1
|
Obianeli C, Afifi K, Stanworth S, Churchill D. Iron Deficiency Anaemia in Pregnancy: A Narrative Review from a Clinical Perspective. Diagnostics (Basel) 2024; 14:2306. [PMID: 39451629 PMCID: PMC11506382 DOI: 10.3390/diagnostics14202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Anaemia in pregnancy is a global problem of significance in all settings. The most common cause is iron deficiency. Large numbers of women are affected, ranging up to 25-30% antenatally and 20-40% postnatally. It is associated with serious adverse outcomes for both the mother and her baby. The risk of low birth weight, preterm birth, postpartum haemorrhage, stillbirth, and neonatal death are all increased in the presence of anaemia. For the infants of affected pregnancies, complications may include neurocognitive impairment. Making an accurate diagnosis during pregnancy has its challenges, which include the choice of thresholds of haemoglobin below which a diagnosis of anaemia in each trimester of pregnancy can be made and, aligned with this question, which are the most appropriate biomarkers to use to define iron deficiency. Treatment with oral iron supplements increases the haemoglobin concentration and corrects iron deficiency. But high numbers of women fail to respond, probably due to poor adherence to medication, resulting from side effects. This has resulted in an increased use of more expensive intravenous iron. Doubts remain about the optimal regimen to of oral iron for use (daily, alternate days, or some other frequency) and the cost-effectiveness of intravenous iron. There is interest in strategies for prevention but these have yet to be proven clinically safe and effective.
Collapse
Affiliation(s)
- Chidi Obianeli
- The Royal Wolverhampton NHS Trust, New Cross Hospital, Wednesfield, Wolverhampton WV10 0QP, UK; (C.O.); (K.A.)
| | - Khaled Afifi
- The Royal Wolverhampton NHS Trust, New Cross Hospital, Wednesfield, Wolverhampton WV10 0QP, UK; (C.O.); (K.A.)
| | - Simon Stanworth
- NHS Blood and Transplant, Oxford OX3 9DU, UK;
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - David Churchill
- The Royal Wolverhampton NHS Trust, New Cross Hospital, Wednesfield, Wolverhampton WV10 0QP, UK; (C.O.); (K.A.)
- Research Institute of Healthcare Science, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
2
|
Bah M, Stelle I, Verhoef H, Saidykhan A, Moore SE, Susso B, Prentice AM, Cerami C. Early iron supplementation in exclusively breastfed Gambian infants: a randomized controlled trial. Bull World Health Organ 2024; 102:176-186. [PMID: 38420570 PMCID: PMC10898279 DOI: 10.2471/blt.23.289942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 03/02/2024] Open
Abstract
Objective To investigate the effect of daily iron supplementation for 14 weeks on the serum iron concentration and other markers of iron status in exclusively breastfed infants in Gambia. Methods A placebo-controlled, randomized, double-blind trial was performed in rural Gambia between 3 August 2021 and 9 March 2022. Overall, 101 healthy, exclusively breastfed infants aged 6 to 10 weeks were recruited at vaccination clinics and through community health workers. Infants were randomized to receive iron supplementation (7.5 mg/day as ferrous sulfate in sorbitol solution) or placebo for 98 days. Venous blood samples were collected at baseline and on day 99 to assess the serum iron concentration and other markers of iron and haematological status. Findings At day 99, the serum iron concentration was significantly higher in the iron supplementation group than the placebo group (crude difference in means: 2.5 µmol/L; 95% confidence interval: 0.6 to 4.3) and there were significant improvements in other iron and haematological markers. There were 10 serious adverse events (five in each group), 106 non-serious adverse events (54 with iron supplementation; 52 with placebo) and no deaths. There was no marked difference between the groups in maternally reported episodes of diarrhoea, fever, cough, skin infection, eye infection or nasal discharge. Conclusion In exclusively breastfed Gambian infants, iron supplementation from 6 weeks of age was associated with a significant improvement in markers of iron status at around 6 months of age. There was no indication of adverse effects on growth or infections.
Collapse
Affiliation(s)
- Mamadou Bah
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia
| | - Isabella Stelle
- Department of Women and Children's Health, King's College London, London, England
| | - Hans Verhoef
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Kingdom of the Netherlands
| | - Alasana Saidykhan
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, England
| | - Bubacarr Susso
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia
| | - Andrew M Prentice
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia
| | - Carla Cerami
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, Gambia
| |
Collapse
|
3
|
Abstract
Despite several efforts by the Government of India, the national burden of anaemia remains high and its growing prevalence (between 2015-2016 and 2019-2021) is concerning to India's public health system. This article reviews existing food-based and clinical strategies to mitigate the anaemia burden and why they are premature and insufficient. In a context where multiple anaemia control programmes are in play, this article proposes a threefold strategy for consideration. First, except the Comprehensive National Nutrition Survey, 2016-2018, which measured Hb concentration among children and adolescents aged 1-19 years using venous blood samples, all national surveys use capillary blood samples to determine Hb levels, which could be erroneous. The Indian government should prioritise conducting a nationwide survey for estimating the burden of anaemia and its clinical determinants for all age groups using venous blood samples. Second, without deciding the appropriate dose of Fe needed for an individual, food fortification programmes that are often compounded with layering of other micronutrients could be harmful and further research on this issue is needed. Same is true for the pharmacological intervention of Fe tablet or syrup supplementation programmes, which is given to individuals without assessing its need. In addition, there is a dire need for robust research to understand both the long-term benefit and side effects of Fe supplementation programmes. Third and final, the WHO is in process of reviewing the Hb threshold for defining anaemia, therefore the introduction of new anaemia control programmes should be restrained.
Collapse
|
4
|
Venkatesan P, Ramasamy J, Vanitha S, Jacob M, Varghese J. Impaired pancreatic beta-cell function after a single dose of oral iron: a before-and-after (pre-post) study. J Hum Nutr Diet 2022; 36:1111-1120. [PMID: 36000222 DOI: 10.1111/jhn.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Although in vitro and animal studies have shown that iron loading in pancreatic beta-cells impaired insulin secretion, no human studies have documented the acute effects of oral iron on beta-cell insulin secretory capacity. In this study, we determined beta-cell insulin secretory capacity at baseline and after a single oral dose of iron (ferrous sulphate, 120 mg elemental iron) in healthy male individuals. METHODS Fifteen healthy male volunteers underwent an oral glucose tolerance test (OGTT) to document baseline glucose tolerance and insulin secretion kinetics (baseline OGTT). One week later, the same subjects underwent a second OGTT, two hours after an oral dose of ferrous sulfate (120 mg of elemental iron) (post-iron OGTT). Changes in disposition index, insulin secretion kinetics, glucose tolerance, insulin resistance, insulin clearance, and iron-related parameters in serum were determined. RESULTS Compared to baseline OGTT, the areas under the curve (AUC) for serum iron and transferrin saturation increased by 125% and 118% respectively, in the post-iron OGTT. The disposition index decreased by 20% (p=0.009) and the AUC for glucose concentrations increased by 5.7% (p<0.001) during the post-iron OGTT. The insulin secretion rate was marginally lower during the first hour (-3.5%, p=0.63), but became significantly higher during the second hour (22%, p=0.005) of the post-iron OGTT. Insulin resistance and insulin clearance rate were not affected by iron intake. CONCLUSION The decrease in disposition index and glucose tolerance observed after the oral dose of iron points to an acute iron-induced impairment in pancreatic beta-cell insulin secretory capacity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Padmanaban Venkatesan
- Departments of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India, 632002.,Departments of Christian Medical College, The Tamil Nadu Dr. MGR Medical University, Chennai, India
| | - Jagadish Ramasamy
- Departments of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India, 632002.,Departments of Christian Medical College, The Tamil Nadu Dr. MGR Medical University, Chennai, India
| | - S Vanitha
- Departments of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India, 632002.,Departments of Christian Medical College, The Tamil Nadu Dr. MGR Medical University, Chennai, India
| | - Molly Jacob
- Departments of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India, 632002.,Departments of Christian Medical College, The Tamil Nadu Dr. MGR Medical University, Chennai, India
| | - Joe Varghese
- Departments of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India, 632002.,Departments of Christian Medical College, The Tamil Nadu Dr. MGR Medical University, Chennai, India
| |
Collapse
|
5
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
6
|
Ensuring the Efficacious Iron Fortification of Foods: A Tale of Two Barriers. Nutrients 2022; 14:nu14081609. [PMID: 35458169 PMCID: PMC9031268 DOI: 10.3390/nu14081609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Iron fortification of foods has always been a challenge. This is because iron fortification compounds vary widely in relative absorption; because many foods undergo unacceptable changes in color or flavor from the addition of iron; and because many of the iron-fortified foods contain potent inhibitors of iron absorption. These technical barriers have largely been overcome, and efficacious iron-fortified foods, that maintain or improve the iron status of women or children in long-term feeding studies, can be designed. Commercially fortified infant foods are efficacious, and other commercial iron-fortified foods targeted at women and children will provide a useful amount of iron provided the fortification level is adjusted according to the relative absorption of the iron compound. Technologies for the large-scale fortification of wheat and maize flour are also well established, and iron fortification of rice, using the recently developed extruded premix technique, is showing great promise. However, some important knowledge gaps still remain, and further research and development is needed in relation to iron (and iodine)-fortified salt and iron-fortified liquid milk. The usefulness of less-soluble iron compounds, such as ferrous fumarate, to fortify foods for infants and young children in low- and middle-income countries (LMICs) also needs further investigation. A more formidable barrier to efficacious iron-fortified food has been reported in recent years. This is the infection-initiated inflammation barrier, which inhibits iron absorption in response to infection. This barrier is particularly important in LMICs where infections such as malaria and HIV are widespread, and gastrointestinal infections are common due to poor quality water supplies and sanitation. Another source of inflammation in such countries is the high prevalence of obesity in women. Most countries in sub-Saharan Africa have high inflammation which not only decreases the efficacy of iron-fortified and iron-biofortified foods but complicates the monitoring of large-scale iron fortification programs. This is because iron deficiency anemia cannot be differentiated from the more prominent anemia of inflammation and because inflammation confounds the measurement of iron status. There is an urgent need to better quantify the impact of inflammation on the efficacy of iron-fortified foods. However, at present, in LMICs with high inflammation exposure, infection control, cleaner water, improved sanitation, and a decrease in obesity prevalence will undoubtedly have a greater impact on iron status and anemia than the iron fortification of foods.
