1
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Smith RA, Mir F, Butler MP, Maharathi B, Loeb JA. Spike-induced cytoarchitectonic changes in epileptic human cortex are reduced via MAP2K inhibition. Brain Commun 2024; 6:fcae152. [PMID: 38741662 PMCID: PMC11089420 DOI: 10.1093/braincomms/fcae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Interictal spikes are electroencephalographic discharges that occur at or near brain regions that produce epileptic seizures. While their role in generating seizures is not well understood, spikes have profound effects on cognition and behaviour, depending on where and when they occur. We previously demonstrated that spiking areas of human neocortex show sustained MAPK activation in superficial cortical Layers I-III and are associated with microlesions in deeper cortical areas characterized by reduced neuronal nuclear protein staining and increased microglial infiltration. Based on these findings, we chose to investigate additional neuronal populations within microlesions, specifically inhibitory interneurons. Additionally, we hypothesized that spiking would be sufficient to induce similar cytoarchitectonic changes within the rat cortex and that inhibition of MAPK signalling, using a MAP2K inhibitor, would not only inhibit spike formation but also reduce these cytoarchitectonic changes and improve behavioural outcomes. To test these hypotheses, we analysed tissue samples from 16 patients with intractable epilepsy who required cortical resections. We also utilized a tetanus toxin-induced animal model of interictal spiking, designed to produce spikes without seizures in male Sprague-Dawley rats. Rats were fitted with epidural electrodes, to permit EEG recording for the duration of the study, and automated algorithms were implemented to quantify spikes. After 6 months, animals were sacrificed to assess the effects of chronic spiking on cortical cytoarchitecture. Here, we show that microlesions may promote excitability due to a significant reduction of inhibitory neurons that could be responsible for promoting interictal spikes in superficial layers. Similarly, we found that the induction of epileptic spikes in the rat model produced analogous changes, including reduced neuronal nuclear protein, calbindin and parvalbumin-positive neurons and increased microglia, suggesting that spikes are sufficient for inducing these cytoarchitectonic changes in humans. Finally, we implicated MAPK signalling as a driving force producing these pathological changes. Using CI-1040 to inhibit MAP2K, both acutely and after spikes developed, resulting in fewer interictal spikes, reduced microglial activation and less inhibitory neuron loss. Treated animals had significantly fewer high-amplitude, short-duration spikes, which correlated with improved spatial memory performance on the Barnes maze. Together, our results provide evidence for a cytoarchitectonic pathogenesis underlying epileptic cortex, which can be ameliorated through both early and delayed MAP2K inhibition. These findings highlight the potential role for CI-1040 as a pharmacological treatment that could prevent the development of epileptic activity and reduce cognitive impairment in both patients with epilepsy and those with non-epileptic spike-associated neurobehavioural disorders.
Collapse
Affiliation(s)
- Rachael A Smith
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Fozia Mir
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mitchell P Butler
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Dong J, Wang S, Hu Z, Gong L. Extracellular proteins as potential biomarkers in Sepsis-related cerebral injury. Front Immunol 2023; 14:1128476. [PMID: 37901226 PMCID: PMC10611492 DOI: 10.3389/fimmu.2023.1128476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
Background Sepsis can cause brain damage known as septic encephalopathy (SAE), which is linked to higher mortality and poorer outcomes. Objective clinical markers for SAE diagnosis and prognosis are lacking. This study aimed to identify biomarkers of SAE by investigating genes and extracellular proteins involved in sepsis-induced brain injury. Methods Extracellular protein differentially expressed genes (EP-DEGs) from sepsis patients' brain tissue (GSE135838) were obtained from Gene Expression Omnibus (GEO) and evaluated by protein annotation database. The function and pathways of EP-DEGs were examined using GO and KEGG. Protein-protein interaction (PPI) networks were built and crucial EP-DEGs were screened using STRING, Cytoscape, MCODE, and Cytohubba. The diagnostic and prognostic accuracy of key EP-DEGs was assessed in 31 sepsis patients' blood samples and a rat cecal ligation and puncture (CLP)-induced sepsis model. Cognitive and spatial memory impairment was evaluated 7-11 days post-CLP using behavioral tests. Blood and cerebrospinal fluid from 26 rats (SHAM n=14, CLP n=12) were collected 6 days after CLP to analyze key EP-DEGs. Results Thirty-one EP-DEGs from DEGs were examined. Bone marrow leukocytes, neutrophil movement, leukocyte migration, and reactions to molecules with bacterial origin were all enhanced in EP-DEGs. In comparison to the sham-operated group, sepsis rats had higher levels of MMP8 and S100A8 proteins in their venous blood (both p<0.05) and cerebrospinal fluid (p=0.0506, p<0.0001, respectively). Four important extracellular proteins, MMP8, CSF3, IL-6, and S100A8, were identified in clinical peripheral blood samples. MMP8 and S100A8 levels in the peripheral blood of sepsis patients were higher in SAE than in non-SAE. In comparison to MMP8, S100A8 had a higher area under the curve (AUC: 0.962, p<0.05) and a higher sensitivity and specificity (80% and 100%, respectively) than MMP8 (AUC: 0.790, p<0.05). High levels of S100A8 strongly correlated with 28-day mortality and the Glasgow Coma Scale (GCS) scores. Conclusion The extracellular proteins MMP8, CSF3, IL-6, and S100A8 may be crucial in the pathophysiology of SAE. S100A8 and MMP8 are possible biomarkers for SAE's onset and progression. This research may help to clarify the pathogenesis of SAE and improve the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Zhonghua Hu
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Gong
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Fratantonio D, Munir J, Shu J, Howard K, Baier SR, Cui J, Zempleni J. The RNA cargo in small extracellular vesicles from chicken eggs is bioactive in C57BL/6 J mice and human peripheral blood mononuclear cells ex vivo. Front Nutr 2023; 10:1162679. [PMID: 37305095 PMCID: PMC10249500 DOI: 10.3389/fnut.2023.1162679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
Small extracellular vesicles (sEVs) and their RNA cargo in milk are bioavailable in humans, pigs, and mice, and their dietary depletion and supplementation elicits phenotypes. Little is known about the content and biological activity of sEVs in foods of animal origin other than milk. Here we tested the hypothesis that sEVs in chicken eggs (Gallus gallus) facilitate the transfer of RNA cargo from an avian species to humans and mice, and their dietary depletion elicits phenotypes. sEVs were purified from raw egg yolk by ultracentrifugation and authenticated by transmission electron microscopy, nano-tracking device, and immunoblots. The miRNA profile was assessed by RNA-sequencing. Bioavailability of these miRNAs in humans was assessed by egg feeding study in adults, and by culturing human peripheral blood mononuclear cells (PBMCs) with fluorophore-labeled egg sEVs ex vivo. To further assess bioavailability, fluorophore-labeled miRNAs, encapsulated in egg sEVs, were administered to C57BL/6 J mice by oral gavage. Phenotypes of sEV RNA cargo depletion were assessed by feeding egg sEV and RNA-defined diets to mice and using spatial learning and memory in the Barnes and water mazes as experimental readouts. Egg yolk contained 6.30 × 1010 ± 6.06 × 109 sEVs/mL, which harbored eighty-three distinct miRNAs. Human PBMCs internalized sEVs and their RNA cargo. Egg sEVs, loaded with fluorophore-labeled RNA and administered orally to mice, accumulated primarily in brain, intestine and lungs. Spatial learning and memory (SLM) was compromised in mice fed on egg sEV- and RNA-depleted diet compared to controls. Egg consumption elicited an increase of miRNAs in human plasma. We conclude that egg sEVs and their RNA cargo probably are bioavailable. The human study is registered as a clinical trial and accessible at https://www.isrctn.com/ISRCTN77867213.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Jiang Shu
- School of Computing, University of Nebraska, Lincoln, NE, United States
| | - Katherine Howard
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Scott R. Baier
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Juan Cui
- School of Computing, University of Nebraska, Lincoln, NE, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
6
|
Abdolmaleky HM, Sheng Y, Zhou JR. Bioactive nutraceuticals oligo-lactic acid and fermented soy extract alleviate cognitive decline in mice in part via anti-neuroinflammation and modulation of gut microbiota. Front Nutr 2023; 10:1116278. [PMID: 36969810 PMCID: PMC10034322 DOI: 10.3389/fnut.2023.1116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionCognition decline is associated with aging and certain diseases, such as neurodegenerative or neuropsychiatric disorders, diabetes and chronic kidney disease. Inflammation/neuroinflammation is considered an important causal factor, and experimental evidence suggests that anti-inflammatory natural compounds may effectively prevent cognitive decline. The goal of this study was to evaluate the effects of two natural bioactive agents, oligo-lactic acid (LAP) and fermented soy extract (ImmunBalance, IMB), on cognition in an adenine-induced cognitive impairment mouse model and to investigate the modulation of related biomarkers.MethodsMale C57 black mice were randomly assigned into the following experimental groups and received the corresponding treatments for 2 weeks before the use of adenine for model development: (1) negative control; (2) model control: injection of adenine at 50 mg/kg daily for 4 weeks; (3, 4) IMB groups: adenine injection and IMB oral gavage at 250 and 1,000 mg/kg BW, respectively; and (5) LAP group: adenine injection and LAP oral gavage at 1,000 mg/kg BW. One week after the model was developed, mice were evaluated for cognitive performances by using Y maze test, novel object recognition test, open field test, and Barnes maze tests. At the end of the experiment, brain tissues and cecum fecal samples were collected for analysis of gene expression and gut microbiota.ResultsMice treated with LAP or IMB had significantly improved spatial working memory, spatial recognition memory (LAP only), novel object recognition, and spatial learning and memory, compared with those in the model group. Gene expression analysis showed that, among a panel of cognition related genes, six of them (ELOVL2, GLUT4, Nestein, SNCA, TGFB1, and TGFB2) were significantly altered in the model group. LAP treatment significantly reversed expression levels of inflammatory/neuroinflammatory genes (SNCA, TGFB1), and IMB significantly reversed expression levels of genes related to inflammation/neuroinflammation, neurogenesis, and energy metabolism (ELOVL2, GLUT4, Nestin, TGFB1, and TGFB2). The altered microbiome was attenuated only by IMB.DiscussionIn conclusion, our data showed that LAP improved cognition associated with regulating biomarkers related to neuroinflammation and energy metabolism, whereas IMB improved cognition associated with regulating biomarkers related to neuroinflammation, energy metabolism, and neurogenesis, and modulating gut microbiota. Our results suggest that LAP and IMB may improve cognitive performance in mice via distinct mechanisms of action.
