1
|
Villanueva Guzman MDM, LoMascolo NJ, May D, Thomas CE, Stacey SP, Mounce BC. Rapid Screening to Identify Antivirals against Persistent and Acute Coxsackievirus B3 Infection. ACS Infect Dis 2024; 10:4222-4232. [PMID: 39588796 DOI: 10.1021/acsinfecdis.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Enteroviruses cause significant morbidity and mortality worldwide, and Coxsackievirus B3 (CVB3) is one of the most commonly reported. Coxsackieviruses establish persistent infection, characterized as infection that is not cleared from host cells generating a continuous infection. No antivirals targeting persistent or acute infection are available, and CVB3 may respond differently depending on the type of infection. Therefore, there is an urgent need for new antiviral drugs to combat acute and persistent CVB3 infection. We developed a system to study persistent CVB3 infection with pancreatic ductal cell line PANC-1, and we used an epithelial cell line, Vero-E6 cells, to study acute CVB3 infection. We maintained persistently infected cells for over a year. Now, in an effort to identify antivirals, using the National Institutes of Health's Developmental Therapeutics Program (DTP), we screened thousands of compounds for activity against acute and persistent CVB3 infection, and among the hits was Ro 5-3335, a 1,4-benzodiazepine nordazepam that acts as a RUNX1-CBFβ leukemia inhibitor. Ro 5-3335 has previously been reported to inhibit HIV-1 gene expression through interference with Tat-mediated transactivation. We confirmed Ro 5-3335's antiviral activity against CVB3 in both acute and persistent infection, in several cell types and at pharmacologically favorable conditions. We show that Ro 5-3335 has minimal cytotoxicity and is antiviral over several rounds of replication. We identified viral egress as a putative target. We also show efficacy against other RNA viruses, but it is ineffective against a model DNA virus. Overall, Ro 5-3335 is a promising antiviral that may target CVB3 infection.
Collapse
Affiliation(s)
- Maria Del Mar Villanueva Guzman
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, United States
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Natalie J LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Delaina May
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Caroline E Thomas
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Samantha P Stacey
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, United States
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, United States
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, Illinois 60153, United States
| |
Collapse
|
2
|
Chu F, Hou P, Zhu H, Gao Y, Wang X, He W, Ren J, Li M, Liu Y, Chang He D, Wang H, Gao Y, He H. PBLD enhances antiviral innate immunity by promoting the p53-USP4-MAVS signaling axis. Proc Natl Acad Sci U S A 2024; 121:e2401174121. [PMID: 39589880 PMCID: PMC11626120 DOI: 10.1073/pnas.2401174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/22/2024] [Indexed: 11/28/2024] Open
Abstract
Phenazine biosynthesis-like domain-containing protein (PBLD) has been reported to be involved in the development of many cancers. However, whether PBLD regulates innate immune responses and viral replication is unclear. In this study, although it was found that the activity of PBLD extends to other PRRs, we focused on the RLR pathway activated via the p53-USP4-MAVS axis in response to virus infections. We found that PBLD deubiquitinates and stabilizes MAVS through ubiquitin-specific protease 4 (USP4) to promote antiviral innate immunity. Mechanistically, PBLD activates the transcription of USP4 via the upregulation of p53. USP4, which is a MAVS-interacting protein, substantially stabilizes the MAVS protein by deconjugating K48-linked ubiquitination chains from the MAVS protein at Lys461 during RNA virus infection. Most intriguingly, RNA virus-infected primary macrophages (peritoneal macrophages, PMs, and bone marrow-derived macrophages, BMDMs) and internal organ cells (lung and liver) from PBLD-deficient mice suppress the IFN-I response and promote viral replication. Notably, PBLD-deficient mice are more susceptible to RNA virus infection than their wild-type littermates. Our findings highlight a unique function of PBLD in antiviral innate immunity through the p53-USP4-MAVS signaling, providing a preliminary basis for research on PBLD as a target molecule for treating RNA virus infection.
Collapse
Affiliation(s)
- Fengyun Chu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Peili Hou
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian271018, People’s Republic of China
| | - Hongchao Zhu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Yan Gao
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Xiaomeng Wang
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Wenqi He
- State Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, People’s Republic of China
| | - Juan Ren
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Min Li
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Yu Liu
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Daniel Chang He
- The College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hongmei Wang
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Hongbin He
- Ruminant Diseases Research Center, Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan250358, People’s Republic of China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian271018, People’s Republic of China
| |
Collapse
|
3
|
Verma S, Ghatak A. Involvement of E3 Ubiquitin Ligases in Viral Infections of the Human Host. Viral Immunol 2024; 37:419-431. [PMID: 39469796 DOI: 10.1089/vim.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Viral infections are one of the principal causes of global primary health crises, with increased rate of infection and mortality demonstrated by the newer progeny of viruses. Viral invasion of the host involves utilization of various cellular machinery. Ubiquitination is one of a few central regulatory systems used by viruses for establishment of the infections in the host. Members of the ubiquitination system are involved in carrying out proteasomal degradation or functional modification of proteins in numerous cellular processes. E3 ubiquitin ligases play a major role in this system through recognition and recruitment of protein substrates and catalyzing the transfer of ubiquitin to these substrates. The versatility of ubiquitin ligases frequently makes them useful tools for the viruses, for either utilizing or degrading other cellular machineries, for carrying out their multiplication or inactivating the defensive strategies of the host. Therefore, these ligases are important targets for aiming at major pathways causing viral protein degradation or functional modification of the infection process. In this review, we have discussed the role and mechanism of different types of ubiquitin ligases in the context of infections of mainly human viruses, highlighting the viral proteins directly interacting with the ligases. Knowledge about these direct interactions is central in understanding the ubiquitin-dependent processes. This comprehensive account may also be beneficial for pharmaceutical exploration of E3 ligase-based broad-spectrum antiviral treatment.
Collapse
Affiliation(s)
- Suchanda Verma
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Archana Ghatak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
4
|
Sun DERS, Yoon JS, Kim YS, Won HS. P53 Status Influences the Anti-proliferative Effect Induced by IFITM1 Inhibition in Estrogen Receptor-positive Breast Cancer Cells. Cancer Genomics Proteomics 2024; 21:511-522. [PMID: 39191497 PMCID: PMC11363922 DOI: 10.21873/cgp.20468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM Interferon-induced trans-membrane protein 1 (IFITM1) is known to be involved in breast cancer progression. We aimed to investigate its role in estrogen receptor (ER)-positive breast cancer cells with wild-type p53 and tamoxifen-resistant breast cancer cells. MATERIALS AND METHODS The ER-positive breast cancer cell lines, MCF-7 with wild-type p53 and T47D with mutant p53, were used. We established an MCF-7-derived tamoxifen-resistant cell line (TamR) by long-term culture of MCF-7 cells with 4-hydroxytamoxifen. RESULTS IFITM1 inhibition in MCF-7 cells significantly decreased cell growth and migration. MCF-7 cells with suppression of IFITM1 using siRNA or ruxolitinib showed reduced cell viability after tamoxifen treatment compared with that in the control MCF-7 cells. Unexpectedly, mRNA and protein levels of IFITM1 were decreased in TamR cells compared with those in MCF-7 cells. TamR cells with suppression of IFITM1 using siRNA or ruxolitinib showed no change in cell viability after treatment with tamoxifen. P53 knockdown using siRNA reduced the mRNA levels of IRF9 and increased mRNA and protein levels of SOCS3 in MCF-7 cells, suggesting that loss or mutation of p53 can affect the induction of IFITM1 via the JAK/STAT signaling pathway in breast cancer. Furthermore, MCF-7 cells with p53 knockdown using siRNA showed no decrease in cell viability after tamoxifen treatment or IFITM1 inhibition, indicating that p53 status may be important for cell death after tamoxifen treatment or IFITM1 inhibition. CONCLUSION IFITM1 inhibition may enhance the sensitivity to tamoxifen based on p53-dependent enhancement of IFN signaling in wild-type p53, ER-positive breast cancer cells.
