1
|
Li S, Li T, Jiang Z, Hou W, Hou Q, Serrano BR, Barcenas AR, Wang Y, Zhao W. Dietary Mulberry leaf 1-deoxynijirimycin supplementation shortens villus height and improves intestinal barrier in fattening rabbits. Anim Biosci 2024; 37:2101-2112. [PMID: 39210821 DOI: 10.5713/ab.24.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The current study investigated the effects of mulberry 1-deoxynijirimycin (DNJ) on the digestion ability, intestinal morphology, and intestinal barrier of rabbits. METHODS A total of 36 New Zealand White rabbits (male) about 45 days old (mean body weight of 1.05±0.04 kg) were reared and commercial diets were employed, and afterwards divided into three groups (n = 12) with different levels of DNJ extract additive in feed: T0 (0 g/kg), T1 (0.35 g/kg), T2 (0.7 g/kg) for 28 d. RESULTS The results demonstrated that T2 decreased the average daily gain (p<0.05). T1 and T2 decreased villus height and inflammatory factor levels as compared with T0 (p<0.05). DNJ significantly decreased the content of valeric acid (p<0.05). The content of acetic acid, propionic acid, iso butyric acid, iso valeric acid in T1 were higher than those in T0 and T2 (p<0.05). The content of butyric acid in T2 was lower than it in T0 and T1 (p<0.05). The content of caproic acid was firstly improved then reduced as the DNJ concentration improved (p<0.05). T2 significantly increased the abundance of dgA-11_gut_group and Christensenellaceae_R-7_group while decreased Bacteroide and Ralstonia as compared with T0 (p<0.05). Compared with T0, T1, and T2 significantly improved the gene expression of JAM2, JAM3, mucin4, mucin6 (p<0.05), T1 significantly decreased the expression of occluding while T2 significantly increased (p<0.05), T2 significantly increased the expression of claudin1 and claudin2 (p<0.05). CONCLUSION DNJ at high level changed microbiome compositions, inhibited inflammation, and improved intestinal barrier while it decreased the growth performance and shorted villus height in rabbit jejunum by regulating short chain fatty acid compositions in rabbits.
Collapse
Affiliation(s)
- Shaocong Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zijie Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wenyu Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qirui Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | | | | | - Yuhua Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
2
|
Zahedi E, Naseri FM, Zamani E, Nikbakhtzadeh M, Rastegar T, Sanaeirad A, Sadr SS. Ginger Extract Improves Cognitive Dysfunction via Modulation of Gut Microbiota-Derived Short-Chain Fatty Acids in D-Galactose/Ovariectomy-Induced Alzheimer-Like Disease. Mol Neurobiol 2024:10.1007/s12035-024-04583-w. [PMID: 39505806 DOI: 10.1007/s12035-024-04583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with complex causes and limited treatment options. Recent research has suggested a connection between the progression of AD and the activity of gut microbiota. Ginger, a plant known for its anti-inflammatory, antioxidant, and neuroprotective properties, has gained attention as a potential treatment for alleviating AD symptoms. In this study, we induced an AD model in female rats through ovariectomy and D-galactose injection and then investigated the protective effects of oral administration of ginger ethanolic extract. We assessed changes in short-chain fatty acids (SCFAs), learning and memory abilities, neuroinflammatory markers in plasma, and the hippocampus, as well as histological changes in the intestine and hippocampus in sham-operated, diseased, and treatment groups. Oral administration of ginger ethanolic extract improved gut microbiota activity, increased SCFA levels, and enhanced the expression of tight junction proteins. Additionally, ginger extract reduced the concentrations of TNF-α and IL-1β in both plasma and the hippocampus. Furthermore, it significantly reduced cell death and amyloid plaque deposition in the hippocampal tissue. These physiological changes resulted in improved performance in learning and memory tasks in rats treated with ginger compared with the disease group. These findings provide compelling evidence for the beneficial effects of ginger on the gut-brain axis, leading to improvements in learning and memory through the reduction of neuroinflammation.
Collapse
Affiliation(s)
- Elham Zahedi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Mokhtari Naseri
- Physiology Department and Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Zamani
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Sanaeirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Basting CM, Langat R, Broedlow CA, Guerrero CR, Bold TD, Bailey M, Velez A, Schroeder T, Short-Miller J, Cromarty R, Mayer ZJ, Southern PJ, Schacker TW, Safo SE, Bramante CT, Tignanelli CJ, Schifanella L, Klatt NR. SARS-CoV-2 infection is associated with intestinal permeability, systemic inflammation, and microbial dysbiosis in hospitalized patients. Microbiol Spectr 2024; 12:e0068024. [PMID: 39345212 PMCID: PMC11537016 DOI: 10.1128/spectrum.00680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) and its associated severity have been linked to uncontrolled inflammation and may be associated with changes in the microbiome of mucosal sites including the gastrointestinal tract and oral cavity. These sites play an important role in host-microbe homeostasis, and disruption of epithelial barrier integrity during COVID-19 may potentially lead to exacerbated inflammation and immune dysfunction. Outcomes in COVID-19 are highly disparate, ranging from asymptomatic to fatal, and the impact of microbial dysbiosis on disease severity is unclear. Here, we obtained plasma, rectal swabs, oropharyngeal swabs, and nasal swabs from 86 patients hospitalized with COVID-19 and 12 healthy volunteers. We performed 16S rRNA sequencing to characterize the microbial communities in the mucosal swabs and measured concentrations of circulating cytokines, markers of gut barrier integrity, and fatty acids in the plasma samples. We compared these plasma concentrations and microbiomes between healthy volunteers and COVID-19 patients, some of whom had unfortunately died by the end of the study enrollment, and performed a correlation analysis between plasma variables and bacterial abundances. Rectal swabs of COVID-19 patients had reduced abundances of several commensal bacteria including Faecalibacterium prausnitzii and an increased abundance of the opportunistic pathogens Eggerthella lenta and Hungatella hathewayi. Furthermore, the oral pathogen Scardovia wiggsiae was more abundant in the oropharyngeal swabs of COVID-19 patients who died. The abundance of both H. hathewayi and S. wiggsiae correlated with circulating inflammatory markers including IL-6, highlighting the possible role of the microbiome in COVID-19 severity and providing potential therapeutic targets for managing COVID-19.IMPORTANCEOutcomes in coronavirus disease 2019 (COVID-19) are highly disparate and are associated with uncontrolled inflammation; however, the individual factors that lead to this uncontrolled inflammation are not fully understood. Here, we report that severe COVID-19 is associated with systemic inflammation, microbial translocation, and microbial dysbiosis. The rectal and oropharyngeal microbiomes of COVID-19 patients were characterized by a decreased abundance of commensal bacteria and an increased abundance of opportunistic pathogens, which positively correlated with markers of inflammation and microbial translocation. These microbial perturbations may, therefore, contribute to disease severity in COVID-19 and highlight the potential for microbiome-based interventions in improving COVID-19 outcomes.
Collapse
Affiliation(s)
| | - Robert Langat
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Candace R. Guerrero
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minnesota, Minneapolis, USA
- College of Biological Sciences, University of Minnesota, Minnesota, Minneapolis, USA
| | - Tyler D. Bold
- Department of Medicine, University of Minnesota, Minnesota, Minneapolis, USA
| | - Melisa Bailey
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Adrian Velez
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ty Schroeder
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonah Short-Miller
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minnesota, Minneapolis, USA
| | - Zachary J. Mayer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minnesota, Minneapolis, USA
- College of Biological Sciences, University of Minnesota, Minnesota, Minneapolis, USA
| | - Peter J. Southern
- Department of Microbiology and Immunology, University of Minnesota, Minnesota, Minneapolis, USA
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minnesota, Minneapolis, USA
| | - Sandra E. Safo
- Department of Biostatistics and Health Data Science, University of Minnesota, Minnesota, Minneapolis, USA
| | - Carolyn T. Bramante
- Department of Medicine, University of Minnesota, Minnesota, Minneapolis, USA
| | | | - Luca Schifanella
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- National Cancer Institute, Center for Cancer Research, Vaccine Branch, Animal Models and Retroviral Vaccines Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Nichole R. Klatt
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Gu R, Wei H, Cui T, Wang G, Luan Y, Liu R, Yin C. Angiotensin-(1-7) improves intestinal microbiota disturbances and modulates fecal metabolic aberrations in acute pancreatitis. FASEB J 2024; 38:e70134. [PMID: 39453737 DOI: 10.1096/fj.202401565rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/27/2024]
Abstract
Acute pancreatitis (AP) is a serious health problem that dysregulates intestinal microbiota. Angiotensin (Ang)-(1-7) plays a protective role in the intestinal barrier in AP, but its effect on intestinal microbiota remains clear. To investigate the impact of Ang-(1-7) on AP-induced intestinal microbiota disorder and metabolites. We collected blood and fecal samples from 31 AP patients within 48 h after admission to the hospital, including 11 with mild AP (MAP), 14 with moderately severe AP (MSAP), six with severe AP (SAP). Mice were divided into four groups: control, AP, AP + Ang-(1-7) via tail vein injection, and AP + Ang-(1-7) via oral administration. The samples of mice were collected 12 h after AP. Pancreatic and intestinal histopathology scores were analyzed using the Schmidt and Chiu scores. Fecal microbiota and metabolites analysis was performed via 16S rDNA sequencing and nontargeted metabolomics analysis, respectively. In patients, the abundance of beneficial bacteria (Negativicutes) decreased and pathogenic bacteria (Clostridium bolteae and Ruminococcus gnavus) increased in SAP compared with MAP. Ang-(1-7) levels were associated with changes in the microbiota. There were differences in the intestinal microbiota between control and AP mice. Ang-(1-7) attenuated intestinal microbiota dysbiosis in AP mice, reflecting in the increase in beneficial bacteria (Odoribacter and Butyricimonas) than AP, as well as pancreatic and intestinal injuries. Oral administration of Ang-(1-7) reversing AP-induced decreases in metabolisms: secondary bile acids, emodin, and naringenin. Ang-(1-7) may improve intestinal microbiota dysbiosis and modulate fecal metabolites in AP, thereby reducing the damage of AP.