Collapse
|
7
|
Assessing Depression and Cognitive Impairment Following Stroke and Neurotrauma: Behavioral Methods for Quantifying Impairment and Functional Recovery. Methods Mol Biol 2023; 2616:263-277. [PMID: 36715941 DOI: 10.1007/978-1-0716-2926-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rodent models of stroke and neural injury are reliable and useful tools for testing new interventions and therapeutics. In addition to physical (motor) impairment, cognitive deficits and depressive behaviors are often observed due to neurotrauma. Proper experimental design of pre- and post-assessments of these behaviors that reduce or minimize the confounding effects of motor impairment are essential for determining markers of progression of impairment or recovery. This chapter provides step-by-step laboratory protocols for assessing cognition using the Barnes maze and the novel object recognition test (NORT) and depressive-like behaviors using the sucrose preference test, the three-chambered sociability approach test, and the burrowing test.
Collapse
|
8
|
Sarcosine (glycine transporter inhibitor) attenuates behavioural and biochemical changes induced by ketamine, in the rat model of schizophrenia. Exp Brain Res 2023; 241:451-467. [PMID: 36577922 DOI: 10.1007/s00221-022-06530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/29/2022] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a neurological disorder that alters the behavior and affects the quality of life of a patient. It is characterized by hallucinations, disorganized behavior, cognitive dysfunction, hyperlocomotion, and loss of the reward system. Schizophrenia constitutes three symptoms' domains, viz. positive, negative and cognitive. Typical and atypical antipsychotics do not fully resolve all the symptoms' domains thus paving the way to the genesis of the glutamatergic hypothesis, i.e. N-methyl-D-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Positive modulation of NMDA receptors by enhancing co-agonist, glycine effect is proposed to produce a therapeutic effect in schizophrenia. Hence, sarcosine (N-methyl glycine), natural amino acid, and a glycine transporter inhibitor (GlyT-1) which also acts on NMDA receptors were used in the present study. The present study unravels the role of sarcosine in the attenuation of ketamine-induced three symptom domains in a rat model through modulation of oxidative stress, mitochondrial dysfunction, and neuroinflammatory pathways. The animal model of schizophrenia was established by injecting ketamine intraperitoneal (ip) at a 30 mg/kg dose for 10 consecutive days, after which sarcosine (300, 600 mg/kg, ip) as a treatment was given for 7 days followed by behavioral, biochemical, molecular, and histopathological analysis. It was revealed that sarcosine reversed ketamine-induced behavioral impairments. Moreover, sarcosine ameliorated oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation and showed protective effects in histopathological examination by hematoxylin and eosin staining. Hence, conclusively, sarcosine was regarded to attenuate the behavioural symptoms of schizophrenia by alleviating oxidative stress, neuroinflammation, and mitochondrial dysfunction established by the ketamine.
Collapse
|
9
|
d'Isa R, Gerlai R. Designing animal-friendly behavioral tests for neuroscience research: The importance of an ethological approach. Front Behav Neurosci 2023; 16:1090248. [PMID: 36703720 PMCID: PMC9871504 DOI: 10.3389/fnbeh.2022.1090248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Raffaele d'Isa
- Institute of Experimental Neurology (INSPE), Division of Neuroscience (DNS), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
10
|
Talani G, Biggio F, Gorule AA, Licheri V, Saolini E, Colombo D, Sarigu G, Petrella M, Vedele F, Biggio G, Sanna E. Sex-dependent changes of hippocampal synaptic plasticity and cognitive performance in C57BL/6J mice exposed to neonatal repeated maternal separation. Neuropharmacology 2023; 222:109301. [PMID: 36336069 DOI: 10.1016/j.neuropharm.2022.109301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The repeated maternal separation (RMS) is a useful experimental model useful in rodents to study the long-term influence of early-life stress on brain neurophysiology. We here investigated the influence of RMS exposure on hippocampal inhibitory and excitatory synaptic transmission, long-term synaptic plasticity and the related potential alterations in learning and memory performance in adult male and female C57Bl/6J mice. Mice were separated daily from their dam for 360 min, from postnatal day 2 (PND2) to PND17, and experiments were performed at PND 60. Patch-clamp recordings in hippocampal CA1 pyramidal neurons revealed a significant enhancement of GABAergic miniature IPSC (mIPSC) frequency, and a decrease in the amplitude of glutamatergic mEPSCs in male mice exposed to RMS. Only a slight but significant reduction in the amplitude of GABAergic mIPSCs was observed in females exposed to RMS compared to the relative controls. A marked increase in long-term depression (LTD) at CA3-CA1 glutamatergic synapses and in the response to the CB1r agonist win55,212 were detected in RMS male, but not female mice. An impaired spatial memory and a reduced preference for novelty was observed in males exposed to RMS but not in females. A single injection of β-ethynyl estradiol at PND2, prevented the changes observed in RMS male mice, suggesting that estrogens may play a protective role early in life against the exposure to stressful conditions. Our findings strengthen the idea of a sex-dependent influence of RMS on long-lasting modifications in synaptic transmission, effects that may be relevant for cognitive performance.
Collapse
Affiliation(s)
- Giuseppe Talani
- CNR Institute of Neuroscience, National Research Council, Monserrato, Italy.
| | - Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Ashish Avinash Gorule
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Valentina Licheri
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Eleonora Saolini
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Daniele Colombo
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Gabriele Sarigu
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Michele Petrella
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Francescangelo Vedele
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Giovanni Biggio
- CNR Institute of Neuroscience, National Research Council, Monserrato, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| | - Enrico Sanna
- CNR Institute of Neuroscience, National Research Council, Monserrato, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato, Italy
| |
Collapse
|
11
|
Mani KK, El-Hakim Y, Branyan TE, Samiya N, Pandey S, Grimaldo MT, Habbal A, Wertz A, Sohrabji F. Intestinal epithelial stem cell transplants as a novel therapy for cerebrovascular stroke. Brain Behav Immun 2023; 107:345-360. [PMID: 36328163 DOI: 10.1016/j.bbi.2022.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Almost 2/3rds of stroke survivors exhibit vascular cognitive impairment and a third of stroke patients will develop dementia 1-3 years after stroke. These dire consequences underscore the need for effective stroke therapies. In addition to its damaging effects on the brain, stroke rapidly dysregulates the intestinal epithelium, resulting in elevated blood levels of inflammatory cytokines and toxic gut metabolites due to a 'leaky' gut. We tested whether repairing the gut via intestinal epithelial stem cell (IESC) transplants would also improve stroke recovery. Organoids containing IESCs derived from young rats transplanted into older rats after stroke were incorporated into the gut, restored stroke-induced gut dysmorphology and decreased gut permeability, and reduced circulating levels of endotoxin LPS and the inflammatory cytokine IL-17A. Remarkably, IESC transplants also improved stroke-induced acute (4d) sensory-motor disability and chronic (30d) cognitive-affective function. Moreover, IESCs from older animals displayed senescent features and were not therapeutic for stroke. These data underscore the gut as a critical therapeutic target for stroke and demonstrate the effectiveness of gut stem cell therapy.
Collapse
Affiliation(s)
- Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Taylor E Branyan
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States
| | - Nadia Samiya
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Sivani Pandey
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Maria T Grimaldo
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Ali Habbal
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Anna Wertz
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Mail Stop 1359 | 8447 Riverside Pkwy, Bryan, TX 77807-3260, United States; Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX 77807, United States.
| |
Collapse
|
12
|
Tsan L, Chometton S, Hayes AM, Klug ME, Zuo Y, Sun S, Bridi L, Lan R, Fodor AA, Noble EE, Yang X, Kanoski SE, Schier LA. Early-life low-calorie sweetener consumption disrupts glucose regulation, sugar-motivated behavior, and memory function in rats. JCI Insight 2022; 7:e157714. [PMID: 36099052 PMCID: PMC9714783 DOI: 10.1172/jci.insight.157714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/12/2022] [Indexed: 01/12/2023] Open
Abstract
Low-calorie sweetener (LCS) consumption in children has increased dramatically due to its widespread presence in the food environment and efforts to mitigate obesity through sugar replacement. However, mechanistic studies on the long-term impact of early-life LCS consumption on cognitive function and physiological processes are lacking. Here, we developed a rodent model to evaluate the effects of daily LCS consumption (acesulfame potassium, saccharin, or stevia) during adolescence on adult metabolic, behavioral, gut microbiome, and brain transcriptomic outcomes. Results reveal that habitual early-life LCS consumption impacts normal postoral glucose handling and impairs hippocampal-dependent memory in the absence of weight gain. Furthermore, adolescent LCS consumption yielded long-term reductions in lingual sweet taste receptor expression and brought about alterations in sugar-motivated appetitive and consummatory responses. While early-life LCS consumption did not produce robust changes in the gut microbiome, brain region-specific RNA-Seq analyses reveal LCS-induced changes in collagen- and synaptic signaling-related gene pathways in the hippocampus and nucleus accumbens, respectively, in a sex-dependent manner. Collectively, these results reveal that habitual early-life LCS consumption has long-lasting implications for glucoregulation, sugar-motivated behavior, and hippocampal-dependent memory in rats, which may be based in part on changes in nutrient transporter, sweet taste receptor, and central gene pathway expression.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program and
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Sandrine Chometton
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Anna M.R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Molly E. Klug
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Yanning Zuo
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Rae Lan
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Emily E. Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program and
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Lindsey A. Schier
- Neuroscience Graduate Program and
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Morozova MV, Borisova MA, Snytnikova OA, Achasova KM, Litvinova EA, Tsentalovich YP, Kozhevnikova EN. Colitis-associated intestinal microbiota regulates brain glycine and host behavior in mice. Sci Rep 2022; 12:16345. [PMID: 36175462 PMCID: PMC9522854 DOI: 10.1038/s41598-022-19219-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory disorders of the gastrointestinal tract with complex etiology and no strategies for complete cure. IBD are often complicated by mental disorders like anxiety and depression, indicating substantial shifts in the microbiota gut-brain axis. However, the mechanisms connecting IBD to mental diseases are still under debate. Here we use Muc2 knockout mouse model of chronic colitis to uncouple the effects of the intestinal microbiota on host behavior from chronic inflammation in the gut. Muc2 knockout male mice exhibit high exploratory activity, reduced anxiety-related behaviors, impaired sensorimotor gating, and altered social preference towards males and females. Microbial transfer to wild-type mice via littermate co-housing shows that colitis-associated microbiota rather than inflammation per se defines behavioral features in Muc2 colitis model. Metagenomic profiling and combination of antibiotic treatments revealed that bacterial species Akkermansia muciniphila is associated with the behavioral phenotype in mutants, and that its intestinal abundance correlates with social preference towards males. Metabolomic analysis together with pharmacological inhibition of Gly and NMDA receptors helped us to determine that brain glycine is responsible for the behavioral phenotype in Muc2 mice. Blood and brain metabolic profiles suggest that microbiota-dependent changes in choline metabolism might be involved in regulation of central glycine neurotransmission. Taken together, our data demonstrates that colitis-associated microbiota controls anxiety, sensorimotor gating and social behavior via metabolic regulation of the brain glycinergic system, providing new venues to combat neurological complications of IBD.
