization, oxidative stress and apoptosis, and accelerated mitochondrial DNA copy during maturation, which improved embryonic development. This study offered an antitoxin solution during porcine oocyte maturation and revealed the involvement of PINK1/Parkin-mediated mitophagy, in which resveratrol mitigated zearalenone-induced embryonic developmental incapacity.
Collapse
|
31
|
Mackay N, Marley E, Leeman D, Poplawski C, Donnelly C. Analysis of Aflatoxins, Fumonisins, Deoxynivalenol, Ochratoxin A, Zearalenone, HT-2, and T-2 Toxins in Animal Feed by LC-MS/MS Using Cleanup with a Multi-Antibody Immunoaffinity Column. J AOAC Int 2022; 105:1330-1340. [PMID: 35258598 PMCID: PMC9446684 DOI: 10.1093/jaoacint/qsac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Regulations limiting aflatoxin levels in animal feed and guidance values for maximum levels for fumonisins (FB1 and FB2), deoxynivalenol (DON), ochratoxin A (OTA), zearalenone (ZON), HT-2, and T-2 toxins are in place both to protect animal health and to minimize potential transfer to animal products for human consumption. A multi-mycotoxin method which can handle complex feed matrices such as distillers dried grains with solubles (DDGS) is essential for analysis and accurate quantification without the need to revert to separately analyze individual mycotoxins. OBJECTIVE The objective of this study is to generate single laboratory validation data for a method employing a multi-antibody immunoaffinity column (IAC) capable of providing cleanup for eleven mycotoxins, followed by LC-MS/MS quantification without the need for isotopic labelled and matrix-matched standards. The applicability of method is to be demonstrated for corn feed, pig feed, and DDGS by fortification and naturally occurring mycotoxins covering the range of regulated limits. METHODS Feed sample (1 kg) ground by milling to approximately 1-2 mm particle size and sub-sample (5 g) extracted with acetonitrile-water-formic acid, passing through a multi-mycotoxin IAC, washing, and eluting prior to LC-MS/MS analysis monitoring selected ion transitions. RESULTS Recoveries were in the range 74 to 117% (excluding five outliers) for aflatoxins, FB1, FB2, DON, OTA, ZON, HT-2, and T2- toxins spiked into three commercial animal feed matrixes (n = 84) and within-day RSDs averaged 1.7 to 10.3% (n = 99). CONCLUSION Single laboratory validation of a multi-antibody IAC method coupled with LC-MS/MS has shown the method to be suitable for accurate quantification of eleven regulated mycotoxins in DDGS, pig feed, and poultry feed. HIGHLIGHTS IAC method capable of accurately quantifying eleven regulated mycotoxins in complex feed matrices.
Collapse
Affiliation(s)
- Naomi Mackay
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Elaine Marley
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Dave Leeman
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Cezary Poplawski
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Carol Donnelly
- R-Biopharm Rhone Ltd, Block 10, Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| |
Collapse
|
32
|
Siri-anusornsak W, Kolawole O, Mahakarnchanakul W, Greer B, Petchkongkaew A, Meneely J, Elliott C, Vangnai K. The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia. Toxins (Basel) 2022; 14:toxins14080567. [PMID: 36006229 PMCID: PMC9412313 DOI: 10.3390/toxins14080567] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Raw feed materials are often contaminated with mycotoxins, and co-occurrence of mycotoxins occurs frequently. A total of 250 samples i.e., rice bran and maize from Cambodia, Laos, Myanmar, and Thailand were analysed using state-of-the-art liquid chromatography-mass spectrometry (LC-MS/MS) for monitoring the occurrence of regulated, emerging, and masked mycotoxins. Seven regulated mycotoxins – aflatoxins, ochratoxin A, fumonisin B1, deoxynivalenol, zearalenone, HT-2, and T-2 toxin were detected as well as some emerging mycotoxins, such as beauvericin, enniatin type B, stachybotrylactam, sterigmatocystin, and masked mycotoxins, specifically zearalenone-14-glucoside, and zearalenone-16-glucoside. Aspergillus and Fusarium mycotoxins were the most prevalent compounds identified, especially aflatoxins and fumonisin B1 in 100% and 95% of samples, respectively. Of the emerging toxins, beauvericin and enniatin type B showed high occurrences, with more than 90% of rice bran and maize contaminated, whereas zearalenone-14-glucoside and zearalenone-16-glucoside were found in rice bran in the range of 56–60%. Regulated mycotoxins (DON and ZEN) were the most frequent mycotoxin combination with emerging mycotoxins (BEA and ENN type B) in rice bran and maize. This study indicates that mycotoxin occurrence and co-occurrence are common in raw feed materials, and it is critical to monitor mycotoxin levels in ASEAN’s feedstuffs so that mitigation strategies can be developed and implemented.