Collapse
Affiliation(s)
- Ruru Gu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterology, the Second Hospital of Shandong University, Jinan, China
| | - Hongtao Wei
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianyu Cui
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingyi Luan
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Xu MR, Lin CH, Wang CH, Wang SY. Investigate the metabolic changes in intestinal diseases by employing a 1H-NMR-based metabolomics approach on Caco-2 cells treated with cedrol. Biofactors 2024. [PMID: 39415440 DOI: 10.1002/biof.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial dysfunction may precipitate intestinal dysfunction, while inflammatory bowel disease manifests as a chronic inflammatory ailment affecting the gastrointestinal tract. This condition disrupts the barrier function of the intestinal epithelium and alters metabolic products. Increasing mitochondrial adenosine triphosphate (ATP) synthesis in intestinal epithelial cells presents a promising avenue for colitis treatments. Nevertheless, the impact of cedrol on ATP and the intestinal barrier remains unexplored. Hence, this study is dedicated to examining the cedrol's protective effect on an inflammatory cocktail (IC)-induced intestinal epithelial barrier dysfunction in Caco-2 cells. The finding reveals that cedrol enhances ATP content and the transepithelial electrical resistance value in the intestinal epithelial barrier. Moreover, cedrol mitigates the IC-induced decrease in the messenger ribonucleic acid (mRNA) expression of tight junction proteins (ZO-1, Occludin, and Claudin-1), thereby ameliorating intestinal epithelial barrier dysfunction. Furthermore, nuclear magnetic resonance (NMR)-based metabolomic analysis indicated that IC-exposed Caco-2 cells are restored by cedrol treatments. Notably, cedrol elevates metabolites such as amino acids, thereby enhancing the intestinal barrier. In conclusion, cedrol alleviates IC-induced intestinal epithelial barrier dysfunction by promoting ATP-dependent proliferation of Caco-2 cells and bolstering amino acid levels to sustain tight junction messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Mo-Rong Xu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hsin Lin
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chung Hsuan Wang
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Salehi S, Allahverdy J, Pourjafar H, Sarabandi K, Jafari SM. Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy. Probiotics Antimicrob Proteins 2024; 16:1553-1565. [PMID: 38421576 DOI: 10.1007/s12602-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.
Collapse
Affiliation(s)
- Samaneh Salehi
- Department of Food Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Students' Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Khashayar Sarabandi
- Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box 91895, Mashhad, 157-356, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Li C, Li Y, Wang N, Ge Z, Wang J, Ding B, Bi Y, Wang Y, Wang Y, Peng Z, Yang X, Wang C, Hong Z. Comprehensive modulatory effects of whole grain consumption on immune-mediated inflammation in middle-aged and elderly community residents: A real-world randomized controlled trial. Redox Biol 2024; 76:103337. [PMID: 39260062 PMCID: PMC11414686 DOI: 10.1016/j.redox.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND AND AIMS Whole grain consumption is widely recognized as a vital component of a balanced diet. Dietary fiber has been well-documented to play a crucial role in these health benefits attributed to whole grain intake. However, population-based evidence directly linking whole grain consumption to anti-inflammatory effects, especially in the context of immune-mediated inflammation, remains limited. We hypothesized that whole grain consumption promotes health by modulating immune-mediated inflammation. METHODS AND RESULTS This study was designed as a real-world, population-based randomized controlled trial. We compared the effects of whole grain versus refined grain consumption on immune-mediated inflammation through staple food substitution, while participants maintained their usual dietary practices. The results demonstrated that whole grain consumption significantly reduced circulating levels of pro-inflammatory cytokines IL-22 and IL-23 compared to refined grain consumption. These reductions were associated with optimized short-chain fatty acid profiles and changes in CD4+ T cell subset distributions. CONCLUSIONS The findings suggest that the anti-inflammatory effects of whole grain consumption in middle-aged and elderly populations are mediated by targeting specific CD4+ T cell subsets, in addition to modulating both upstream short-chain fatty acid composition and downstream expression of the pro-inflammatory cytokines IL-22 and IL-23.
Collapse
Affiliation(s)
- Cheng Li
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yaru Li
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nan Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Ge
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bingjie Ding
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanxia Bi
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuxia Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yisi Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zebin Peng
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinli Yang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Congcong Wang
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongxin Hong
- Department of Clinical Nutrition, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Povolotsky TL, Levy Barazany H, Shacham Y, Kolodkin-Gal I. Bacterial epigenetics and its implication for agriculture, probiotics development, and biotechnology design. Biotechnol Adv 2024; 75:108414. [PMID: 39019123 DOI: 10.1016/j.biotechadv.2024.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In their natural habitats, organisms encounter numerous external stimuli and must be able to sense and adapt to those stimuli to survive. Unlike mutations, epigenetic changes do not alter the underlying DNA sequence. Instead, they create modifications that promote or silence gene expression. Bacillus subtilis has long been a model organism in studying genetics and development. It is beneficial for numerous biotechnological applications where it is included as a probiotic, in fermentation, or in bio-concrete design. This bacterium has also emerged recently as a model organism for studying bacterial epigenetic adaptation. In this review, we examine the evolving knowledge of epigenetic regulation (restriction-modification systems (RM), orphan methyltransferases, and chromosome condensation) in B. subtilis and related bacteria, and utilize it as a case study to test their potential roles and future applications in genetic engineering and microbial biotechnology. Finally, we suggest how the implementation of these fundamental findings promotes the design of synthetic epigenetic memory circuits and their future applications in agriculture, medicine, and biotechnology.
Collapse
Affiliation(s)
- Tatyana L Povolotsky
- Institute for Chemistry and Biochemistry, Physical and Theoretical Chemistry, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany
| | - Hilit Levy Barazany
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Yosi Shacham
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel
| | - Ilana Kolodkin-Gal
- Scojen Institute for Synthetic Biology, Reichman University, Hauniversita 8, Herzeliya, Israel.
| |
Collapse
|
9
|
Su Q, Tang Q, Ma C, Wang K. Advances in the study of the relationship between gut microbiota and erectile dysfunction. Sex Med Rev 2024; 12:664-669. [PMID: 38984896 DOI: 10.1093/sxmrev/qeae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION In recent years, in-depth research has revealed that gut microbiota has an inseparable relationship with erectile dysfunction (ED) in men. OBJECTIVES (1) To review the correlation between gut microbiota and ED from the perspective of its impact on men's mental health, metabolism, immunity, and endocrine regulation and (2) to provide reference to further explore the pathogenesis of ED and the improvement of clinical treatment plans. METHODS PubMed was used for the literature search to identify publications related to ED and gut microbiota. RESULTS Gut microbiota may induce depression and anxiety through the microbiota-gut-brain axis, leading to the occurrence of psychological ED. It may also cause vascular endothelial dysfunction and androgen metabolism disorder by interfering with lipid metabolism, immunity, and endocrine regulation, leading to the occurrence of organic ED. CONCLUSION Gut microbiota and its metabolites play an important role in the occurrence and development of ED. As a new influencing factor of ED, gut microbiota disorder is expected to become a target for treatment.
Collapse
Affiliation(s)
- Quanxin Su
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Qizhen Tang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Kenan Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
10
|
Wen W, Huang SM, Zhang B. Mechanisms Underlying Obesity-induced Aβ Accumulation in Alzheimer's Disease: A Qualitative Review. J Integr Neurosci 2024; 23:163. [PMID: 39344225 DOI: 10.31083/j.jin2309163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/01/2024] Open
Abstract
Epidemiological studies show that individuals with obesity are more likely to develop Alzheimer's disease (AD) than those who do not have obesity. However, the mechanisms underlying the relationship between obesity and AD are not entirely unclear. Here, we have reviewed and analyzed relevant articles published in the literature and found that obesity has correlation or potential increase in the levels of β-amyloid (Aβ) protein, which may explain why people with obesity are more likely to suffer from AD. Additionally, the published findings point to the roles of obesity-related metabolic disorders, such as diabetes, inflammation, oxidative stress, and imbalance in gut microbiota in Aβ accumulation caused by obesity. Therefore, in-depth experimental and clinical studies on these mechanisms in the future may help shed light on appropriate prevention and treatment strategies for AD, such as dietary changes and regular exercise to reverse or prevent obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Wei Wen
- Department of Pharmacology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Rojas CA, Park B, Scarsella E, Jospin G, Entrolezo Z, Jarett JK, Martin A, Ganz HH. Species-level characterization of the core microbiome in healthy dogs using full-length 16S rRNA gene sequencing. Front Vet Sci 2024; 11:1405470. [PMID: 39286595 PMCID: PMC11404154 DOI: 10.3389/fvets.2024.1405470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Despite considerable interest and research in the canine fecal microbiome, our understanding of its species-level composition remains incomplete, as the majority of studies have only provided genus-level resolution. Here, we used full-length 16S rRNA gene sequencing to characterize the fecal microbiomes of 286 presumed healthy dogs living in homes in North America who are devoid of clinical signs, physical conditions, medication use, and behavioral problems. We identified the bacterial species comprising the core microbiome and investigated whether a dog's sex & neuter status, age, body weight, diet, and geographic region predicted microbiome variation. Our analysis revealed that 23 bacterial species comprised the core microbiome, among them Collinsella intestinalis, Megamonas funiformis, Peptacetobacter hiranonis, Prevotella copri, and Turicibacter sanguinis. The 23 taxa comprised 75% of the microbiome on average. Sterilized females, dogs of intermediate body sizes, and those exclusively fed kibble tended to harbor the most core taxa. Host diet category, geographic region, and body weight predicted microbiome beta-diversity, but the effect sizes were modest. Specifically, the fecal microbiomes of dogs fed kibble were enriched in several core taxa, including C. intestinalis, P. copri, and Holdemanella biformis, compared to those fed raw or cooked food. Conversely, dogs on a raw food diet exhibited higher abundances of Bacteroides vulgatus, Caballeronia sordicola, and Enterococcus faecium, among others. In summary, our study provides novel insights into the species-level composition and drivers of the fecal microbiome in healthy dogs living in homes; however, extrapolation of our findings to different dog populations will require further study.