Collapse
Affiliation(s)
- Maryana V Morozova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, 630117, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Mariya A Borisova
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russian Federation
| | - Olga A Snytnikova
- International Tomography Center SB RAS, Novosibirsk, Russian Federation
| | - Kseniya M Achasova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, 630117, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Ekaterina A Litvinova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, 630117, Russian Federation
- Center of Technological Excellence, Novosibirsk State Technical University, Novosibirsk, Russian Federation
| | | | - Elena N Kozhevnikova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, 630117, Russian Federation.
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation.
- Novosibirsk State Agrarian University, Novosibirsk, Russian Federation.
| |
Collapse
|
14
|
Bailey J, Coucha M, Bolduc DR, Burnett FN, Barrett AC, Ghaly M, Abdelsaid M. GLP-1 receptor nitration contributes to loss of brain pericyte function in a mouse model of diabetes. Diabetologia 2022; 65:1541-1554. [PMID: 35687178 DOI: 10.1007/s00125-022-05730-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction. METHODS Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 μmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions. RESULTS Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05). CONCLUSIONS/INTERPRETATION This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.
Collapse
Affiliation(s)
- Joseph Bailey
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Deanna R Bolduc
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Faith N Burnett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Amy C Barrett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mark Ghaly
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
| |
Collapse
|
15
|
Chan HH, Hogue O, Mathews ND, Hunter JG, Kundalia R, Hermann JK, Floden DP, Machado AG, Baker KB. Deep cerebellar stimulation enhances cognitive recovery after prefrontal traumatic brain injury in rodent. Exp Neurol 2022; 355:114136. [PMID: 35667396 PMCID: PMC10203848 DOI: 10.1016/j.expneurol.2022.114136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/10/2023]
Abstract
Functional outcome following traumatic brain injury (TBI) varies greatly, with approximately half of those who survive suffering long-term motor and cognitive deficits despite contemporary rehabilitation efforts. We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) enhances rehabilitation of motor deficits that result from brain injury. The objective of the present study was to evaluate the efficacy of LCN DBS on recovery from rodent TBI that uniquely models the injury location, chronicity and resultant cognitive symptoms observed in most human TBI patients. We used controlled cortical impact (CCI) to produce an injury that targeted the medial prefrontal cortex (mPFC-CCI) bilaterally, resulting in cognitive deficits. Unilateral LCN DBS electrode implantation was performed 6 weeks post-injury. Electrical stimulation started at week eight post-injury and continued for an additional 4 weeks. Cognition was evaluated using baited Y-maze, novel object recognition task and Barnes maze. Post-mortem analyses, including Western Blot and immunohistochemistry, were conducted to elucidate the cellular and molecular mechanisms of recovery. We found that mPFC-CCI produced significant cognitive deficits compared to pre-injury and naïve animals. Moreover, LCN DBS treatment significantly enhanced the long-term memory process and executive functions of applying strategy. Analyses of post-mortem tissues showed significantly greater expression of CaMKIIα, BDNF and p75NTR across perilesional cortex and higher expression of postsynaptic formations in LCN DBS-treated animals compared to untreated. Overall, these data suggest that LCN DBS is an effective treatment of cognitive deficits that result from TBI, possibly by activation of ascending, glutamatergic projections to thalamus and subsequent upregulation of thalamocortical activity that engages neuroplastic mechanisms for facilitation of functional re-organization. These results support a role for cerebellar output neuromodulation as a novel therapeutic approach to enhance rehabilitation for patients with chronic, post-TBI cognitive deficits that are unresponsive to traditional rehabilitative efforts.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Olivia Hogue
- Department of Quantitative Heath Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Nicole D Mathews
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Joshua G Hunter
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ronak Kundalia
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - John K Hermann
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Darlene P Floden
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, OH 44195, USA
| | - Andre G Machado
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Cleveland Clinic Neurological Institute, Cleveland, OH 44195, USA
| | - Kenneth B Baker
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Cleveland Clinic Neurological Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Glutamate Receptor Interacting Protein 1 in the Dorsal CA1 Drives Alpha-amino-3-hydroxy-5-methyl-4-Isoxazolepropionic Acid Receptor Endocytosis and Exocytosis Bidirectionally and Mediates Forgetting, Exploratory, and Anxiety-like Behavior. Neuroscience 2022; 498:235-248. [PMID: 35863680 DOI: 10.1016/j.neuroscience.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023]
Abstract
Endocytosis of GluA2-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in CA1 of the hippocampus regulates forgetting; deficits in forgetting nociceptive memory can induce serious stress disorders. As a transporter of GluA2-containing AMPAR, the functions of glutamate receptor interacting protein 1 (GRIP1) in forgetting and possible stress responses remain unclear. Lentivirus-mediated interference of GRIP1 expression or function in the dorsal CA1 of the hippocampus in mice indicated that GRIP1 overexpression enhanced spatial memory, impaired forgetting in a Barnes maze, and induced anxiety-like behavior in the open field and elevated plus-maze test. In contrast, GRIP1 knockdown impaired learning capacity. Furthermore, inhibition of the PDZ2 and PDZ4/5 domains of GRIP1 and GluA2-dn enhanced learning capacity, whereas GluA2-dn impaired spatial memory; inhibition of the PDZ2 and PDZ4/5 domains of GRIP1 also decreased forgetting capacity to some extent. Importantly, inhibition of both the PDZ2 and PDZ4/5 domains of GRIP1 induced anxiety-like behavior but not GluA2-dn. Furthermore, optogenetic control of both GluA1 and GluA2 insertion into the postsynaptic membrane impaired memory and induced anxiety-like behavior. In vitro experiments showed that GRIP1-ov and -dn, inhibition of PDZ2 and PDZ4/5 domains of GRIP1, and GluA2-dn decreased glycine-induced GluA1 and GluA2 exocytosis; meanwhile, GRIP1-ov and -dn, and interference of PDZ2 and PDZ4/5 domains of GRIP1 blocked AMPA- and NMDA-induced GluA1 and GluA2 endocytosis. Overall, these results suggest that GRIP1 drives AMPA receptor endocytosis and exocytosis bidirectionally; furthermore, GRIP1-induced stabilization of anchoring postsynaptic GluA1 and GluA2 impairs forgetting and induces anxiety-like behavior. GRIP1 may provide a potential therapeutic target in posttraumatic syndromes and anxiety disorders.
Collapse
|
17
|
Wirtshafter HS, Disterhoft JF. In Vivo Multi-Day Calcium Imaging of CA1 Hippocampus in Freely Moving Rats Reveals a High Preponderance of Place Cells with Consistent Place Fields. J Neurosci 2022; 42:4538-4554. [PMID: 35501152 PMCID: PMC9172072 DOI: 10.1523/jneurosci.1750-21.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Calcium imaging using GCaMP indicators and miniature microscopes has been used to image cellular populations during long timescales and in different task phases, as well as to determine neuronal circuit topology and organization. Because the hippocampus (HPC) is essential for tasks of memory, spatial navigation, and learning, calcium imaging of large populations of HPC neurons can provide new insight on cell changes over time during these tasks. All reported HPC in vivo calcium imaging experiments have been done in mouse. However, rats have many behavioral and physiological experimental advantages over mice. In this paper, we present the first (to our knowledge) in vivo calcium imaging from CA1 HPC in freely moving male rats. Using the UCLA Miniscope, we demonstrate that, in rat, hundreds of cells can be visualized and held across weeks. We show that calcium events in these cells are highly correlated with periods of movement, with few calcium events occurring during periods without movement. We additionally show that an extremely large percent of cells recorded during a navigational task are place cells (77.3 ± 5.0%, surpassing the percent seen during mouse calcium imaging), and that these cells enable accurate decoding of animal position and can be held over days with consistent place fields in a consistent spatial map. A detailed protocol is included, and implications of these advancements on in vivo imaging and place field literature are discussed.SIGNIFICANCE STATEMENT In vivo calcium imaging in freely moving animals allows the visualization of cellular activity across days. In this paper, we present the first in vivo Ca2+ recording from CA1 hippocampus (HPC) in freely moving rats. We demonstrate that hundreds of cells can be visualized and held across weeks, and that calcium activity corresponds to periods of movement. We show that a high percentage (77.3 ± 5.0%) of imaged cells are place cells, and that these place cells enable accurate decoding and can be held stably over days with little change in field location. Because the HPC is essential for many tasks involving memory, navigation, and learning, imaging of large populations of HPC neurons can shed new insight on cellular activity changes and organization.
Collapse
Affiliation(s)
- Hannah S Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
18
|
Assessment of sex-related neuropathology and cognitive deficits in the Tg-SwDI mouse model of Alzheimer’s disease. Behav Brain Res 2022; 428:113882. [DOI: 10.1016/j.bbr.2022.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
19
|
Zhou F, Ebea P, Mutai E, Wang H, Sukreet S, Navazesh S, Dogan H, Li W, Cui J, Ji P, Ramirez DMO, Zempleni J. Small Extracellular Vesicles in Milk Cross the Blood-Brain Barrier in Murine Cerebral Cortex Endothelial Cells and Promote Dendritic Complexity in the Hippocampus and Brain Function in C57BL/6J Mice. Front Nutr 2022; 9:838543. [PMID: 35600828 PMCID: PMC9121399 DOI: 10.3389/fnut.2022.838543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Human milk contains large amounts of small extracellular vesicles (sEVs) and their microRNA cargos, whereas infant formulas contain only trace amounts of sEVs and microRNAs. We assessed the transport of sEVs across the blood-brain barrier (BBB) and sEV accumulation in distinct regions of the brain in brain endothelial cells and suckling mice. We further assessed sEV-dependent gene expression profiles and effects on the dendritic complexity of hippocampal granule cells and phenotypes of EV depletion in neonate, juvenile and adult mice. The transfer of sEVs across the BBB was assessed by using fluorophore-labeled bovine sEVs in brain endothelial bEnd.3 monolayers and dual chamber systems, and in wild-type newborn pups fostered to sEV and cargo tracking (ECT) dams that express sEVs labeled with a CD63-eGFP fusion protein for subsequent analysis by serial two-photon tomography and staining with anti-eGFP antibodies. Effects of EVs on gene expression and dendritic architecture of granule cells was analyzed in hippocampi from juvenile mice fed sEV and RNA-depleted (ERD) and sEV and RNA-sufficient (ERS) diets by using RNA-sequencing analysis and Golgi-Cox staining followed by integrated neuronal tracing and morphological analysis of neuronal dendrites, respectively. Spatial learning and severity of kainic acid-induced seizures were assessed in mice fed ERD and ERS diets. bEnd.3 cells internalized sEVs by using a saturable transport mechanism and secreted miR-34a across the basal membrane. sEVs penetrated the entire brain in fostering experiments; major regions of accumulation included the hippocampus, cortex and cerebellum. Two hundred ninety-five genes were differentially expressed in hippocampi from mice fed ERD and ERS diets; high-confidence gene networks included pathways implicated in axon guidance and calcium signaling. Juvenile pups fed the ERD diet had reduced dendritic complexity of dentate granule cells in the hippocampus, scored nine-fold lower in the Barnes maze test of spatial learning and memory, and the severity of seizures was 5-fold higher following kainic acid administration in adult mice fed the ERD diet compared to mice fed the ERS diet. We conclude that sEVs cross the BBB and contribute toward optimal neuronal development, spatial learning and memory, and resistance to kainic acid-induced seizures in mice.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Pearl Ebea
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Shya Navazesh
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Haluk Dogan
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wenhao Li
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Denise M. O. Ramirez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
20
|
Kim JY, Mo H, Kim J, Kim JW, Nam Y, Rim YA, Ju JH. Mitigating Effect of Estrogen in Alzheimer’s Disease-Mimicking Cerebral Organoid. Front Neurosci 2022; 16:816174. [PMID: 35401074 PMCID: PMC8990972 DOI: 10.3389/fnins.2022.816174] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common condition in patients with dementia and affects a large population worldwide. The incidence of AD is expected to increase in future owing to the rapid expansion of the aged population globally. Researchers have shown that women are twice more likely to be affected by AD than men. This phenomenon has been attributed to the postmenopausal state, during which the level of estrogen declines significantly. Estrogen is known to alleviate neurotoxicity in the brain and protect neurons. While the effects of estrogen have been investigated in AD models, to our knowledge, they have not been investigated in a stem cell-based three-dimensional in vitro system. Here, we designed a new model for AD using induced pluripotent stem cells (iPSCs) in a three-dimensional, in vitro culture system. We used 5xFAD mice to confirm the potential of estrogen in alleviating the effects of AD pathogenesis. Next, we confirmed a similar trend in an AD model developed using iPSC-derived cerebral organoids, in which the key characteristics of AD were recapitulated. The findings emphasized the potential of estrogen as a treatment agent for AD and also showed the suitability of AD-recapitulating cerebral organoids as a reliable platform for disease modeling and drug screening.