Collapse
|
7
|
Helman SL, Wilkins SJ, McKeating DR, Perkins AV, Cuffe JSM, Hartel G, Faria N, Powell JJ, Anderson GJ, Frazer DM. A Novel Ferritin-Core Analog Is a Safe and Effective Alternative to Oral Ferrous Iron for Treating Iron Deficiency during Pregnancy in Mice. J Nutr 2022; 152:714-722. [PMID: 34625812 DOI: 10.1093/jn/nxab363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Many women enter pregnancy with iron stores that are insufficient to maintain maternal iron balance and support fetal development and consequently, often require iron supplements. However, the side effects associated with many currently available iron supplements can limit compliance. OBJECTIVE This study aimed to test the safety and efficacy of a novel nanoparticulate iron supplement, a dietary ferritin analog termed iron hydroxide adipate tartrate (IHAT), in pregnant mice. METHODS Female C57BL/6 mice were maintained on either an iron-deficient or a control diet for 2 wk prior to timed mating to develop iron-deficient or iron-sufficient pregnancy models, respectively. Mice from each model were then gavaged daily with 10 mg iron/kg body weight as either IHAT or ferrous sulfate, or with water only, beginning on embryonic day (E) 4.5. Mice were killed on E18.5 and maternal iron and hematological parameters were measured. The expression of genes encoding iron transporters and oxidative stress markers in the duodenum and placenta were determined, along with hepatic expression of the gene encoding the iron regulatory hormone hepcidin and fetal iron. RESULTS Oral IHAT and ferrous sulfate were equally effective at increasing maternal hemoglobin (20.2% and 16.9%, respectively) and hepatic iron (30.2% and 29.3%, respectively), as well as total fetal iron (99.7% and 83.8%, respectively), in iron-deficient pregnant mice compared with those gavaged with water only, with no change in oxidative stress markers seen with either treatment. However, there was a significant increase in the placental expression of the oxidative stress marker heme oxygenase 1 in iron-replete pregnant mice treated with ferrous sulfate when compared with iron-replete pregnant mice gavaged with IHAT (96.9%, P <0.05). CONCLUSIONS IHAT has proved a safe and effective alternative to oral ferrous sulfate in mice, and it has potential for treating iron deficiency in human pregnancy.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Medicine, The University of Queensland, St Lucia, Australia
| | - Sarah J Wilkins
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Daniel R McKeating
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - Anthony V Perkins
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Nuno Faria
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.,School of Biomedical Sciences, The Queensland University of Technology, Gardens Point, Australia
| |
Collapse
|
8
|
Tiwari AKM, Mahdi AA, Mishra S, Parveen H, Fatima G. Effect of iron and folate supplementation on Pb levels in pregnant anemic women: a prospective study. Free Radic Res 2021; 54:662-669. [PMID: 32954897 DOI: 10.1080/10715762.2020.1825704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There are few reports revealing association between iron intake and environmental lead exposure during pregnancy. Therefore, the present study was undertaken to investigate the effect of iron supplementation on biochemical modulation of certain lead toxicity markers associated with pregnancy. Iron and folic acid supplementations were given to 250 pregnant anemic women (mild = 100, moderate = 100 and severe = 50) and 100 age matched nonanemic pregnant women as controls for 100 days. Lead (Pb) toxicity markers, enzymatic and nonenzymatic antioxidant were estimated as per standard protocols. The levels of Pb, serum transferrin receptors (sTfR), zinc protoporphyrin (ZPP), δ-aminolevulinic acid (δ-ALA, both in blood and urine) were found significantly increased in all pretreated subjects and these were decreased after oral iron supplementation. Iron-deficient pregnant women reflected a significant increase in lipid peroxide levels (LPO) and protein carbonyl levels (PC) which were found to be further increased after iron supplementation. The levels of iron (Fe), haemoglobin (Hb), ferritin, delta aminolevulinic acid dehydratase (δ-ALAD), catalase (CAT), superoxide dismutase (SOD), and reduced glutathione levels (GSH) were significantly decreased in pretreated groups and these parameters were found significantly increased in all supplemented subjects after treatment. Antioxidant vitamins viz. C and E were found significantly decreased in all post treated groups. Our observation suggests that recommended iron dose is not only effective for blood indices parameters, but it also decreases Pb concentrations in the blood during pregnancy. However, further studies with larger sample size are needed to confirm these findings.
Collapse
Affiliation(s)
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sanjay Mishra
- School of Biotechnology, IFTM University, Moradabad, Uttar Pradesh, India
| | - Hina Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ghizal Fatima
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
The critical roles of iron during the journey from fetus to adolescent: Developmental aspects of iron homeostasis. Blood Rev 2021; 50:100866. [PMID: 34284901 DOI: 10.1016/j.blre.2021.100866] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Iron is indispensable for human life. However, it is also potentially toxic, since it catalyzes the formation of harmful oxidative radicals in unbound form and may facilitate pathogen growth. Therefore, iron homeostasis needs to be tightly regulated. Rapid growth and development require large amounts of iron, while (especially young) children are vulnerable to infections with iron-dependent pathogens due to an immature immune system. Moreover, unbalanced iron status early in life may have effects on the nervous system, immune system and gut microbiota that persist into adulthood. In this narrative review, we assess the critical roles of iron for growth and development and elaborate how the body adapts to physiologically high iron demands during the journey from fetus to adolescent. As a first step towards the development of clinical guidelines for the management of iron disorders in children, we summarize the unmet needs regarding the developmental aspects of iron homeostasis.