Collapse
|
12
|
Wang JL, Yeh CH, Huang SH, Wu LSH, Chen MCM. Effects of Resistant-Starch-Encapsulated Probiotic Cocktail on Intestines Damaged by 5-Fluorouracil. Biomedicines 2024; 12:1912. [PMID: 39200376 PMCID: PMC11351836 DOI: 10.3390/biomedicines12081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics and prebiotics have gained attention for their potential health benefits. However, their efficacy hinges on probiotic survival through the harsh gastrointestinal environment. Microencapsulation techniques provide a solution, with resistant starch (RS)-based techniques showing promise in maintaining probiotic viability. Specifically, RS-encapsulated probiotics significantly improved probiotic survival in gastric acid, bile salts, and simulated intestinal conditions. This study investigated the effects of a resistant-starch-encapsulated probiotic cocktail (RS-Pro) in the context of 5-fluorouracil (5-FU) chemotherapy, which frequently induces microbiota dysbiosis and intestinal mucositis. Female BALB/c mice were divided into three groups: a 5-FU group, a 5-FU+Pro group receiving free probiotics, and a 5-FU+RS-Pro group receiving RS-encapsulated probiotics. After 28 days of treatment, analyses were conducted on fecal microbiota, intestinal histology, peripheral blood cell counts, and body and organ weights. It was revealed by 16S rRNA MiSeq sequencing that 5-FU treatment disrupted gut microbiota composition, reduced microbial diversity, and caused dysbiosis. RS-Pro treatment restored microbial diversity and increased the population of beneficial bacteria, such as Muribaculaceae, which play roles in carbohydrate and polyphenol metabolism. Furthermore, 5-FU administration induced moderate intestinal mucositis, characterized by reduced cellularity and shortened villi. However, RS-Pro treatment attenuated 5-FU-induced intestinal damage, preserving villus length. Mild leukopenia observed in the 5-FU-treated mice was partially alleviated in 5-FU+Pro and 5-FU+RS-Pro groups. These findings suggest that RS-Pro may serve as an adjunct to chemotherapy, potentially reducing adverse effects and improving therapeutic outcomes in future clinical applications.
Collapse
Affiliation(s)
- Jui-Ling Wang
- Animal Testing Division, National Applied Research Laboratories, National Laboratory Animal Center, Tainan 744, Taiwan;
| | - Chin-Hsing Yeh
- Fecula Biotech Co., Ltd., Tainan 744, Taiwan; (C.-H.Y.); (S.-H.H.)
| | - Shih-Hung Huang
- Fecula Biotech Co., Ltd., Tainan 744, Taiwan; (C.-H.Y.); (S.-H.H.)
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | | |
Collapse
|
13
|
Bárcenas-Preciado V, Mata-Haro V. Probiotics in miRNA-Mediated Regulation of Intestinal Immune Homeostasis in Pigs: A Physiological Narrative. Microorganisms 2024; 12:1606. [PMID: 39203448 PMCID: PMC11356641 DOI: 10.3390/microorganisms12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The microbiota plays a crucial role in maintaining the host's intestinal homeostasis, influencing numerous physiological functions. Various factors, including diet, stress, and antibiotic use, can lead to such imbalances. Probiotics have been shown to restore the microbiota, contributing to maintaining this balance. For instance, the weaning stage in piglets is crucial; this transition can cause unfavorable changes that may contribute to the onset of diarrhea. Probiotic supplementation has increased due to its benefits. However, its mechanism of action is still controversial; one involves the regulation of intestinal immunity. When recognized by immune system cells through membrane receptors, probiotics activate intracellular signaling pathways that lead to changes in gene expression, resulting in an anti-inflammatory response. This complex regulatory system involves transcriptional and post-transcriptional mechanisms, including the modulation of various molecules, emphasizing microRNAs. They have emerged as important regulators of innate and adaptive immune responses. Analyzing these mechanisms can enhance our understanding of probiotic-host microbiota interactions, providing insights into their molecular functions. This knowledge can be applied not only in the swine industry, but also in studying microbiota-related disorders. Moreover, these studies serve as animal models, helping to understand better conditions such as inflammatory bowel disease and other related disorders.
Collapse
Affiliation(s)
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD) Carretera Gustavo E. Astiazarán 46, Col. La Victoria, Hermosillo 83304, Mexico;
| |
Collapse
|
14
|
Isaac-Bamgboye FJ, Mgbechidinma CL, Onyeaka H, Isaac-Bamgboye IT, Chukwugozie DC. Exploring the Potential of Postbiotics for Food Safety and Human Health Improvement. J Nutr Metab 2024; 2024:1868161. [PMID: 39139215 PMCID: PMC11321893 DOI: 10.1155/2024/1868161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Food safety is a global concern, with millions suffering from foodborne diseases annually. The World Health Organization (WHO) reports significant morbidity and mortality associated with contaminated food consumption, and this emphasizes the critical need for comprehensive food safety measures. Recent attention has turned to postbiotics, metabolic byproducts of probiotics, as potential agents for enhancing food safety. Postbiotics, including organic acids, enzymes, and bacteriocins, exhibit antimicrobial and antioxidant properties that do not require live organisms, and this offers advantages over probiotics. This literature review critically examines the role of postbiotics in gut microbiome modulation and applications in the food industry. Through an extensive review of existing literature, this study evaluates the impact of postbiotics on gut microbiome composition and their potential as functional food ingredients. Research indicates that postbiotics are effective in inhibiting food pathogens such as Staphylococcus aureus, Salmonella enterica, and Escherichia coli, as well as their ability to prevent oxidative stress-related diseases, and they also show promise as alternatives to conventional food preservatives that can extend food shelf life by inhibiting harmful bacterial growth. Their application in functional foods contributes to improved gut health and reduced risk of foodborne illnesses. Findings suggest that postbiotics hold promise for improving health and preservation by inhibiting pathogenic bacteria growth and modulating immune responses.
Collapse
Affiliation(s)
- Folayemi Janet Isaac-Bamgboye
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
- Department of Food Science and TechnologyFederal University of Technology, Akure, Ondo State, Nigeria
| | - Chiamaka Linda Mgbechidinma
- Centre for Cell and Development Biology and State Key Laboratory of AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ocean CollegeZhejiang University, Zhoushan 316021, Zhejiang, China
- Department of MicrobiologyUniversity of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Helen Onyeaka
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
15
|
Kang M, Kang M, Lee J, Yoo J, Lee S, Oh S. Allium tuberosum-derived nanovesicles with anti-inflammatory properties prevent DSS-induced colitis and modify the gut microbiome. Food Funct 2024; 15:7641-7657. [PMID: 38953279 DOI: 10.1039/d4fo01366b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Edible plant-derived nanovesicles (ePDNs) have shown potential as a non-pharmacological option for inflammatory bowel disease (IBD) by maintaining gut health and showing anti-inflammatory effects. However, the effects of Allium tuberosum-derived nanovesicles (ADNs) on colitis have not been studied to date. Here, we extracted exosome-like nanovesicles from Allium tuberosum and investigated whether they have an anti-inflammatory effect in RAW 264.7 cells and colitis mice. The results showed that ADNs reduced the elevated levels of inflammatory factors such as IL-1β, IL-6, TNF-α, and NF-κB pathway-related proteins as a consequence of lipopolysaccharide (LPS) stimulation in RAW 264.7 cells. Furthermore, our mouse experiments demonstrated that ADNs could ameliorate dextran sulfate sodium (DSS)-induced colitis symptoms (e.g., increased disease activity index score, intestinal permeability, and histological appearance). Additionally, ADNs counteracted DSS-induced colitis by downregulating the expression of serum amyloid A (SAA), IL-1β, IL-6, and TNF-α and increasing the expression of tight junction proteins (ZO-1 and occludin) and the anti-inflammatory cytokine IL-10. 16S rRNA gene sequencing showed that ADN intervention restored the gut microbial composition, which was similar to that of the DSS non-treated group, by decreasing the ratio of Firmicutes to Bacteroidetes and the relative abundance of Proteobacteria. Furthermore, ADNs induced acetic acid production along with an increase in the abundance of Lactobacillus. Overall, our findings suggest that ADN supplementation has a crucial role in maintaining gut health and is a novel preventive therapy for IBD.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Minji Kang
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Juyeon Lee
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Jiseon Yoo
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Sujeong Lee
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
| | - Sangnam Oh
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea.