Collapse
Affiliation(s)
| | - Hyunkyung Mo
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Jang Woon Kim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Yeri Alice Rim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- YiPSCELL, Inc., Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Ji Hyeon Ju,
| |
Collapse
|
21
|
Alshareef M, Mallah K, Vasas T, Alawieh A, Borucki D, Couch C, Cutrone J, Shope C, Eskandari R, Tomlinson S. A Role of Complement in the Pathogenic Sequelae of Mouse Neonatal Germinal Matrix Hemorrhage. Int J Mol Sci 2022; 23:2943. [PMID: 35328364 PMCID: PMC8954718 DOI: 10.3390/ijms23062943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022] Open
Abstract
Germinal matrix hemorrhage (GMH) is a devastating disease of infancy that results in intraventricular hemorrhage, post-hemorrhagic hydrocephalus (PHH), periventricular leukomalacia, and neurocognitive deficits. There are no curative treatments and limited surgical options. We developed and characterized a mouse model of GMH based on the injection of collagenase into the subventricular zone of post-natal pups and utilized the model to investigate the role of complement in PHH development. The site-targeted complement inhibitor CR2Crry, which binds deposited C3 complement activation products, localized specifically in the brain following its systemic administration after GMH. Compared to vehicle, CR2Crry treatment reduced PHH and lesion size, which was accompanied by decreased perilesional complement deposition, decreased astrocytosis and microgliosis, and the preservation of dendritic and neuronal density. Complement inhibition also improved survival and weight gain, and it improved motor performance and cognitive outcomes measured in adolescence. The progression to PHH, neuronal loss, and associated behavioral deficits was linked to the microglial phagocytosis of complement opsonized neurons, which was reversed with CR2Crry treatment. Thus, complement plays an important role in the pathological sequelae of GMH, and complement inhibition represents a novel therapeutic approach to reduce the disease progression of a condition for which there is currently no treatment outside of surgical intervention.
Collapse
Affiliation(s)
- Mohammed Alshareef
- Department of Neurological Surgery, Medical University of South Carolina, 301 CSB, Charleston, SC 29425, USA;
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425, USA; (K.M.); (C.C.)
| | - Tyler Vasas
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (D.B.); (J.C.); (C.S.)
| | - Ali Alawieh
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Davis Borucki
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (D.B.); (J.C.); (C.S.)
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425, USA; (K.M.); (C.C.)
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jonathan Cutrone
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (D.B.); (J.C.); (C.S.)
| | - Chelsea Shope
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (T.V.); (D.B.); (J.C.); (C.S.)
| | - Ramin Eskandari
- Department of Neurological Surgery, Medical University of South Carolina, 301 CSB, Charleston, SC 29425, USA;
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425, USA; (K.M.); (C.C.)
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425, USA; (K.M.); (C.C.)
- Ralph Johnson VA Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
22
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
23
|
Beaver JN, Gilman TL. Salt as a non-caloric behavioral modifier: A review of evidence from pre-clinical studies. Neurosci Biobehav Rev 2021; 135:104385. [PMID: 34634356 DOI: 10.1016/j.neubiorev.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Though excess salt intake is well-accepted as a dietary risk factor for cardiovascular diseases, relatively little has been explored about how it impacts behavior, despite the ubiquity of salt in modern diets. Given the challenges of manipulating salt intake in humans, non-human animals provide a more tractable means for evaluating behavioral sequelae of high salt. By describing what is known about the impact of elevated salt on behavior, this review highlights how underexplored salt's behavioral effects are. Increased salt consumption in adulthood does not affect spontaneous anxiety-related behaviors or locomotor activity, nor acquisition of maze or fear tasks, but does impede expression of spatial/navigational and fear memory. Nest building is reduced by heightened salt in adults, and stress responsivity is augmented. When excess salt exposure occurs during development, and/or to parents, offspring locomotion is increased, and both spatial memory expression and social investigation are attenuated. The largely consistent findings reviewed here indicate expanded study of salt's effects will likely uncover broader behavioral implications, particularly in the scarcely studied female sex.
Collapse
Affiliation(s)
- Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
24
|
Young and Undamaged rMSA Improves the Healthspan and Lifespan of Mice. Biomolecules 2021; 11:biom11081191. [PMID: 34439857 PMCID: PMC8394218 DOI: 10.3390/biom11081191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/09/2021] [Indexed: 02/01/2023] Open
Abstract
Improvement of longevity is an eternal dream of human beings. The accumulation of protein damages is considered as a major cause of aging. Here, we report that the injection of exogenous recombinant mouse serum albumin (rMSA) reduced the total damages of serum albumin in C57BL/6N mice, with higher level of free-thiols, lower levels of carbonyls and advanced glycation end-products as well as homocysteines in rMSA-treated mice. The healthspan and lifespan of C57BL/6N mice were significantly improved by rMSA. The grip strength of rMSA-treated female and male mice increased by 29.6% and 17.4%, respectively. Meanwhile, the percentage of successful escape increased 23.0% in rMSA-treated male mice using the Barnes Maze test. Moreover, the median lifespan extensions were 17.6% for female and 20.3% for male, respectively. The rMSA used in this study is young and almost undamaged. We define the concept “young and undamaged” to any protein without any unnecessary modifications by four parameters: intact free thiol (if any), no carbonylation, no advanced glycation end-product, and no homocysteinylation. Here, “young and undamaged” exogenous rMSA used in the present study is much younger and less damaged than the endogenous serum albumin purified from young mice at 1.5 months of age. We predict that undamaged proteins altogether can further improve the healthspan and lifespan of mice.
Collapse
|
25
|
Maternal Oxycodone Treatment Results in Neurobehavioral Disruptions in Mice Offspring. eNeuro 2021; 8:ENEURO.0150-21.2021. [PMID: 34312305 PMCID: PMC8354714 DOI: 10.1523/eneuro.0150-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/14/2023] Open
Abstract
Opioid drugs are increasingly being prescribed to pregnant women. Such compounds can also bind and activate opioid receptors in the fetal brain, which could lead to long-term brain and behavioral disruptions. We hypothesized that maternal treatment with oxycodone (OXY), the primary opioid at the center of the current crisis, leads to later neurobehavioral disorders and gene expression changes in the hypothalamus and hippocampus of resulting offspring. Female mice were treated daily with 5 mg OXY/kg or saline solution (control; CTL) for two weeks before breeding and then throughout gestation. Male and female offspring from both groups were tested with a battery of behavioral and metabolic tests to measure cognition, exploratory-like, anxiety-like, voluntary physical activity, and socio-communication behaviors. qPCR analyses were performed for candidate gene expression patterns in the hypothalamus and hippocampus of OXY and CTL derived offspring. Developmental exposure to OXY caused socio-communication changes that persisted from weaning through adulthood. Such offspring also showed cognitive impairments, reduced voluntary physical activity, and weighed more than CTL counterparts. In the hippocampus, prenatal exposure to OXY caused sex-dependent differences in expression of genes encoding opioid receptors and those involved in serotonin signaling. OXY exposure induced changes in neuropeptide hormone expression and the epigenetic modulator, Dnmt3a, in the hypothalamus, which could result in epigenetic changes in this brain region. The findings suggest cause for concern that consumption of OXY by pregnant mothers may result in permanent neurobehavioral changes in their offspring. Further work is needed to determine the potential underpinning epigenetic mechanisms.
Collapse
|
26
|
Reelin changes hippocampal learning in aging and Alzheimer's disease. Behav Brain Res 2021; 414:113482. [PMID: 34333070 DOI: 10.1016/j.bbr.2021.113482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022]
Abstract
The hippocampal formation (HF) is a neuroanatomical region essential for learning and memory. As one of the earliest regions to display the histopathological hallmarks of Alzheimer's disease (AD), determining the specific mechanisms of the HF's vulnerability is of capital importance. Reelin, a glycoprotein crucial in cortical lamination during embryonic neurogenesis, has an uncommon expression pattern within the HF and has been implicated in both learning and AD pathogenesis. We hypothesized that Reelin deficiency would expedite behavioral impairments which accompany normal aging. Additionally, we hypothesized that Reelin deficiency in the presence of mutated human microtubule associated protein tau (MAPT) would further impair hippocampal function. To test our hypothesis, we utilized cohorts of aged mice, aged mice with Reelin conditional knockout (RcKO), and adult mice with both RcKO and MAPT in the Barnes maze and Trace fear conditioning. Consistent with prior literature, increased age in wild-type mice was sufficient to reduce spatial searching in the Barnes maze. Increased age both exacerbated spatial impairments and altered context learning in RcKO mice. Lastly, adult mice with both RcKO and the MAPT transgene displayed both the lowest age-of-onset and most severe spatial learning deficits. In conclusion, Reelin deficiency when combined with AD risk-factors produced consistent impairments in spatial memory tasks. Furthermore, our results further implicate Reelin's importance in both HF homeostasis and AD pathogenesis.