Collapse
|
10
|
Daily Oral Supplementation with 60 mg of Elemental Iron for 12 Weeks Alters Blood Mitochondrial DNA Content, but Not Leukocyte Telomere Length in Cambodian Women. Nutrients 2021; 13:nu13061877. [PMID: 34072630 PMCID: PMC8227094 DOI: 10.3390/nu13061877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
There is limited evidence regarding the potential risk of untargeted iron supplementation, especially among individuals who are iron-replete or have genetic hemoglobinopathies. Excess iron exposure can increase the production of reactive oxygen species, which can lead to cellular damage. We evaluated the effect of daily oral supplementation on relative leukocyte telomere length (rLTL) and blood mitochondrial DNA (mtDNA) content in non-pregnant Cambodian women (18-45 years) who received 60 mg of elemental iron as ferrous sulfate (n = 190) or a placebo (n = 186) for 12 weeks. Buffy coat rLTL and mtDNA content were quantified by monochrome multiplex quantitative polymerase chain reaction. Generalized linear mixed-effects models were used to predict the absolute and percent change in rLTL and mtDNA content after 12 weeks. Iron supplementation was not associated with an absolute or percent change in rLTL after 12 weeks compared with placebo (ß-coefficient: -0.04 [95% CI: -0.16, 0.08]; p = 0.50 and ß-coefficient: -0.96 [95% CI: -2.69, 0.77]; p = 0.28, respectively). However, iron supplementation was associated with a smaller absolute and percent increase in mtDNA content after 12 weeks compared with placebo (ß-coefficient: -11 [95% CI: -20, -2]; p = 0.02 and ß-coefficient: -11 [95% CI: -20, -1]; p= 0.02, respectively). Thus, daily oral iron supplementation for 12 weeks was associated with altered mitochondrial homeostasis in our study sample. More research is needed to understand the risk of iron exposure and the biological consequences of altered mitochondrial homeostasis in order to inform the safety of the current global supplementation policy.
Collapse
|
11
|
Hurrell RF. Iron Fortification Practices and Implications for Iron Addition to Salt. J Nutr 2021; 151:3S-14S. [PMID: 33582781 PMCID: PMC7882371 DOI: 10.1093/jn/nxaa175] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
This introductory article provides an in-depth technical background for iron fortification, and thus introduces a series of articles in this supplement designed to present the current evidence on the fortification of salt with both iodine and iron, that is, double-fortified salt (DFS). This article reviews our current knowledge of the causes and consequences of iron deficiency and anemia and then, with the aim of assisting the comparison between DFS and other common iron-fortified staple foods, discusses the factors influencing the efficacy of iron-fortified foods. This includes the dietary and physiological factors influencing iron absorption; the choice of an iron compound and the fortification technology that will ensure the necessary iron absorption with no sensory changes; encapsulation of iron fortification compounds to prevent unacceptable sensory changes; the addition of iron absorption enhancers; the estimation of the iron fortification level for each vehicle based on iron requirements and consumption patterns; and the iron status biomarkers that are needed to demonstrate improved iron status in populations regularly consuming the iron-fortified food. The supplement is designed to provide a summary of evidence to date that can help advise policy makers considering DFS as an intervention to address the difficult public health issue of iron deficiency anemia, while at the same time using DFS to target iodine deficiency.
Collapse
|
12
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
13
|
van Vuren AJ, van Wijk R, van Beers EJ, Marx JJ. Liver Iron Retention Estimated from Utilization of Oral and Intravenous Radioiron in Various Anemias and Hemochromatosis in Humans. Int J Mol Sci 2020; 21:ijms21031077. [PMID: 32041196 PMCID: PMC7037197 DOI: 10.3390/ijms21031077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 01/19/2023] Open
Abstract
Patients with hereditary hemochromatosis and non-transfusion-dependent hereditary anemia develop predominantly liver iron-overload. We present a unique method allowing quantification of liver iron retention in humans during first-pass of 59Fe-labeled iron through the portal system, using standard ferrokinetic techniques measuring red cell iron uptake after oral and intravenous 59Fe administration. We present data from patients with iron deficiency (ID; N = 47), hereditary hemochromatosis (HH; N = 121) and non-transfusion-dependent hereditary anemia (HA; N = 40). Mean mucosal iron uptake and mucosal iron transfer (±SD) were elevated in patients with HH (59 ± 18%, 80 ± 15% respectively), HA (65 ± 17%, 74 ± 18%) and ID (84 ± 14%, 94 ± 6%) compared to healthy controls (43 ± 19%, 64 ± 18%) (p < 0.05) resulting in increased iron retention after 14 days compared to healthy controls in all groups (p < 0.01). The fraction of retained iron utilized for red cell production was 0.37 ± 0.17 in untreated HA, 0.55 ± 0.20 in untreated HH and 0.99 ± 0.22 in ID (p < 0.01). Interestingly, compared to red blood cell iron utilization after oral iron administration, red blood cell iron utilization was higher after injection of transferrin-bound iron in HA and HH. Liver iron retention was considerably higher in HH and HA compared to ID. We hypothesize that albumin serves as a scavenger of absorbed Fe(II) for delivering albumin-bound Fe(III) to hepatocytes.
Collapse
Affiliation(s)
- Annelies J. van Vuren
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Eduard J. van Beers
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-88-755-84-50
| | - Joannes J.M. Marx
- Departments of Haematology and Internal Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
14
|
Bries AE, Wang C, Agbemafle I, Wels B, Reddy MB. Assessment of Acute Serum Iron, Non-Transferrin-Bound Iron, and Gastrointestinal Symptoms with 3-Week Consumption of Iron-Enriched Aspergillus oryzae Compared with Ferrous Sulfate. Curr Dev Nutr 2019; 3:nzz127. [PMID: 32154497 PMCID: PMC7053575 DOI: 10.1093/cdn/nzz127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Iron deficiency anemia (IDA) is a widespread nutritional deficiency, and iron supplementation, especially with ferrous sulfate (FeSO4), is the most common strategy to treat IDA; however, compliance is often poor with daily FeSO4 owing to negative side effects. In a previous study, iron from iron-enriched Aspergillus oryzae [Ultimine® Koji Iron (ULT)] was absorbed similarly to FeSO4. OBJECTIVES The main objective of this study was to assess the safety of consuming ULT in terms of increasing non-transferrin-bound iron (NTBI) and gastrointestinal distress. METHODS Young female participants (n = 16) with serum ferritin <40 μg/L were randomly assigned to a double-blind, 9-wk crossover study with a 3-wk placebo/washout period between treatments. Oral FeSO 4 and ULT supplements containing 65 mg Fe were administered daily for 21 consecutive days. On day 1, serum iron (SI), percentage transferrin saturation (%TS), and NTBI were measured for 8 h on the first day of iron consumption. Changes in biochemical indicators were evaluated after 3 wk consumption. Side effects questionnaires were completed weekly on 2 randomly selected weekdays and 1 weekend day for the entire study. RESULTS SI, %TS, and NTBI were all markedly higher during hours 2-8 (P < 0.001) with FeSO4 than with ULT. Oxidative stress, inflammatory, and kidney and liver function markers remained unchanged with both supplementations compared with placebo. Changes in iron status markers were not significantly different among the 3 treatments. Individual or global side effects were not significantly different among all treatments. Even when common side effects of nausea, constipation, and diarrhea were combined, FeSO4 treatment had a significantly higher effect than ULT (P = 0.04) and placebo (P = 0.004) only at week 3, but the difference was not significant between ULT and placebo. CONCLUSIONS Low NTBI production and fewer common gastrointestinal side effects with ULT suggest that it is a safe oral iron supplement to treat IDA. This trial was registered at clinicaltrials.gov as NCT04018300.
Collapse
Affiliation(s)
- Amanda E Bries
- Department of Food Sciences and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Chong Wang
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Isaac Agbemafle
- Department of Food Sciences and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Brian Wels
- State Hygienic Laboratory, University of Iowa, Ankeny, IA, USA
| | - Manju B Reddy
- Department of Food Sciences and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Mangan A, Le Roux CW, Miller NG, Docherty NG. Iron and Vitamin D/Calcium Deficiency after Gastric Bypass: Mechanisms Involved and Strategies to Improve Oral Supplement Disposition. Curr Drug Metab 2019; 20:244-252. [DOI: 10.2174/1389200219666181026160242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Background:Nutritional deficiencies are common following Roux-en-Y Gastric Bypass (RYGB). Aetiology is diverse; including non-compliance, altered diet, unresolved preoperative deficiency and differential degrees of post-operative malabsorption occurring as function of length of bypassed intestine. Iron and calcium/vitamin D deficiency occur in up to 50% of patients following RYGB. Currently, treatment strategies recommend the prescription of oral supplements for those who become deficient. Meanwhile, debate exists regarding the absorption capacity of these post-operatively and their efficacy in treating deficiency.Objective:To examine the disposition of oral iron and calcium/vitamin D supplementation following RYGB. Methods: A literature review was carried out using PubMed and Embase. Data from the key interventional studies investigating iron and calcium/vitamin D oral supplement absorption and efficacy following RYGB was summarized.Results:Absorption of both iron and vitamin D/calcium is adversely affected following RYGB. Distribution and metabolism may be altered by the predominance of paracellular absorption pathways which promote unregulated influx into the circulatory system. Overall, studies indicate that current supplementation strategies are efficacious to a degree in treating deficiency following RYGB, generally restoration of optimal status is not achieved.Conclusion:Oral supplement disposition is altered following RYGB. As a result, patients are required to take regimens of oral supplementation indefinitely. The dosage which confers optimum health benefit while avoiding potential toxicity and tolerability issues remains unknown. Novel preparations with improved disposition could help limit the extent of post-RYGB nutritional deficiencies.