Collapse
Affiliation(s)
- DER Sheng Sun
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Sook Yoon
- Clinical Research Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Seok Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Sung Won
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea;
| |
Collapse
|
5
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
7
|
Justice JL, Reed TJ, Phelan B, Greco TM, Hutton JE, Cristea IM. DNA-PK and ATM drive phosphorylation signatures that antagonistically regulate cytokine responses to herpesvirus infection or DNA damage. Cell Syst 2024; 15:339-361.e8. [PMID: 38593799 PMCID: PMC11098675 DOI: 10.1016/j.cels.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-β expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Staurenghi E, Testa G, Leoni V, Cecci R, Floro L, Giannelli S, Barone E, Perluigi M, Leonarduzzi G, Sottero B, Gamba P. Altered Brain Cholesterol Machinery in a Down Syndrome Mouse Model: A Possible Common Feature with Alzheimer's Disease. Antioxidants (Basel) 2024; 13:435. [PMID: 38671883 PMCID: PMC11047305 DOI: 10.3390/antiox13040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Down syndrome (DS) is a complex chromosomal disorder considered as a genetically determined form of Alzheimer's disease (AD). Maintenance of brain cholesterol homeostasis is essential for brain functioning and development, and its dysregulation is associated with AD neuroinflammation and oxidative damage. Brain cholesterol imbalances also likely occur in DS, concurring with the precocious AD-like neurodegeneration. In this pilot study, we analyzed, in the brain of the Ts2Cje (Ts2) mouse model of DS, the expression of genes encoding key enzymes involved in cholesterol metabolism and of the levels of cholesterol and its main precursors and products of its metabolism (i.e., oxysterols). The results showed, in Ts2 mice compared to euploid mice, the downregulation of the transcription of the genes encoding the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and 24-dehydrocholesterol reductase, the latter originally recognized as an indicator of AD, and the consequent reduction in total cholesterol levels. Moreover, the expression of genes encoding enzymes responsible for brain cholesterol oxidation and the amounts of the resulting oxysterols were modified in Ts2 mouse brains, and the levels of cholesterol autoxidation products were increased, suggesting an exacerbation of cerebral oxidative stress. We also observed an enhanced inflammatory response in Ts2 mice, underlined by the upregulation of the transcription of the genes encoding for α-interferon and interleukin-6, two cytokines whose synthesis is increased in the brains of AD patients. Overall, these results suggest that DS and AD brains share cholesterol cycle derangements and altered oxysterol levels, which may contribute to the oxidative and inflammatory events involved in both diseases.
Collapse
Affiliation(s)
- Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Valerio Leoni
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20832 Desio, Italy;
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University, 00185 Roma, Italy; (E.B.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University, 00185 Roma, Italy; (E.B.); (M.P.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| |
Collapse
|
9
|
Dong W, Cheng Y, Zhou Y, Zhang J, Yu X, Guan H, Du J, Zhou X, Yang Y, Fang W, Wang X, Song H. The nucleocapsid protein facilitates p53 ubiquitination-dependent proteasomal degradation via recruiting host ubiquitin ligase COP1 in PEDV infection. J Biol Chem 2024; 300:107135. [PMID: 38447796 PMCID: PMC10998216 DOI: 10.1016/j.jbc.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.
Collapse
Affiliation(s)
- Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yahao Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jingmiao Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xinya Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Haicun Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
10
|
Xia W, Jiang P. p53 promotes antiviral innate immunity by driving hexosamine metabolism. Cell Rep 2024; 43:113724. [PMID: 38294905 DOI: 10.1016/j.celrep.2024.113724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
The tumor suppressor p53 controls cell fate decisions and prevents malignant transformation, but its functions in antiviral immunity remain unclear. Here, we demonstrate that p53 metabolically promotes antiviral innate immune responses to RNA viral infection. p53-deficient macrophages or mice display reduced expression of glutamine fructose-6-phosphate amidotransferase 2 (GFPT2), a key enzyme of the hexosamine biosynthetic pathway (HBP). Through transcriptional upregulation of GFPT2, p53 drives HBP activity and de novo synthesis of UDP-GlcNAc, which in turn leads to the O-GlcNAcylation of mitochondrial antiviral signaling protein (MAVS) and UBX-domain-containing protein 1 (UBXN1) during virus infection. Moreover, O-GlcNAcylation of UBXN1 blocks its interaction with MAVS, thereby further liberating MAVS for tumor necrosis factor receptor-associated factor 3 binding to activate TANK-binding kinase 1-interferon (IFN) regulatory factor 3 signaling cascades and IFN-β production. Genetic or pharmaceutical inhibition of GFPT efficiently reduces MAVS activation and abrogates the antiviral innate immunity promoted by p53 in vitro and in vivo. Our findings reveal that p53 drives HBP activity and O-GlcNAcylation of UBXN1 and MAVS to enhance IFN-β-mediated antiviral innate immunity.
Collapse
Affiliation(s)
- Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
11
|
Chen ZJ, Xiao J, Chen HH. Identification of Key Genes Related to Immune Cells in Patients with COVID-19 Via Integrated Bioinformatics-Based Analysis. Biochem Genet 2023; 61:2650-2671. [PMID: 37222960 PMCID: PMC10206360 DOI: 10.1007/s10528-023-10400-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
COVID-19 has spread all over the world which poses a serious threat to social economic development and public health. Despite enormous progress has been made in the prevention and treatment of COVID-19, the specific mechanism and biomarker related to disease severity or prognosis have not been clarified yet. Our study intended to further explore the diagnostic markers of COVID-19 and their relationship with serum immunology by bioinformatics analysis. The datasets about COVID-19 were downloaded from the Gene Expression Omnibus (GEO) dataset. The differentially expressed genes (DEGs) were selected via the limma package. Then, weighted gene co-expression network analysis (WGCNA) was conducted to identify the critical module associated with the clinic status. The intersection DEGs were processed for further enrichment analysis. The final diagnostic genes for COVID-19 were selected and verified through special bioinformatics algorithms. There were significant DEGs between the normal and COVID-19 patients. These genes were mainly enriched in cell cycle, complement and coagulation cascade, extracellular matrix (ECM) receptor interaction, and the P53 signaling pathway. As much as 357 common intersected DEGs were selected in the end. These DEGs were enriched in organelle fission, mitotic cell cycle phase transition, DNA helicase activity, cell cycle, cellular senescence, and P53 signaling pathway. Our study also identified CDC25A, PDCD6, and YWAHE were potential diagnostic markers of COVID-19 with the AUC (area under curve), 0.958 (95% CI 0.920-0.988), 0.941(95% CI 0.892-0.980), and 0.929 (95% CI 0.880-0.971). Moreover, CDC25A, PDCD6, and YWAHE were correlated with plasma cells, macrophages M0, T cells CD4 memory resting, T cells CD8, dendritic cells, and NK cells. Our study discovered that CDC25A, PDCD6, and YWAHE can be used as diagnostic markers for COVID-19. Moreover, these biomarkers were also closely associated with immune cell infiltration, which plays a pivotal role in the diagnosis and progression of COVID-19.
Collapse
Affiliation(s)
- Zhao-Jun Chen
- Department of Infectious Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Xiao
- Department of Cardiology, Wuhan Asia Heart General Hospital, Wuhan, China
| | - Hai-Hua Chen
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Qin Z, Liu H, Sheng Q, Dan J, Wu X, Li H, Wang L, Zhang S, Yuan C, Yuan H, Wang H, Zhou R, Luo Y, Xie X. Mutant p53 leads to low-grade IFN-I-induced inflammation and impairs cGAS-STING signalling in mice. Eur J Immunol 2023; 53:e2250211. [PMID: 37377275 DOI: 10.1002/eji.202250211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and environmental stimulations, resulting in chronic inflammation and even carcinogenesis. However, the connection between IFN-I and p53 mutation is poorly understood. Here, we investigated IFN-I status in the context of mutant p53 (p53N236S , p53S). We observed significant cytosolic double-stranded DNA (dsDNA) derived from nuclear heterochromatin in p53S cells, along with an increased expression of IFN-stimulated genes. Further study revealed that p53S promoted cyclic GMP-AMP synthase (cGAS) and IFN-regulatory factor 9 (IRF9) expression, thus activating the IFN-I pathway. However, p53S/S mice were more susceptible to herpes simplex virus 1 infection, and the cGAS-stimulator of IFN genes (STING) pathway showed a decline trend in p53S cells in response to poly(dA:dT) accompanied with decreased IFN-β and IFN-stimulated genes, whereas the IRF9 increased in response to IFN-β stimulation. Our results illustrated the p53S mutation leads to low-grade IFN-I-induced inflammation via consistent low activation of the cGAS-STING-IFN-I axis, and STAT1-IRF9 pathway, therefore, impairs the protective cGAS-STING signalling and IFN-I response encountered with exogenous DNA attack. These results suggested the dual molecular mechanisms of p53S mutation in inflammation regulation. Our results could be helping in further understanding of mutant p53 function in chronic inflammation and provide information for developing new therapeutic strategies for chronic inflammatory diseases or cancer.
Collapse
Affiliation(s)
- Ziyi Qin
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huan Liu
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qihuan Sheng
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juhua Dan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoming Wu
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hao Li
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lulin Wang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shuojie Zhang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chao Yuan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hongjun Yuan
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Wang
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruoyu Zhou
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Luo
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Development on Common Chronic Diseases, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoli Xie
- Molecular Genetics Laboratory of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
13
|
Emslander Q, Krey K, Hamad S, Maidl S, Oubraham L, Hesse J, Henrici A, Austen K, Mergner J, Grass V, Pichlmair A. MDM2 Influences ACE2 Stability and SARS-CoV-2 Uptake. Viruses 2023; 15:1763. [PMID: 37632105 PMCID: PMC10459000 DOI: 10.3390/v15081763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the central entry receptor for SARS-CoV-2. However, surprisingly little is known about the effects of host regulators on ACE2 localization, expression, and the associated influence on SARS-CoV-2 infection. Here we identify that ACE2 expression levels are regulated by the E3 ligase MDM2 and that MDM2 levels indirectly influence infection with SARS-CoV-2. Genetic depletion of MDM2 elevated ACE2 expression levels, which strongly promoted infection with all SARS-CoV-2 isolates tested. SARS-CoV-2 spike-pseudotyped viruses and the uptake of non-replication-competent virus-like particles showed that MDM2 affects the viral uptake process. MDM2 ubiquitinates Lysine 788 of ACE2 to induce proteasomal degradation, and degradation of this residue led to higher ACE2 expression levels and superior virus particle uptake. Our study illustrates that cellular regulators of ACE2 stability, such as MDM2, play an important role in defining the infection capabilities of SARS-CoV-2.