Collapse
|
27
|
Wang G, Wang C, Chen H, Chen L, Li J. Activation of 6-8-week-old new mature adult-born dentate granule cells contributes to anxiety-like behavior. Neurobiol Stress 2021; 15:100358. [PMID: 34195305 PMCID: PMC8240024 DOI: 10.1016/j.ynstr.2021.100358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
Adult-born dentate granule cells (aDGCs) at 4–6 weeks of age are particularly excitable but subsequently develop the quiet properties of mature cells. Most existing studies have focused on the hyperactivity of 4–6-week-old aDGCs or neurogenesis, which confers stress resilience or buffers stress responses. However, the function of the quiet property of new mature aDGCs remains unclear. Here we used a retrovirus expressing cre recombinase in combination with an associated-adenovirus to specifically interfere with the activity of new mature aDGCs, and estimated anxiety-like behaviors by the open-field test and elevated plus maze test, antidepressant-like behaviors by the tail suspension test, and spatial memory by the Barnes maze test. We found that sustained hyperactivity of 6–8-week-old, but not 8–10-week-old, aDGCs induced anxiety-like behaviors, and suppression of the activity of 6–8-week-old aDGCs disturbed spatial memory. Meanwhile, sustained hyperactivity of 6–8-week-old aDGCs induced activation of mature dentate gyrus (DG) neurons and inhibition of immature aDGCs. Additionally, the mice showing anxiety-like behaviors induced by chronic mild immobilization stress exhibited increased activity in 6–8-week-old aDGCs. Furthermore, the sustained hyperactivity of mature DG neurons also induced anxiety-like behaviors and decreased the activity of immature aDGCs. Our results combined show that the excitation of 6–8-week-old new mature aDGCs, which prohibits them from normally entering the resting state, determines anxiety-like behavior, while the maintenance of normal excitation ability of 6–8-week-old new mature aDGCs confers memory. Our results suggests that strategies aimed at inhibiting unusual hyperactive new mature aDGCs at a restricted time window may protect against stress-related psychiatric disorders, such as anxiety and depression.
Collapse
Affiliation(s)
- Guohua Wang
- 502 Room, 28 Yunjing Road, Guangzhou, 510515, China
| | - Canmao Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - He Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Limei Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Juan Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
28
|
Scrimgeour AG, Condlin ML, Loban A, DeMar JC. Omega-3 Fatty Acids and Vitamin D Decrease Plasma T-Tau, GFAP, and UCH-L1 in Experimental Traumatic Brain Injury. Front Nutr 2021; 8:685220. [PMID: 34150829 PMCID: PMC8211733 DOI: 10.3389/fnut.2021.685220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) results in neuronal, axonal and glial damage. Interventions targeting neuroinflammation to enhance recovery from TBI are needed. Exercise is known to improve cognitive function in TBI patients. Omega-3 fatty acids and vitamin D reportedly reduce inflammation, and in combination, might improve TBI outcomes. This study examined how an anti-inflammatory diet affected plasma TBI biomarkers, voluntary exercise and behaviors following exposure to mild TBI (mTBI). Adult, male rats were individually housed in cages fitted with running wheels and daily running distance was recorded throughout the study. A modified weight drop method induced mTBI, and during 30 days post-injury, rats were fed diets supplemented with omega-3 fatty acids and vitamin D3 (AIDM diet), or non-supplemented AIN-76A diets (CON diet). Behavioral tests were periodically conducted to assess functional deficits. Plasma levels of Total tau (T-tau), glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1) and neurofilament light chain (NF-L) were measured at 48 h, 14 days, and 30 days post-injury. Fatty acid composition of food, plasma, and brain tissues was determined. In rats exposed to mTBI, NF-L levels were significantly elevated at 48 h post-injury (P < 0.005), and decreased to levels seen in uninjured rats by 14 days post-injury. T-tau, GFAP, and UCH-L1 plasma levels did not change at 48 h or 14 days post-injury. However, at 30 days post-injury, T-tau, GFAP and UCH-L1 all significantly increased in rats exposed to mTBI and fed CON diets (P < 0.005), but not in rats fed AIDM diets. Behavioral tests conducted post-injury showed that exercise counteracted cognitive deficits associated with mTBI. The AIDM diets significantly increased docosahexaenoic acid levels in plasma and brain tissue (P < 0.05), and in serum levels of vitamin D (P < 0.05). The temporal response of the four injury biomarkers examined is consistent with studies by others demonstrating acute and chronic neural tissue damage following exposure to TBI. The anti-inflammatory diet significantly altered the temporal profiles of plasma T-tau, GFAP, and UCH-L1 following mTBI. Voluntary exercise protected against mTBI-induced cognitive deficits, but had no impact on plasma levels of neurotrauma biomarkers. Thus, the prophylactic effect of exercise, when combined with an anti-inflammatory diet, may facilitate recovery in patients with mTBI.
Collapse
Affiliation(s)
- Angus G Scrimgeour
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Michelle L Condlin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Andrei Loban
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - James C DeMar
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience Research, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| |
Collapse
|
29
|
Cheng S, Mao X, Lin X, Wehn A, Hu S, Mamrak U, Khalin I, Wostrack M, Ringel F, Plesnila N, Terpolilli NA. Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1572-1584. [PMID: 33779289 DOI: 10.1089/neu.2020.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.
Collapse
Affiliation(s)
- Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiangjiang Lin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
30
|
Baranowski BJ, Hayward GC, Marko DM, MacPherson REK. Examination of BDNF Treatment on BACE1 Activity and Acute Exercise on Brain BDNF Signaling. Front Cell Neurosci 2021; 15:665867. [PMID: 34017238 PMCID: PMC8129185 DOI: 10.3389/fncel.2021.665867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Perturbations in metabolism results in the accumulation of beta-amyloid peptides, which is a pathological feature of Alzheimer’s disease. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate limiting enzyme responsible for beta-amyloid production. Obesogenic diets increase BACE1 while exercise reduces BACE1 activity, although the mechanisms are unknown. Brain-derived neurotropic factor (BDNF) is an exercise inducible neurotrophic factor, however, it is unknown if BDNF is related to the effects of exercise on BACE1. The purpose of this study was to determine the direct effect of BDNF on BACE1 activity and to examine neuronal pathways induced by exercise. C57BL/6J male mice were assigned to either a low (n = 36) or high fat diet (n = 36) for 10 weeks. To determine the direct effect of BDNF on BACE1, a subset of mice (low fat diet = 12 and high fat diet n = 12) were used for an explant experiment where the brain tissue was directly treated with BDNF (100 ng/ml) for 30 min. To examine neuronal pathways activated with exercise, mice remained sedentary (n = 12) or underwent an acute bout of treadmill running at 15 m/min with a 5% incline for 120 min (n = 12). The prefrontal cortex and hippocampus were collected 2-h post-exercise. Direct treatment with BDNF resulted in reductions in BACE1 activity in the prefrontal cortex (p < 0.05), but not the hippocampus. The high fat diet reduced BDNF content in the hippocampus; however, the acute bout of exercise increased BDNF in the prefrontal cortex (p < 0.05). These novel findings demonstrate the region specific differences in exercise induced BDNF in lean and obese mice and show that BDNF can reduce BACE1 activity, independent of other exercise-induced alterations. This work demonstrates a previously unknown link between BDNF and BACE1 regulation.
Collapse
Affiliation(s)
| | - Grant C Hayward
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
31
|
Wickramasekara RN, Robertson B, Hulen J, Hallgren J, Stessman HAF. Differential effects by sex with Kmt5b loss. Autism Res 2021; 14:1554-1571. [PMID: 33871180 DOI: 10.1002/aur.2516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 01/21/2023]
Abstract
Lysine methyl transferase 5B (KMT5B) has been recently highlighted as a risk gene in genetic studies of neurodevelopmental disorders (NDDs), specifically, autism spectrum disorder (ASD) and intellectual disability (ID); yet, its role in the brain is not known. The goal of this work was to neurodevelopmentally characterize the effect(s) of KMT5B haploinsufficiency using a mouse model. A Kmt5b gene-trap mouse line was obtained from the Knockout Mouse Project. Wild type (WT) and heterozygous (HET) mice were subjected to a comprehensive neurodevelopmental test battery to assess reflexes, motor behavior, learning/memory, social behavior, repetitive movement, and common ASD comorbidities (obsessive compulsion, depression, and anxiety). Given the strong sex bias observed in the ASD patient population, we tested both a male and female cohort of animals and compared differences between genotypes and sexes. HET mice were significantly smaller than WT littermates starting at postnatal day 10 through young adulthood which was correlated with smaller brain size (i.e., microcephaly). This was more severe in males than females. HET male neonates also had delayed eye opening and significantly weaker reflexes than WT littermates. In young adults, significant differences between genotypes relative to anxiety, depression, fear, and extinction learning were observed. Interestingly, several sexually dimorphic differences were noted including increased repetitive grooming behavior in HET females and an increased latency to hot plate response in HET females versus a decreased latency in HET males. LAY SUMMARY: Lysine methyl transferase 5B (KMT5B) has been recently highlighted as a risk gene in neurodevelopmental disorders (NDDs), specifically, autism spectrum disorder (ASD) and intellectual disability (ID); yet its role in the brain is not known. Our study indicates that mice lacking one genomic copy of Kmt5b show deficits in neonatal reflexes, sociability, repetitive stress-induced grooming, changes in thermal pain sensing, decreased depression and anxiety, increased fear, slower extinction learning, and lower body weight, length, and brain size. Furthermore, several outcomes differed by sex, perhaps mirroring the sex bias in ASD.
Collapse
Affiliation(s)
- Rochelle N Wickramasekara
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Brynn Robertson
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jason Hulen
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Jodi Hallgren
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | - Holly A F Stessman
- Department of Pharmacology & Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
32
|
A review of the neuroprotective effects of andrographolide in Alzheimer's disease. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Lyu Z, Ghoshdastidar S, Rekha KR, Suresh D, Mao J, Bivens N, Kannan R, Joshi T, Rosenfeld CS, Upendran A. Developmental exposure to silver nanoparticles leads to long term gut dysbiosis and neurobehavioral alterations. Sci Rep 2021; 11:6558. [PMID: 33753813 PMCID: PMC7985313 DOI: 10.1038/s41598-021-85919-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Due to their antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such AgNPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. AgNPs can cross the placenta and blood–brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to AgNPs disrupts the microbiome–gut–brain axis. To examine for such effects, C57BL6 female mice were exposed orally to AgNPs at a dose of 3 mg/kg BW or vehicle control 2 weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to AgNPs exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of AgNPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.
Collapse
Affiliation(s)
- Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA
| | - Shreya Ghoshdastidar
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Karamkolly R Rekha
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jiude Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65212, USA.,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA
| | - Nathan Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA. .,Department of Health Management and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA.