Collapse
Affiliation(s)
- Wipada Siri-anusornsak
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Warapa Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Awanwee Petchkongkaew
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence in Food Science and Innovation, Thammasat University, Pathum Thani 12120, Thailand
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Science, Queen’s University, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Kanithaporn Vangnai
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2562-5037
| |
Collapse
|
33
|
Unexpected sensitivity enhancement in analysing alfatoxin M1 using LC-IDMS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Song C, Qin J. High‐Performance
Fabricated Nano‐adsorbents as Emerging Approach for Removal of Mycotoxins: A Review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenggang Song
- College of Plant Science Jilin University Changchun 130062 P. R. China
| | - Jianchun Qin
- College of Plant Science Jilin University Changchun 130062 P. R. China
| |
Collapse
|
35
|
Scarpino V, Sulyok M, Krska R, Reyneri A, Blandino M. The Role of Nitrogen Fertilization on the Occurrence of Regulated, Modified and Emerging Mycotoxins and Fungal Metabolites in Maize Kernels. Toxins (Basel) 2022; 14:toxins14070448. [PMID: 35878186 PMCID: PMC9316227 DOI: 10.3390/toxins14070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012–2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha−1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites.
Collapse
Affiliation(s)
- Valentina Scarpino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Amedeo Reyneri
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Massimo Blandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
- Correspondence: ; Tel.: +39-0116708895
| |
Collapse
|
36
|
Kelman M, Renaud J, Baines D, Yeung KC, Miller J, Sumarah M. Mycotoxin determination in fungal contaminated Canadian silage toxic to dairy cows and goats. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silage has become a key component of year-long animal feed in Canada and parts of northern Europe. It provides several advantages to farmers over traditional feed components, such as increased digestibility, higher nutrient content and preservation of the forages to meet seasonal feeding demands. Some ensiled materials can contain toxic fungal metabolites resulting from ‘in field’ contamination. In addition, when improperly stored or exposed to air during the feedout stage, silage is highly susceptible to aerobic spoilage by yeasts and filamentous fungi resulting in lower nutrient value and further mycotoxin contamination. In this study, silage samples were collected from 25 Canadian dairy goat and cattle farms where animals experienced feed-related health issues. Twenty-six unique fungal species were isolated from these samples, with the majority being Penicillium. High resolution liquid chromatography tandem mass spectrometry (HRLC-MS/MS) was used to identify a total of 125 known mycotoxins and fungal secondary metabolites from these silage samples, many of which were not produced by the 26 isolated filamentous fungi grown in agar cultures. Various mycotoxins resulting from preharvest contamination were detected, including ergot alkaloids, fumonisins and trichothecenes, some in high concentrations. Toxins produced after harvest included roquefortine C, citrinin and penitrem A. This study reinforces the need for farmers to implement best management practices to minimise fungal contamination and the resulting mycotoxin deposition in their crop and stored feed to maintain animal health.