Collapse
Affiliation(s)
- Quirin Emslander
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Karsten Krey
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Sabri Hamad
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Susanne Maidl
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Lila Oubraham
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Joshua Hesse
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Alexander Henrici
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Katharina Austen
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Julia Mergner
- BayBioMS@MRI—Bavarian Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany (S.H.)
- German Centre for Infection Research (DZIF), Partner site Munich, 81675 Munich, Germany
- Center of Immunology of Viral Infection (CiViA), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
14
|
Borkosky SS, Fassolari M, Campos-León K, Rossi AH, Salgueiro M, Pascuale CA, Martínez RP, Gaston K, de Prat Gay G. Biomolecular Condensation of the Human Papillomavirus E2 Master Regulator with p53: Implications in Viral Replication. J Mol Biol 2023; 435:167889. [PMID: 36402224 DOI: 10.1016/j.jmb.2022.167889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
p53 exerts its tumour suppressor activity by modulating hundreds of genes and it can also repress viral replication. Such is the case of human papillomavirus (HPV) through targeting the E2 master regulator, but the biochemical mechanism is not known. We show that the C-terminal DNA binding domain of HPV16 E2 protein (E2C) triggers heterotypic condensation with p53 at a precise 2/1 E2C/p53 stoichiometry at the onset for demixing, yielding large regular spherical droplets that increase in size with E2C concentration. Interestingly, transfection experiments show that E2 co-localizes with p53 in the nucleus with a grainy pattern, and recruits p53 to chromatin-associated foci, a function independent of the DNA binding capacity of p53 as judged by a DNA binding impaired mutant. Depending on the length, DNA can either completely dissolve or reshape heterotypic droplets into irregular condensates containing p53, E2C, and DNA, and reminiscent of that observed linked to chromatin. We propose that p53 is a scaffold for condensation in line with its structural and functional features, in particular as a promiscuous hub that binds multiple cellular proteins. E2 appears as both client and modulator, likely based on its homodimeric DNA binding nature. Our results, in line with the known role of condensation in eukaryotic gene enhancement and silencing, point at biomolecular condensation of E2 with p53 as a means to modulate HPV gene function, strictly dependent on host cell replication and transcription machinery.
Collapse
Affiliation(s)
- Silvia Susana Borkosky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| | - Marisol Fassolari
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET, Mar del Plata, Argentina
| | - Karen Campos-León
- Division of Immunity and Infection, School of Medicine, University of Birmingham, United Kingdom
| | - Andrés Hugo Rossi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Mariano Salgueiro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Carla Antonela Pascuale
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Ramón Peralta Martínez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Kevin Gaston
- School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Gonzalo de Prat Gay
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| |
Collapse
|
15
|
Chaumont L, Collet B, Boudinot P. Double-stranded RNA-dependent protein kinase (PKR) in antiviral defence in fish and mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104732. [PMID: 37172664 DOI: 10.1016/j.dci.2023.104732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms of the innate immune system. Upon binding of viral double stranded RNA, a viral Pattern Associated Molecular Pattern (PAMP), PKR gets activated and phosphorylates the eukaryotic translation initiation factor 2α (eIF2α) resulting in a protein shut-down that limits viral replication. Since its discovery in the mid-seventies, PKR has been shown to be involved in multiple important cellular processes including apoptosis, proinflammatory and innate immune responses. Viral subversion mechanisms of PKR underline its importance in the antiviral response of the host. PKR activation pathways and its mechanisms of action were previously identified and characterised mostly in mammalian models. However, fish Pkr and fish-specific paralogue Z-DNA-dependent protein kinase (Pkz) also play key role in antiviral defence. This review gives an update on the current knowledge on fish Pkr/Pkz, their conditions of activation and their implication in the immune responses to viruses, in comparison to their mammalian counterparts.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
16
|
Łasut-Szyszka B, Rusin M. The Wheel of p53 Helps to Drive the Immune System. Int J Mol Sci 2023; 24:ijms24087645. [PMID: 37108808 PMCID: PMC10143509 DOI: 10.3390/ijms24087645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The p53 tumor suppressor protein is best known as an inhibitor of the cell cycle and an inducer of apoptosis. Unexpectedly, these functions of p53 are not required for its tumor suppressive activity in animal models. High-throughput transcriptomic investigations as well as individual studies have demonstrated that p53 stimulates expression of many genes involved in immunity. Probably to interfere with its immunostimulatory role, many viruses code for proteins that inactivate p53. Judging by the activities of immunity-related p53-regulated genes it can be concluded that p53 is involved in detection of danger signals, inflammasome formation and activation, antigen presentation, activation of natural killer cells and other effectors of immunity, stimulation of interferon production, direct inhibition of virus replication, secretion of extracellular signaling molecules, production of antibacterial proteins, negative feedback loops in immunity-related signaling pathways, and immunologic tolerance. Many of these p53 functions have barely been studied and require further, more detailed investigations. Some of them appear to be cell-type specific. The results of transcriptomic studies have generated many new hypotheses on the mechanisms utilized by p53 to impact on the immune system. In the future, these mechanisms may be harnessed to fight cancer and infectious diseases.
Collapse
Affiliation(s)
- Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland
| |
Collapse
|
17
|
Liu SY, Huang M, Fung TS, Chen RA, Liu DX. Characterization of the induction kinetics and antiviral functions of IRF1, ISG15 and ISG20 in cells infected with gammacoronavirus avian infectious bronchitis virus. Virology 2023; 582:114-127. [PMID: 37058744 PMCID: PMC10072953 DOI: 10.1016/j.virol.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.
Collapse
Affiliation(s)
- Si Ying Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, 526238, Guangdong Province, People's Republic of China
| | - To Sing Fung
- Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China
| | - Ding Xiang Liu
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526000, Guangdong Province, People's Republic of China; Guangdong Province Key Laboratory Microbial Signals & Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|
18
|
Wang X, Liu Y, Li K, Hao Z. Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. Int J Mol Sci 2023; 24:ijms24076371. [PMID: 37047343 PMCID: PMC10094438 DOI: 10.3390/ijms24076371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of the SARS-CoV-2 coronavirus has garnered global attention due to its highly pathogenic nature and the resulting health crisis and economic burden. Although drugs such as Remdesivir have been considered a potential cure by targeting the virus on its RNA polymerase, the high mutation rate and unique 3’ to 5’ exonuclease with proofreading function make it challenging to develop effective anti-coronavirus drugs. As a result, there is an increasing focus on host–virus interactions because coronaviruses trigger stress responses, cell cycle changes, apoptosis, autophagy, and the dysregulation of immune function and inflammation in host cells. The p53 tumor suppressor molecule is a critical regulator of cell signaling pathways, cellular stress responses, DNA repair, and apoptosis. However, viruses can activate or inhibit p53 during viral infections to enhance viral replication and spread. Given its pivotal role in cell physiology, p53 represents a potential target for anti-coronavirus drugs. This review aims to summarize the relationship between p53 and coronaviruses from various perspectives, to shed light on potential targets for antiviral drug development and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Zhihui Hao
- Correspondence: ; Tel./Fax: +86-010-6273-1192
| |
Collapse
|
19
|
Akama-Garren EH, Miller P, Carroll TM, Tellier M, Sutendra G, Buti L, Zaborowska J, Goldin RD, Slee E, Szele FG, Murphy S, Lu X. Regulation of immunological tolerance by the p53-inhibitor iASPP. Cell Death Dis 2023; 14:84. [PMID: 36746936 PMCID: PMC9902554 DOI: 10.1038/s41419-023-05567-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ludovico Buti
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Charles River Laboratories, Leiden, Netherlands
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
20
|
McNulty J, Babu-Dokuburra C, Scattolon J, Zepeda-Velazquez C, Wesesky MA, Caldwell JK, Zheng W, Milosevic J, Kinchington PR, Bloom DC, Nimgaonkar VL, D'Aiuto L. Truncated ring-A amaryllidaceae alkaloid modulates the host cell integrated stress response, exhibiting antiviral activity to HSV-1 and SARSCoV-2. Sci Rep 2023; 13:1639. [PMID: 36717567 PMCID: PMC9885069 DOI: 10.1038/s41598-023-28691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The total synthesis of four novel mono-methoxy and hydroxyl substituted ring-A dihydronarciclasine derivatives enabled identification of the 7-hydroxyl derivative as a potent and selective antiviral agent targeting SARSCoV-2 and HSV-1. The concentration of this small molecule that inhibited HSV-1 infection by 50% (IC50), determined by using induced pluripotent stem cells (iPCS)-derived brain organ organoids generated from two iPCS lines, was estimated to be 0.504 µM and 0.209 µM. No significant reduction in organoid viability was observed at concentrations up to 50 mM. Genomic expression analyses revealed a significant effect on host-cell innate immunity, revealing activation of the integrated stress response via PERK kinase upregulation, phosphorylation of eukaryotic initiation factor 2α (eIF2α) and type I IFN, as factors potentiating multiple host-defense mechanisms against viral infection. Following infection of mouse eyes with HSV-1, treatment with the compound dramatically reduced HSV-1 shedding in vivo.