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65212, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA. .,Genetics Area Program, University of Missouri, Columbia, MO, 65212, USA. .,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, 65212, USA.
| | - Anandhi Upendran
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, 65212, USA. .,MU-Institute of Clinical and Translational Science, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
34
|
Hayward GC, Baranowski BJ, Marko DM, MacPherson REK. Examining the effects of ovarian hormone loss and diet-induced obesity on Alzheimer's disease markers of amyloid-β production and degradation. J Neurophysiol 2021; 125:1068-1078. [PMID: 33534663 DOI: 10.1152/jn.00489.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After menopause, women experience declines in ovarian sex hormones, an event that has recently been associated with increased amyloid-β peptides, a main feature of Alzheimer's disease. Diet-induced insulin resistance also increases amyloid-β peptides; however, whether this process is exacerbated with ovarian sex hormone loss remains unknown. Female C57BL6/J mice received either bilateral ovariectomy (OVX; n = 20) or remained intact (n = 20) at 24 wk of age and were placed on either a low- or high-fat diet (LFD, n = 10 for OVX and intact; HFD, n = 10 for OVX and intact) for 10 wk. Independently, OVX led to increases in the amyloidogenic marker, soluble amyloid precursor protein β (sAPPβ). The HFD in combination with OVX led to lower insulin degrading enzyme (IDE) protein content and activity in the prefrontal cortex, indicative of decreased amyloid-β degradation; however, no differences in amyloid-β content were observed. Data from this study provide novel evidence of independent effects of peripheral insulin resistance and ovarian sex hormone loss in decreasing brain markers of amyloid-β degradation. Furthermore, findings indicate how the loss of ovarian sex hormones can promote the formation of amyloidogenic APP cleavage products, independent of diet-induced insulin resistance.NEW & NOTEWORTHY This study provides novel insight into the effect of peripheral insulin resistance and ovarian hormone loss in decreasing brain markers of amyloid-β degradation. Results demonstrate that ovarian hormone loss through ovariectomy increased the amyloidogenic marker, sAPPβ, while the high-fat diet in combination with ovariectomy led to lower IDE protein content and activity in the prefrontal cortex, indicative of decreased amyloid-β degradation. These original results provide important information for future targets in early AD pathogenesis.
Collapse
Affiliation(s)
- Grant C Hayward
- Department of Health Sciences, Brock University, St Catharines, Ontario, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada.,Faculty of Medicine, Ottawa University, Ottawa, Ontario, Canada
| | - Bradley J Baranowski
- Department of Health Sciences, Brock University, St Catharines, Ontario, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St Catharines, Ontario, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St Catharines, Ontario, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
35
|
Kaur S, Kinkade JA, Green MT, Martin RE, Willemse TE, Bivens NJ, Schenk AK, Helferich WG, Trainor BC, Fass J, Settles M, Mao J, Rosenfeld CS. Disruption of global hypothalamic microRNA (miR) profiles and associated behavioral changes in California mice (Peromyscus californicus) developmentally exposed to endocrine disrupting chemicals. Horm Behav 2021; 128:104890. [PMID: 33221288 PMCID: PMC7897400 DOI: 10.1016/j.yhbeh.2020.104890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Developmental exposure to endocrine disrupting chemicals (EDCs), e.g., bisphenol A (BPA) or genistein (GEN), causes longstanding epigenome effects. MicroRNAs (miRs) regulate which mRNAs will be translated to proteins and thereby serve as the final checkpoint in epigenetic control. Scant amount is known, however, whether EDCs affect neural miRNA (miR) patterns. We aimed to test the hypothesis that developmental exposure of California mice (Peromyscus californicus) to GEN, BPA, or both chemicals influences hypothalamic miR/small RNA profiles and ascertain the extent such biomolecular alterations correlate with behavioral and metabolic changes. California mice were developmentally exposed to GEN (250 mg/kg feed weight, FW), GEN (250 mg/kg FW)+BPA (5 mg/kg FW), low dose (LD) BPA (5 mg/kg FW), or upper dose (UD) BPA (50 mg/kg FW). Adult offspring were tested in a battery of behavioral and metabolic tests; whereupon, mice were euthanized, brains were collected and frozen, small RNAs were isolated from hypothalamic punches, and subsequently sequenced. California mice exposed to one or both EDCs engaged in one or more repetitive behaviors. GEN, LD BPA, and UD BPA altered aspects of ultrasonic and audible vocalizations. Each EDC exposure led to sex-dependent differences in differentially expressed miR/small RNAs with miR7-2, miR146, and miR148a being increased in all female and male EDC exposed groups. Current findings reveal that developmental exposure to GEN and/or BPA affects hypothalamic miR/small RNA expression patterns, and such changes correlate with EDC-induced behavioral and metabolic alterations. miR146 is likely an important mediator and biomarker of EDC exposure in mammals, including humans.
Collapse
Affiliation(s)
- Sarabjit Kaur
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Madison T Green
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rachel E Martin
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tess E Willemse
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO 65211, USA
| | | | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Joseph Fass
- Bioinformatics Core, UC Davis Genome Center, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core, UC Davis Genome Center, Davis, CA 95616, USA
| | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Informatics Institute, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
36
|
Prophylactic Therapy with Human Amniotic Fluid Stem Cells Improves Long-Term Cognitive Impairment in Rat Neonatal Sepsis Survivors. Int J Mol Sci 2020; 21:ijms21249590. [PMID: 33339379 PMCID: PMC7766081 DOI: 10.3390/ijms21249590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
A systemic inflammatory response induces multiple organ dysfunction and results in poor long-term neurological outcomes in neonatal sepsis. However, there is no effective therapy for treating or preventing neonatal sepsis besides antibiotics and supportive care. Therefore, a novel strategy to improve neonatal sepsis-related morbidity and mortality is desirable. Recently, we reported that prophylactic therapy with human amniotic stem cells (hAFSCs) improved survival in a rat model of lipopolysaccharide (LPS)-induced neonatal sepsis through immunomodulation. Besides improving the mortality, increasing survival without major morbidities is an important goal of neonatal intensive care for neonatal sepsis. This study investigated long-term neurological outcomes in neonatal sepsis survivors treated with hAFSCs using the LPS-induced neonatal sepsis model in rats. We found that prophylactic therapy with hAFSCs improved spatial awareness and memory-based behavior in neonatal sepsis survivors at adolescence in rats. The treatment suppressed acute reactive gliosis and subsequently reduced astrogliosis in the hippocampal region over a long period of assessment. To the best of our knowledge, this is the first report that proves the concept that hAFSC treatment improves cognitive impairment in neonatal sepsis survivors. We demonstrate the efficacy of hAFSC therapy in improving the mortality and morbidity associated with neonatal sepsis.
Collapse
|
37
|
Cao Q, Wang W, Williams JB, Yang F, Wang ZJ, Yan Z. Targeting histone K4 trimethylation for treatment of cognitive and synaptic deficits in mouse models of Alzheimer's disease. SCIENCE ADVANCES 2020; 6:6/50/eabc8096. [PMID: 33298440 PMCID: PMC7725456 DOI: 10.1126/sciadv.abc8096] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 05/02/2023]
Abstract
Epigenetic aberration is implicated in aging and neurodegeneration. Using postmortem tissues from patients with Alzheimer's disease (AD) and AD mouse models, we have found that the permissive histone mark H3K4me3 and its catalyzing enzymes are significantly elevated in the prefrontal cortex (PFC). Inhibiting H3K4-specific methyltransferases with the compound WDR5-0103 leads to the substantial recovery of PFC synaptic function and memory-related behaviors in AD mice. Among the up-regulated genes reversed by WDR5-0103 treatment in PFC of AD mice, many have the increased H3K4me3 enrichment at their promoters. One of the identified top-ranking target genes, Sgk1, which encodes serum and glucocorticoid-regulated kinase 1, is also significantly elevated in PFC of patients with AD. Administration of a specific Sgk1 inhibitor reduces hyperphosphorylated tau protein, restores PFC glutamatergic synaptic function, and ameliorates memory deficits in AD mice. These results have found a novel epigenetic mechanism and a potential therapeutic strategy for AD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Qing Cao
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wei Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jamal B Williams
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fengwei Yang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
38
|
Buck SA, Baratta AM, Pocivavsek A. Exposure to elevated embryonic kynurenine in rats: Sex-dependent learning and memory impairments in adult offspring. Neurobiol Learn Mem 2020; 174:107282. [PMID: 32738461 PMCID: PMC7506508 DOI: 10.1016/j.nlm.2020.107282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
Distinct abnormalities in kynurenine pathway (KP) metabolism have been reported in various psychiatric disorders, including schizophrenia (SZ). Kynurenic acid (KYNA), a neuroactive metabolite of the KP, is elevated in individuals diagnosed with SZ and has been linked to cognitive impairments seen in the disorder. To further understand the role of KYNA in SZ etiology, we developed a prenatal insult model where kynurenine (100 mg/day) is fed to pregnant Wistar rats from embryonic day (ED) 15 to ED 22. As sex differences in the prevalence and severity of SZ have been observed, we presently investigated the impact of prenatal kynurenine exposure on KP metabolism and spatial learning and memory in male and female offspring. Specifically, brain tissue and plasma from offspring (control: ECon; kynurenine-treated: EKyn) in prepuberty (postnatal day (PD) 21), adolescence (PD 32-35), and adulthood (PD 56-85) were collected. Separate cohorts of adult offspring were tested in the Barnes maze to assess hippocampus- and prefrontal cortex-mediated learning and memory. Plasma tryptophan, kynurenine, and KYNA were unchanged between ECon and EKyn offspring across all three ages. Hippocampal and frontal cortex KYNA were elevated in male EKyn offspring only in adulthood, compared to ECon, while brain KYNA levels were unchanged in adult females. Male EKyn offspring were significantly impaired during acquisition of the Barnes maze and during reversal learning in the task. In female EKyn offspring, learning and memory remained relatively intact. Taken together, our data demonstrate that exposure to elevated kynurenine during the last week of gestation results in intriguing sex differences and further support the EKyn model as an attractive tool to study the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Silas A Buck
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Annalisa M Baratta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
39
|
Panta A, Montgomery K, Nicolas M, Mani KK, Sampath D, Sohrabji F. Mir363-3p Treatment Attenuates Long-Term Cognitive Deficits Precipitated by an Ischemic Stroke in Middle-Aged Female Rats. Front Aging Neurosci 2020; 12:586362. [PMID: 33132904 PMCID: PMC7550720 DOI: 10.3389/fnagi.2020.586362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 01/29/2023] Open
Abstract
Cognitive impairment and memory loss are commonly seen after stroke and a third of patients will develop signs of dementia a year after stroke. Despite a large number of studies on the beneficial effects of neuroprotectants, few studies have examined the effects of these compounds/interventions on long-term cognitive impairment. Our previous work showed that the microRNA mir363-3p reduced infarct volume and sensory-motor impairment in the acute stage of stroke in middle-aged females but not males. Thus, the present study determined the impact of mir363-3p treatment on stroke-induced cognitive impairment in middle-aged females. Sprague–Dawley female rats (12 months of age) were subjected to middle cerebral artery occlusion (MCAo; or sham surgery) and injected (iv) with mir363-3p mimic (MCAo + mir363-3p) or scrambled oligos (MCAo + scrambled) 4 h later. Sensory-motor performance was assessed in the acute phase (2–5 days after stroke), while all other behaviors were tested 6 months after MCAo (18 months of age). Cognitive function was assessed by the novel object recognition test (declarative memory) and the Barnes maze (spatial memory). The MCAo + scrambled group showed reduced preference for a novel object after the stroke and poor learning in the spatial memory task. In contrast, mir363-3p treated animals were similar to either their baseline performance or to the sham group. Histological analysis showed significant deterioration of specific white matter tracts due to stroke, which was attenuated in mir363-3p treated animals. The present data builds on our previous finding to show that a neuroprotectant can abrogate the long-term effects of stroke.