Collapse
Affiliation(s)
- M.J. Kelman
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - J.B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - D. Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South Lethbridge, Alberta T1J 4B1, Canada
| | - K.K.-C. Yeung
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - J.D Miller
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - M.W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| |
Collapse
|
37
|
Adunphatcharaphon S, Elliott CT, Sooksimuang T, Charlermroj R, Petchkongkaew A, Karoonuthaisiri N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128706. [PMID: 35339833 DOI: 10.1016/j.jhazmat.2022.128706] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxins present serious threats not only for public health, but also for the economy and environment. The problems become more complex and serious due to co-contamination of multiple hazardous mycotoxins in commodities and environment. To mitigate against this issue, accurate, affordable, and rapid multiplex detection methods are required. This review presents an overview of emerging rapid immuno-based multiplex methods capable of detecting mycotoxins present in agricultural products and feed ingredients published within the past five years. The scientific principles, advantages, disadvantages, and assay performance of these rapid multiplex immunoassays, including lateral flow, fluorescence polarization, chemiluminescence, surface plasmon resonance, surface enhanced Raman scattering, electrochemical sensor, and nanoarray are discussed. From the recent literature landscape, it is predicted that the future trend of the detection methods for multiple mycotoxins will rely on the advance of various sensor technologies, a variety of enhancing and reporting signals based on nanomaterials, rapid and effective sample preparation, and capacity for quantitative analysis.
Collapse
Affiliation(s)
- Saowalak Adunphatcharaphon
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Christopher T Elliott
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Thanasat Sooksimuang
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Ratthaphol Charlermroj
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Nitsara Karoonuthaisiri
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
38
|
An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins. Toxins (Basel) 2022; 14:toxins14060405. [PMID: 35737066 PMCID: PMC9229327 DOI: 10.3390/toxins14060405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023] Open
Abstract
The present interlaboratory comparison study involved nine laboratories located throughout the world that tested for 24 regulated and non-regulated mycotoxins by applying their in-house LC-MS/MS multi-toxin method to 10 individual lots of 4 matrix commodities, including complex chicken and swine feed, soy and corn gluten. In total, more than 6000 data points were collected and analyzed statistically by calculating a consensus value in combination with a target standard deviation following a modified Horwitz equation. The performance of each participant was evaluated by a z-score assessment with a satisfying range of ±2, leading to an overall success rate of 70% for all tested compounds. Equal performance for both regulated and emerging mycotoxins indicates that participating routine laboratories have successfully expanded their analytical portfolio in view of potentially new regulations. In addition, the study design proved to be fit for the purpose of providing future certified reference materials, which surpass current analyte matrix combinations and exceed the typical scope of the regulatory framework.
Collapse
|
39
|
Falter C, Reumann S. The essential role of fungal peroxisomes in plant infection. MOLECULAR PLANT PATHOLOGY 2022; 23:781-794. [PMID: 35001508 PMCID: PMC9104257 DOI: 10.1111/mpp.13180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 06/09/2023]
Abstract
Several filamentous fungi are ecologically and economically important plant pathogens that infect a broad variety of crops. They cause high annual yield losses and contaminate seeds and fruits with mycotoxins. Not only powerful infection structures and detrimental toxins, but also cell organelles, such as peroxisomes, play important roles in plant infection. In this review, we summarize recent research results that revealed novel peroxisomal functions of filamentous fungi and highlight the importance of peroxisomes for infection of host plants. Central for fungal virulence are two primary metabolic pathways, fatty acid β-oxidation and the glyoxylate cycle, both of which are required to produce energy, acetyl-CoA, and carbohydrates. These are ultimately needed for the synthesis of cell wall polymers and for turgor generation in infection structures. Most novel results stem from different routes of secondary metabolism and demonstrate that peroxisomes produce important precursors and house various enzymes needed for toxin production and melanization of appressoria. All these peroxisomal functions in fungal virulence might represent elegant targets for improved crop protection.