Collapse
Affiliation(s)
- James McNulty
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.
| | - Chanti Babu-Dokuburra
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Jon Scattolon
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Carlos Zepeda-Velazquez
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Maribeth A Wesesky
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jill K Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Wenxiao Zheng
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Second Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Captis Diagnostics Inc, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Veterans Administration Pittsburgh Healthcare System, 4100 Allequippa St (University Drive C), Pittsburgh, PA, 15240, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Tumor Suppressor p53 Inhibits Hepatitis B Virus Replication by Downregulating HBx via E6AP-Mediated Proteasomal Degradation in Human Hepatocellular Carcinoma Cell Lines. Viruses 2022; 14:v14102313. [PMID: 36298868 PMCID: PMC9609658 DOI: 10.3390/v14102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
HBx, a multifunctional regulatory protein, plays an essential role in the replication and pathogenesis of the hepatitis B virus (HBV). In this study, we found that in human hepatoma cells, the tumor suppressor p53 downregulates HBx via ubiquitin-dependent proteasomal degradation. p53 transcriptional activity that results from HBV infection was not essential for this effect. This was shown by treatment with a potent p53 inhibitor, pifithrin-α. Instead, we found that p53 facilitated the binding of E6-associated protein (E6AP), which is an E3 ligase, to HBx and induced E6AP-mediated HBx ubiquitination in a ternary complex of p53, E6AP, and HBx. The ability of p53 to induce E6AP-mediated downregulation of HBx and inhibit HBV replication was demonstrated in an in vitro HBV infection system. This study may provide insights into the regulation of HBx and HBV replication, especially with respect to p53 status, which may also help in understanding HBV-associated tumorigenesis in patients.
Collapse
|
22
|
Liang Y, Zhang X, Geng W, Wang Y, Ding Y, Song Q, Yuan Y, Zhao C, Tian Z, Wang J, Tian C. 19q13.12 KRAB zinc-finger protein ZNF383 represses p53 signaling pathway by interacting with p53. Cell Signal 2022; 98:110405. [PMID: 35835334 DOI: 10.1016/j.cellsig.2022.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
As one of the most important tumor suppressors, the activity of p53 is precisely regulated. However, the mechanism of p53 regulation is still being elucidated and new regulatory molecules for p53 have also been frequently identified. Our previous works revealed that two members of the KRAB zinc-finger protein (KZFP) family Apak and PISA, which are located on human 19q13.12, participated in the regulation of p53 signaling pathway. KZFPs genes are mainly amplified via tandem in situ duplication during evolution, which indicates that similar sequences and functions may be conserved in evolutionarily and physically close KZFPs. Here, we revealed that ZNF383, another member of the KZFPs mapped at 19q13.12, could inhibit p53-mediated apoptosis and the activation of IFN-β pathway by decreasing the H3K36me2 level at p53's binding sites and the attenuating the binding of p53 to its target genes. We further explored the effect of other KZFPs clustered on 19q13.12 on p53, and found that 85% of these KZFPs exerted p53-repressive activity. Intriguingly, an acidic amino acid-enriched sequence, the SAcL motif in the zinc-finger domains of these KZFPs, was found to be critical for p53 binding. Taken together, our findings revealed the KZFPs cluster located at 19q13.12 not only was involved in p53 regulation but also exhibited different features in the selective regulation of p53 and functional mechanisms, and for the first time, confirmed a motif in KZFPs that mediates the interaction of KZFPs and p53. These results would enrich the knowledge on the role, sequence features, and functional mechanisms of the KZFP family in p53 regulation.
Collapse
Affiliation(s)
- Yanying Liang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Xiuyuan Zhang
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenwen Geng
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yun Wang
- College of Animal Science, Shandong Agricultural University, Taian, Shandong Province 271018, China.
| | - Yue Ding
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province 261053, China
| | - Qin Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanzhi Yuan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chunling Zhao
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province 261053, China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
23
|
Kumar A, Grams TR, Bloom DC, Toth Z. Signaling Pathway Reporter Screen with SARS-CoV-2 Proteins Identifies nsp5 as a Repressor of p53 Activity. Viruses 2022; 14:v14051039. [PMID: 35632779 PMCID: PMC9145535 DOI: 10.3390/v14051039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The dysregulation of host signaling pathways plays a critical role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viral pathogenesis. While a number of viral proteins that can block type I IFN signaling have been identified, a comprehensive analysis of SARS-CoV-2 proteins in the regulation of other signaling pathways that can be critical for viral infection and its pathophysiology is still lacking. Here, we screened the effect of 21 SARS-CoV-2 proteins on 10 different host signaling pathways, namely, Wnt, p53, TGFβ, c-Myc, Hypoxia, Hippo, AP-1, Notch, Oct4/Sox2, and NF-κB, using a luciferase reporter assay. As a result, we identified several SARS-CoV-2 proteins that could act as activators or inhibitors for distinct signaling pathways in the context of overexpression in HEK293T cells. We also provided evidence for p53 being an intrinsic host restriction factor of SARS-CoV-2. We found that the overexpression of p53 is capable of reducing virus production, while the main viral protease nsp5 can repress the transcriptional activity of p53, which depends on the protease function of nsp5. Taken together, our results provide a foundation for future studies, which can explore how the dysregulation of specific signaling pathways by SARS-CoV-2 proteins can control viral infection and pathogenesis.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA;
| | - Tristan R. Grams
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (T.R.G.); (D.C.B.)
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (T.R.G.); (D.C.B.)
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA;
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
24
|
Harford JB, Kim SS, Pirollo KF, Chang EH. TP53 Gene Therapy as a Potential Treatment for Patients with COVID-19. Viruses 2022; 14:v14040739. [PMID: 35458469 PMCID: PMC9027273 DOI: 10.3390/v14040739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
SGT-53 is a novel investigational agent that comprises an immunoliposome carrying a plasmid vector driving expression of the human TP53 gene that encodes wild-type human p53. SGT-53 is currently in phase II human trials for advanced pancreatic cancer. Although p53 is best known as a tumor suppressor, its participation in both innate and adaptive immune responses is well documented. It is now clear that p53 is an important component of the host response to various viral infections. To facilitate their viral life cycles, viruses have developed a diverse repertoire of strategies for counteracting the antiviral activities of host immune system by manipulating p53-dependent pathways in host cells. Coronaviruses reduce endogenous p53 levels in the cells they infect by enhancing the degradation of p53 in proteasomes. Thus, interference with p53 function is an important component in viral pathogenesis. Transfection of cells by SGT-53 has been shown to transiently produce exogenous p53 that is active as a pleiotropic transcription factor. We herein summarize the rationale for repurposing SGT-53 as a therapy for infection by SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic. Because p53 regulation was found to play a crucial role in different infection stages of a wide variety of viruses, it is rational to believe that restoring p53 function based on SGT-53 treatment may lead to beneficial therapeutic outcomes for infectious disease at large including heretofore unknown viral pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Joe B. Harford
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
- Correspondence:
| | - Sang Soo Kim
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| | - Kathleen F. Pirollo
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| | - Esther H. Chang
- Department of Oncology, Georgetown University Medical Center, Washington, DC 20007, USA; (K.F.P.); (E.H.C.)
| |
Collapse
|
25
|
Programmed cell death: the pathways to severe COVID-19? Biochem J 2022; 479:609-628. [PMID: 35244141 PMCID: PMC9022977 DOI: 10.1042/bcj20210602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
Collapse
|
26
|
Mandarin Fish (Siniperca chuatsi) p53 Regulates Glutaminolysis Induced by Virus via the p53/miR145-5p/c-Myc Pathway in Chinese Perch Brain Cells. Microbiol Spectr 2022; 10:e0272721. [PMID: 35286150 PMCID: PMC9045281 DOI: 10.1128/spectrum.02727-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p53, as an important tumor suppressor protein, has recently been implicated in host antiviral defense. The present study found that the expression of mandarin fish (Siniperca chuatsi) p53 (Sc-p53) was negatively associated with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) proliferation as well as the expression of glutaminase 1 (GLS1) and glutaminolysis pathway-related enzymes glutamate dehydrogenase (GDH) and isocitrate dehydrogenase 2 (IDH2). This indicated that Sc-p53 inhibited the replication and proliferation of ISKNV and SCRV by negatively regulating the glutaminolysis pathway. Moreover, it was confirmed that miR145-5p could inhibit c-Myc expression by targeting the 3′ untranslated region (UTR). Sc-p53 could bind to the miR145-5p promoter region to promote its expression and to further inhibit the expression of c-Myc. The expression of c-Myc was proved to be positively correlated with the expression of GLS1 as well. All these suggested a negative relationship between the Sc-p53/miR145-5p/c-Myc pathway and GLS1 expression and glutaminolysis. However, it was found that after ISKNV and SCRV infection, the expressions of Sc-p53, miR145-5p, c-Myc, and GLS1 were all significantly upregulated, which did not match the pattern in normal cells. Based on the results, it was suggested that ISKNV and SCRV infection altered the Sc-p53/miR145-5p/c-Myc pathway. All of above results will provide potential targets for the development of new therapeutic strategies against ISKNV and SCRV. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) as major causative agents have caused a serious threat to the mandarin fish farming industry (J.-J. Tao, J.-F. Gui, and Q.-Y. Zhang, Aquaculture 262:1–9, 2007, https://doi.org/10.1016/j.aquaculture.2006.09.030). Viruses have evolved the strategy to shape host-cell metabolism for their replication (S. K. Thaker, J. Ch’ng, and H. R. Christofk, BMC Biol 17:59, 2019, https://doi.org/10.1186/s12915-019-0678-9). Our previous studies showed that ISKNV replication induced glutamine metabolism reprogramming and that glutaminolysis was required for efficient replication of ISKNV and SCRV. In the present study, the mechanistic link between the p53/miR145-5p/c-Myc pathway and glutaminolysis in the Chinese perch brain (CPB) cells was provided, which will provide novel insights into ISKNV and SCRV pathogenesis and antiviral treatment strategies.
