1
|
Carrasco A, Navren M, Larsson I, Taube F, Björkman F. Systematic Review and Meta-Analysis: Iron Deficiency and Iron Deficiency Anemia Among Military Recruits Undergoing Basic Combat Training. Mil Med 2024:usae437. [PMID: 39301668 DOI: 10.1093/milmed/usae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION The first period of military service consists of a physically and mentally challenging basic combat training (BCT) program. Factors like demanding physical exercise, limited recovery time, and restricted diet choice and food intake may challenge iron intake and homeostasis in recruits undergoing BCT. Iron-deficient individuals may experience reduced work capacity, fatigue, weakness, frequent infections, and increased injury risk. Limited knowledge is available on the extent of this potential health risk among military recruits. The aim of the present study was to systematically review published studies on the prevalence and change in prevalence of anemia, iron deficiency (ID), and ID anemia (IDA) among recruits undergoing BCT. MATERIALS AND METHODS Electronic searches were conducted in the databases Medline (Ovid), Embase (Embase.com), and Web of Science (Clarivate Analytics) from database inception up until April 16, 2024. Inclusion criteria were observational studies with both cross-sectional and observational longitudinal designs that examined the effects of BCT (intervention) on iron status (outcome) in military recruits (population). Extracted data were the number of participants (n), age, sex, country/population, BCT duration, and relevant measures of prevalence and changes in prevalence of anemia, ID, and IDA (primary outcome) and physical performance, mood state, stress fractures, attrition rate, and nutritional supplements (secondary outcomes). The study quality and risk of bias were assessed using the JBI Critical Appraisal Checklist for Studies Reporting Prevalence Data and The National Institutes of Health Quality Assessment Tool for Before-After (Pre-Post) Studies With No Control Group. Meta-analyses were performed using restricted maximum-likelihood models, and the effect size was calculated as Cohen's h with 95% CI. RESULTS Twenty-two articles were systematically reviewed (n = 111,764 men and 12,650 women), and six of these papers (n = 388 men and 773 women) were included in the meta-analysis. There was a varying prevalence of anemia, ID, and IDA among military recruits at the start of BCT. Results from meta-analyses showed negligible and nonsignificant effects of BCT on the prevalence of anemia, ID, and IDA. The quality of the included cross-sectional studies ranging from fair to good, whereas a large proportion of the included longitudinal studies were classified as poor. No sign of publication bias was found. CONCLUSIONS The prevalence of anemia, ID, and IDA in military recruits seems not to be affected by the completion of BCT shorter than 16 weeks, whereas the effects of longer BCT durations remain unclear. Even though body iron homeostasis seems unaffected, adequate energy and nutritional intake should remain a priority. Future research could focus on dietary interventions to determine the optimal diet among female recruits in specifically exposed populations.
Collapse
Affiliation(s)
- Anna Carrasco
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Mats Navren
- Defence Health, Command and Control Regiment, Enkoping 749 40, Sweden
| | - Ingrid Larsson
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg 413 41, Sweden
- Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg 405 30, Sweden
| | - Fabian Taube
- Research Centre for Disaster Medicine, Institute for Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg 405 30, Sweden
- Joint Centre for Defence Medicine, Swedish Armed Forces, Gothenburg 426 05, Sweden
| | - Frida Björkman
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm 114 33, Sweden
| |
Collapse
|
2
|
O'Leary TJ, Jackson S, Izard RM, Walsh NP, Carswell AT, Oliver SJ, Tang JCY, Fraser WD, Greeves JP. Iron status is associated with tibial structure and vitamin D metabolites in healthy young men. Bone 2024; 186:117145. [PMID: 38838798 DOI: 10.1016/j.bone.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The influence of iron on collagen synthesis and vitamin D metabolism has implications for bone health. This cross-sectional observational study investigated associations between markers of iron status and tibial structure, vitamin D metabolites, and circulating biochemical markers of bone metabolism in young healthy men. A total of 343 male British Army recruits participated (age 22 ± 3 y, height 1.77 ± 0.06 m, body mass 75.5 ± 10.1 kg). Circulating biochemical markers of iron status, vitamin D metabolites, and bone metabolism, and tibial structure and density by high-resolution peripheral quantitative computed tomography scans (HRpQCT) were measured in participants during week 1 of basic military training. Associations between markers of iron status and HRpQCT outcomes, bone metabolism, and vitamin D metabolites were tested, controlling for age, height, lean body mass, and childhood exercise volume. Higher ferritin was associated with higher total, trabecular, and cortical volumetric bone mineral density, trabecular volume, cortical area and thickness, stiffness, and failure load (all p ≤ 0.037). Higher soluble transferrin receptor (sTfR) was associated with lower trabecular number, and higher trabecular thickness and separation, cortical thickness, and cortical pore diameter (all p ≤ 0.033). Higher haemoglobin was associated with higher cortical thickness (p = 0.043). Higher ferritin was associated with lower βCTX, PINP, total 25(OH)D, and total 24,25(OH)2D, and higher 1,25(OH)2D:24,25(OH)2D ratio (all p ≤ 0.029). Higher sTfR was associated with higher PINP, total 25(OH)D, and total 24,25(OH)2D (all p ≤ 0.025). The greater density, size, and strength of the tibia, and lower circulating concentrations of markers of bone resorption and formation with better iron stores (higher ferritin) are likely as a result of the direct role of iron in collagen synthesis.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Sarah Jackson