- Department of Food and Nutrition, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
16
|
Kumbhare SV, Pedroso I, Joshi B, Muthukumar KM, Saravanan SK, Irudayanathan C, Kochhar GS, Dulai PS, Sinha R, Almonacid DE. Longitudinal gut microbial signals are associated with weight loss: insights from a digital therapeutics program. Front Nutr 2024; 11:1363079. [PMID: 39040930 PMCID: PMC11262244 DOI: 10.3389/fnut.2024.1363079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction The gut microbiome's influence on weight management has gained significant interest for its potential to support better obesity therapeutics. Patient stratification leading to personalized nutritional intervention has shown benefits over one-size-fit-all diets. However, the efficacy and impact on the gut's microbiome of personalizing weight loss diets based on individual factors remains under-investigated. Methods This study assessed the impact of Digbi Health's personalized dietary and lifestyle program on weight loss and the gut microbiome end-points in 103 individuals. Participants' weight loss patterns and gut microbiome profiles were analyzed from baseline to follow-up samples. Results Specific microbial genera, functional pathways, and communities associated with BMI changes and the program's effectiveness were identified. 80% of participants achieved weight loss. Analysis of the gut microbiome identified genera and functional pathways associated with a reduction in BMI, including Akkermansia, Christensenella, Oscillospiraceae, Alistipes, and Sutterella, short-chain fatty acid production, and degradation of simple sugars like arabinose, sucrose, and melibiose. Network analysis identified a microbiome community associated with BMI, which includes multiple taxa known for associations with BMI and obesity. Discussion The personalized dietary and lifestyle program positively impacted the gut microbiome and demonstrated significant associations between gut microbial changes and weight loss. These findings support the use of the gut microbiome as an endpoint in weight loss interventions, highlighting potential microbiome biomarkers for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gursimran S. Kochhar
- Division of Gastroenterology, Hepatology and Nutrition, Allegheny Health Network, Pittsburgh, PA, United States
| | - Parambir S. Dulai
- Division of Gastroenterology, Northwestern University, Chicago, IL, United States
| | | | | |
Collapse
|
17
|
Pérez M, Buey B, Corral P, Giraldos D, Latorre E. Microbiota-Derived Short-Chain Fatty Acids Boost Antitumoral Natural Killer Cell Activity. J Clin Med 2024; 13:3885. [PMID: 38999461 PMCID: PMC11242436 DOI: 10.3390/jcm13133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Background: The intestinal microbiota can regulate numerous host functions, including the immune response. Through fermentation, the microbiota produces and releases microbial metabolites such as short-chain fatty acids (SCFAs), which can affect host homeostasis. There is growing evidence that the gut microbiome can have a major impact on cancer. Specific gut microbial composition and metabolites are associated with tumor status in the host. However, their effects on the antitumor response have scarcely been investigated. Natural killer (NK) cells play an important role in antitumor immunity due to their ability to directly identify and eliminate tumor cells. Methods: The aim of this study was to investigate the effects of SCFAs on antitumoral NK cell activity, using NK-92 cell line. Results: Here, we describe how SCFAs can boost antitumoral NK cell activity. The SCFAs induced the release of NK extracellular vesicles and reduced the secretion of the anti-inflammatory cytokine IL-10. The SCFAs also increased the cytotoxicity of the NK cells against multiple myeloma cells. Conclusions: Our results indicate, for the first time, the enormous potential of SCFAs in regulating antitumoral NK cell defense, where modulation of the SCFAs' production could play a fundamental role in cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Corral
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - David Giraldos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
18
|
Kim JY, Lee S, Kim G, Shin HJ, Lee EJ, Lee CS, Yoon S, Lee E, Lim A, Kim SH. Ameliorating effect of 2'-fucosyllactose and 6'-sialyllactose on lipopolysaccharide-induced intestinal inflammation. J Dairy Sci 2024; 107:4147-4160. [PMID: 38490539 DOI: 10.3168/jds.2024-24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Human milk oligosaccharides (HMO) affect gut microbiota during neonatal development, particularly with respect to the immune system. Bovine milk-based infant formulas have low oligosaccharide contents. Thus, efforts to fortify infant formulas with HMO are being undertaken. Two major HMO, 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL), exert anti-inflammatory effects; however, the associations between anti-inflammatory effects induced by 2'-FL and 6'-SL cotreatment and gut microbiota composition and metabolite modulation remain unclear. Therefore, in this study, we evaluated the effects of a mixture of these HMO. To determine the optimal HMO ratio for anti-inflammatory effects and elucidate its mode of action, LPS-induced inflammatory HT-29 epithelial cells and intestinal-inflamed suckling mice were treated with various mixtures of 2'-FL and 6'-SL. A 2'-FL:6'-SL ratio of 5:1 was identified as the most effective pretreatment HMO mixture in vitro; thus, this ratio was selected and used for low-, middle-, and high-dose treatments for subsequent in vivo studies. In vivo, high-dose HMO treatment restored LPS-induced inflammation symptoms, such as BW loss, colon length reduction, histological structural damage, and intestinal gene expression related to inflammatory responses. High-dose HMO was the only treatment that modulated the major phyla Bacteroidetes and Firmicutes and the genera Ihubacter, Mageeibacillus, and Saccharofermentans. These changes in microbial composition were correlated with intestinal inflammation-related gene expression and short-chain fatty acid production. To our knowledge, our study is the first to report the effects of Ihubacter, Mageeibacillus, and Saccharofermentans on short-chain fatty acid levels, which can subsequently affect inflammatory cytokine and tight junction protein levels. Conclusively, the HMO mixture exerted anti-inflammatory effects through changes in microbiota and metabolite production. These findings suggest that supplementation of infant formula with HMO may benefit formula-fed infants by forming unique microbiota contributing to neonatal development.
Collapse
Affiliation(s)
- J-Y Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - S Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - G Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - H J Shin
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - E J Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - C S Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - S Yoon
- Lotte R&D Center, Seoul 07207, Republic of Korea
| | - E Lee
- Lotte R&D Center, Seoul 07207, Republic of Korea
| | - A Lim
- Lotte R&D Center, Seoul 07207, Republic of Korea
| | - S H Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Ozturk O, Celebi G, Duman UG, Kupcuk E, Uyanik M, Sertoglu E. Short-chain fatty acid levels in stools of patients with inflammatory bowel disease are lower than those in healthy subjects. Eur J Gastroenterol Hepatol 2024; 36:890-896. [PMID: 38829943 DOI: 10.1097/meg.0000000000002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Short-chain fatty acids (SCFAs) are produced when the microbiota in the large intestine cause fermentation of dietary carbohydrates and fibers. These fatty acids constitute the primary energy source of colon mucosa cells and have a protective effect in patients suffering from inflammatory bowel disease (IBD). This study aimed to compare the SCFA levels in the stools of patients with IBD and healthy controls. METHOD Healthy controls and patients with IBD aged 18 and over were included in the study. Stool samples from all patients and healthy controls were collected, and stool acetic acid, propionic acid, and butyric acid levels were measured using a gas chromatography-mass spectrometry measurement method. RESULTS In this study, 64 participants were divided into two groups: 34 were in IBD (Crohn disease and ulcerative colitis) and 30 were in healthy control group. When fecal SCFA concentrations of IBD and healthy control groups were compared, a statistically significant difference was observed between them. When the fecal SCFA concentrations of Crohn's disease and ulcerative colitis patients in the IBD group were compared, however, no statistically significant difference was observed between them. Furthermore, when the participants' diet type (carbohydrate-based, vegetable-protein-based and mixed diet) and the number of meals were compared with fecal SCFA concentrations, no statistically significant difference was observed between them. CONCLUSION In general, fecal SCFA levels in patients with IBD were lower than those in healthy controls. Moreover, diet type and the number of meals had no effect on stool SCFA levels in patients with IBD and healthy individuals.
Collapse
Affiliation(s)
| | - Gurkan Celebi
- Department of Gastroenterology, Gulhane School of Medicine, University of Health Sciences, Ankara
| | | | | | - Metin Uyanik
- Department of Biochemistry, Çorlu State Hospital, Tekirdag, Turkey
| | | |
Collapse
|
20
|
Huang YL, Zheng JM, Shi ZY, Chen HH, Wang XT, Kong FB. Inflammatory proteins may mediate the causal relationship between gut microbiota and inflammatory bowel disease: A mediation and multivariable Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38551. [PMID: 38905376 PMCID: PMC11191895 DOI: 10.1097/md.0000000000038551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/23/2024] Open
Abstract
This research investigates the causal relationships among gut microbiota, inflammatory proteins, and inflammatory bowel disease (IBD), including crohn disease (CD) and ulcerative colitis (UC), and identifies the role of inflammatory proteins as potential mediators. Our study analyzed gut microbiome data from 13,266 samples collected by the MiBioGen alliance, along with inflammatory protein data from recent research by Zhao et al, and genetic data on CD and UC from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). We used Mendelian randomization (MR) to explore the associations, complemented by replication, meta-analysis, and multivariable MR techniques for enhanced accuracy and robustness. Our analysis employed several statistical methods, including inverse-variance weighting, MR-Egger, and the weighted median method, ensuring comprehensive and precise evaluation. After MR analysis, replication and meta-analysis, we revealed significant associations between 11 types of gut microbiota and 17 inflammatory proteins were associated with CD and UC. Mediator MR analysis and multivariable MR analysis showed that in CD, the CD40L receptor mediated the causal effect of Defluviitaleaceae UCG-011 on CD (mediation ratio 8.3%), and the Hepatocyte growth factor mediated the causal effect of Odoribacter on CD (mediation ratio 18%). In UC, the C-C motif chemokine 4 mediated the causal effect of Ruminococcus2 on UC (mediation ratio 4%). This research demonstrates the interactions between specific gut microbiota, inflammatory proteins, and CD and UC. Furthermore, the CD40L receptor may mediate the relationship between Defluviitaleaceae UCG-011 and CD; the Hepatocyte growth factor may mediate the relationship between Odoribacter and CD; and the C-C motif chemokine 4 may mediate the relationship between Ruminococcus2 and UC. The identified associations and mediation effects offer insights into potential therapeutic approaches targeting the gut microbiome for managing CD and UC.