Collapse
|
27
|
Enterobacteria impair host p53 tumor suppressor activity through mRNA destabilization. Oncogene 2022; 41:2173-2186. [PMID: 35197571 PMCID: PMC8993692 DOI: 10.1038/s41388-022-02238-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Increasing evidence highlights the role of bacteria in the physiopathology of cancer. However, the underlying molecular mechanisms remains poorly understood. Several cancer-associated bacteria have been shown to produce toxins which interfere with the host defense against tumorigenesis. Here, we show that lipopolysaccharides from Klebsiella pneumoniae and other Enterobacteria strongly inhibit the host tumor suppressor p53 pathway through a novel mechanism of p53 regulation. We found that lipopolysaccharides destabilize TP53 mRNA through a TLR4-NF-κB-mediated inhibition of the RNA-binding factor Wig-1. Importantly, we show that K. pneumoniae disables two major tumor barriers, oncogene-induced DNA damage signaling and senescence, by impairing p53 transcriptional activity upon DNA damage and oncogenic stress. Furthermore, we found an inverse correlation between the levels of TLR4 and p53 mutation in colorectal tumors. Hence, our data suggest that the repression of p53 by Enterobacteria via TLR4 alleviates the selection pressure for p53 oncogenic mutations and shapes the genomic evolution of cancer.
Collapse
|
28
|
Transcriptomic Analysis of Fish Hosts Responses to Nervous Necrosis Virus. Pathogens 2022; 11:pathogens11020201. [PMID: 35215144 PMCID: PMC8875540 DOI: 10.3390/pathogens11020201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Nervous necrosis virus (NNV) has been responsible for mass mortalities in the aquaculture industry worldwide, with great economic and environmental impact. The present review aims to summarize the current knowledge of gene expression responses to nervous necrosis virus infection in different fish species based on transcriptomic analysis data. Four electronic databases, including PubMed, Web of Science, and SCOPUS were searched, and more than 500 publications on the subject were identified. Following the application of the appropriate testing, a total of 24 articles proved eligible for this review. NNV infection of different host species, in different developmental stages and tissues, presented in the eligible publications, are described in detail, revealing and highlighting genes and pathways that are most affected by the viral infection. Those transcriptome studies of NNV infected fish are oriented in elucidating the roles of genes/biomarkers for functions of special interest, depending on each study’s specific emphasis. This review presents a first attempt to provide an overview of universal host reaction mechanisms to viral infections, which will provide us with new perspectives to overcome NNV infection to build healthier and sustainable aquaculture systems.
Collapse
|
29
|
Roetman JJ, Apostolova MKI, Philip M. Viral and cellular oncogenes promote immune evasion. Oncogene 2022; 41:921-929. [PMID: 35022539 PMCID: PMC8851748 DOI: 10.1038/s41388-021-02145-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
Thirteen percent of cancers worldwide are associated with viral infections. While many human oncogenic viruses are widely endemic, very few infected individuals develop cancer. This raises the question why oncogenic viruses encode viral oncogenes if they can replicate and spread between human hosts without causing cancer. Interestingly, viral infection triggers innate immune signaling pathways that in turn activate tumor suppressors such as p53, suggesting that tumor suppressors may have evolved not primarily to prevent cancer, but to thwart viral infection. Here, we summarize and compare several major immune evasion strategies used by viral and non-viral cancers, with a focus on oncogenes that play dual roles in promoting tumorigenicity and immune evasion. By highlighting important and illustrative examples of how oncogenic viruses evade the immune system, we aim to shed light on how non-viral cancers avoid immune detection. Further study and understanding of how viral and non-viral oncogenes impact immune function could lead to improved strategies to combine molecular therapies targeting oncoproteins in combination with immunomodulators.
Collapse
Affiliation(s)
- Jessica J Roetman
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Minna K I Apostolova
- Department of Biochemistry and Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Mary Philip
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
30
|
Ali S, Wani JA, Amir S, Tabassum S, Majid S, Eachkoti R, Ali S, Rashid N. Covid-19: a novel challenge to human immune genetic machinery. CLINICAL APPLICATIONS OF IMMUNOGENETICS 2022. [PMCID: PMC8988284 DOI: 10.1016/b978-0-323-90250-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
COVID-19 also called corona virus emerged in China in December 2019. This turned into a global pandemic in a short period of time. Covid-19 is a novel strain of corona virus that was not seen earlier in human beings. It is important to study the molecular structure of Covid-19 so as to aid in the development of therapeutic measures. Existing Covid-19 pandemic poses an extraordinary risk to health and healthcare systems worldwide. Corona viruses are made of single stranded RNA present within the coat proteins. The virus has a diameter of nearly 80–120 nm. Usually, Covid-19 presents with the signs and symptoms of respiratory illness. Cough commonly dry cough, fever, associated with myalgias and sometimes breathing difficulties due to decrease in oxygen saturation rates are also present in these patients. Some people show fever with body aches, while some are relatively asymptomatic. Corona virus is primarily transmitted in humans through respiratory route and is highly contagious. Mostly old people and those having comorbid illnesses suffer most. After invading into the human body, the virus may lead to a sequence of processes such as viral invasion, replication, and programmed cell death, that is, apoptosis. To control and prevent this viral infection, we need to study the molecular aspects of Covid-19 in detail so as to design therapeutic agents as well as for vaccine formation. The micro-RNA is defined as the single-stranded noncoding RNA molecule. They have a length of about 22 nucleotides approximately and help in the post transcriptional regulation of gene expression. Micro RNAs regulate many types of cancers in addition to Covid-19 and other infections. Viral micro RNA is a newer type of mi-RNA and controls the host cell expression and viral target genes. This was completed by inducing micro-RNA cleavage, breakdown, translation, inhibition, or other mechanisms. The micro-RNAs of Covid-19 are explained to give an authoritative means to study this novel coronavirus. These control the host cell expression and also viral target genes by inducing micro-RNA cleavage, breakdown, translation, inhibition, and also other mechanisms.
Collapse
|
31
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
King EL, Irigoyen N. Zika Virus and Neuropathogenesis: The Unanswered Question of Which Strain Is More Prone to Causing Microcephaly and Other Neurological Defects. Front Cell Neurosci 2021; 15:695106. [PMID: 34658789 PMCID: PMC8514627 DOI: 10.3389/fncel.2021.695106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being perceived to be a relatively innocuous pathogen during its circulation in Africa in the 20th century, consequent outbreaks in French Polynesia and Latin America revealed the Zika virus (ZIKV) to be capable of causing severe neurological defects. Foetuses infected with the virus during pregnancy developed a range of pathologies including microcephaly, cerebral calcifications and macular scarring. These are now collectively known as Congenital Zika syndrome (CZS). It has been established that the neuropathogenesis of ZIKV results from infection of neural progenitor cells in the developing cerebral cortex. Following this, two main hypotheses have emerged: the virus causes either apoptosis or premature differentiation of neural progenitor cells, reducing the final number of mature neurons in the cerebral cortex. This review describes the cellular processes which could potentially cause virus induced apoptosis or premature differentiation, leading to speculation that a combination of the two may be responsible for the pathologies associated with ZIKV. The review also discusses which specific lineages of the ZIKV can employ these mechanisms. It has been unclear in the past whether the virus evolved its neurotropic capability following circulation in Africa, or if the virus has always caused microcephaly but public health surveillance in Africa had failed to detect it. Understanding the true neuropathogenesis of ZIKV is key to being prepared for further outbreaks in the future, and it will also provide insight into how neurotropic viruses can cause profound and life-long neurological defects.