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom
| | - Rachel M Izard
- Defence Science and Technology, Ministry of Defence, Porton Down, United Kingdom
| | - Neil P Walsh
- Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alexander T Carswell
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; School of Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Samuel J Oliver
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| | - Jonathan C Y Tang
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - William D Fraser
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, London, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
3
|
O’Leary TJ, Jackson S, Izard RM, Walsh NP, Coombs CV, Carswell AT, Oliver SJ, Tang JCY, Fraser WD, Greeves JP. Sex differences in iron status during military training: a prospective cohort study of longitudinal changes and associations with endurance performance and musculoskeletal outcomes. Br J Nutr 2024; 131:581-592. [PMID: 37732392 PMCID: PMC10803825 DOI: 10.1017/s0007114523001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
This study investigated sex differences in Fe status, and associations between Fe status and endurance and musculoskeletal outcomes, in military training. In total, 2277 British Army trainees (581 women) participated. Fe markers and endurance performance (2·4 km run) were measured at the start (week 1) and end (week 13) of training. Whole-body areal body mineral density (aBMD) and markers of bone metabolism were measured at week 1. Injuries during training were recorded. Training decreased Hb in men and women (mean change (-0·1 (95 % CI -0·2, -0·0) and -0·7 (95 % CI -0·9, -0·6) g/dl, both P < 0·001) but more so in women (P < 0·001). Ferritin decreased in men and women (-27 (95 % CI -28, -23) and -5 (95 % CI -8, -1) µg/l, both P ≤ 0·001) but more so in men (P < 0·001). Soluble transferrin receptor increased in men and women (2·9 (95 % CI 2·3, 3·6) and 3·8 (95 % CI 2·7, 4·9) nmol/l, both P < 0·001), with no difference between sexes (P = 0·872). Erythrocyte distribution width increased in men (0·3 (95 % CI 0·2, 0·4)%, P < 0·001) but not in women (0·1 (95 % CI -0·1, 0·2)%, P = 0·956). Mean corpuscular volume decreased in men (-1·5 (95 % CI -1·8, -1·1) fL, P < 0·001) but not in women (0·4 (95 % CI -0·4, 1·3) fL, P = 0·087). Lower ferritin was associated with slower 2·4 km run time (P = 0·018), sustaining a lower limb overuse injury (P = 0·048), lower aBMD (P = 0·021) and higher beta C-telopeptide cross-links of type 1 collagen and procollagen type 1 N-terminal propeptide (both P < 0·001) controlling for sex. Improving Fe stores before training may protect Hb in women and improve endurance and protect against injury.
Collapse
Affiliation(s)
- Thomas J. O’Leary
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - Sarah Jackson
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
| | - Rachel M. Izard
- Defence Science and Technology, Ministry of Defence, Porton Down, Porton, UK
| | - Neil P. Walsh
- Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | | | - Alexander T. Carswell
- Norwich Medical School, University of East Anglia, Norwich, UK
- School of Health Sciences, University of East Anglia, Norwich, UK
| | | | - Jonathan C. Y. Tang
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - William D. Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Julie P. Greeves
- Army Health and Performance Research, Army Headquarters, Andover, MA, UK
- Division of Surgery and Interventional Science, UCL, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
4
|
Jalal CS, De-Regil LM, Pike V, Mithra P. Fortification of condiments and seasonings with iron for preventing anaemia and improving health. Cochrane Database Syst Rev 2023; 9:CD009604. [PMID: 37665781 PMCID: PMC10472972 DOI: 10.1002/14651858.cd009604.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
BACKGROUND Anaemia affects approximately 1.8 billion people worldwide; over 60% of anaemia cases globally are due to iron deficiency (ID). Iron deficiency and anaemia contribute to the global burden of disease and affect physical and cognitive development in children, and work productivity and economic well-being in adults. Fortification of food with iron, alone or in combination with other nutrients, is an effective intervention to control ID. Condiments and seasonings are ideal food vehicles for iron fortification in countries where they are commonly used. OBJECTIVES To determine the effects and safety of condiment and seasoning fortification with iron alone or iron plus other micronutrients on iron deficiency, anaemia, and health-related outcomes in the general population. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, and other databases up to 24 January 2023. We also searched the International clinical trials registry platform (ICTRP) for any ongoing trials. SELECTION CRITERIA We included randomised controlled trials (RCTs) (randomisation at individual or cluster level), non-randomised controlled trials, interrupted time series with at least three measure points both before and after intervention, and controlled before-after studies. Participants were populations of any age (including pregnant women), from any country, excluding those with critical illness or severe co-morbidities. We included interventions in which condiments or seasonings have been fortified with any combination of iron and other vitamins and minerals, irrespective of the fortification technology used. DATA COLLECTION AND ANALYSIS Two review authors independently screened and assessed the eligibility of studies. Disagreements were resolved through discussion or input from a third review author. Two review authors extracted the data and assessed the risk of bias in all the included studies. We followed the methods laid out by Cochrane and used GRADE criteria for assessing certainty of the evidence. MAIN RESULTS Our search identified 15,902 records after removal of duplicates. We included 16 studies with 20,512 participants (18,410 participants after adjusting for clustering effects). They were all carried out in upper-middle- and lower-middle-income countries. Three studies were controlled before-after studies, one was non-randomised trial, and 12 were RCTs (including three cluster RCTs). Six studies took place in schools; seven in communities; and one each in a nursery/kindergarten, tea estate, and factory. Three studies involved only women, one study involved both women and their children, and all other studies focused on children and/or adolescents. Nine studies used salt as a vehicle for iron fortification, three used fish sauce, two used soy sauce, one used curry powder, and one a "seasoning powder". The dose of iron received by participants ranged from 4.4 mg to 55 mg/day. The sample sizes in the trials ranged from 123 to 14,398, and study durations ranged from three months to two years. Twelve RCTs contributed data for meta-analysis. Six trials compared iron-fortified condiments versus the unfortified condiment, and six trials provided data comparing iron fortification in combination with other micronutrients versus the same condiment with other micronutrients, but no added iron. In one trial, the fortificant contained micronutrients that may have affected the absorption of iron. Overall no studies were assessed as having a low risk of bias. All included studies were assessed to have a high overall risk of bias, with the most concerns being around allocation concealment, blinding, and random sequence generation. There was very high heterogeneity amongst studies in almost all examined outcomes. Condiments/seasonings fortified with iron versus unfortified condiments/seasonings We are uncertain about whether consuming condiments/seasonings fortified with iron in comparison to the same unfortified condiment reduces anaemia at the end of intervention (risk ratio (RR) 0.34, 95% confidence interval (CI) 0.18 to 0.65; 2328 participants; 4 studies; very low-certainty of evidence). We are uncertain about whether consuming iron-fortified condiments increases haemoglobin concentrations (mean difference (MD) 6.40 (g/L), 95% CI -0.62 to 13.41; 2808 participants; 5 studies; very low-certainty evidence). Fortification of condiments/seasonings with iron probably slightly reduces ID (RR 0.33, 95% CI 0.11 to 1.01; 391 participants; 2 studies; moderate-certainty evidence). We are uncertain about whether fortification with iron increases ferritin concentration (MD 14.81 (µg/L), 95% CI 5.14 to 24.48; 4459 participants; 6 studies; very low-certainty evidence). Condiments/seasonings fortified with iron plus other micronutrients versus condiments/seasonings fortified with other micronutrients except iron Consuming condiments/seasonings fortified with iron plus other micronutrients may reduce anaemia (RR 0.59, 95% CI 0.40 to 0.89; 1007 participants; 4 studies; low-certainty evidence). We are uncertain about whether fortification of condiments/seasonings with iron plus other micronutrients will improve haemoglobin concentration (MD 6.22 g/dL, 95% CI 1.60 to 10.83; 1270 participants; 5 studies; very low-certainty evidence). It may reduce ID (RR 0.36, 95% CI 0.19 to 0.69; 1154 participants; 4 studies; low-certainty evidence). We are uncertain about whether fortification with iron plus other micronutrients improves ferritin concentration (MD 10.63 µg/L, 95% CI 2.40 to 18.85; 1251 participants; 5 studies; very low -certainty evidence). Condiments/seasonings fortified with iron versus no intervention No trial reported data on this comparison. No studies reported adverse effects. Funding sources do not appear to have distorted the results in any of the assessed trials. AUTHORS' CONCLUSIONS We are uncertain whether consuming iron-fortified condiments/seasonings reduces anaemia, improves haemoglobin concentration, or improves ferritin concentration. It may reduce ID. Findings about ferritin should be interpreted with caution since its concentrations increase during inflammation. Consuming condiments/seasonings fortified with iron plus other micronutrients may reduce anaemia, and we are uncertain whether this will improve haemoglobin concentration or ferritin concentration. More studies are needed to determine the true effect of iron-fortified condiments/seasonings on preventing anaemia and improving health. The effects of this intervention on other health outcomes like malaria incidence, growth and development are unclear.