Collapse
Affiliation(s)
- Christian Falter
- Plant Biochemistry and Infection BiologyInstitute of Plant Science and MicrobiologyUniversität HamburgHamburgGermany
| | - Sigrun Reumann
- Plant Biochemistry and Infection BiologyInstitute of Plant Science and MicrobiologyUniversität HamburgHamburgGermany
| |
Collapse
|
40
|
Impact of a Natural Fusarial Multi-Mycotoxin Challenge on Broiler Chickens and Mitigation Properties Provided by a Yeast Cell Wall Extract and a Postbiotic Yeast Cell Wall-Based Blend. Toxins (Basel) 2022; 14:toxins14050315. [PMID: 35622561 PMCID: PMC9145611 DOI: 10.3390/toxins14050315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Yeast cell wall-based preparations have shown efficacy against Aspergillus-based toxins but have lower impact against type-B trichothecenes. Presently, we investigated a combination of deoxynivalenol (DON), T-2 toxin (T2) and zearalenone (ZEA), and the effect of a yeast cell wall extract (YCWE) and a post-biotic yeast cell wall-based blend (PYCW) with the objectives of preventing mycotoxins’ negative effects in commercial broilers. A total of 720 one-day-old male Cobb broilers were randomly allocated to: (1) control diet, (aflatoxins 6 µg/kg; cyclopiazonic acid 15 µg/kg; fusaric acid 25 µg/kg; fumonisin B1 310 µg/kg); (2) Diet1 + 0.2% YCWE; (3) Diet1 + 0.2% PYCW; (4) Contaminated diet (3.0 mg/kg DON; 2.17 mg/kg 3-acetyldeoxynivalenol; 104 g/kg T2; 79 g/kg ZEA); (5) Diet4 + 0.2% YCWE; and (6) Diet4 + 0.2% PYCW. Naturally contaminated diets adversely affected performance, serum biochemistry, liver function, immune response, altered cecal SCFA goblet cell count and architecture of intestinal villi. These adverse effects were reduced in birds fed PYCW and to a lesser extent YCWE, indicating protection against toxic assault. PYCW yielded better production performance and stimulated liver function, with higher response to NDV and IBV vaccination. Furthermore, mycotoxins were found to affect production outputs when evaluated with the European poultry production efficiency factor compared to control or YCWE and PYCW supplemented treatments. Taken together, YCWE, when complemented with nutritional add-ons (PYCW), could potentiate the remediation of the negative effects from a multi mycotoxins dietary challenge in broiler birds.
Collapse
|
41
|
van den Brand AD, Bajard L, Steffensen IL, Brantsæter AL, Dirven HAAM, Louisse J, Peijnenburg A, Ndaw S, Mantovani A, De Santis B, Mengelers MJB. Providing Biological Plausibility for Exposure-Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins (Basel) 2022; 14:279. [PMID: 35448888 PMCID: PMC9030459 DOI: 10.3390/toxins14040279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.