Collapse
Affiliation(s)
- Emily Louise King
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
34
|
Kwan PKW, Cross GB, Naftalin CM, Ahidjo BA, Mok CK, Fanusi F, Permata Sari I, Chia SC, Kumar SK, Alagha R, Tham SM, Archuleta S, Sessions OM, Hibberd ML, Paton NI. A blood RNA transcriptome signature for COVID-19. BMC Med Genomics 2021; 14:155. [PMID: 34116667 PMCID: PMC8193593 DOI: 10.1186/s12920-021-01006-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background COVID-19 is a respiratory viral infection with unique features including a more chronic course and systemic disease manifestations including multiple organ involvement; and there are differences in disease severity between ethnic groups. The immunological basis for disease has not been fully characterised. Analysis of whole-blood RNA expression may provide valuable information on disease pathogenesis.
Methods We studied 45 patients with confirmed COVID-19 infection within 10 days from onset of illness and a control group of 19 asymptomatic healthy volunteers with no known exposure to COVID-19 in the previous 14 days. Relevant demographic and clinical information was collected and a blood sample was drawn from all participants for whole-blood RNA sequencing. We evaluated differentially-expressed genes in COVID-19 patients (log2 fold change ≥ 1 versus healthy controls; false-discovery rate < 0.05) and associated protein pathways and compared these to published whole-blood signatures for respiratory syncytial virus (RSV) and influenza. We developed a disease score reflecting the overall magnitude of expression of internally-validated genes and assessed the relationship between the disease score and clinical disease parameters. Results We found 135 differentially-expressed genes in the patients with COVID-19 (median age 35 years; 82% male; 36% Chinese, 53% South Asian ethnicity). Of the 117 induced genes, 14 were found in datasets from RSV and 40 from influenza; 95 genes were unique to COVID-19. Protein pathways were mostly generic responses to viral infections, including apoptosis by P53-associated pathway, but also included some unique pathways such as viral carcinogenesis. There were no major qualitative differences in pathways between ethnic groups. The composite gene-expression score was correlated with the time from onset of symptoms and nasal swab qPCR CT values (both p < 0.01) but was not related to participant age, gender, ethnicity or the presence or absence of chest X-ray abnormalities (all p > 0.05). Conclusions The whole-blood transcriptome of COVID-19 has overall similarity with other respiratory infections but there are some unique pathways that merit further exploration to determine clinical relevance. The approach to a disease score may be of value, but needs further validation in a population with a greater range of disease severity. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01006-w.
Collapse
Affiliation(s)
- Philip Kam Weng Kwan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Gail B Cross
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Claire M Naftalin
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Bintou A Ahidjo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Chee Keng Mok
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Felic Fanusi
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Intan Permata Sari
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Siok Ching Chia
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Shoban Krishna Kumar
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Rawan Alagha
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Sai Meng Tham
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Sophia Archuleta
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - October M Sessions
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Martin L Hibberd
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore.,London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas I Paton
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore. .,Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore. .,London School of Hygiene and Tropical Medicine, London, UK. .,Infectious Diseases Translational Research Programme, National University of Singapore, Singapore, Singapore. .,Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
35
|
Chang CY, Wang J, Zhao Y, Liu J, Yang X, Yue X, Wang H, Zhou F, Inclan-Rico JM, Ponessa JJ, Xie P, Zhang L, Siracusa MC, Feng Z, Hu W. Tumor suppressor p53 regulates intestinal type 2 immunity. Nat Commun 2021; 12:3371. [PMID: 34099671 PMCID: PMC8184793 DOI: 10.1038/s41467-021-23587-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The role of p53 in tumor suppression has been extensively studied and well-established. However, the role of p53 in parasitic infections and the intestinal type 2 immunity is unclear. Here, we report that p53 is crucial for intestinal type 2 immunity in response to the infection of parasites, such as Tritrichomonas muris and Nippostrongylus brasiliensis. Mechanistically, p53 plays a critical role in the activation of the tuft cell-IL-25-type 2 innate lymphoid cell circuit, partly via transcriptional regulation of Lrmp in tuft cells. Lrmp modulates Ca2+ influx and IL-25 release, which are critical triggers of type 2 innate lymphoid cell response. Our results thus reveal a previously unrecognized function of p53 in regulating intestinal type 2 immunity to protect against parasitic infections, highlighting the role of p53 as a guardian of immune integrity.
Collapse
Affiliation(s)
- Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Huaying Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan M Inclan-Rico
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - John J Ponessa
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Pathology, Penn Medicine Princeton Medical Center, Plainsboro, NJ, USA
| | - Mark C Siracusa
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
36
|
Liu QN, Tang YY, Zhou MJ, Luo S, Li YT, Wang G, Zhang DZ, Yang H, Tang BP, He WF. Differentially expressed genes involved in immune pathways from yellowhead catfish (Tachysurus fulvidraco) after poly (I:C) challenge. Int J Biol Macromol 2021; 183:340-345. [PMID: 33932411 DOI: 10.1016/j.ijbiomac.2021.04.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/11/2023]
Abstract
Yellowhead catfish (Tachysurus fulvidraco) is an important aquaculture fish species in China with a high market value. Infectious diseases pose serious threats in farmed fish species, and although vaccines can prevent certain infections, they rely on potent adjuvants. In this study, we analyzed the transcriptomic profiles of spleens from poly (I:C)-treated T. fulvidraco. We obtained 46,362,922 reads corresponding to 490,926 transcripts and 318,059 genes. Gene annotation using different databases and subsequent differential gene expression analyses led to the identification of 5587 differentially expressed genes (DEGs), of which 2473 were up-regulated and 3114 were down-regulated in poly (I:C)-treated fish. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs revealed the significant dysregulation of immune- and cancer-related genes in the spleens of poly (I:C)-treated fish. Notably, several components of JAK-STAT, MAPK, and p53 signaling pathways were significantly dysregulated in response to poly (I:C) treatment. Quantitative real-time PCR (qRT-PCR) analysis of 11 randomly selected immune response genes confirmed the reliability of our findings. In conclusion, our findings provide novel insight into the immune responses of T. fulvidraco and suggest that poly (I:C) may represent a promising adjuvant of fish vaccines.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ying-Yu Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Meng-Jiao Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Sha Luo
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, People's Republic of China
| | - Yue-Tian Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Wen-Fei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
37
|
Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A, Baghbanzadeh A, Baghi HB, Javadrashid D, Najafi S, Ar Gouilh M, Baradaran B. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch Virol 2021; 166:675-696. [PMID: 33462671 PMCID: PMC7812983 DOI: 10.1007/s00705-021-04958-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
The number of descriptions of emerging viruses has grown at an unprecedented rate since the beginning of the 21st century. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the third highly pathogenic coronavirus that has introduced itself into the human population in the current era, after SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Molecular and cellular studies of the pathogenesis of this novel coronavirus are still in the early stages of research; however, based on similarities of SARS-CoV-2 to other coronaviruses, it can be hypothesized that the NF-κB, cytokine regulation, ERK, and TNF-α signaling pathways are the likely causes of inflammation at the onset of COVID-19. Several drugs have been prescribed and used to alleviate the adverse effects of these inflammatory cellular signaling pathways, and these might be beneficial for developing novel therapeutic modalities against COVID-19. In this review, we briefly summarize alterations of cellular signaling pathways that are associated with coronavirus infection, particularly SARS-CoV and MERS-CoV, and tabulate the therapeutic agents that are currently approved for treating other human diseases.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Basira Najafzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne, EA2656 Université de Caen Normandie, Caen, France.