Collapse
Affiliation(s)
- Aisling Mangan
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W. Le Roux
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Neil G. Docherty
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Georgieff MK, Krebs NF, Cusick SE. The Benefits and Risks of Iron Supplementation in Pregnancy and Childhood. Annu Rev Nutr 2019; 39:121-146. [PMID: 31091416 DOI: 10.1146/annurev-nutr-082018-124213] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Iron deficiency is the most common micronutrient deficiency in the world and disproportionately affects pregnant women and young children. Iron deficiency has negative effects on pregnancy outcomes in women and on immune function and neurodevelopment in children. Iron supplementation programs have been successful in reducing this health burden. However, iron supplementation of iron-sufficient individuals is likely not necessary and may carry health risks for iron-sufficient and potentially some iron-deficient populations. This review considers the physiology of iron as a nutrient and how this physiology informs decision-making about weighing the benefits and risks of iron supplementation in iron-deficient, iron-sufficient, and iron-overloaded pregnant women and children.
Collapse
Affiliation(s)
- Michael K Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota 55454, USA; ,
| | - Nancy F Krebs
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado 80045, USA;
| | - Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota 55454, USA; ,
| |
Collapse
|
17
|
Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, Armitage AE, Mehta H, Wideman S, Santos AG, Santos-Gonçalves A, Morovat A, Hughes JR, Soilleux E, Wang CY, Bayer AL, Klenerman P, Willberg CB, Hartley RC, Murphy MP, Babitt JL, Ponka P, Porto G, Drakesmith H. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab 2019; 1:519-531. [PMID: 31276102 PMCID: PMC6609153 DOI: 10.1038/s42255-019-0063-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6-hepcidin response to oral and parenteral iron is impaired and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6-hepcidin axis, improving iron homeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in beta-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to control of systemic iron homeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.
Collapse
Affiliation(s)
- Pei Jin Lim
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tiago L. Duarte
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Daniel Garcia-Santos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Amel Hamdi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarah Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Ana G. Santos
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Andreia Santos-Gonçalves
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alireza Morovat
- Department of Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, UK
| | - Jim R. Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine. University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elizabeth Soilleux
- Department of Cellular Pathology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Chia-Yu Wang
- Nephrology Division, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Abraham L. Bayer
- Nephrology Division, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Klenerman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Oxford NIHR Biomedical Research Centre, The John Radcliffe Hospital, Oxford, UK
| | | | - Richard C. Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jodie L. Babitt
- Nephrology Division, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Graça Porto
- Instituto de Biologia Molecular e Celular & Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Theme Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
18
|
Haschka D, Petzer V, Kocher F, Tschurtschenthaler C, Schaefer B, Seifert M, Sopper S, Sonnweber T, Feistritzer C, Arvedson TL, Zoller H, Stauder R, Theurl I, Weiss G, Tymoszuk P. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight 2019; 4:98867. [PMID: 30996139 PMCID: PMC6538345 DOI: 10.1172/jci.insight.98867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Myelomonocytic cells are critically involved in iron turnover as aged RBC recyclers. Human monocytes are divided in 3 subpopulations of classical, intermediate, and nonclassical cells, differing in inflammatory and migratory phenotype. Their functions in iron homeostasis are, however, unclear. Here, we asked whether the functional diversity of monocyte subsets translates into differences in handling physiological and pathological iron species. By microarray data analysis and flow cytometry we identified a set of iron-related genes and proteins upregulated in classical and, in part, intermediate monocytes. These included the iron exporter ferroportin (FPN1), ferritin, transferrin receptor, putative transporters of non-transferrin-bound iron (NTBI), and receptors for damaged erythrocytes. Consequently, classical monocytes displayed superior scavenging capabilities of potentially toxic NTBI, which were augmented by blocking iron export via hepcidin. The same subset and, to a lesser extent, the intermediate population, efficiently cleared damaged erythrocytes in vitro and mediated erythrophagocytosis in vivo in healthy volunteers and patients having received blood transfusions. To summarize, our data underline the physiologically important function of the classical and intermediate subset in clearing NTBI and damaged RBCs. As such, these cells may play a nonnegligible role in iron homeostasis and limit iron toxicity in iron overload conditions. Human classical and intermediate monocytes mediate clearance of non-transferrin-bound iron and erythrophagocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | - Tara L Arvedson
- Department of Oncology, Amgen Inc., Thousand Oaks, California, USA
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
19
|
Armitage AE, Moretti D. The Importance of Iron Status for Young Children in Low- and Middle-Income Countries: A Narrative Review. Pharmaceuticals (Basel) 2019; 12:E59. [PMID: 30995720 PMCID: PMC6631790 DOI: 10.3390/ph12020059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Early childhood is characterised by high physiological iron demand to support processes including blood volume expansion, brain development and tissue growth. Iron is also required for other essential functions including the generation of effective immune responses. Adequate iron status is therefore a prerequisite for optimal child development, yet nutritional iron deficiency and inflammation-related iron restriction are widespread amongst young children in low- and middle-income countries (LMICs), meaning iron demands are frequently not met. Consequently, therapeutic iron interventions are commonly recommended. However, iron also influences infection pathogenesis: iron deficiency reduces the risk of malaria, while therapeutic iron may increase susceptibility to malaria, respiratory and gastrointestinal infections, besides reshaping the intestinal microbiome. This means caution should be employed in administering iron interventions to young children in LMIC settings with high infection burdens. In this narrative review, we first examine demand and supply of iron during early childhood, in relation to the molecular understanding of systemic iron control. We then evaluate the importance of iron for distinct aspects of physiology and development, particularly focusing on young LMIC children. We finally discuss the implications and potential for interventions aimed at improving iron status whilst minimising infection-related risks in such settings. Optimal iron intervention strategies will likely need to be individually or setting-specifically adapted according to iron deficiency, inflammation status and infection risk, while maximising iron bioavailability and considering the trade-offs between benefits and risks for different aspects of physiology. The effectiveness of alternative approaches not centred around nutritional iron interventions for children should also be thoroughly evaluated: these include direct targeting of common causes of infection/inflammation, and maternal iron administration during pregnancy.
Collapse
Affiliation(s)
- Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| | - Diego Moretti
- Laboratory of Human Nutrition, Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, CH-8092 Zürich, Switzerland.
- Nutrition Group, Health Department, Swiss Distance University of Applied Sciences, CH-8105 Regensdorf, Switzerland.
| |
Collapse
|
20
|
Oaks BM, Jorgensen JM, Baldiviez LM, Adu-Afarwuah S, Maleta K, Okronipa H, Sadalaki J, Lartey A, Ashorn P, Ashorn U, Vosti S, Allen LH, Dewey KG. Prenatal Iron Deficiency and Replete Iron Status Are Associated with Adverse Birth Outcomes, but Associations Differ in Ghana and Malawi. J Nutr 2019; 149:513-521. [PMID: 30629202 PMCID: PMC6398386 DOI: 10.1093/jn/nxy278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Previous literature suggests a U-shaped relation between hemoglobin concentration and adverse birth outcomes. There is less evidence on associations between iron status and birth outcomes. OBJECTIVE Our objective was to determine the associations of maternal hemoglobin concentration and iron status with birth outcomes. METHODS We conducted a secondary data analysis of data from 2 cohorts of pregnant women receiving iron-containing nutritional supplements (20-60 mg ferrous sulfate) in Ghana (n = 1137) and Malawi (n = 1243). Hemoglobin concentration and 2 markers of iron status [zinc protoporphyrin and soluble transferrin receptor (sTfR)] were measured at ≤20 weeks and 36 weeks of gestation. We used linear and Poisson regression models and birth outcomes included preterm birth (PTB), newborn stunting, low birth weight (LBW), and small-for-gestational-age. RESULTS Prevalence of iron deficiency (sTfR >6.0 mg/L) at enrollment was 9% in Ghana and 20% in Malawi. In early pregnancy, iron deficiency was associated with PTB (9% compared with 17%, adjusted RR: 1.63; 95% CI: 1.14, 2.33) and stunting (15% compared with 23%, adjusted RR: 1.44; 95% CI: 1.09, 1.94) in Malawi but not Ghana, and was not associated with LBW in either country; replete iron status (sTfR <10th percentile) was associated with stunting (9% compared with 15%, adjusted RR: 1.71; 95% CI: 1.06, 2.77) in Ghana, but not PTB or LBW, and was not associated with any birth outcomes in Malawi. In late pregnancy, iron deficiency was not related to birth outcomes in either country and iron-replete status was associated with higher risk of LBW (8% compared with 16%, adjusted RR: 1.90; 95% CI: 1.17, 3.09) and stunting (6% compared with 13%, adjusted RR: 2.14; 95% CI: 1.21, 3.77) in Ghana, but was not associated with birth outcomes in Malawi. CONCLUSIONS The associations of low or replete iron status with birth outcomes are population specific. Research to replicate and extend these findings would be beneficial. These trials were registered at clinicaltrials.gov as NCT00970866 (Ghana) and NCT01239693 (Malawi).