Collapse
Affiliation(s)
- Yu-Liang Huang
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jin-Min Zheng
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zheng-Yi Shi
- Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Huan-Huan Chen
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiao-Tong Wang
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People’s Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Fan-Biao Kong
- Department of Colorectal and Anal Surgery, Guangxi Academy of Medical Sciences, People’s Hospital of Guangxi Zhuang Autonomous Region, Institute of Minimally Invasive Technology and Applications Guangxi Academy of Medical Sciences, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
21
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
22
|
Youn HY, Kim HJ, Kim H, Seo KH. A comparative evaluation of the kefir yeast Kluyveromyces marxianus A4 and sulfasalazine in ulcerative colitis: anti-inflammatory impact and gut microbiota modulation. Food Funct 2024; 15:6717-6730. [PMID: 38833212 DOI: 10.1039/d4fo00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Although only Saccharomyces boulardii has been studied for ulcerative colitis (UC), probiotic yeasts have immense therapeutic potential. Herein, we evaluated the kefir yeast Kluyveromyces marxianus A4 (Km A4) and its anti-inflammatory effect with sulfasalazine in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration continued for 7 days after the mice were randomly divided into seven groups: control (CON, normal mice administered with saline), DSS-induced colitis mice administered saline (DSS), and DSS-induced colitis mice administered sulfasalazine only (S), Km A4 only (A4), Km A4 plus sulfasalazine (A4 + S), S. boulardii ATCC MYA-796 (Sb MYA-796) only (Sb), and Sb MYA-796 plus sulfasalazine (Sb + S). The β-glucan content of Km A4 was significantly higher than that of Sb MYA-796 (P < 0.05). Body weight gain (BWG) significantly correlated with colon length, cyclooxygenase-2 (Cox-2) levels, and Bacteroides abundance (P < 0.05). In colitis-induced mice, the A4 + S group had the lowest histological score (6.00) compared to the DSS group (12.67), indicating the anti-inflammatory effects of this combination. The A4 + S group showed significantly downregulated expression of interleukin (Il)-6, tumor necrosis factor-α (Tnf-α), and Cox-2 and upregulated expression of Il-10 and occludin (Ocln) compared to the DSS group. Mice treated with A4 + S had enhanced Bacteroides abundance in their gut microbiota compared with the DSS group (P < 0.05). Bacteroides were significantly correlated with all colitis biomarkers (BWG, colon length, Il-6, Tnf-α, Il-10, Cox-2, and Ocln; P < 0.05). The anti-inflammatory effects of Km A4 could be attributed to high β-glucan content and gut microbiota modulation. Thus, treatment with Km A4 and sulfasalazine could alleviate UC.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyeon-Jin Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| |
Collapse
|
23
|
Bermúdez-Humarán LG, Chassaing B, Langella P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb Cell Fact 2024; 23:172. [PMID: 38867272 PMCID: PMC11167913 DOI: 10.1186/s12934-024-02449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Philippe Langella
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| |
Collapse
|
24
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
25
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of Probiotics on Gut Microbiota: An Overview. Int J Mol Sci 2024; 25:6022. [PMID: 38892208 PMCID: PMC11172883 DOI: 10.3390/ijms25116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
27
|
Pribac M, Motataianu A, Andone S, Mardale E, Nemeth S. Bridging the Gap: Harnessing Plant Bioactive Molecules to Target Gut Microbiome Dysfunctions in Amyotrophic Lateral Sclerosis. Curr Issues Mol Biol 2024; 46:4471-4488. [PMID: 38785539 PMCID: PMC11120375 DOI: 10.3390/cimb46050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The correlation between neurodegenerative diseases and the gut microbiome is increasingly evident, with amyotrophic lateral sclerosis (ALS) being particularly notable for its severity and lack of therapeutic options. The gut microbiota, implicated in the pathogenesis and development of ALS, plays a crucial role in the disease. Bioactive plant molecules, specifically volatile compounds in essential oils, offer a promising therapeutic avenue due to their anti-inflammatory properties and gut-modulating effects. Our narrative review aimed to identify microbiota-associated bacteria in ALS and analyze the benefits of administering bioactive plant molecules as much-needed therapeutic options in the management of this disease. A comprehensive search of PubMed database articles published before December 2023, encompassing research on cell, human, and animal ALS models, was conducted. After selecting, analyzing, and discussing key articles, bacteria linked to ALS pathogenesis and physiopathology were identified. Notably, positively highlighted bacteria included Akkermansia muciniphila (Verrucomicrobia phylum), Faecalibacterium prausnitzii, and Butyrivibrio spp. (Firmicutes phylum). Conversely, members of the Escherichia coli spp. (Proteobacteria phylum) and Ruminococcus spp. (Firmicutes phylum) stood out negatively in respect to ALS development. These bacteria were associated with molecular changes linked to ALS pathogenesis and evolution. Bioactive plant molecules can be directly associated with improvements in the microbiome, due to their role in reducing inflammation and oxidative stress, emerging as one of the most promising natural agents for enriching present-day ALS treatments.
Collapse
Affiliation(s)
- Mirela Pribac
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Anca Motataianu
- Ist Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Targu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | | | - Sebastian Nemeth
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
28
|
Cui H, Li X, Que J, Li S, Shi X, Yuan T. A water-soluble arabinoxylan from Chinese liquor distillers' grains: Structural characterization and anti-colitic properties. Int J Biol Macromol 2024; 266:131186. [PMID: 38554909 DOI: 10.1016/j.ijbiomac.2024.131186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Chinese liquor distillers' grain (CLDG) is a valuable and abundant by-product from traditional Chinese baijiu production, containing a diverse array of bioactive components that have attracted significant interest. Herein, a water-soluble polysaccharide, DGPS-2B, with a weight-average molecular weight of 37.3 kDa, was isolated from the alkali-extract fraction of CLDG. Methylation and NMR analysis identified that the primary constituents of DGPS-2B are arabinoxylans, with an arabinose-to-xylose ratio of 0.66. In an animal model of colitis, DGPS-2B treatment significantly altered the gut microbiota composition by increasing the SCFA-producing bacteria (e.g., Butyricicoccus) and reducing the mucin-degrading bacteria such as Muribaculaceae. This microbial shift resulted in elevated production of butyrate, acetate, and propionate, which subsequently suppressed NF-κB signaling, decreased the levels of IL-1β, IL-6, and TNFα, and potentially inactivated Notch signaling. These multifaceted effects stimulated mucin 2 production, reduced inflammation and apoptosis in the gut epithelium, and ultimately alleviated colitis symptoms. Collectively, this study not only elucidates the purification and characterization of DGPS-2B from CLDG but also illuminates its anti-colitic properties and the underlying molecular mechanisms. These findings underscore the potential of DGPS-2B as a therapeutic intervention for managing inflammatory bowel disease and emphasize CLDG as a promising source for developing value-added products.
Collapse
Affiliation(s)
- Hao Cui
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xia Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiayi Que
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shuyue Li
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaodan Shi
- School of Health, Jiangxi Normal University, Nanchang 330022, China.
| | - Tao Yuan
- National Research Center for Carbohydrate Synthesis, College of Life Science, Jiangxi Normal University, Nanchang 330022, China; School of Health, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
29
|
Andrani M, Ferrari L, Borghetti P, Cavalli V, De Angelis E, Ravanetti F, Dall'Olio E, Martelli P, Saleri R. Short-chain fatty acids modulate the IPEC-J2 cell response to pathogenic E. coli LPS-activated PBMC. Res Vet Sci 2024; 171:105231. [PMID: 38513460 DOI: 10.1016/j.rvsc.2024.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Intestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS). Among several compounds studied to counteract the negative effects on the intestine, short-chain fatty acids (SCFA) were demonstrated to exert beneficial effects on gut epithelial cells and resident immune cells. In this study, acetate and propionate were tested for their beneficial effects in a co-culture model of IPEC-J2 and porcine PBMC pre-stimulated with LPS from E. coli 0111:B4 aimed at mimicking the interaction between intestinal cells and immune cells in an inflammatory/activated status. IPEC-J2 viability was partially reduced when co-cultured with activated PBMC and nitric oxide concentration increased. IPEC-J2 up-regulated innate and inflammatory markers, namely BD-1, TLR-4, IL-8, TNF-α, NF-κB, and TGF-β. Acetate and propionate positively modulated the inflammatory condition by sustaining cell viability, reducing the oxidative stress, and down-regulating the expression of inflammatory mediators. TNF-α expression and secretion showed an opposite effect in IPEC-J2 depending on the extent of LPS stimulation of PBMC and TGF-β modulation. Therefore, SCFA proved to mediate a differential effect depending on the degree and duration of inflammation. The expression of the tight junction proteins (TJp) claudin-4 and zonula occludens-1 was up-regulated by LPS while SCFA influenced TJp with a different kinetics depending on PBMC stimulation. The co-culture model of IPEC-J2 and LPS-activated PBMC proved to be feasible to address the modulation of markers related to anti-bacterial immunity and inflammation, and intestinal epithelial barrier integrity, which are involved in the in vivo responsiveness and plasticity to infections.
Collapse
Affiliation(s)
- Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Francesca Ravanetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Eleonora Dall'Olio
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| |
Collapse
|
30
|
Yuan Y, Ren M, Zhu C, Lou Y, Liang Q, Xiong Z. Chemoselectivity Strategy Based on B-Label Integrated with Tailored COF for Targeted Metabolomic Analysis of Short-Chain Fatty Acids by UHPLC-MS/MS. Anal Chem 2024; 96:6575-6583. [PMID: 38637908 DOI: 10.1021/acs.analchem.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 μmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.