Collapse
Affiliation(s)
| | - Luz Maria De-Regil
- Department of Nutrition and Food Safety, World Health Organisation, Geneva, Switzerland
| | - Vanessa Pike
- Global Technical Services, Nutrition International, Ottawa, Canada
- Canadian Foodgrains Bank, Winnipeg, Canada
| | - Prasanna Mithra
- Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Fiani D, Engler S, Fields S, Calarge CA. Iron Deficiency in Attention-Deficit Hyperactivity Disorder, Autism Spectrum Disorder, Internalizing and Externalizing Disorders, and Movement Disorders. Child Adolesc Psychiatr Clin N Am 2023; 32:451-467. [PMID: 37147046 DOI: 10.1016/j.chc.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article reviews the role of iron in brain development and function, with a focus on the association between iron deficiency (ID) and neuropsychiatric conditions. First, we describe how ID is defined and diagnosed. Second, the role of iron in brain development and function is summarized. Third, we review current findings implicating ID in a number of neuropsychiatric conditions in children and adolescents, including attention deficit hyperactivity disorder and other disruptive behavior disorders, depressive and anxiety disorders, autism spectrum disorder, movement disorders, and other situations relevant to mental health providers. Last, we discuss the impact of psychotropic medication on iron homeostasis.
Collapse
Affiliation(s)
- Dimitri Fiani
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 8080 N Stadium Dr. Ste 180.35, Houston, TX 77054, USA. https://twitter.com/dimitrifiani
| | - Solangia Engler
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sherecce Fields
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Chadi Albert Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 8080 N Stadium Dr. Ste 180.35, Houston, TX 77054, USA; Department of Pediatrics, Baylor College of Medicine, 1102 Bates Avenue, Ste 790, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Abbas M, Gandy K, Salas R, Devaraj S, Calarge CA. Iron deficiency and internalizing symptom severity in unmedicated adolescents: a pilot study. Psychol Med 2023; 53:2274-2284. [PMID: 34911595 DOI: 10.1017/s0033291721004098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iron plays a key role in a broad set of metabolic processes. Iron deficiency is the most common nutritional deficiency in the world, but its neuropsychiatric implications in adolescents have not been examined. METHODS Twelve- to 17-year-old unmedicated females with major depressive or anxiety disorders or with no psychopathology underwent a comprehensive psychiatric assessment for this pilot study. A T1-weighted magnetic resonance imaging scan was obtained, segmented using Freesurfer. Serum ferritin concentration (sF) was measured. Correlational analyses examined the association between body iron stores, psychiatric symptom severity, and basal ganglia volumes, accounting for confounding variables. RESULTS Forty females were enrolled, 73% having a major depressive and/or anxiety disorder, 35% with sF < 15 ng/mL, and 50% with sF < 20 ng/mL. Serum ferritin was inversely correlated with both anxiety and depressive symptom severity (r = -0.34, p < 0.04 and r = -0.30, p < 0.06, respectively). Participants with sF < 15 ng/mL exhibited more severe depressive and anxiety symptoms as did those with sF < 20 ng/mL. Moreover, after adjusting for age and total intracranial volume, sF was inversely associated with left caudate (Spearman's r = -0.46, p < 0.04), left putamen (r = -0.58, p < 0.005), and right putamen (r = -0.53, p < 0.01) volume. CONCLUSIONS Brain iron may become depleted at a sF concentration higher than the established threshold to diagnose iron deficiency (i.e. 15 ng/mL), potentially disrupting brain maturation and contributing to the emergence of internalizing disorders in adolescents.
Collapse
Affiliation(s)
- Malak Abbas
- The Rockefeller University, New York, NY 10065, USA
| | - Kellen Gandy
- St. Jude Children's Research Hospital, Houston, Texas 77027, USA
| | - Ramiro Salas
- Baylor College of Medicine - Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, Texas 77030, USA
| | | | - Chadi A Calarge
- Baylor College of Medicine - The Menninger Department of Psychiatry and Behavioral Sciences, 1102 Bates Ave, Suite 790, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Menstrual cycle affects iron homeostasis and hepcidin following interval running exercise in endurance-trained women. Eur J Appl Physiol 2022; 122:2683-2694. [PMID: 36129579 PMCID: PMC9613712 DOI: 10.1007/s00421-022-05048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Purpose Menstrual cycle phase affects resting hepcidin levels, but such effects on the hepcidin response to exercise are still unclear. Thus, we investigated the hepcidin response to running during three different menstrual cycle phases. Methods Twenty-one endurance-trained eumenorrheic women performed three identical interval running protocols during the early-follicular phase (EFP), late-follicular phase (LFP), and mid-luteal phase (MLP). The protocol consisted of 8 × 3 min bouts at 85% of the maximal aerobic speed, with 90-s recovery. Blood samples were collected pre-exercise and at 0 h, 3 h and 24 h post-exercise. Results Data presented as mean ± SD. Ferritin were lower in the EFP than the LFP (34.82 ± 16.44 vs 40.90 ± 23.91 ng/ml, p = 0.003), while iron and transferrin saturation were lower during the EFP (58.04 ± 19.70 µg/dl, 14.71 ± 5.47%) compared to the LFP (88.67 ± 36.38 µg/dl, 22.22 ± 9.54%; p < 0.001) and the MLP (80.20 ± 42.05 µg/dl, 19.87 ± 10.37%; p = 0.024 and p = 0.045, respectively). Hepcidin was not affected by menstrual cycle (p = 0.052) or menstrual cycle*time interaction (p = 0.075). However, when comparing hepcidin at 3 h post-exercise, a moderate and meaningful effect size showed that hepcidin was higher in the LFP compared to the EFP (3.01 ± 4.16 vs 1.26 ± 1.25 nMol/l; d = 0.57, CI = 0.07–1.08). No effect of time on hepcidin during the EFP was found either (p = 0.426). Conclusion The decrease in iron, ferritin and TSAT levels during the EFP may mislead the determination of iron status in eumenorrheic athletes. However, although the hepcidin response to exercise appears to be reduced in the EFP, it shows no clear differences between the phases of the menstrual cycle (clinicaltrials.gov: NCT04458662). Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-05048-5.