Collapse
Affiliation(s)
- Brietta M Oaks
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, RI,Address correspondence to BMO (e-mail: )
| | - Josh M Jorgensen
- Program in International and Community Nutrition, Department of Nutrition
| | - Lacey M Baldiviez
- USDA, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Ken Maleta
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Harriet Okronipa
- Program in International and Community Nutrition, Department of Nutrition,Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - John Sadalaki
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Anna Lartey
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Per Ashorn
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland,Center for Child Health Research, University of Tampere Faculty of Medicine and Life Sciences and Tampere University Hospital, Tampere, Finland
| | - Stephen Vosti
- Department of Agricultural and Resource Economics, University of California, Davis, CA
| | - Lindsay H Allen
- USDA, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Kathryn G Dewey
- Program in International and Community Nutrition, Department of Nutrition
| |
Collapse
|
21
|
Iron metabolism and its contribution to cancer (Review). Int J Oncol 2019; 54:1143-1154. [PMID: 30968149 DOI: 10.3892/ijo.2019.4720] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Iron is an essential element for biological processes. Iron homeostasis is regulated through several mechanisms, from absorption by enterocytes to recycling by macrophages and storage in hepatocytes. Iron has dual properties, which may facilitate tumor growth or cell death. Cancer cells exhibit an increased dependence on iron compared with normal cells. Macrophages potentially deliver iron to cancer cells, resulting in tumor promotion. Mitochondria utilize cellular iron to synthesize cofactors, including heme and iron sulfur clusters. The latter is composed of essential enzymes involved in DNA synthesis and repair, oxidation‑reduction reactions, and other cellular processes. However, highly increased iron concentrations result in cell death through membrane lipid peroxidation, termed ferroptosis. Ferroptosis, an emerging pathway for cancer treatment, is similar to pyroptosis, apoptosis and necroptosis. In the present review, previous studies on the physiology of iron metabolism and its role in cancer are summarized. Additionally, the significance of iron regulation, and the association between iron homeostasis and carcinogenic mechanisms are discussed.
Collapse
|
22
|
Steele SL, Kroeun H, Karakochuk CD. The Effect of Daily Iron Supplementation with 60 mg Ferrous Sulfate for 12 Weeks on Non-Transferrin Bound Iron Concentrations in Women with a High Prevalence of Hemoglobinopathies. J Clin Med 2019; 8:jcm8020180. [PMID: 30717475 PMCID: PMC6406400 DOI: 10.3390/jcm8020180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023] Open
Abstract
There is a lack of evidence for the safety of untargeted daily iron supplementation in women, especially in countries such as Cambodia, where both anemia and hemoglobinopathies are common. Our aim was to assess serum non-transferrin bound iron (NTBI), a toxic biochemical that accumulates in blood when too much iron is absorbed, in Cambodian women who received daily iron supplements in accordance with the 2016 global World Health Organization (WHO) guidelines. We used fasting venous blood samples that were collected in a 2015 supplementation trial among predominantly anemic Cambodian women (18⁻45 years). Serum NTBI was measured with use of the FeROS™ eLPI assay (Aferrix Ltd., Tel-Aviv, Israel) in randomly selected sub-groups of women who received 60 mg daily elemental iron as ferrous sulfate (n = 50) or a placebo (n = 50) for 12 weeks. Overall, n = 17/100 (17%) of women had an elevated serum NTBI concentration (≥0.1 μmol/L) at 12 weeks; n = 9 in the Fe group and n = 8 in the placebo group. Elevated serum NTBI concentration was not associated with age, iron supplementation, transferrin saturation or severe hemoglobinopathies (p > 0.05). In this population of women with a high prevalence of hemoglobinopathies, we found that daily iron supplementation was not associated with elevated serum NTBI concentrations at 12 weeks, as compared to placebo.
Collapse
Affiliation(s)
- Shannon L Steele
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
| | - Hou Kroeun
- Helen Keller International, Phnom Penh, Cambodia.
| | - Crystal D Karakochuk
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
23
|
Abstract
Iron deficiency remains the largest nutritional deficiency worldwide and the main cause of anaemia. Severe iron deficiency leads to anaemia known as iron deficiency anaemia (IDA), which affects a total of 1·24 billion people, the majority of whom are children and women from resource-poor countries. In sub-Saharan Africa, iron deficiency is frequently exacerbated by concomitant parasitic and bacterial infections and contributes to over 120 000 maternal deaths a year, while it irreparably limits the cognitive development of children and leads to poor outcomes in pregnancy.Currently available iron compounds are cheap and readily available, but constitute a non-physiological approach to providing iron that leads to significant side effects. Consequently, iron deficiency and IDA remain without an effective treatment, particularly in populations with high burden of infectious diseases. So far, despite considerable investment in the past 25 years in nutrition interventions with iron supplementation and fortification, we have been unable to significantly decrease the burden of this disease in resource-poor countries.If we are to eliminate this condition in the future, it is imperative to look beyond the strategies used until now and we should make an effort to combine community engagement and social science approaches to optimise supplementation and fortification programmes.
Collapse
Affiliation(s)
- Isabella Stelle
- Institute of Liver and Digestive Health, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Anastasia Z Kalea
- Institute of Liver and Digestive Health, Division of Medicine, University College London, London WC1E 6BT, UK
- Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Dora I A Pereira
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
24
|
Ginanjar E, Indrawati L, Setianingsih I, Atmakusumah D, Harahap A, Timan IS, Marx JJM. Iron Absorption in Iron-Deficient Women, Who Received 65 mg Fe with an Indonesian Breakfast, Is Much Better from NaFe(III)EDTA than from Fe(II)SO₄, with an Acceptable Increase of Plasma NTBI. A Randomized Clinical Trial. Pharmaceuticals (Basel) 2018; 11:ph11030085. [PMID: 30201907 PMCID: PMC6161297 DOI: 10.3390/ph11030085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Plasma non-transferrin-bound iron (NTBI) is potentially harmful due to the generation of free radicals that cause tissue damage in vascular and other diseases. Studies in iron-replete and iron-deficient subjects, receiving a single oral test dose of Fe(II)SO4 or NaFe(III)EDTA with water, revealed that FeSO4 was well absorbed when compared with NaFeEDTA, while only the Fe(II) compound showed a remarkable increase of NTBI. As NaFeEDTA is successfully used for food fortification, a double-blind randomized cross-over trial was conducted in 11 healthy women with uncomplicated iron deficiency. All subjects received a placebo, 6.5 mg FeSO4, 65 mg FeSO4, 6.5 mg NaFeEDTA, and 65 mg NaFeEDTA with a traditional Indonesian breakfast in one-week intervals. Blood tests were carried out every 60 min for five hours. NTBI detection was performed using the fluorescein-labeled apotransferrin method. Plasma iron values were highly increased after 65 mg NaFeEDTA, twice as high as after FeSO4. A similar pattern was seen for NTBI. After 6.5 mg of NaFeEDTA and FeSO4, NTBI was hardly detectable. NaFeEDTA was highly effective for the treatment of iron deficiency if given with a meal, inhibiting the formation of nonabsorbable Fe-complexes, while NTBI did not exceed the range of normal values for iron-replete subjects.