- Virology Lab, Department of Biology, Centre Hospitalier Universitaire de Caen, 14000, Caen, France.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Cao M, Yan X, Su B, Yang N, Fu Q, Xue T, Song L, Li Q, Li C. Integrated Analysis of circRNA-miRNA-mRNA Regulatory Networks in the Intestine of Sebastes schlegelii Following Edwardsiella tarda Challenge. Front Immunol 2021; 11:618687. [PMID: 33552082 PMCID: PMC7857051 DOI: 10.3389/fimmu.2020.618687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Sebastes schlegelii, an important aquaculture species, has been widely cultured in East Asian countries. With the increase in the cultivation scale, various diseases have become major threats to the industry. Evidence has shown that non-coding RNAs (ncRNAs) have remarkable functions in the interactions between pathogens and their hosts. However, little is known about the mechanisms of circular RNAs (circRNAs) and coding RNAs in the process of preventing pathogen infection in the intestine in teleosts. In this study, we aimed to uncover the global landscape of mRNAs, circRNAs, and microRNAs (miRNAs) in response to Edwardsiella tarda infection at different time points (0, 2, 6, 12, and 24 h) and to construct regulatory networks for exploring the immune regulatory mechanism in the intestine of S. schlegelii. In total, 1,794 mRNAs, 87 circRNAs, and 79 miRNAs were differentially expressed. The differentially expressed RNAs were quantitatively validated using qRT-PCR. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the differentially expressed mRNA genes and the target genes of ncRNAs were related to immune signaling pathways, such as the NF-κB signal pathway, pathogen recognition receptors related to signaling pathways (Toll-like receptors and Nod-like receptors), and the chemokine signaling pathway. Based on these differentially expressed genes, 624 circRNA-miRNA pairs and 2,694 miRNA-mRNA pairs were predicted using the miRanda software. Integrated analyses generated 25 circRNA-miRNA-mRNA interaction networks. In a novel_circ_0004195/novel-530/IκB interaction network, novel_530 was upregulated, while its two targets, novel_circ_0004195 and IκB, were downregulated after E. tarda infection. In addition, two circRNA-miRNA-mRNA networks related to apoptosis (novel_circ_0003210/novel_152/apoptosis-stimulating of p53 protein 1) and interleukin (novel_circ_0001907/novel_127/interleukin-1 receptor type 2) were also identified in our study. We thus speculated that the downstream NF-κB signaling pathway, p53 signaling pathway, and apoptosis pathway might play vital roles in the immune response in the intestine of S. schlegelii. This study revealed a landscape of RNAs in the intestine of S. schlegelii during E. tarda infection and provided clues for further study on the immune mechanisms and signaling networks based on the circRNA-miRNA-mRNA axis in S. schlegelii.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
39
|
Alzhanova D, Corcoran K, Bailey AG, Long K, Taft-Benz S, Graham RL, Broussard GS, Heise M, Neumann G, Halfmann P, Kawaoka Y, Baric RS, Damania B, Dittmer DP. Novel modulators of p53-signaling encoded by unknown genes of emerging viruses. PLoS Pathog 2021; 17:e1009033. [PMID: 33411764 PMCID: PMC7790267 DOI: 10.1371/journal.ppat.1009033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs. New viruses are constantly emerging. The ORFEOME project was based on the hypothesis that every virus, regardless of its molecular makeup and biology should encode functions that intersect the p53 signaling network, since p53 guards the cell from genomic insults, of which depositing a foreign, viral nucleic acid is one. The result of the ORFEOME screen of proteins without any known function, of predicted open reading frames and of suspected non-coding RNAs is the identification of two viral proteins that interact with p53. The first one, orf10, is encoded by Kaposi Sarcoma-associated herpesvirus and the second one, NS2A, is encoded by the Zika virus.
Collapse
Affiliation(s)
- Dina Alzhanova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kathleen Corcoran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aubrey G. Bailey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin Long
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Rachel L. Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Grant S. Broussard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Krey K, Babnis AW, Pichlmair A. System-Based Approaches to Delineate the Antiviral Innate Immune Landscape. Viruses 2020; 12:E1196. [PMID: 33096788 PMCID: PMC7589202 DOI: 10.3390/v12101196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses pose substantial challenges for society, economy, healthcare systems, and research. Their distinctive pathologies are based on specific interactions with cellular factors. In order to develop new antiviral treatments, it is of central importance to understand how viruses interact with their host and how infected cells react to the virus on a molecular level. Invading viruses are commonly sensed by components of the innate immune system, which is composed of a highly effective yet complex network of proteins that, in most cases, mediate efficient virus inhibition. Central to this process is the activity of interferons and other cytokines that coordinate the antiviral response. So far, numerous methods have been used to identify how viruses interact with cellular processes and revealed that the innate immune response is highly complex and involves interferon-stimulated genes and their binding partners as functional factors. Novel approaches and careful experimental design, combined with large-scale, high-throughput methods and cutting-edge analysis pipelines, have to be utilized to delineate the antiviral innate immune landscape at a global level. In this review, we describe different currently used screening approaches, how they contributed to our knowledge on virus-host interactions, and essential considerations that have to be taken into account when planning such experiments.
Collapse
Affiliation(s)
- Karsten Krey
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Aleksandra W. Babnis
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, 81675 Munich, Germany; (K.K.); (A.W.B.)
- German Center for Infection Research (DZIF), Munich Partner Site, 80538 Munich, Germany
| |
Collapse
|
41
|
Wang X, Wu Z, Li Y, Yang Y, Xiao C, Liu X, Xiang X, Wei J, Shao D, Liu K, Deng X, Wu J, Qiu Y, Li B, Ma Z. p53 promotes ZDHHC1-mediated IFITM3 palmitoylation to inhibit Japanese encephalitis virus replication. PLoS Pathog 2020; 16:e1009035. [PMID: 33108395 PMCID: PMC7647115 DOI: 10.1371/journal.ppat.1009035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/06/2020] [Accepted: 10/06/2020] [Indexed: 01/23/2023] Open
Abstract
The tumor suppressor p53 as an innate antiviral regulator contributes to restricting Japanese encephalitis virus (JEV) replication, but the mechanism is still unclear. The interferon-induced transmembrane protein 3 (IFITM3) is an intrinsic barrier to a range of virus infection, whether IFITM3 is responsible for the p53-mediated anti-JEV response remains elusive. Here, we found that IFITM3 significantly inhibited JEV replication in a protein-palmitoylation-dependent manner and incorporated into JEV virions to diminish the infectivity of progeny viruses. Palmitoylation was also indispensible for keeping IFITM3 from lysosomal degradation to maintain its protein stability. p53 up-regulated IFITM3 expression at the protein level via enhancing IFITM3 palmitoylation. Screening of palmitoyltransferases revealed that zinc finger DHHC domain-containing protein 1 (ZDHHC1) was transcriptionally up-regulated by p53, and consequently ZDHHC1 interacted with IFITM3 to promote its palmitoylation and stability. Knockdown of IFITM3 significantly impaired the inhibitory role of ZDHHC1 on JEV replication. Meanwhile, knockdown of either ZDHHC1 or IFITM3 expression also compromised the p53-mediated anti-JEV effect. Interestingly, JEV reduced p53 expression to impair ZDHHC1 mediated IFITM3 palmitoylation for viral evasion. Our data suggest the existence of a previously unrecognized p53-ZDHHC1-IFITM3 regulatory pathway with an essential role in restricting JEV infection and provide a novel insight into JEV-host interaction.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
- College of Agriculture and Forestry, Linyi University, Linyi, P.R. China
| | - Zhuanchang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Yuming Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Yifan Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Changguang Xiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Xiqian Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Xufang Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Jiaqiang Wu
- Shandong Provincial Animal Disease Control and Breeding, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P.R. China
| |
Collapse
|
42
|
Kutle I, Szymańska-de Wijs KM, Bogdanow B, Cuvalo B, Steinbrück L, Jonjić S, Wagner K, Niedenthal R, Selbach M, Wiebusch L, Dezeljin M, Messerle M. Murine Cytomegalovirus M25 Proteins Sequester the Tumor Suppressor Protein p53 in Nuclear Accumulations. J Virol 2020; 94:e00574-20. [PMID: 32727874 PMCID: PMC7527045 DOI: 10.1128/jvi.00574-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
To ensure productive infection, herpesviruses utilize tegument proteins and nonstructural regulatory proteins to counteract cellular defense mechanisms and to reprogram cellular pathways. The M25 proteins of mouse cytomegalovirus (MCMV) belong to the betaherpesvirus UL25 gene family that encodes viral proteins implicated with regulatory functions. Through affinity purification and mass spectrometric analysis, we discovered the tumor suppressor protein p53 as a host factor interacting with the M25 proteins. M25-p53 interaction in infected and transfected cells was confirmed by coimmunoprecipitation. Moreover, the proteins colocalized in nuclear dot-like structures upon both infection and inducible expression of the two M25 isoforms. p53 accumulated in wild-type MCMV-infected cells, while this did not occur upon infection with a mutant lacking the M25 gene. Both M25 proteins were able to mediate the effect, identifying them as the first CMV proteins responsible for p53 accumulation during infection. Interaction with M25 proteins led to substantial prolongation of the half-life of p53. In contrast to the higher abundance of the p53 protein in wild-type MCMV-infected cells, the transcript levels of the prominent p53 target genes Cdkn1a and Mdm2 were diminished compared to cells infected with the ΔM25 mutant, and this was associated with reduced binding of p53 to responsive elements within the respective promoters. Notably, the productivity of the M25 deletion mutant was partially rescued on p53-negative fibroblasts. We propose that the MCMV M25 proteins sequester p53 molecules in the nucleus of infected cells, reducing their availability for activating a subset of p53-regulated genes, thereby dampening the antiviral role of p53.IMPORTANCE Host cells use a number of factors to defend against viral infection. Viruses are, however, in an arms race with their host cells to overcome these defense mechanisms. The tumor suppressor protein p53 is an important sensor of cell stress induced by oncogenic insults or viral infections, which upon activation induces various pathways to ensure the integrity of cells. Viruses have to counteract many functions of p53, but complex DNA viruses such as cytomegaloviruses may also utilize some p53 functions for their own benefit. In this study, we discovered that the M25 proteins of mouse cytomegalovirus interact with p53 and mediate its accumulation during infection. Interaction with the M25 proteins sequesters p53 molecules in nuclear dot-like structures, limiting their availability for activation of a subset of p53-regulated target genes. Understanding the interaction between viral proteins and p53 may allow to develop new therapeutic strategies against cytomegalovirus and other viruses.