Collapse
|
8
|
Ahmad Fuzi SF, Su Peng L, Zabaha Zalbahar N, Ab. Manan N, Mohamad Alwi MN. Effect of vitamin D3-fortified fruit juice supplementation of 4000 IU daily on the recovery of iron status in childbearing-aged women with marginally low iron stores: Protocol for an 8-week, parallel group, double-blind randomized controlled trial. PLoS One 2022; 17:e0265772. [PMID: 35333885 PMCID: PMC8956161 DOI: 10.1371/journal.pone.0265772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In recent years, emerging evidence has highlighted the role of vitamin D as an iron absorption enhancer by suppressing hepcidin concentration, albeit with an unclear underlying mechanism. Dietary-based approach in improving iron status has been widely practised, however, there is a scarcity in randomized controlled trials (RCT) to elucidate the effect of vitamin D-fortified juice on iron status recovery. Therefore, this study aims to investigate the effect of an 8-week vitamin D3-fortified fruit juice supplementation on iron status indicators in childbearing-aged women with marginally low iron stores. METHODS In a placebo-controlled, double-blind, RCT, a total of 120 women aged between 19-40 with serum ferritin < 20 μg/l and fulfilled the eligibility criteria will be randomized into consuming either vitamin D3-fortified fruit juices containing 4000 IU (100 mcg) (vitamin D) or placebo-fruit juices (placebo) daily for eight weeks. At every 4-week interval, 10 ml fasting blood sample, information on dietary habit and anthropometric measurement will be collected. A mixed model repeated-measures analysis of variance will be performed to determine the effect of the intervention and the interaction with time points for all iron and vitamin D status blood biomarkers. DISCUSSION Vitamin D supplementation in food fortification as a novel iron absorption enhancer might be a future and relevant alternative management of iron deficiency as opposed to the oral iron therapy that has poor adherence. TRIAL REGISTRATION Clinicaltrials.gov: registration number NCT04618289, registration date October 28, 2020, protocol ID JKEUPM-2020-033.
Collapse
Affiliation(s)
- Salma Faeza Ahmad Fuzi
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Loh Su Peng
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurzalinda Zabaha Zalbahar
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhafizah Ab. Manan
- Department of Public Health, Faculty of Medicine, Cyberjaya University College of Medical Sciences, Cyberjaya, Selangor, Malaysia
| | | |
Collapse
|
9
|
Sustained Exposure to High Carbohydrate Availability Does Not Influence Iron-Regulatory Responses in Elite Endurance Athletes. Int J Sport Nutr Exerc Metab 2021; 31:101-108. [PMID: 33383570 DOI: 10.1123/ijsnem.2020-0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022]
Abstract
This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17-23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.
Collapse
|
10
|
Giersch GEW, Charkoudian N, McClung HL. The Rise of the Female Warfighter: Physiology, Performance, and Future Directions. Med Sci Sports Exerc 2021; 54:683-691. [PMID: 34939610 DOI: 10.1249/mss.0000000000002840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Since 1948, the United States military has been open to both men and women as permanent party service members. However, in the majority of the time since, there have been a subset of military occupational specialties (MOS), or job descriptions, open only to men. In particular, jobs requiring more intense physical and/or environmental strain were considered to be beyond the physiological capabilities of women. In the present analysis, we review the literature regarding neuromuscular, physical performance, and environmental physiology in women, to highlight that women have no inherent limitation in their capacity to participate in relevant roles and jobs within the military, within accepted guidelines to promote risk mitigation across sexes. First, we discuss performance and injury risk: both neuromuscular function and physical capabilities. Second, physiological responses to environmental stress. Third, we discuss risk as it relates to reproductive health and nutritional considerations. We conclude with a summary of current physiological, performance and injury risk data in men and women that support our overarching purpose, as well as suggestions for future directions.