Collapse
Affiliation(s)
- Eka Ginanjar
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | - Lilik Indrawati
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | | | - Djumhana Atmakusumah
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | - Alida Harahap
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia.
| | - Ina S Timan
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia/Dr Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia.
| | - Joannes J M Marx
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
| |
Collapse
|
25
|
Hurrell RF. An iron fortification efficacy study in children in Cote d'Ivoire supports the suggestion that tissue iron is protected at the expense of erythrocyte iron. Eur J Clin Nutr 2018; 72:1229-1233. [PMID: 30185848 DOI: 10.1038/s41430-018-0221-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Richard F Hurrell
- Laboratory for Human Nutrition, Swiss Federal Institute of Technology (ETH) Zürich, CH-8092, Zürich, Switzerland.
| |
Collapse
|
26
|
Khalafallah AA, Hyppa A, Chuang A, Hanna F, Wilson E, Kwok C, Yan C, Gray Z, Mathew R, Falloon P, Dennis A, Pavlov T, Allen JC. A Prospective Randomised Controlled Trial of a Single Intravenous Infusion of Ferric Carboxymaltose vs Single Intravenous Iron Polymaltose or Daily Oral Ferrous Sulphate in the Treatment of Iron Deficiency Anaemia in Pregnancy. Semin Hematol 2018; 55:223-234. [PMID: 30502851 DOI: 10.1053/j.seminhematol.2018.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 11/11/2022]
Abstract
Iron deficiency anaemia (IDA) is the most common nutritional deficiency affecting pregnant women worldwide. This study aims to compare the efficacy and safety of a newly available intravenous (IV) iron preparation, ferric carboxymaltose (FCM), against IV iron polymaltose (IPM), and standard oral iron (ferrous sulphate) for the treatment of IDA in pregnancy. This is an open-labelled prospective randomised controlled trial (RCT) with intention-to-treat analysis conducted at a primary health care facility with a single tertiary referral centre in Launceston. Tasmania, Australia. A 3-arm randomised controlled trial was conducted comparing a single IV infusion of 1000mg of FCM (n = 83 patients) over 15 minutes against a single IV infusion of 1000mg of IPM (n = 82) over 2 hours against 325mg daily oral ferrous sulphate (n = 81) until delivery, for the treatment of IDA in pregnancy. A total of 246 consecutive pregnant women were recruited between September 2013 and July 2014. The median age was 28 years, with a median and mean gestation of 27 weeks. The median serum ferritin was 9µg/L, with a mean of 13µg/L. The mean haemoglobin (Hb) was 114g/L. The primary outcome was the change in ferritin and Hb levels at 4 weeks after intervention. Secondary outcomes included ferritin and Hb improvements at predelivery, safety, tolerability, quality of life (QoL), cost utility, and fetal outcomes. The mean Hb level differences between the baseline intervention time point and 4 weeks thereafter were significantly higher in the FCM versus the oral group by 4.35g/L (95% CI: 1.64-7.05; P = 0.0006) and in the IPM vs the oral group by 4.08g/L (95% CI: 1.57-6.60; P = 0.0005), but not different between the FCM and IPM groups (0.26g/L; 95% CI: -2.59 to 3.11; P = 0.9740). The mean ferritin level differences were significantly higher at 4 weeks in the FCM vs oral iron group by 166µg/L (95% CI: 138-194; P < 0.0001) and in the IPM vs oral iron group by 145µg/L (95% CI: 109-1180, P < 0.0001), but not between the 2 IV groups (21.5µg/L; 95% CI: -23.9 to 66.9; P = 0.4989). Administration of IV FCM during pregnancy was safe and better tolerated than IV IPM or oral iron. Compliance to oral iron was the lowest amongst treatment groups with one-third of the patients missing doses of daily iron tablets. Significant improvement in overall QoL scores was observed in both IV iron supplement groups by achieving normal ferritin following effective and prompt repletion of iron stores, compared to the oral iron group (P = 0.04, 95% CI: 21.3, 1.8). The overall cost utility of IV FCM and IV IPM appear to be similar to oral iron. There were no differences in the fetal outcomes between the 3 trial arms. In conclusion, this study demonstrates that a single IV iron infusion is an effective and safe option for treatment of IDA during pregnancy. FCM was more convenient than other treatments. Rapid parenteral iron repletion can improve iron stores, Hb levels and QoL in pregnant women, with ongoing benefits until delivery. Integration of IV iron for IDA in pregnancy can potentially improve pregnancy outcomes for the mother. Update of guidelines to integrate the use of new IV iron preparations in pregnancy is warranted.
Collapse
Affiliation(s)
- Alhossain A Khalafallah
- Menzies Institute for Medical Research, University of Tasmania, Launceston, Tasmania, Australia; Department of Haematology, Launceston General Hospital, Launceston, Tasmania, Australia.
| | - Annemarie Hyppa
- Department of Haematology, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Anthony Chuang
- Department of Obstetrics and Gynaecology, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Fayez Hanna
- Faculty of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Emily Wilson
- Department of Obstetrics and Gynaecology, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Christine Kwok
- Department of Obstetrics and Gynaecology, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Carl Yan
- Department of Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Zara Gray
- Department of Obstetrics and Gynaecology, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Ronnie Mathew
- Department of Medicine, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Peter Falloon
- Pharmacy Department, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Amanda Dennis
- Department of Obstetrics and Gynaecology, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Toly Pavlov
- Department of Obstetrics and Gynaecology, Launceston General Hospital, Launceston, Tasmania, Australia
| | - John Carson Allen
- Duke-NUS Medical School Singapore, Centre for Quantitative Medicine, Office of Clinical Sciences, The Academia, Singapore, Singapore
| |
Collapse
|
27
|
Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients 2018; 10:nu10020227. [PMID: 29462970 PMCID: PMC5852803 DOI: 10.3390/nu10020227] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/23/2022] Open
Abstract
Iron deficiency is the most common micronutrient deficiency in the world. Women of reproductive age and young children are particularly vulnerable. Iron deficiency in late prenatal and early postnatal periods can lead to long-term neurobehavioral deficits, despite iron treatment. This may occur because screening and treatment of iron deficiency in children is currently focused on detection of anemia and not neurodevelopment. Anemia is the end-stage state of iron deficiency. The brain becomes iron deficient before the onset of anemia due to prioritization of the available iron to the red blood cells (RBCs) over other organs. Brain iron deficiency, independent of anemia, is responsible for the adverse neurological effects. Early diagnosis and treatment of impending brain dysfunction in the pre-anemic stage is necessary to prevent neurological deficits. The currently available hematological indices are not sensitive biomarkers of brain iron deficiency and dysfunction. Studies in non-human primate models suggest that serum proteomic and metabolomic analyses may be superior for this purpose. Maternal iron supplementation, delayed clamping or milking of the umbilical cord, and early iron supplementation improve the iron status of at-risk infants. Whether these strategies prevent iron deficiency-induced brain dysfunction has yet to be determined. The potential for oxidant stress, altered gastrointestinal microbiome and other adverse effects associated with iron supplementation cautions against indiscriminate iron supplementation of children in malaria-endemic regions and iron-sufficient populations.
Collapse
|
28
|
Aydemir TB, Cousins RJ. The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). J Nutr 2018; 148:174-184. [PMID: 29490098 PMCID: PMC6251594 DOI: 10.1093/jn/nxx041] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The SLC39A family of metal transporters was identified through homologies with the Zrt- and Irt-like (ZIP) proteins from yeast and plants. Of all the ZIP transporters, ZIP14 is arguably the most robustly characterized in terms of function at the integrative level. Mice with a global knockout of Zip14 are viable, thus providing the opportunity to conduct physiologic experiments. In mice, Zip14 expression is highly tissue specific, with the greatest abundance in the jejunum > liver > heart > kidney > white adipose tissue > skeletal muscle > spleen > pancreas. A unique feature of Zip14 is its upregulation by proinflammatory conditions, particularly increased interleukin 6 (IL-6) and nitric oxide. The transcription factors AP-1, ATF4, and ATF6α are involved in Zip14 regulation. ZIP14 does not appear to be zinc-regulated. The Zip14 knockout phenotype shows multiple sites of ZIP14 function, including the liver, adipose tissue, brain, pancreas, and bone. A prominent feature of the Zip14 ablation is a reduction in intestinal barrier function and onset of metabolic endotoxemia. Many aspects of the phenotype are accentuated with age and accompany increased circulating IL-6. Studies with 65Zn, 59Fe [nontransferrin-bound iron (NTBI)] and 54Mn show that ZIP14 transports these metals. At a steady state, the plasma concentrations of zinc, NTBI, and manganese are such that zinc ions are the major substrate available for ZIP14 at the cell surface. Upregulation of ZIP14 accounts for the hypozincemia and hepatic zinc accumulation associated with acute inflammation and sepsis and is required for liver regeneration and resistance to endoplasmic reticulum (ER) stress. Zip14 ablation in mice produces a defect in manganese excretion that leads to excess manganese accumulation in the brain that produces characteristics of Parkinsonism.