Collapse
Affiliation(s)
- Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Qinghua Liang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| |
Collapse
|
31
|
Ouyang Q, Li X, Liang Y, Liu R. Sea Buckthorn Polysaccharide Ameliorates Colitis. Nutrients 2024; 16:1280. [PMID: 38732527 PMCID: PMC11085905 DOI: 10.3390/nu16091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 05/13/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief.
Collapse
Affiliation(s)
- Qinqin Ouyang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210000, China; (Q.O.)
| | - Xin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210000, China
| | - Yongheng Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210000, China; (Q.O.)
| | - Rong Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210000, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
32
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
33
|
Bakhtiari S, Asri N, Jahdkaran M, Rezaei-Tavirani M, Jahani-Sherafat S, Rostami-Nejad M. The connection between fatty acids and inflammation in celiac disease; a deep exploring. Tissue Barriers 2024:2342619. [PMID: 38618691 DOI: 10.1080/21688370.2024.2342619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The interplay between fatty acids (FAs) and celiac disease (CD) is a burgeoning field of research with significant implications for understanding the pathophysiology and potential therapeutic avenues for this autoimmune disorder. CD, triggered by gluten consumption in susceptible individuals, presents with a range of intestinal and extra-intestinal symptoms impacting various bodily functions. The disruption of intestinal tight junctions (TJs) by gluten proteins leads to increased gut permeability and subsequent inflammatory responses mediated by T-cells. FAs, crucial components of cell membranes, play diverse roles in inflammation and immune regulation. In fact, FAs have been shown to modulate inflammatory processes through various mechanisms. Studies have highlighted alterations in FA profiles in individuals with CD, indicating potential implications for disease pathogenesis and micronutrient deficiencies. Moreover, the exploration of FAs as biomarkers for CD diagnosis offers promising avenues for future research and therapeutic interventions. Understanding the intricate relationship between FAs and CD could lead to novel approaches in managing this complex autoimmune disorder. Therefore, this review article aims to provide an overview of the connection between FAs and inflammation in CD.
Collapse
Affiliation(s)
- Sajjad Bakhtiari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
35
|
Thaiwatcharamas K, Loilome W, Ho PN, Chusilp S, Tanming P, Klanrit P, Phetcharaburanin J. Children with Hirschsprung disease exhibited alterations in host-microbial co-metabolism after pull-through operation. Pediatr Surg Int 2024; 40:87. [PMID: 38512700 DOI: 10.1007/s00383-024-05667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE This study aims to compare the fecal metabolome in post pull-through HD with and without HAEC patients and healthy young children using nuclear magnetic resonance (NMR) spectroscopy. METHODS Fresh fecal samples were collected from children under 5 years of age in both post-pull-through HD patients and healthy Thai children. A total of 20 fecal samples were then analyzed using NMR spectroscopy. RESULTS Thirty-four metabolites identified among HD and healthy children younger than 5 years were compared. HD samples demonstrated a significant decrease in acetoin, phenylacetylglutamine, and N-acetylornithine (corrected p value = 0.01, 0.04, and 0.004, respectively). Succinate and xylose significantly decreased in HD with HAEC group compared to HD without HAEC group (corrected p value = 0.04 and 0.02, respectively). Moreover, glutamine and glutamate metabolism, and alanine, aspartate, and glutamate metabolism were the significant pathways involved, with pathway impact 0.42 and 0.50, respectively (corrected p value = 0.02 and 0.04, respectively). CONCLUSION Differences in class, quantity, and metabolism of protein and other metabolites in young children with HD after pull-through operation were identified. Most of the associated metabolic pathways were correlated with the amino acids metabolism, which is required to maintain intestinal integrity and function.
Collapse
Affiliation(s)
| | - Watcharin Loilome
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phuc N Ho
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sinobol Chusilp
- Department of Surgery, Division of Pediatric Surgery, Khon Kaen University, Khon Kaen, Thailand
| | - Patchareeporn Tanming
- Department of Surgery, Division of Pediatric Surgery, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
- Khon Kaen University Phenome Centre, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
36
|
Xie Z, He W, Gobbi A, Bertram HC, Nielsen DS. The effect of in vitro simulated colonic pH gradients on microbial activity and metabolite production using common prebiotics as substrates. BMC Microbiol 2024; 24:83. [PMID: 38468200 PMCID: PMC10926653 DOI: 10.1186/s12866-024-03235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The interplay between gut microbiota (GM) and the metabolization of dietary components leading to the production of short-chain fatty acids (SCFAs) is affected by a range of factors including colonic pH and carbohydrate source. However, there is still only limited knowledge on how the GM activity and metabolite production in the gastrointestinal tract could be influenced by pH and the pH gradient increases along the colon. RESULTS Here we investigate the effect of pH gradients corresponding to levels typically found in the colon on GM composition and metabolite production using substrates inulin, lactose, galactooligosaccharides (GOS), and fructooligosaccharide (FOS) in an in vitro colon setup. We investigated 3 different pH regimes (low, 5.2 increasing to 6.4; medium, 5.6 increasing to 6.8 and high, 6.0 increasing to 7.2) for each fecal inoculum and found that colonic pH gradients significantly influenced in vitro simulated GM structure, but the influence of fecal donor and substrate was more pronounced. Low pH regimes strongly influenced GM with the decreased relative abundance of Bacteroides spp. and increased Bifidobacterium spp. Higher in vitro simulated colonic pH promoted the production of SCFAs in a donor- and substrate-dependent manner. The butyrate producer Butyricimonas was enriched at higher pH conditions, where also butyrate production was increased for inulin. The relative abundance of Phascolarctobacterium, Bacteroides, and Rikenellaceae also increased at higher colonic pH, which was accompanied by increased production of propionate with GOS and FOS as substrates. CONCLUSIONS Together, our results show that colonic substrates such as dietary fibres influence GM composition and metabolite production, not only by being selectively utilized by specific microbes, but also because of their SCFA production, which in turn also influences colonic pH and overall GM composition and activity. Our work provides details about the effect of the gradients of rising pH from the proximal to distal colon on fermenting dietary substrates in vitro and highlights the importance of considering pH in GM research.
Collapse
Affiliation(s)
- Zhuqing Xie
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| | - Weiwei He
- Department of Food Science, Aarhus University, Aarhus N, Denmark
- Present Address: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Present Address: European Food and Safety Authority, Parma, Italy
| | | | | |
Collapse
|
37
|
Yuan X, Liu J, Nie C, Ma Q, Wang C, Liu H, Chen Z, Zhang M, Li J. Comparative Study of the Effects of Dietary-Free and -Bound Nε-Carboxymethyllysine on Gut Microbiota and Intestinal Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5014-5025. [PMID: 38388339 DOI: 10.1021/acs.jafc.3c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nε-carboxymethyllysine (CML) is produced by a nonenzymatic reaction between reducing sugar and ε-amino group of lysine in food and exists as free and bound forms with varying digestibility and absorption properties in vivo, causing diverse interactions with gut microbiota. The effects of different forms of dietary CML on the gut microbiota and intestinal barrier of mice were explored. Mice were exposed to free and bound CML for 12 weeks, and colonic morphology, gut microbiota, fecal short-chain fatty acids (SCFAs), intestinal barrier, and receptor for AGE (RAGE) signaling cascades were measured. The results indicated that dietary-free CML increased the relative abundance of SCFA-producing genera including Blautia, Faecalibacterium, Agathobacter, and Roseburia. In contrast, dietary-bound CML mainly increased the relative abundance of Akkermansia. Moreover, dietary-free and -bound CML promoted the gene and protein expression of zonula occludens-1 and claudin-1. Additionally, the intake of free and bound CML caused an upregulation of RAGE expression but did not activate downstream inflammatory pathways due to the upregulation of oligosaccharyl transferase complex protein 48 (AGER1) expression, indicating a delicate balance between protective and proinflammatory effects in vivo. Dietary-free and -bound CML could modulate the gut microbiota community and increase tight-junction expression, and dietary-free CML might exert a higher potential benefit on gut microbiota and SCFAs than dietary-bound CML.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
38
|
Liu Y, Gao J, Nie Z, Wang J, Sun Y, Xu G. Integration of metagenome and metabolome analysis reveals the correlation of gut microbiota, oxidative stress, and inflammation in Coilia nasus under air exposure stress and salinity mitigation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101175. [PMID: 38171069 DOI: 10.1016/j.cbd.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Due to the strong response to air exposure, high mortality was occurred in Coilia nasus. Previous studies reported that 10 ‰ NaCl could significantly reduce mortality in C. nasus under air exposure. To investigate the mechanisms that 10 ‰ NaCl can alleviate stress, community structure and metabolism of the intestinal flora of C. nasus were detected via metagenome and metabolome. In this study, C. nasus were divided into control group (C), air exposure group without 10 ‰ NaCl (AE), and air exposure group with 10 ‰ NaCl (AES). After air exposure stress and salinity mitigation, the mortality, intestinal microorganisms, metabolites, and physiological biomarkers were analyzed. The results showed that the mortality rate of C. nasus was reduced after salinity reduction; the antioxidant capacity was elevated compared to the AE group; and anti-inflammatory capacity was increased in the AES group compared to the AE group. Metagenomic sequencing results showed that the levels of harmful bacteria (E. coli, Aeromonas) in the Candida nasus gut increased after air exposure; beneficial bacteria (Actinobacteria, Corynebacteria) in the C. nasus gut increased after salinity reduction. Metabolomics analyses showed that AE decreased the expression of beneficial metabolites and increased the expression of harmful metabolites; AES increased beneficial metabolites and decreased harmful metabolites. Correlation analysis showed that in the AE group, beneficial metabolites were negatively correlated with oxidative stress and inflammatory response, while harmful metabolites were positively correlated with oxidative stress and inflammatory response, and were associated with bacterial communities such as Gillisia, Alkalitalia, Avipoxvirus, etc.; the correlation of metabolites with oxidative stress and inflammatory response was opposite to that of AE in the case of AES, and was associated with Lentilactobacillus, Cyanobacterium, and other bacterial communities. Air exposure caused damage to Candida rhinoceros and 10 ‰ salinity was beneficial in alleviating C. nasus stress. These results will provide new insights into methods and mechanisms to mitigate stress in fish.