Collapse
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, MA Biophysical and Biomedical Modeling Division, United States Army Research Institute of Environmental Medicine, Natick, MA Oak Ridge Institute for Science and Technology, Oak Ridge, TN
| | | | | |
Collapse
|
11
|
Behzadnezhad N, Esfarjani F, Marandi SM. Impact of resistance training and basic ferritin on hepcidin, iron status and some inflammatory markers in overweight/obese girls. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:95. [PMID: 34899933 PMCID: PMC8607182 DOI: 10.4103/jrms.jrms_511_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/02/2020] [Accepted: 05/12/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Exercise can reduce hepcidin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 and improve the iron status, but the intensity of exercises is very important. This study will compare the effect of resistance training (RT) intensity on hepcidin levels, iron status, and inflammatory markers in overweight/obese girls with and without iron stores deficient. MATERIALS AND METHODS In this quasi-experimental study, 40 students of the University of Isfahan (18-22-year old, with 35 > body mass index [BMI] ≥25) voluntarily participated in the study. Participants were divided into two groups with 20 participants, based on serum ferritin (>30 ng/ml or ≤30 ng/ml). Participants in each group were randomly and equally assigned to one of the moderate or high-intensity training groups. RT was performed 8 weeks, 4 days a week, and each session for 1 h, with an elastic band. The iron levels, hepcidin, total iron-binding capacity, ferritin, hemoglobin, TNF-α, and IL-6 before and after intervention were collected with the blood samples. Two-way analysis of variance was used to assess the impact of exercise and ferritin level and their interaction, and the paired test was utilized for test changes from baseline. RESULTS There are no significant interactions between ferritin levels and exercise intensity for the main outcomes (all P > 0.05). The significant impact of the mode of exercise was observed in TNF-α (P < 0.05), and a significant difference between low and high levels of ferritin was observed in hepcidin (P = 0.002). Besides, in all four groups, significant decreases were observed in BMI (28.00 ± 3.00 to 27.00 ± 3.00), hepcidin (1234.02 ± 467.00 to 962.06 ± 254.00), and TNF-α (223.00 ± 99.00 to 174.00 ± 77.00) compared to the baseline measurements (all P < 0.05). CONCLUSION Basal ferritin levels appear to be effective on hepcidin levels, TNF-α, and IL-6 after the intervention. RT with two different intense can reduce BMI, hepcidin, ferritin, and TNF-α in all groups. It seems that performing RT reduces inflammation and hepcidin in obese/overweight participants with different iron stores.
Collapse
Affiliation(s)
- Nasim Behzadnezhad
- Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Fahimeh Esfarjani
- Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
12
|
Alfaro-Magallanes VM, Benito PJ, Rael B, Barba-Moreno L, Romero-Parra N, Cupeiro R, Swinkels DW, Laarakkers CM, Peinado AB. Menopause Delays the Typical Recovery of Pre-Exercise Hepcidin Levels after High-Intensity Interval Running Exercise in Endurance-Trained Women. Nutrients 2020; 12:nu12123866. [PMID: 33348847 PMCID: PMC7766833 DOI: 10.3390/nu12123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Menopause commonly presents the gradual accumulation of iron in the body over the years, which is a risk factor for diseases such as cancer, osteoporosis, or cardiovascular diseases. Running exercise is known to acutely increase hepcidin levels, which reduces iron absorption and recycling. As this fact has not been studied in postmenopausal women, this study investigated the hepcidin response to running exercise in this population. Thirteen endurance-trained postmenopausal women (age: 51.5 ± 3.89 years; height: 161.8 ± 4.9 cm; body mass: 55.9 ± 3.6 kg; body fat: 24.7 ± 4.2%; peak oxygen consumption: 42.4 ± 4.0 mL·min-1·kg-1) performed a high-intensity interval running protocol, which consisted of 8 × 3 min bouts at 85% of the maximal aerobic speed with 90-second recovery. Blood samples were collected pre-exercise, 0, 3, and 24 hours post-exercise. As expected, hepcidin exhibited higher values at 3 hours post-exercise (3.69 ± 3.38 nmol/L), but also at 24 hours post-exercise (3.25 ± 3.61 nmol/L), in comparison with pre-exercise (1.77 ± 1.74 nmol/L; p = 0.023 and p = 0.020, respectively) and 0 hour post-exercise (2.05 ± 2.00 nmol/L; p = 0.021 and p = 0.032, respectively) concentrations. These differences were preceded by a significant increment of interleukin-6 at 0 hour post-exercise (3.41 ± 1.60 pg/mL) compared to pre-exercise (1.65 ± 0.48 pg/m, p = 0.003), 3 hours (1.50 ± 0.00 pg/mL, p = 0.002) and 24 hours post-exercise (1.52 ± 0.07 pg/mL, p = 0.001). Hepcidin peaked at 3 hours post-exercise as the literature described for premenopausal women but does not seem to be fully recovered to pre-exercise levels within 24 hours post-exercise, as it would be expected. This suggests a slower recovery of basal hepcidin levels in postmenopausal women, suggesting interesting applications in order to modify iron homeostasis as appropriate, such as the prevention of iron accumulation or proper timing of iron supplementation.