Collapse
Affiliation(s)
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Inger-Lise Steffensen
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Anne Lise Brantsæter
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Hubert A. A. M. Dirven
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité (INRS), 54500 Vandoeuvre-Lés-Nancy, France;
| | - Alberto Mantovani
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Barbara De Santis
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Marcel J. B. Mengelers
- Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| |
Collapse
|
42
|
Izzo L, Narváez A, Castaldo L, Gaspari A, Rodríguez-Carrasco Y, Grosso M, Ritieni A. Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulas through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry analysis. J Dairy Sci 2022; 105:2948-2962. [PMID: 35094855 DOI: 10.3168/jds.2021-21123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/05/2021] [Indexed: 11/19/2022]
Abstract
Infant milk formulas are designed to substitute human milk when breastfeeding is unavailable. In addition to human milk and milk-derived products, these formulas can be a vehicle of contaminants. In this work, a multiclass method based on the QuEChERS (quick, easy, cheap, effective, rugged, and safe) approach was developed for the simultaneous determination of contaminants (n = 45), including mycotoxins and veterinary drug residues, occurring in infant milk formulas. By using an ultra-high-performance liquid chromatography quadrupole-Orbitrap coupled with high-resolution mass spectrometry analysis (UHPLC-Q-Orbitrap HRMS; Thermo Fisher Scientific), further retrospective analysis of 337 contaminants, including pesticides, was achieved. The method was validated in accordance with European regulations and applied for the analysis of 54 infant milk samples. Risk assessment was also performed. Dexamethasone was detected in 16.6% of samples (range: 0.905-1.131 ng/mL), and procaine benzyl penicillin in 1 sample at a concentration of 0.295 ng/mL. Zearalenone was found in 55.5% of samples (range: 0.133-0.638 ng/mL) and α-zearalenol in 16.6% of samples (range: 1.534-10.408 ng/mL). Up to 49 pesticides, 11 veterinary drug residues, and 5 mycotoxins were tentatively identified via retrospective analysis based on the mass spectral library. These findings highlight the necessity of careful evaluation of contaminants in infant formulas, considering that they are intended for a vulnerable part of the population.
Collapse
Affiliation(s)
- Luana Izzo
- Department of Pharmacy, University of Naples "Federico II," 80131 Naples, Italy.
| | - Alfonso Narváez
- Department of Pharmacy, University of Naples "Federico II," 80131 Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples "Federico II," 80131 Naples, Italy
| | - Anna Gaspari
- Department of Pharmacy, University of Naples "Federico II," 80131 Naples, Italy
| | - Yelko Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain.
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples "Federico II," 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples "Federico II," 80131 Naples, Italy; UNESCO Chair on Health Education and Sustainable Development, "Federico II" University, 80131 Naples, Italy
| |
Collapse
|
43
|
|
44
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
45
|
Rong X, Jiang Y, Li F, Sun-Waterhouse D, Zhao S, Guan X, Li D. Close association between the synergistic toxicity of zearalenone-deoxynivalenol combination and microRNA221-mediated PTEN/PI3K/AKT signaling in HepG2 cells. Toxicology 2022; 468:153104. [DOI: 10.1016/j.tox.2022.153104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
|
46
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
47
|
Abstract
Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are present in many foods consumed by animals. Moreover, they most often contaminate products of plant and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible for the production of mycotoxins. They release toxic compounds that, when properly accumulated, can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern methods of analysis allow the detection of the presence of mycotoxins and determine the level of contamination with them, both in raw materials and in foods. Various food processes that can affect mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most feeding processes have a variable effect on mycotoxins, with those that use high temperatures having the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but they do not completely eliminate them. This article presents the risks associated with the presence of mycotoxins in foods and the methods of their detection and prevention.
Collapse
|
48
|
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, Battilani P, Logrieco AF. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins (Basel) 2021; 13:725. [PMID: 34679018 PMCID: PMC8541216 DOI: 10.3390/toxins13100725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.
Collapse
Affiliation(s)
- John F. Leslie
- Throckmorton Plant Sciences Center, Department of Plant Pathology, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA;
| | - Antonio Moretti
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| | - Ákos Mesterházy
- Cereal Research Non-Profit Ltd., Alsókikötő sor 9, H-6726 Szeged, Hungary;
| | - Maarten Ameye
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Kris Audenaert
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico 06600, DF, Mexico;
| | | | - Sofía N. Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), 5800 Río Cuarto, Córdoba, Argentina;
| | - Emerson M. Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa 1000, Ethiopia;
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy;
| | - Antonio F. Logrieco
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| |
Collapse
|
49
|
Leite M, Freitas A, Silva AS, Barbosa J, Ramos F. Maize food chain and mycotoxins: A review on occurrence studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Fumagalli F, Ottoboni M, Pinotti L, Cheli F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins (Basel) 2021; 13:572. [PMID: 34437443 PMCID: PMC8402322 DOI: 10.3390/toxins13080572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|