Collapse
Affiliation(s)
- Yuqian Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Zhijuan Nie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jiayu Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
39
|
Guo ZJ, Zhang W, Xu JG, Li XM, Zhang JB, Li Y, Ji D, Li L, Huang W, Su LL. Effect of vinegar steaming on the composition and structure of Schisandra chinensis polysaccharide and its anti-colitis activity. Biomed Chromatogr 2024; 38:e5811. [PMID: 38191780 DOI: 10.1002/bmc.5811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
In this study, infrared spectroscopy, high-performance liquid chromatography, and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) technology were applied to systematically explain the Schisandra chinensis's polysaccharide transformation in configuration, molecular weight, monosaccharide composition, and anti-ulcerative colitis (UC) activity after vinegar processing. Scanning electron microscopic results showed that the appearance of S. chinensis polysaccharide changed significantly after steaming with vinegar. The MALDI-TOF-MS results showed that the mass spectra of raw S. chinensis polysaccharides (RSCP) were slightly lower than those of vinegar-processed S. chinensis polysaccharides (VSCP). The RSCP showed higher peaks at m/z 1350.790, 2016.796, and 2665.985, all with left-skewed distribution, and the molecular weights were concentrated in the range of 1300-3100, with no higher peak above m/z 5000. The VSCPs showed a whole band below m/z 3000, with m/z 1021.096 being the highest peak, and the intensity decreased with the increase of m/z. In addition, compared to RSCPs, VSCPs can significantly increase the content of intestinal short-chain fatty acids (SCFAs). This study showed that the apparent morphology and molecular weight of S. chinensis's polysaccharides significantly changed after steaming with vinegar. These changes directly affect its anti-UC effect significantly, and its mechanism is closely related to improving the structure and diversity of gut microbiota and SCFA metabolism.
Collapse
Affiliation(s)
- Zhi-Jun Guo
- China Resources Sanjiu Pharmaceutical Co., Ltd, Shenzhen, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jin-Guo Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Man Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiu-Ba Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Huang
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Lian-Lin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Technology Engineering Research Center of TCM Health Preservation, Nanjing, China
| |
Collapse
|
40
|
Manthei A, Elez-Martínez P, Soliva-Fortuny R, Murciano-Martínez P. Prebiotic potential of pectin and cello-oligosaccharides from apple bagasse and orange peel produced by high-pressure homogenization and enzymatic hydrolysis. Food Chem 2024; 435:137583. [PMID: 37804723 DOI: 10.1016/j.foodchem.2023.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Apple bagasse and orange peel were subjected to high-pressure homogenization (HPH), enzymatic hydrolysis (EH) and their combination (HPHE) to study their effect on oligosaccharide production and in vitro fermentability. The application of a cellulase-pectinase mixture on the by-products generated significant quantities of cellobiose (COS-2) and pectin derived oligosaccharides (POS) which were identified as mainly methylated and acetylated oligogalacturonides with DP 2-5 (POS 2-5). When pre-treating the substrates with HPH, the release in orange peel was enhanced significantly leading to a POS content of 44.51 g/100 g peel, whereas oligosaccharide solubilization in apple bagasse was not affected. In vitro fermentation of the hydrolysates containing COS-2 and POS showed faster fermentation rates, between 6 and 10 h, and enhanced gas production, compared to those samples not subjected to enzymatic hydrolysis. Short chain fatty acid (SCFA) production was not impacted by the presence of POS and COS-2 in the induced quantities.
Collapse
Affiliation(s)
- Alina Manthei
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - Pedro Elez-Martínez
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida - Agrotecnio CERCA Centre, Av. Alcalde Rovira Roure, 191, 25198, Spain.
| | | |
Collapse
|
41
|
Han HV, Efem R, Rosati B, Lu K, Maimouni S, Jiang YP, Montoya V, Van Der Velden A, Zong WX, Lin RZ. Propionyl-CoA carboxylase subunit B regulates anti-tumor T cells in a pancreatic cancer mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550301. [PMID: 37546948 PMCID: PMC10402106 DOI: 10.1101/2023.07.24.550301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca-/- KPC (named αKO) cancer cells induces clonal expansion of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally expanded CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally expanded T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.
Collapse
|
42
|
Apalowo OE, Adegoye GA, Obuotor TM. Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Curr Issues Mol Biol 2024; 46:1810-1831. [PMID: 38534735 DOI: 10.3390/cimb46030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Grace Adeola Adegoye
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
43
|
Hosmer J, McEwan AG, Kappler U. Bacterial acetate metabolism and its influence on human epithelia. Emerg Top Life Sci 2024; 8:1-13. [PMID: 36945843 PMCID: PMC10903459 DOI: 10.1042/etls20220092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Short-chain fatty acids are known modulators of host-microbe interactions and can affect human health, inflammation, and outcomes of microbial infections. Acetate is the most abundant but least well-studied of these modulators, with most studies focusing on propionate and butyrate, which are considered to be more potent. In this mini-review, we summarize current knowledge of acetate as an important anti-inflammatory modulator of interactions between hosts and microorganisms. This includes a summary of the pathways by which acetate is metabolized by bacteria and human cells, the functions of acetate in bacterial cells, and the impact that microbially derived acetate has on human immune function.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
44
|
He M, Wei W, Zhang Y, Xiang Z, Peng D, Kasimumali A, Rong S. Gut microbial metabolites SCFAs and chronic kidney disease. J Transl Med 2024; 22:172. [PMID: 38369469 PMCID: PMC10874542 DOI: 10.1186/s12967-024-04974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024] Open
Abstract
The global incidence of Chronic Kidney Disease (CKD) is steadily escalating, with discernible linkage to the intricate terrain of intestinal microecology. The intestinal microbiota orchestrates a dynamic equilibrium in the organism, metabolizing dietary-derived compounds, a process which profoundly impacts human health. Among these compounds, short-chain fatty acids (SCFAs), which result from microbial metabolic processes, play a versatile role in influencing host energy homeostasis, immune function, and intermicrobial signaling, etc. SCFAs emerge as pivotal risk factors influencing CKD's development and prognosis. This paper review elucidates the impact of gut microbial metabolites, specifically SCFAs, on CKD, highlighting their role in modulating host inflammatory responses, oxidative stress, cellular autophagy, the immune milieu, and signaling cascades. An in-depth comprehension of the interplay between SCFAs and kidney disease pathogenesis may pave the way for their utilization as biomarkers for CKD progression and prognosis or as novel adjunctive therapeutic strategies.
Collapse
Affiliation(s)
- Meng He
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenqian Wei
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yichen Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhouxia Xiang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dan Peng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ayijiaken Kasimumali
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
45
|
Wang D, Russel WA, Macdonald KM, De Leon VM, Ay A, Belanger KD. Analysis of the gut microbiome in sled dogs reveals glucosamine- and activity-related effects on gut microbial composition. Front Vet Sci 2024; 11:1272711. [PMID: 38384960 PMCID: PMC10879321 DOI: 10.3389/fvets.2024.1272711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
The composition of the microbiome influences many aspects of physiology and health, and can be altered by environmental factors, including diet and activity. Glucosamine is a dietary supplement often administered to address arthritic symptoms in humans, dogs, and other mammals. To investigate how gut microbial composition varies with glucosamine supplementation, we performed 16S rRNA sequence analysis of fecal samples from 24 Alaskan and Inuit huskies and used mixed effects models to investigate associations with activity, age, and additional factors. Glucosamine ingestion, age, activity, sex, and diet were correlated with differences in alpha-diversity, with diversity decreasing in dogs consuming glucosamine. Beta-diversity analysis revealed clustering of dogs based on glucosamine supplementation status. Glucosamine supplementation and exercise-related activity were associated with greater inter-individual pairwise distances. At the family level, Lactobacillaceae and Anaerovoracaceae relative abundances were lower in supplemented dogs when activity was accounted for. At the genus level, Eubacterium [brachy], Sellimonus, Parvibacter, and an unclassified genus belonging to the same family as Parvibacter (Eggerthellaceae) all were lower in supplemented dogs, but only significantly so post-activity. Our findings suggest that glucosamine supplementation alters microbiome composition in sled dogs, particularly in the context of exercise-related activity.
Collapse
Affiliation(s)
- Dong Wang
- Department of Computer Science, Colgate University, Hamilton, NY, United States
- Department of Mathematics, Colgate University, Hamilton, NY, United States
| | - William A. Russel
- Department of Biology, Colgate University, Hamilton, NY, United States
| | | | | | - Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY, United States
- Department of Biology, Colgate University, Hamilton, NY, United States
| | | |
Collapse
|
46
|
Tronel A, Silvent AS, Buelow E, Giai J, Leroy C, Proust M, Martin D, Le Gouellec A, Soranzo T, Mathieu N. Pilot Study: Safety and Performance Validation of an Ingestible Medical Device for Collecting Small Intestinal Liquid in Healthy Volunteers. Methods Protoc 2024; 7:15. [PMID: 38392689 PMCID: PMC10892249 DOI: 10.3390/mps7010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The connection between imbalances in the human gut microbiota, known as dysbiosis, and various diseases has been well established. Current techniques for sampling the small intestine are both invasive for patients and costly for healthcare facilities. Most studies on human gut microbiome are conducted using faecal samples, which do not accurately represent the microbiome in the upper intestinal tract. A pilot clinical investigation, registered as NCT05477069 and sponsored by the Grenoble Alpes University Hospital, is currently underway to evaluate a novel ingestible medical device (MD) designed for collecting small intestinal liquids by Pelican Health. This study is interventional and monocentric, involving 15 healthy volunteers. The primary objective of the study is to establish the safety and the performance of the MD when used on healthy volunteers. Secondary objectives include assessing the device's performance and demonstrating the difference between the retrieved sample from the MD and the corresponding faecal sample. Multi-omics analysis will be performed, including metagenomics, metabolomics, and culturomics. We anticipate that the MD will prove to be safe without any reported adverse effects, and we collected samples suitable for the proposed omics analyses in order to demonstrate the functionality of the MD and the clinical potential of the intestinal content.