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Boris Bogdanow
- Proteome Dynamics lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Berislav Cuvalo
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rainer Niedenthal
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Selbach
- Proteome Dynamics lab, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lüder Wiebusch
- Laboratory of Pediatric Molecular Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Dezeljin
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
Shen YF, Liu YH, Li BY, Liu TQ, Wang GX. Evaluation on antiviral activity of a novel arctigenin derivative against multiple rhabdoviruses in aquaculture. Virus Res 2020; 285:198019. [DOI: 10.1016/j.virusres.2020.198019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
|
44
|
Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R, Banerjea AC. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun 2020; 529:1038-1044. [PMID: 32819562 DOI: 10.1016/j.bbrc.2020.05.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
Abstract
Human Immunodeficiency Virus-1 (HIV-1) Nef promotes p53 protein degradation to protect HIV-1 infected cells from p53 induced apoptosis. We found that Nef mediated p53 degradation is accomplished through ubiquitin proteasome pathway in an Mdm2-independent manner. By GST pulldown and immunoprecipitation assays, we have shown that Nef interacts with E3 ubiquitin ligase E6AP in both Nef transfected HEK-293T cells and HIV-1 infected MOLT3 cells. The p53 ubiquitination and degradation was found to be enhanced by Nef with E6AP but not by Nef with E6AP-C843A, a dominant negative E6AP mutant. We show that Nef binds with E6AP and promotes E6AP dependent p53 ubiquitination. Further, Nef inhibits apoptosis of p53 null H1299 cells after exogenous expression of p53 protein. The p53 dependent apoptosis of H1299 cells was further reduced after the expression of Nef with E6AP. However, Nef mediated reduction in p53 induced apoptosis of H1299 cells was restored when Nef was co-expressed with E6AP-C843A. Thus, Nef and E6AP co-operate to promote p53 ubiquitination and degradation in order to suppress p53 dependent apoptosis. CHME3 cells, which are a natural host of HIV-1, also show p53 ubiquitination and degradation by Nef and E6AP. These results establish that Nef induces p53 degradation via cellular E3 ligase E6AP to inhibit apoptosis during HIV-1 infection.
Collapse
Affiliation(s)
- Amjad Ali
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA 01605.
| | - Sabihur Rahman Farooqui
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Jagdish Rai
- IFSC, Panjab University, Chandigarh, 160014, India.
| | - Jyotsna Singh
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vivek Kumar
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ritu Mishra
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Akhil C Banerjea
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
45
|
Lu LF, Zhou XY, Zhang C, Li ZC, Chen DD, Zhang YA, Li S. Ca 2+ plays an antiviral role by increasing p53 expression to achieve protection against spring viraemia of carp virus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 102:449-459. [PMID: 32408017 DOI: 10.1016/j.fsi.2020.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Calcium (Ca) is a messenger that regulates a multitude of physiological processes, but its functions in antiviral progress remain undefined. In this study, we found that Ca2+ enhances fish survival to defend against spring viraemia of carp virus (SVCV) infection by reversing the instability of p53 mediated by the viral protein. First, Ca2+ significantly protected cells and fish against SVCV infection by inducing early apoptosis. Additionally, p53 expression, which was inhibited by SVCV N protein, was upregulated by Ca2+ treatment. Then, the mechanism underlying the reduction of K63-linked p53 ubiquitination by SVCV N protein via the K358 site was completely prevented by Ca2+. These findings reveal the role of Ca2+ in lower vertebrates in the antiviral response, which is connected to and corresponds with viral immune evasion, providing a solution to fish diseases caused by pathogens.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
46
|
Zhang J, Cui Z, Hu G, Jiang X, Wang J, Qiao G, Li Q. Transcriptome analysis provides insights into the antiviral response in the spleen of gibel carp (Carassius auratus gibelio) after poly I: C treatment. FISH & SHELLFISH IMMUNOLOGY 2020; 102:13-19. [PMID: 32247830 DOI: 10.1016/j.fsi.2020.03.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Gibel carp (Carassius auratus gibelio) is an important commercial fish that has become one of the most cultured fishes in the region of Yangtze River in China. However, the fish faces increasing hazard due to cyprinid herpesvirus 2 (CyHV-2) infection, which has caused great economic losses. In this study, healthy gibel carp were intraperitoneally injected with different doses of poly I:C at 24 h before CyHV-2 challenge. Results showed that the mortality decreased and peak death time appeared later in the fish injected with poly I:C at a dose of 10 μg/g body weight. To explore what gene plays an important role after poly I:C treatment, the transcriptome analysis of the gibel carp spleen was further performed. Compared with the PBS group, 1286 differentially expressed genes (DEGs) were obtained in the poly I:C-treated fish, including 1006 up-regulated and 280 down-regulated DEGs. GO analysis revealed that the most enriched DEGs responded to "biological regulation", "regulation of cellular process" and "regulation of biological process". Meanwhile, KEGG enrichment analysis showed that the DEGs were mainly mapped on the immune pathways like "TNF signal pathway", "p53 signal pathway" and "JAK-STAT signal pathway", suggesting that these signal pathways may be responsible for the delayed peak of CyHV-2 infection in gibel carp after poly I:C treatment. Taken together, this study provides insights into the immune protection effect of poly I:C against CyHV-2 infection, as well as providing useful information for antiviral defense in gibel carp.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhengyi Cui
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Guangyao Hu
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyu Jiang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jia Wang
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Guo Qiao
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qiang Li
- Department of Ocean Technology, College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
47
|
Saini S, Saini A, Thakur CJ, Kumar V, Gupta RD, Sharma JK. Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2020; 9:83-91. [PMID: 32802902 PMCID: PMC7382400 DOI: 10.22099/mbrc.2020.36507.1487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete genome of SARS-CoV-2 to predict pre-miRNAs. The potential pre-miRNAs were identified by ViralMir and mature miRNAs were recognized by Mature Bayes. Additionally, predicted mature miRNAs were analysed against human genome by miRDB server to retrieve target genes. Besides that we also retrieved GO (Gene Ontology) terms for pathways, functions and cellular components. We predicted 26 mature miRNAs from genome of SARS-CoV-2 that targets human genes involved in pathways like EGF receptor signaling, apoptosis signaling, VEGF signaling, FGF receptor signaling. Gene enrichment tool analysis and substantial literature evidences suggests role of genes like BMPR2 and p53 in pulmonary vasculature and antiviral innate immunity respectively. Our findings may help research community to understand virus pathogenesis.
Collapse
Affiliation(s)
- Sandeep Saini
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
- Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| | - Varinder Kumar
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| | - Rishabh Dilip Gupta
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| | - Jogesh Kumar Sharma
- Department of Bioinformatics, GGDSD College, Sector 32-C, 160030, Chandigarh, India
| |
Collapse
|
48
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
49
|
Abstract
RNA has been proposed as an important scaffolding factor in the nucleus, aiding protein complex assembly in the dense intracellular milieu. Architectural contributions of RNA to cytosolic signaling pathways, however, remain largely unknown. Here, we devised a multidimensional gradient approach, which systematically locates RNA components within cellular protein networks. Among a subset of noncoding RNAs (ncRNAs) cosedimenting with the ubiquitin-proteasome system, our approach unveiled ncRNA MaIL1 as a critical structural component of the Toll-like receptor 4 (TLR4) immune signal transduction pathway. RNA affinity antisense purification-mass spectrometry (RAP-MS) revealed MaIL1 binding to optineurin (OPTN), a ubiquitin-adapter platforming TBK1 kinase. MaIL1 binding stabilized OPTN, and consequently, loss of MaIL1 blunted OPTN aggregation, TBK1-dependent IRF3 phosphorylation, and type I interferon (IFN) gene transcription downstream of TLR4. MaIL1 expression was elevated in patients with active pulmonary infection and was highly correlated with IFN levels in bronchoalveolar lavage fluid. Our study uncovers MaIL1 as an integral RNA component of the TLR4-TRIF pathway and predicts further RNAs to be required for assembly and progression of cytosolic signaling networks in mammalian cells.
Collapse
|
50
|
Ipr1 Regulation by Cyclic GMP-AMP Synthase/Interferon Regulatory Factor 3 and Modulation of Irgm1 Expression via p53. Mol Cell Biol 2020; 40:MCB.00471-19. [PMID: 31988106 DOI: 10.1128/mcb.00471-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular pathogen resistance 1 (Ipr1) has been found to be a mediator to integrate cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3), activated by intracellular pathogens, with the p53 pathway. Previous studies have shown the process of Ipr1 induction by various immune reactions, including intracellular bacterial and viral infections. The present study demonstrated that Ipr1 is regulated by the cGAS-IRF3 pathway during pathogenic infection. IRF3 was found to regulate Ipr1 expression by directly binding the interferon-stimulated response element motif of the Ipr1 promoter. Knockdown of Ipr1 decreased the expression of immunity-related GTPase family M member 1 (Irgm1), which plays critical roles in autophagy initiation. Irgm1 promoter characterization revealed a p53 motif in front of the transcription start site. P53 was found to participate in regulation of Irgm1 expression and IPR1-related effects on P53 stability by affecting interactions between ribosomal protein L11 (RPL11) and transformed mouse 3T3 cell double minute 2 (MDM2). Our results indicate that Ipr1 integrates cGAS-IRF3 with p53-modulated Irgm1 expression.
Collapse
|