Collapse
Affiliation(s)
- Aditya Panta
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Karienn Montgomery
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Marissa Nicolas
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Kathiresh K Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Dayalan Sampath
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
40
|
Powers KG, Ma XM, Eipper BA, Mains RE. Cell-type specific knockout of peptidylglycine α-amidating monooxygenase reveals specific behavioral roles in excitatory forebrain neurons and cardiomyocytes. GENES BRAIN AND BEHAVIOR 2020; 20:e12699. [PMID: 32902163 DOI: 10.1111/gbb.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Neuropeptides and peptide hormones play a crucial role in integrating the many factors that affect physiologic and cognitive processes. The potency of many of these peptides requires an amidated amino acid at the C-terminus; a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), catalyzes this modification. Anxiety-like behavior is known to be altered in mice with a single functional Pam allele (Pam+/- ) and in mice unable to express Pam in excitatory forebrain neurons (PamEmx1-cKO/cKO ) or in cardiomyocytes (PamMyh6-cKO/cKO ). Examination of PAM-positive and glutamic acid decarboxylase 67 (GAD)-positive cells in the amygdala of PamEmx1-cKO/cKO mice demonstrated the absence of PAM in pyramidal neurons and its continued presence in GAD-positive interneurons, suggestive of altered excitatory/inhibitory balance. Additional behavioral tests were used to search for functional alterations in these cell-type specific knockout mice. PamEmx1-cKO/cKO mice exhibited a less focused search pattern for the Barnes Maze escape hole than control or PamMyh6-cKO/cKO mice. While wildtype mice favor interacting with novel objects as opposed to familiar objects, both PamEmx1-cKO/cKO and PamMyh6-cKO/cKO mice exhibited significantly less interest in the novel object. Since PAM levels in the central nervous system of PamMyh6-cKO/cKO mice are unaltered, the behavioral effect observed in these mice may reflect their inability to produce atrial granules and the resulting reduction in serum levels of atrial natriuretic peptide. In the sociability test, male mice of all three genotypes spent more time with same-sex stranger mice; while control females showed no preference for stranger mice, female PamEmx1-cKO/cKO mice showed preference for same-sex stranger mice in all trials.
Collapse
Affiliation(s)
- Kathryn G Powers
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
41
|
Yang TY, Gao Z, Liang NC. Sex-Dependent Wheel Running Effects on High Fat Diet Preference, Metabolic Outcomes, and Performance on the Barnes Maze in Rats. Nutrients 2020; 12:nu12092721. [PMID: 32899519 PMCID: PMC7551623 DOI: 10.3390/nu12092721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/18/2023] Open
Abstract
Excessive and prolonged intake of highly palatable, high fat (HF) foods contributes to the pathogenesis of obesity, metabolic syndrome, and cognitive impairment. Exercise can restore energy homeostasis and suppress HF diet preference in rats. However, it is unclear if exercise confers similar protection against the detrimental outcomes associated with a chronic HF diet preference and feeding in both sexes. We used our wheel running (WR) and two-diet choice (chow vs. HF) paradigm to investigate the efficacy of exercise in reversing HF diet-associated metabolic and cognitive dysregulation in rats, hypothesizing that beneficial effects of exercise would be more pronounced in males. All WR rats showed HF diet avoidance upon running initiation, and males, but not females, had a prolonged reduction in HF diet preference. Moreover, exercise only improved glucose tolerance and insulin profile in males. Compared to sedentary controls, all WR rats improved learning to escape on the Barnes maze. Only WR females increased errors made during subsequent reversal learning trials, indicating a sex-dependent effect of exercise on behavioral flexibility. Taken together, our results suggest that exercise is more effective at attenuating HF-associated metabolic deficits in males, and highlights the importance of developing sex-specific treatment interventions for obesity and cognitive dysfunction.
Collapse
Affiliation(s)
- Tiffany Y. Yang
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Champaign, IL 61820, USA; (T.Y.Y.); (Z.G.)
| | - Zijun Gao
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Champaign, IL 61820, USA; (T.Y.Y.); (Z.G.)
| | - Nu-Chu Liang
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Champaign, IL 61820, USA; (T.Y.Y.); (Z.G.)
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois—Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, College of Liberal Arts and Sciences, University of Illinois—Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-(217)-244-7873
| |
Collapse
|
42
|
Wang B, Huang X, Pan X, Zhang T, Hou C, Su WJ, Liu LL, Li JM, Wang YX. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain Behav Immun 2020; 88:132-143. [PMID: 32553784 DOI: 10.1016/j.bbi.2020.06.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Our previous study reports the causal role of high mobility group box 1 (HMGB1) in the development of depression; and we find glycyrrhizic acid (GZA) can be a potential treatment for major depressive disorder (MDD) considering its inhibition of HMGB1 activity. This study aims to further explore the exact cell types that release HMGB1 in the hippocampus. METHODS We detected the effects of microglia conditioned medium on primary astrocytes and neurons. The effects of minocycline on depressive-like behaviors were tested in BABLB/c mice after four weeks of chronic unpredictable mild stress (CUMS) exposure. Furthermore, the immunofluorescence (IF) assays, hematoxylin-eosin (HE) and TUNEL staining were used to observe hippocampal slices to evaluate the release of HMGB1. The cytoplasmic translocations of HMGB1 protein were assayed by western-blot. RESULTS Exposure to CUMS caused an active release of HMGB1 from microglia and neurons in the hippocampus. After minocycline administration for inhibiting the activation of microglia, both microglia and neurons reduced the release of HMGB1 and the protein level of central and peripheral HMGB1 recovered accordingly. Along with blocking the release of HMGB1, behavioral and cognitive deficits induced by CUMS were improved significantly by minocycline. In addition, the supernatant of primary microglia stimulated the secretion of HMGB1 in primary neurons, not in astrocytes, at 24 h after 4 h-LPS treatment. CONCLUSION All the evidence supported our hypotheses that microglia and neurons are the main cell sources of HMGB1 release under CUMS condition, and that the release of HMGB1 by microglia may play an important role in the development of depressive-like behavior.
Collapse
Affiliation(s)
- Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China; Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China; Department of Medicine, The Unit 31641 of PLA, Xishuangbanna 666100, China
| | - Xiao Huang
- Department of Anaesthesiology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201112, China
| | - Xiao Pan
- Department of Medical Psychology, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Ting Zhang
- Department of Nautical Psychology, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Cheng Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Lin-Lin Liu
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Jia-Mei Li
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China; Department of Medical Psychology, Changzheng Hospital, Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
43
|
Role of Kalirin and mouse strain in retention of spatial memory training in an Alzheimer's disease model mouse line. Neurobiol Aging 2020; 95:69-80. [PMID: 32768866 DOI: 10.1016/j.neurobiolaging.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Nontransgenic and 3xTG transgenic mice, which express mutant transgenes encoding human amyloid precursor protein (hAPP) along with Alzheimer's disease-associated versions of hTau and a presenilin mutation, acquired the Barnes Maze escape task equivalently at 3-9 months of age. Although nontransgenics retested at 6 and 9 months acquired the escape task more quickly than naïve mice, 3xTG mice did not. Deficits in Kalirin, a multidomain protein scaffold and guanine nucleotide exchange factor that regulates dendritic spines, has been proposed as a contributor to the cognitive decline observed in Alzheimer's disease. To test whether deficits in Kalirin might amplify deficits in 3xTG mice, mice heterozygous/hemizygous for Kalirin and the 3xTG transgenes were generated. Mouse strain, age and sex affected cortical expression of key proteins. hAPP levels in 3xTG mice increased total APP levels at all ages. Kalirin expression showed strong sex-dependent expression in C57 but not B6129 mice. Decreasing Kalirin levels to half had no effect on Barnes Maze task acquisition or retraining in 3xTG hemizygous mice.
Collapse
|
44
|
Kaur S, Sarma SJ, Marshall BL, Liu Y, Kinkade JA, Bellamy MM, Mao J, Helferich WG, Schenk AK, Bivens NJ, Lei Z, Sumner LW, Bowden JA, Koelmel JP, Joshi T, Rosenfeld CS. Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Sci Rep 2020; 10:10902. [PMID: 32616744 PMCID: PMC7331640 DOI: 10.1038/s41598-020-67709-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Xenoestrogens are chemicals found in plant products, such as genistein (GEN), and in industrial chemicals, e.g., bisphenol A (BPA), present in plastics and other products that are prevalent in the environment. Early exposure to such endocrine disrupting chemicals (EDC) may affect brain development by directly disrupting neural programming and/or through the microbiome-gut-brain axis. To test this hypothesis, California mice (Peromyscus californicus) offspring were exposed through the maternal diet to GEN (250 mg/kg feed weight) or BPA (5 mg/kg feed weight, low dose- LD or 50 mg/kg, upper dose-UD), and dams were placed on these diets two weeks prior to breeding, throughout gestation, and lactation. Various behaviors, gut microbiota, and fecal metabolome were assessed at 90 days of age. The LD but not UD of BPA exposure resulted in individuals spending more time engaging in repetitive behaviors. GEN exposed individuals were more likely to exhibit such behaviors and showed socio-communicative disturbances. BPA and GEN exposed females had increased number of metabolites involved in carbohydrate metabolism and synthesis. Males exposed to BPA or GEN showed alterations in lysine degradation and phenylalanine and tyrosine metabolism. Current findings indicate cause for concern that developmental exposure to BPA or GEN might affect the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Sarabjit Kaur
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Saurav J Sarma
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Metabolomics Center, University of Missouri, Columbia, MO, 65211, USA
| | - Brittney L Marshall
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Yang Liu
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Madison M Bellamy
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, IL, 61801, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Zhentian Lei
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Metabolomics Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lloyd W Sumner
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Metabolomics Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jeremy P Koelmel
- Environmental Health Sciences, Yale University, New Haven, CT, 06510, USA
| | - Trupti Joshi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.,Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA. .,Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA. .,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65211, USA. .,Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
45
|
Mohseni F, Ghorbani Behnam S, Rafaiee R. A Review of the Historical Evolutionary Process of Dry and Water Maze Tests in Rodents. Basic Clin Neurosci 2020; 11:389-402. [PMID: 33613877 PMCID: PMC7878036 DOI: 10.32598/bcn.11.4.1425.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/27/2018] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
This research provides an overview of the historical advances of the maze tests that are widely used to assess the cognitive impairments in rodents. Particularly, this study focuses on the issue of learning and memory behavioral tests, including dry and water mazes. Several types of mazes have been used in this setting, but their real advantages and applications depend on the type selected by the researcher. We answered some of the basic questions that any interested researcher in such studies may be faced with. The reviewed topics are as follows: the definition of maze learning, the role of the memory in the maze learning, the differences between several types of mazes, and foremost the rationale behind the maze constructions and designs.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Shahram Ghorbani Behnam
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
46
|
Amedu NO, Omotoso GO. Lead acetate- induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: the role of Vitexin. Environ Anal Health Toxicol 2020; 35:e2020001. [PMID: 32570996 PMCID: PMC7308664 DOI: 10.5620/eaht.e2020001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
This study was aimed at investigating the neuroprotective effect of Vitexin against lead (Pb) induced neurodegenerative changes in the dorsolateral prefrontal cortex (DLPFC) and working memory in mice. Thirty-two adolescent male albino mice were divided into four groups (n=8). Control group received 0.2 mL of normal saline; Pb group received 100 mg/kg of Pb acetate for 14 days, Vitexin group received 1mg/kg of Vitexin for 14 days, and Pb+Vitexin group received 100 mg/kg of Pb acetate and 1 mgkg of Vitexin for 14 days. Barnes maze test and novel object recognition test were done to ascertain working memory. Histoarchitectural assessment of DLPFC was done with haematoxylin and eosin (H&E), cresyl fast violet and congo red stains. Furthermore, cell count and other morphometric measurements were done. There was significant decline in working memory in the Pb group, but a combination of Pb+Vitexin improved the working memory. Vitexin significantly reduced neuronal death and chromatolysis caused by Pb. Amyloid aggregation was not observed in any of the groups. This study has shown that concurrent administration of Vitexin and Pb will significantly reduce neurodegeneration and improve working memory. However, Pb treatment or Pb+Vitexin treatment does not have any effect on intercellular distance, neuronal length and the cross-sectional area of neurons in layer III of DLPFC.