Collapse
Affiliation(s)
- Víctor M. Alfaro-Magallanes
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Pedro J. Benito
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
- Correspondence: ; Tel.: +34-910-677-866
| | - Beatriz Rael
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Laura Barba-Moreno
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Nuria Romero-Parra
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Dorine W. Swinkels
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Coby M. Laarakkers
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Ana B. Peinado
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | | |
Collapse
|
13
|
McClung HL, Armstrong NJ, Hennigar SR, Staab JS, Montain SJ, Karl J. Randomized Trial Comparing Consumption of Military Rations to Usual Intake for 21 Consecutive Days: Nutrient Adequacy and Indicators of Health Status. J Acad Nutr Diet 2020; 120:1791-1804. [DOI: 10.1016/j.jand.2020.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
|
14
|
O'Leary TJ, Wardle SL, Greeves JP. Energy Deficiency in Soldiers: The Risk of the Athlete Triad and Relative Energy Deficiency in Sport Syndromes in the Military. Front Nutr 2020; 7:142. [PMID: 32984399 PMCID: PMC7477333 DOI: 10.3389/fnut.2020.00142] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Military personnel experience energy deficit (total energy expenditure higher than energy intake), particularly during combat training and field exercises where exercising energy expenditures are high and energy intake is reduced. Low energy availability (energy intake minus exercising energy expenditure expressed relative to fat free mass) impairs endocrine function and bone health, as recognized in female athletes as the Female Athlete Triad syndrome. More recently, the Relative Energy Deficiency in Sport (RED-S) syndrome encompasses broader health outcomes, physical and cognitive performance, non-athletes, and men. This review summarizes the evidence for the effect of low energy availability and energy deficiency in military training and operations on health and performance outcomes. Energy availability is difficult to measure in free-living individuals but doubly labeled water studies demonstrate high total energy expenditures during military training; studies that have concurrently measured energy intake, or measured body composition changes with DXA, suggest severe and/or prolonged energy deficits. Military training in energy deficit disturbs endocrine and metabolic function, menstrual function, bone health, immune function, gastrointestinal health, iron status, mood, and physical and cognitive performance. There are more data for men than women, and little evidence on the chronic effects of repeated exposures to energy deficit. Military training impairs indices of health and performance, indicative of the Triad and RED-S, but the multi-stressor environment makes it difficult to isolate the independent effects of energy deficiency. Studies supplementing with energy to attenuate the energy deficit suggest an independent effect of energy deficiency in the disturbances to metabolic, endocrine and immune function, and physical performance, but randomized controlled trials are lacking.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Sophie L Wardle
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, UCL, London, United Kingdom
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, United Kingdom.,Division of Surgery and Interventional Science, UCL, London, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
15
|
Rauf A, Shariati MA, Khalil AA, Bawazeer S, Heydari M, Plygun S, Laishevtcev A, Hussain MB, Alhumaydhi FA, Aljohani ASM. Hepcidin, an overview of biochemical and clinical properties. Steroids 2020; 160:108661. [PMID: 32450084 DOI: 10.1016/j.steroids.2020.108661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Hepcidin is a peptide hormone which helps in regulating iron homeostasis in the human body. Iron obtained from daily diet is passed through the intestinal enterocyte apical membrane via divalent metal transporter 1 (DMT1), which is either stored as ferritin or moved into the plasma by hepcidin-ferroportin (Fpn) as an exporter. Hepcidin (hepatic bactericidal protein) is a cysteine rich peptide, was initially identified as a urinary antimicrobial peptide. It contains 25 amino acids and four disulfide bridges. It has significant role in regulation of iron in the body. Stimulation of iron in plasma and further its storage is linked with the production of hepcidin. This enhancement of iron hampers the absorption of iron from the diet. The cause of hereditary recessive anemia also known as Iron-refractory iron deficiency anemia (IRIDA) is characterized by increased hepcidin production due to a gene mutation in the suppressor matriptase-2/TMPRSS6. During infection, hepcidin plays a defensive role against various infections by depleting the extracellular iron from the body. Moreover, hepcidin lowers the concentrations of iron from the duodenal enterocytes, macrophages and also decrease its transport across the placenta.This review highlights the significant role of hepcidin in the iron homeostasis and as an antimicrobial agent.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026 Orel, Russia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Sciences, Shiraz, Iran
| | - Sergey Plygun
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026 Orel, Russia; European Society of Clinical Microbiology and Infectious Diseases, Basel 4051, Switzerland; Russian Research Institute of Phytopathology, Moscow Region 143050, Russia
| | - Alexy Laishevtcev
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026 Orel, Russia; Federal Research Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow 109428, Russia