Collapse
Affiliation(s)
- Tolunay B Aydemir
- Food Science and Human Nutrition Department and Center for Nutritional
Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville,
FL,Address correspondence to TBA (e-mail: )
| | - Robert J Cousins
- Food Science and Human Nutrition Department and Center for Nutritional
Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville,
FL
| |
Collapse
|
29
|
Lin F, Wu H, Zeng M, Yu G, Dong S, Yang H. Probiotic/prebiotic correction for adverse effects of iron fortification on intestinal resistance to Salmonella infection in weaning mice. Food Funct 2018; 9:1070-1078. [DOI: 10.1039/c7fo00990a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our study provides experimental evidence for the increased diarrhea risk upon iron fortification with high pathogen load, and demonstrates that probiotic or prebiotic supplementation can be used to eliminate the potential harm of iron fortification on gut health.
Collapse
Affiliation(s)
- Feifei Lin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Haohao Wu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Mingyong Zeng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Guangli Yu
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
- China
| | - Shiyuan Dong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute
- Zhoushan
- PR China
| |
Collapse
|
30
|
Brannon PM, Stover PJ, Taylor CL. Integrating themes, evidence gaps, and research needs identified by workshop on iron screening and supplementation in iron-replete pregnant women and young children. Am J Clin Nutr 2017; 106:1703S-1712S. [PMID: 29070556 PMCID: PMC5701718 DOI: 10.3945/ajcn.117.156083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This report addresses the evidence and the uncertainties, knowledge gaps, and research needs identified by participants at the NIH workshop related to iron screening and routine iron supplementation of largely iron-replete pregnant women and young children (6-24 mo) in developed countries. The workshop presentations and panel discussions focused on current understanding and knowledge gaps related to iron homeostasis, measurement of and evidence for iron status, and emerging concerns about supplementing iron-replete members of these vulnerable populations. Four integrating themes emerged across workshop presentations and discussion and centered on 1) physiologic or developmental adaptations of iron homeostasis to pregnancy and early infancy, respectively, and their implications, 2) improvement of the assessment of iron status across the full continuum from iron deficiency anemia to iron deficiency to iron replete to iron excess, 3) the linkage of iron status with health outcomes beyond hematologic outcomes, and 4) the balance of benefit and harm of iron supplementation of iron-replete pregnant women and young children. Research that addresses these themes in the context of the full continuum of iron status is needed to inform approaches to the balancing of benefits and harms of screening and routine supplementation.
Collapse
Affiliation(s)
- Patsy M Brannon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; and .,Office of Dietary Supplements, NIH, Bethesda, MD
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; and
| | | |
Collapse
|
31
|
Glinz D, Wegmüller R, Ouattara M, Diakité VG, Aaron GJ, Hofer L, Zimmermann MB, Adiossan LG, Utzinger J, N'Goran EK, Hurrell RF. Iron Fortified Complementary Foods Containing a Mixture of Sodium Iron EDTA with Either Ferrous Fumarate or Ferric Pyrophosphate Reduce Iron Deficiency Anemia in 12- to 36-Month-Old Children in a Malaria Endemic Setting: A Secondary Analysis of a Cluster-Randomized Controlled Trial. Nutrients 2017; 9:E759. [PMID: 28708072 PMCID: PMC5537873 DOI: 10.3390/nu9070759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Iron deficiency anemia (IDA) is a major public health problem in sub-Saharan Africa. The efficacy of iron fortification against IDA is uncertain in malaria-endemic settings. The objective of this study was to evaluate the efficacy of a complementary food (CF) fortified with sodium iron EDTA (NaFeEDTA) plus either ferrous fumarate (FeFum) or ferric pyrophosphate (FePP) to combat IDA in preschool-age children in a highly malaria endemic region. This is a secondary analysis of a nine-month cluster-randomized controlled trial conducted in south-central Côte d'Ivoire. 378 children aged 12-36 months were randomly assigned to no food intervention (n = 125; control group), CF fortified with 2 mg NaFeEDTA plus 3.8 mg FeFum for six days/week (n = 126; FeFum group), and CF fortified with 2 mg NaFeEDTA and 3.8 mg FePP for six days/week (n = 127; FePP group). The outcome measures were hemoglobin (Hb), plasma ferritin (PF), iron deficiency (PF < 30 μg/L), and anemia (Hb < 11.0 g/dL). Data were analyzed with random-effect models and PF was adjusted for inflammation. The prevalence of Plasmodium falciparum infection and inflammation during the study were 44-66%, and 57-76%, respectively. There was a significant time by treatment interaction on IDA (p = 0.028) and a borderline significant time by treatment interaction on iron deficiency with or without anemia (p = 0.068). IDA prevalence sharply decreased in the FeFum (32.8% to 1.2%, p < 0.001) and FePP group (23.6% to 3.4%, p < 0.001). However, there was no significant time by treatment interaction on Hb or total anemia. These data indicate that, despite the high endemicity of malaria and elevated inflammation biomarkers (C-reactive protein or α-1-acid-glycoprotein), IDA was markedly reduced by provision of iron fortified CF to preschool-age children for 9 months, with no significant differences between a combination of NaFeEDTA with FeFum or NaFeEDTA with FePP. However, there was no overall effect on anemia, suggesting most of the anemia in this setting is not due to ID. This trial is registered at clinicaltrials.gov (NCT01634945).
Collapse
Affiliation(s)
- Dominik Glinz
- Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, ETH Zurich, CH-8092 Zurich, Switzerland.
- Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, CH-4031 Basel, Switzerland.
- University of Basel, CH-4003 Basel, Switzerland.
| | - Rita Wegmüller
- Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Mamadou Ouattara
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 01 BP V34 Abidjan, Cote d'Ivoire.
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan, Côte d'Ivoire.
| | - Victorine G Diakité
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan, Côte d'Ivoire.
- Département de Sociologie, Université Alassane Ouattara, 01 BP V18 Bouaké, Côte d'Ivoire.
| | - Grant J Aaron
- Global Alliance for Improved Nutrition, CH-1202 Geneva, Switzerland.
| | - Lorenz Hofer
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland.
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, ETH Zurich, CH-8092 Zurich, Switzerland.
| | - Lukas G Adiossan
- Hôpital Général de Taabo, Taabo Cité, BP 700 Toumodi, Côte d'Ivoire.
| | - Jürg Utzinger
- University of Basel, CH-4003 Basel, Switzerland.
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland.
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 01 BP V34 Abidjan, Cote d'Ivoire.
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan, Côte d'Ivoire.
| | - Richard F Hurrell
- Laboratory of Human Nutrition, Institute of Food, Nutrition, and Health, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
32
|
Abstract
The regulation of iron metabolism in biological systems centers on providing adequate iron for cellular function while limiting iron toxicity. Because mammals cannot excrete iron, mechanisms have evolved to control iron acquisition, storage, and distribution at both systemic and cellular levels. Hepcidin, the master regulator of iron homeostasis, controls iron flows into plasma through inhibition of the only known mammalian cellular iron exporter ferroportin. Hepcidin is feedback-regulated by iron status and strongly modulated by inflammation and erythropoietic demand. This review highlights recent advances that have changed our understanding of iron metabolism and its regulation.
Collapse
Affiliation(s)
- Richard Coffey
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690
| | - Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690.
| |
Collapse
|
33
|
Mwangi MN, Prentice AM, Verhoef H. Safety and benefits of antenatal oral iron supplementation in low-income countries: a review. Br J Haematol 2017; 177:884-895. [PMID: 28272734 PMCID: PMC5485170 DOI: 10.1111/bjh.14584] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The World Health Organization recommends universal iron supplementation of 30-60 mg/day in pregnancy but coverage is low in most countries. Its efficacy is uncertain, however, and there has been a vigorous debate in the last decade about its safety, particularly in areas with a high burden of malaria and other infectious diseases. We reviewed the evidence on the safety and efficacy of antenatal iron supplementation in low-income countries. We found no evidence that daily supplementation at a dose of 60 mg leads to increased maternal Plasmodium infection risk. On the other hand, recent meta-analyses found that antenatal iron supplementation provides benefits for maternal health (severe anaemia at postpartum, blood transfusion). For neonates, there was a reduced prematurity risk, and only a small or no effect on birth weight. A recent trial showed, however, that benefits of antenatal iron supplementation on maternal and neonatal health vary by maternal iron status, with substantial benefits in iron-deficient women. The benefits of universal iron supplementation are likely to vary with the prevalence of iron deficiency. As a consequence, the balance between benefits and risks is probably more favourable in low-income countries than in high-income countries despite the higher exposure to infectious pathogens.