Collapse
Affiliation(s)
- Nathaniel Ohiemi Amedu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Kogi State University, P.M.B. 1008, Anyigba, Nigeria
| | - Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
47
|
Michon F, Sun JJ, Kim CY, Kloosterman F. A Dual Reward-Place Association Task to Study the Preferential Retention of Relevant Memories in Rats. Front Behav Neurosci 2020; 14:69. [PMID: 32477077 PMCID: PMC7240053 DOI: 10.3389/fnbeh.2020.00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Memories of past events and common knowledge are critical to flexibly adjust one's future behavior based on prior experiences. The formation and the transformation of these memories into a long-lasting form are supported by a dialogue between populations of neurons in the cortex and the hippocampus. Not all experiences are remembered equally well or equally long. It has been demonstrated experimentally in humans that memory strength positively relates to the behavioral relevance of the associated experience. Behavioral paradigms that test the selective retention of memory in rodents would enable further investigation of the neuronal mechanisms at play. We developed a novel paradigm to follow the repeated acquisition and retrieval of two contextually distinct, yet concurrently learned, food-place associations in rats. We demonstrated the use of this paradigm by varying the amount of reward associated with the two locations. After delays of 2 h or 20 h, rats showed better memory performance for experience associated with large amount of reward. This effect depends on the level of spatial integration required to retrieve the associated location. Thus, this paradigm is suited to study the preferential retention of relevant experiences in rats.
Collapse
Affiliation(s)
- Frédéric Michon
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Jyh-Jang Sun
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| | - Chae Young Kim
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Fabian Kloosterman
- Neuroelectronics Research Flanders (NERF), Leuven, Belgium
- Brain and Cognition, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| |
Collapse
|
48
|
Verbitsky A, Dopfel D, Zhang N. Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 2020; 10:132. [PMID: 32376819 PMCID: PMC7203017 DOI: 10.1038/s41398-020-0806-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Although the etiology and expression of psychiatric disorders are complex, mammals show biologically preserved behavioral and neurobiological responses to valent stimuli which underlie the use of rodent models of post-traumatic stress disorder (PTSD). PTSD is a complex phenotype that is difficult to model in rodents because it is diagnosed by patient interview and influenced by both environmental and genetic factors. However, given that PTSD results from traumatic experiences, rodent models can simulate stress induction and disorder development. By manipulating stress type, intensity, duration, and frequency, preclinical models reflect core PTSD phenotypes, measured through various behavioral assays. Paradigms precipitate the disorder by applying physical, social, and psychological stressors individually or in combination. This review discusses the methods used to trigger and evaluate PTSD-like phenotypes. It highlights studies employing each stress model and evaluates their translational efficacies against DSM-5, validity criteria, and criteria proposed by Yehuda and Antelman's commentary in 1993. This is intended to aid in paradigm selection by informing readers about rodent models, their benefits to the clinical community, challenges associated with the translational models, and opportunities for future work. To inform PTSD model validity and relevance to human psychopathology, we propose that models incorporate behavioral test batteries, individual differences, sex differences, strain and stock differences, early life stress effects, biomarkers, stringent success criteria for drug development, Research Domain Criteria, technological advances, and cross-species comparisons. We conclude that, despite the challenges, animal studies will be pivotal to advances in understanding PTSD and the neurobiology of stress.
Collapse
Affiliation(s)
- Alexander Verbitsky
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
49
|
Demby TC, Rodriguez O, McCarthy CW, Lee YC, Albanese C, Mandelblatt J, Rebeck GW. A mouse model of chemotherapy-related cognitive impairments integrating the risk factors of aging and APOE4 genotype. Behav Brain Res 2020; 384:112534. [PMID: 32027870 PMCID: PMC7082850 DOI: 10.1016/j.bbr.2020.112534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 01/05/2023]
Abstract
Some cancer survivors experience marked cognitive impairment, referred to as cancer-related cognitive impairment (CRCI). CRCI has been linked to the genetic factor APOE4, the strongest genetic risk factor for Alzheimer's disease (AD). We used APOE knock-in mice to test whether the relationship between APOE4 and CRCI can be demonstrated in a mouse model, to identify associations of chemotherapy with behavioural and structural correlates of cognition, and to test whether chemotherapy affects markers of AD. Twelve-month old C57BL/6 J female APOE3 (n = 30) and APOE4 (n = 31) knock-in mice were randomized to treatment with either doxorubicin (10 mg/kg) or saline. Behavioural assays at 2-21 weeks-post exposure included open field maze, elevated zero maze, pre-pulse inhibition, Barnes maze, and fear conditioning. Ex-vivo magnetic resonance imaging was used to determine regional volume differences at 31-35 weeks-post exposure, and tissue sections were analyzed for markers of AD pathogenesis. Minimal toxicities were observed in the aged mice after doxorubicin exposure. In the Barnes maze assay, APOE3 mice did not exhibit impairment in spatial learning after doxorubicin treatment, but APOE4 mice demonstrated significant impairments in both the initial identification of the escape hole and the latency to full escape at 6 weeks post-exposure. Both APOE3 and APOE4 mice treated with doxorubicin showed impairment of spatial memory. Grey matter volume in the frontal cortex decreased in APOE4 mice treated with doxorubicin vs. APOE3 mice. This study demonstrates cognitive impairments in aged APOE4 knock-in mice after doxorubicin treatment and establishes this system as a novel and powerful model of CRCI.
Collapse
Affiliation(s)
- Tamar C Demby
- Tumor Biology Program, Georgetown University Medical Center, Washington DC United States
| | - Olga Rodriguez
- Department of Oncology, Molecular Oncology Program, Georgetown University Medical Center, Washington DC United States; Center for Translational Imaging, Georgetown University Medical Center, Washington DC, United States
| | - Camryn W McCarthy
- Department of Neuroscience, Georgetown University Medical Center, Washington DC United States
| | - Yi-Chien Lee
- Department of Oncology, Molecular Oncology Program, Georgetown University Medical Center, Washington DC United States; Center for Translational Imaging, Georgetown University Medical Center, Washington DC, United States
| | - Christopher Albanese
- Department of Oncology, Molecular Oncology Program, Georgetown University Medical Center, Washington DC United States; Center for Translational Imaging, Georgetown University Medical Center, Washington DC, United States
| | - Jeanne Mandelblatt
- Department of Oncology, Cancer Prevention and Control Program, Georgetown University Medical Center, Washington DC, United States
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington DC United States.
| |
Collapse
|
50
|
Chinn GA, Sasaki Russell JM, Banh ET, Lee SC, Sall JW. Voluntary Exercise Rescues the Spatial Memory Deficit Associated With Early Life Isoflurane Exposure in Male Rats. Anesth Analg 2020; 129:1365-1373. [PMID: 31517674 DOI: 10.1213/ane.0000000000004418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early life anesthesia exposure results in long-term cognitive deficits in rats. Environmental enrichment consisting of social housing, a stimulating environment, and voluntary exercise can rescue this deficit. We hypothesized that exercise alone is sufficient to rescue the cognitive deficit associated with perinatal anesthesia. METHODS Postnatal day 7 male rats (P7) underwent isoflurane (Iso) or sham exposure and were subsequently weaned at P21. They were then singly housed in a cage with a running wheel or a fixed wheel. After 3 weeks of exercise, animals underwent behavioral testing for spatial and recognition memory assessments. Animals were killed at various time points to accomplish either bromodeoxyuridine (BrdU) labeling or quantitative real-time polymerase chain reaction (qRT-PCR) to quantify brain-derived neurotrophic factor (BDNF) messenger ribonucleic acid (mRNA) levels. RESULTS Postweaning voluntary exercise rescued the long-term spatial memory deficit associated with perinatal Iso exposure. Iso-sedentary animals did not discriminate the goal quadrant, spending no more time than chance during the Barnes maze probe trial (1-sample t test, P = .524) while all other groups did (1-sample t test, PIso-exercise = .033; Pcontrol [Con]-sedentary = .004). We did not find a deficit in recognition memory tasks after Iso exposure as we observed previously. BrdU incorporation in the adult hippocampus of Iso-sedentary animals was decreased compared to sedentary controls (Tukey P = .005). Exercise prevented this decrease, with Iso-exercise animals having more proliferation than Iso-sedentary (Tukey P < .001). There was no effect of exercise or Iso on BDNF mRNA in either the cortex or hippocampus (cortex: FExercise[1,32] = 0.236, P = .631; FIso [1,32] = 0.038, P = .847; FInteraction [1,32] = 1.543, P = .223; and hippocampus: FExercise[1,33] = 1.186, P = .284; FIso [1,33] = 1.46, P = .236; FInteraction[1,33] = 1.78, P = .191). CONCLUSIONS Exercise restores BrdU incorporation and rescues a spatial memory deficit after early life anesthesia exposure. This demonstrates sufficiency of exercise alone in the context of environmental enrichment to recover a behavioral phenotype after a perinatal insult.
Collapse
Affiliation(s)
- Gregory A Chinn
- From the Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|