Collapse
Affiliation(s)
- Alexandre Tronel
- Pelican Health, 107 rue Aristide Briand, 38600 Fontaine, France;
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France; (E.B.); (J.G.)
| | - Anne-Sophie Silvent
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, CIC, 38000 Grenoble, France; (A.-S.S.); (C.L.); (M.P.)
| | - Elena Buelow
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France; (E.B.); (J.G.)
| | - Joris Giai
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France; (E.B.); (J.G.)
| | - Corentin Leroy
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, CIC, 38000 Grenoble, France; (A.-S.S.); (C.L.); (M.P.)
| | - Marion Proust
- University Grenoble Alpes, Inserm, CHU Grenoble Alpes, CIC, 38000 Grenoble, France; (A.-S.S.); (C.L.); (M.P.)
| | - Donald Martin
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France; (E.B.); (J.G.)
| | - Audrey Le Gouellec
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France; (E.B.); (J.G.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Thomas Soranzo
- Pelican Health, 107 rue Aristide Briand, 38600 Fontaine, France;
| | - Nicolas Mathieu
- Department of Hepato-Gastroenterology and Digestive Oncology, Grenoble Alpes University Hospital, 38000 Grenoble, France
| |
Collapse
|
47
|
Chen H, Qian Y, Jiang C, Tang L, Yu J, Zhang L, Dai Y, Jiang G. Butyrate ameliorated ferroptosis in ulcerative colitis through modulating Nrf2/GPX4 signal pathway and improving intestinal barrier. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166984. [PMID: 38061600 DOI: 10.1016/j.bbadis.2023.166984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Oxidative stress and intestinal inflammation are main pathological features of ulcerative colitis (UC). Ferroptosis, characterized by iron accumulation and lipid peroxidation, is closely related to the pathologic process of UC. 16S rRNA sequencing for intestinal microbiota analysis and gas chromatography-mass spectrometry (GC-MS) for short-chain fatty acid (SCFA) contents clearly demonstrated lower amounts of butyrate-producing bacteria and butyrate in colitis mice. However, the precise mechanisms of sodium butyrate (NaB) in treating UC remain largely unclear. We found that ferroptosis occurred in colitis models, as evidenced by the inflammatory response, intracellular iron level, mitochondria ultrastructural observations and associated protein expression. NaB inhibited ferroptosis in colitis, significantly rescued weight loss and colon shortening in mice and reduced inflammatory lesions and mitochondrial damage. Furthermore, NaB improved intestinal barrier integrity and markedly suppressed the expression of pro-ferroptosis proteins. Conversely, the protein expression of anti-ferroptosis markers including nuclear factor erythroid-related Factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4), was significantly upregulated with NaB treatment. Moreover, the knockdown of Nrf2 reversed the anti-colitis effect of NaB. Taken together, NaB exhibited a protective effect by ameliorating ferroptosis in experimental colitis through Nrf2/GPX4 signaling and improving intestinal barrier integrity, which provides a novel mechanism for NaB prevention of UC.
Collapse
Affiliation(s)
- Hangping Chen
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Yifan Qian
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang, China
| | - Chensheng Jiang
- Department of Gastroenterology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322099, Zhejiang, China
| | - Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Jiawen Yu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Lingdi Zhang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China
| | - Yiyang Dai
- Department of Gastroenterology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322099, Zhejiang, China.
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311200, Zhejiang, China.
| |
Collapse
|
48
|
Mohammadian A, Fateh ST, Nikbaf-Shandiz M, Gholami F, Rasaei N, Bahari H, Rastgoo S, Bagheri R, Shiraseb F, Asbaghi O. The effect of acarbose on inflammatory cytokines and adipokines in adults: a systematic review and meta-analysis of randomized clinical trials. Inflammopharmacology 2024; 32:355-376. [PMID: 38170330 DOI: 10.1007/s10787-023-01401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Although a large number of trials have observed an anti-inflammatory property of acarbose, the currently available research remains controversial regarding its beneficial health effects. Hence, the purpose of this study was to examine the effect of acarbose on inflammatory cytokines and adipokines in adults. METHODS PubMed, Web of Science, and Scopus were systematically searched until April 2023 using relevant keywords. The mean difference (MD) of any effect was calculated using a random-effects model. Weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated via the random-effects model. RESULTS The current meta-analysis of data comprised a total of 19 RCTs. Meta-analysis showed that acarbose significantly decreased tumor necrosis factor-alpha (TNF-α) (weighted mean difference [WMD]) = - 4.16 pg/ml, 95% confidence interval (CI) - 6.58, - 1.74; P = 0.001) while increasing adiponectin (WMD = 0.79 ng/ml, 95% CI 0.02, 1.55; P = 0.044). However, the effects of acarbose on TNF-α concentrations were observed in studies with intervention doses ≥ 300 mg/d (WMD = - 4.09; 95% CI - 7.00, - 1.18; P = 0.006), and the adiponectin concentrations were significantly higher (WMD = 1.03 ng/ml, 95%CI 0.19, 1.87; P = 0.016) in studies in which the duration of intervention was less than 24 weeks. No significant effect was seen for C-reactive protein (CRP; P = 0.134), interleukin-6 (IL-6; P = 0.204), and leptin (P = 0.576). CONCLUSION Acarbose had beneficial effects on reducing inflammation and increasing adiponectin. In this way, it may prevent the development of chronic diseases related to inflammation. However, more studies are needed.
Collapse
Affiliation(s)
- Ali Mohammadian
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Bahari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Rastgoo
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Chamberlin ML, Wilson SM, Gaston ME, Kuo WY, Miles MP. Twelve Weeks of Daily Lentil Consumption Improves Fasting Cholesterol and Postprandial Glucose and Inflammatory Responses-A Randomized Clinical Trial. Nutrients 2024; 16:419. [PMID: 38337705 PMCID: PMC10857178 DOI: 10.3390/nu16030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Lentils have potential to improve metabolic health but there are limited randomized clinical trials evaluating their comprehensive impact on metabolism. The aim of this study was to assess the impact of lentil-based vs. meat-based meals on fasting and postprandial measures of glucose and lipid metabolism and inflammation. Thirty-eight adults with an increased waist circumference (male ≥ 40 inches and female ≥ 35 inches) participated in a 12-week dietary intervention that included seven prepared midday meals totaling either 980 g (LEN) or 0 g (CON) of cooked green lentils per week. Linear models were used to assess changes in fasting and postprandial markers from pre- to post-intervention by meal group. Gastrointestinal (GI) symptoms were assessed through a survey randomly delivered once per week during the intervention. We found that regular consumption of lentils lowered fasting LDL (F = 5.53, p = 0.02) and total cholesterol levels (F = 8.64, p < 0.01) as well as postprandial glucose (β = -0.99, p = 0.01), IL-17 (β = -0.68, p = 0.04), and IL-1β (β = -0.70, p = 0.03) responses. GI symptoms were not different by meal group and all symptoms were reported as "none" or "mild" for the duration of the intervention. Our results suggest that daily lentil consumption may be helpful in lowering cholesterol and postprandial glycemic and inflammatory responses without causing GI stress. This information further informs the development of pulse-based dietary strategies to lower disease risk and to slow or reverse metabolic disease progression in at-risk populations.
Collapse
Affiliation(s)
- Morgan L. Chamberlin
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| | - Stephanie M.G. Wilson
- United States Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA;
- Texas A&M, Institute for Advancing Health Through Agriculture, College Station, TX 77845, USA
| | - Marcy E. Gaston
- Department of Human Ecology, SUNY Oneonta, Oneonta, NY 13820, USA;
| | - Wan-Yuan Kuo
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| |
Collapse
|
50
|
Abdelhalim KA. Short-chain fatty acids (SCFAs) from gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer - A mini-review. Chem Biol Interact 2024; 388:110851. [PMID: 38145797 DOI: 10.1016/j.cbi.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Short-chain fatty acids (SCFAs), generated through microbial fermentation of dietary fibers and proteins in the gut, play a pivotal role in maintaining intestinal integrity, cellular function, and the immune response. SCFAs, including butyrate, acetate, and propionate, are absorbed in the colon or excreted through feces, contributing to essential physiological processes. Butyrate, a primary energy source for colonocytes, exhibits anti-inflammatory properties and regulates key pathways, such as nuclear factor-κB (NF-κB) inhibition. SCFAs' impact extends beyond the intestines, influencing the gut-brain axis, systemic circulation, and folate metabolism. A decline in colonic SCFAs has been linked to gastrointestinal diseases, emphasizing their clinical relevance, while their effects on immune checkpoints, such as ipilimumab, provide intriguing prospects for cancer therapy. This mini-review explores SCFAs' diverse roles, shedding light on their significance in health and potential implications for disease management. Understanding SCFAs' intricate mechanisms enhances our knowledge of their therapeutic potential and highlights their emerging importance in various physiological contexts.
Collapse
|