Collapse
Affiliation(s)
- Martin N Mwangi
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Nutrition and Health Department, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Andrew M Prentice
- MRC Unit The Gambia, Banjul, The Gambia
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Hans Verhoef
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
34
|
Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, Spieldenner J. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev 2017; 75:49-60. [PMID: 27974599 PMCID: PMC5155616 DOI: 10.1093/nutrit/nuw055] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In light of evidence that high-dose iron supplements lead to a range of adverse events in low-income settings, the safety and efficacy of lower doses of iron provided through biological or industrial fortification of foodstuffs is reviewed. First, strategies for point-of-manufacture chemical fortification are compared with biofortification achieved through plant breeding. Recent insights into the mechanisms of human iron absorption and regulation, the mechanisms by which iron can promote malaria and bacterial infections, and the role of iron in modifying the gut microbiota are summarized. There is strong evidence that supplemental iron given in nonphysiological amounts can increase the risk of bacterial and protozoal infections (especially malaria), but the use of lower quantities of iron provided within a food matrix, ie, fortified food, should be safer in most cases and represents a more logical strategy for a sustained reduction of the risk of deficiency by providing the best balance of risk and benefits. Further research into iron compounds that would minimize the availability of unabsorbed iron to the gut microbiota is warranted.
Collapse
Affiliation(s)
- Andrew M Prentice
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | - Yery A Mendoza
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Dora Pereira
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Carla Cerami
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rita Wegmuller
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Constable
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jörg Spieldenner
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Pasricha SR, Drakesmith H. Iron Deficiency Anemia: Problems in Diagnosis and Prevention at the Population Level. Hematol Oncol Clin North Am 2016; 30:309-25. [PMID: 27040956 DOI: 10.1016/j.hoc.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anemia is common among people living in low- and middle-income countries, and alleviation of the global burden of anemia is an essential global health target over the next decade. Estimates have attributed about half the cases of anemia worldwide to iron deficiency; a range of other causes probably make a similar overall contribution. Individuals living in low-income settings experience a simultaneous high burden of infection with inflammation and iron deficiency. At least in children, iron supplementation exacerbates the risk of infection in both malaria-endemic and nonendemic low-income countries, whereas iron deficiency is protective against clinical and severe malaria.
Collapse
Affiliation(s)
- Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
36
|
Controversial issues in CKD clinical practice: position statement of the CKD-treatment working group of the Italian Society of Nephrology. J Nephrol 2016; 30:159-170. [PMID: 27568307 DOI: 10.1007/s40620-016-0338-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/12/2016] [Indexed: 01/13/2023]
Abstract
This position paper of the study group "Conservative treatment of Chronic Kidney Disease-CKD" of the Italian Society of Nephrology addresses major practical, unresolved, issues related to the conservative treatment of chronic renal disease. Specifically, controversial topics from everyday clinical nephrology practice which cannot find a clear, definitive answer in the current literature or in nephrology guidelines are discussed. The paper reports the point of view of the study group. Concise and practical advice is given on several common issues: renal biopsy in diabetes; dual blockade of the renin-angiotensin-aldosterone system (RAAS); management of iron deficiency; low protein diet; dietary salt intake; bicarbonate supplementation; treatment of obesity; the choice of conservative therapy vs. dialysis. For each topic synthetic statements, guideline-style, are reported.
Collapse
|
37
|
Mode of oral iron administration and the amount of iron habitually consumed do not affect iron absorption, systemic iron utilisation or zinc absorption in iron-sufficient infants: a randomised trial. Br J Nutr 2016; 116:1046-60. [PMID: 27546308 DOI: 10.1017/s0007114516003032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different metabolic pathways of supplemental and fortification Fe, or inhibition of Zn absorption by Fe, may explain adverse effects of supplemental Fe in Fe-sufficient infants. We determined whether the mode of oral Fe administration or the amount habitually consumed affects Fe absorption and systemic Fe utilisation in infants, and assessed the effects of these interventions on Zn absorption, Fe and Zn status, and growth. Fe-sufficient 6-month-old infants (n 72) were randomly assigned to receive 6·6 mg Fe/d from a high-Fe formula, 1·3 mg Fe/d from a low-Fe formula or 6·6 mg Fe/d from Fe drops and a formula with no added Fe for 45 d. Fractional Fe absorption, Fe utilisation and fractional Zn absorption were measured with oral (57Fe and 67Zn) and intravenous (58Fe and 70Zn) isotopes. Fe and Zn status, infection and growth were measured. At 45 d, Hb was 6·3 g/l higher in the high-Fe formula group compared with the Fe drops group, whereas serum ferritin was 34 and 35 % higher, respectively, and serum transferrin 0·1 g/l lower in the high-Fe formula and Fe drops groups compared with the low-Fe formula group (all P<0·05). No intervention effects were observed on Fe absorption, Fe utilisation, Zn absorption, other Fe status indices, plasma Zn or growth. We concluded that neither supplemental or fortification Fe nor the amount of Fe habitually consumed altered Fe absorption, Fe utilisation, Zn absorption, Zn status or growth in Fe-sufficient infants. Consumption of low-Fe formula as the only source of Fe was insufficient to maintain Fe stores.
Collapse
|
38
|
Raiten DJ, Neufeld LM, De-Regil LM, Pasricha SR, Darnton-Hill I, Hurrell R, Murray-Kolb LE, Nair KM, Wefwafwa T, Kupka R, Phall MC, Sakr Ashour FA. Integration to Implementation and the Micronutrient Forum: A Coordinated Approach for Global Nutrition. Case Study Application: Safety and Effectiveness of Iron Interventions. Adv Nutr 2016; 7:135-48. [PMID: 26773021 PMCID: PMC4717873 DOI: 10.3945/an.115.008581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paramount among the challenges to our ability to address the role of food and nutrition in health promotion and disease prevention is how to design and implement context-specific interventions and guidance. The Integration to Effective Implementation (I-to-I) concept is intended to address the complexities of the global health context through engagement of the continuum of stakeholders involved in the food and nutrition enterprise. The 2014 Micronutrient Forum (MNF) Global Conference held in Addis Ababa, Ethiopia, in June 2014 offered the opportunity to apply the I-to-I approach with the use of current concerns about the safety and effectiveness of interventions to prevent and treat iron deficiency (ID) as a case study. ID is associated with a range of adverse outcomes, especially in pregnant and nonpregnant women, infants, and primary school-age children. Strategies to combat ID include iron supplementation, multiple micronutrient powders, and food-based interventions to enhance dietary iron intake. Recent reports indicate potential increased adverse risks when iron is provided in areas with high infection burdens (e.g., malaria). This paradox has weakened iron intervention programs. Furthermore, the selection and interpretation of available biomarkers for assessing iron nutrition have been found to be compromised by the inflammatory process. These issues highlight the need for a comprehensive approach that considers basic biology, assessment, interventions, and how these can be translated into appropriate programs and policies. The application of the I-to-I with the use of the MNF offered an opportunity to explore how that might be achieved.
Collapse
Affiliation(s)
- Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| | | | | | - Sant-Rayn Pasricha
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ian Darnton-Hill
- The Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Richard Hurrell
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | - K Madhavan Nair
- Department of Biophysics, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Terry Wefwafwa
- Division of Nutrition, Ministry of Health, Nairobi, Kenya
| | | | | | - Fayrouz A Sakr Ashour
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| |
Collapse
|
39
|
Raiten DJ, Ashour FA. Iron: Current Landscape and Efforts to Address a Complex Issue in a Complex World. J Pediatr 2015; 167:S3-7. [PMID: 26364022 DOI: 10.1016/j.jpeds.2015.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| | - Fayrouz A Ashour
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Shastri L, Mishra PE, Dwarkanath P, Thomas T, Duggan C, Bosch R, McDonald CM, Thomas A, Kurpad AV. Association of oral iron supplementation with birth outcomes in non-anaemic South Indian pregnant women. Eur J Clin Nutr 2014; 69:609-13. [DOI: 10.1038/ejcn.2014.248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 11/09/2022]
|