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
16
|
Mayer C, Barker MK, Dirk P, Moore KM, McCrudden E, Karakochuk CD. Menstrual blood losses and body mass index are associated with serum ferritin concentrations among female varsity athletes. Appl Physiol Nutr Metab 2019; 45:723-730. [PMID: 31869248 DOI: 10.1139/apnm-2019-0436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preventing and treating iron deficiency are important components in the nutritional care of female varsity athletes, as these interventions may improve aerobic endurance and athletic performance. We examined the factors associated with ferritin concentration in 30 female varsity athletes (18-30 years) at the University of British Columbia in Vancouver, Canada. Biochemical indicators of iron and inflammation status, dietary intake, supplementation practices, weight, height, and menstrual blood losses were assessed. Iron deficiency prevalence was 20% (n = 6/30; inflammation-adjusted ferritin <15 μg/L). Multiple linear regression was used to assess the associations of a number of independent explanatory variables with log-transformed serum ferritin (μg/L) as the continuous outcome variable. A 1-unit increase in body mass index (BMI; kg/m2) was associated with 22% (95% CI: 9%-37%) higher mean ferritin concentrations, and a 1-point increase in menstrual loss score was associated with 1% (95% CI: 1%-2%) lower ferritin concentrations. Hemoglobin and hepcidin concentrations, inflammation biomarkers, consumption of iron supplements in any form or dose for ≥3 days/week, and age were not significantly associated with ferritin concentrations in the final adjusted model. Novelty Estimated monthly menstrual losses and BMI were associated with serum ferritin concentrations in female athletes in our study. These are easy-to-measure, noninvasive measurements that should be considered in the assessment of risk of iron deficiency in female athletes.
Collapse
Affiliation(s)
- Cara Mayer
- Food, Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.,British Columbia Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Mikaela K Barker
- Food, Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.,British Columbia Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Payge Dirk
- Food, Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kelsey M Moore
- Food, Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Emma McCrudden
- School of Kinesiology, Faculty of Education, University of British Columbia, 6081 University Boulevard, Vancouver, BC V6T 1Z1, Canada
| | - Crystal D Karakochuk
- Food, Nutrition and Health, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.,British Columbia Children's Hospital Research Institute, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
17
|
Khlif R, Marrakchi R, Jamoussi K, Sahnoun Z, Chtourou H, Souissi N. Plasma iron status in elite weightlifters after four weeks of intensive training. Sci Sports 2019. [DOI: 10.1016/j.scispo.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Gwin JA, Karl JP, Lutz LJ, Gaffney-Stomberg E, McClung JP, Pasiakos SM. Higher Protein Density Diets Are Associated With Greater Diet Quality and Micronutrient Intake in Healthy Young Adults. Front Nutr 2019; 6:59. [PMID: 31134205 PMCID: PMC6514148 DOI: 10.3389/fnut.2019.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Objective: This study characterized habitual dietary protein intake in healthy young adults entering military service and explored whether diet protein density is associated with diet quality and micronutrient intake. Methods: An FFQ was used to estimate habitual dietary intake and calculate HEI scores in 276 males [mean(SD), age:21.1y(3.8)] and 254 females [age:21.2y(3.7)]. Multivariate-adjusted MANCOVA and ANCOVA models were used to identify associations between protein density quartiles and HEI scores and micronutrient intake. Higher HEI components scores for sodium, refined grains, and empty calories indicate lower intake; higher scores for all other components indicate higher intakes. Results: Mean(SD) energy-adjusted protein intakes were 29.3(3.2), 36.0(1.4), 40.8(1.3), and 47.9(3.9) g/1,000 kcal for protein density quartiles 1-4, respectively. For males, empty calorie scores as well as dark green and orange vegetable scores were higher in quartiles 3 and 4 than 1 and 2 (all, p < 0.05). Scores for total vegetable, dairy, and total protein foods were lower in quartile 1 vs. quartiles 2, 3, and 4 (all, p < 0.05). Sodium scores decreased as quartiles increased (p < 0.001). Total HEI, fruit, whole grains, seafood and plant protein, fatty acids, and refined grain scores did not differ. For females, total HEI, vegetable, and total protein foods scores were higher in quartiles 3 and 4 than 1 and 2 (all, p < 0.05). Empty calorie scores increased as quartile increased (p < 0.05). Dairy scores were higher in quartiles 2, 3, and 4 than 1 (p < 0.05). Whole fruit scores were lowest in quartile 1 (p < 0.05). Whole grain as well as seafood and plant protein scores were higher in quartile 4 vs. 1 (both, p < 0.05). Sodium scores decreased as quartile increased (p < 0.001). Fatty acids scores did not differ. For males and females, micronutrient intakes progressively increased across quartiles with the exception of calcium and vitamin C, (all, p < 0.05). Intakes remained nearly the same when controlled for fruit and vegetable intake. Conclusion: These cross-sectional data suggest that habitually consuming a higher protein density diet is associated with better scores for some, but not all, diet quality components in males, better overall diet quality scores in females, and greater intakes of micronutrients in both male and female healthy, young adults entering military service.
Collapse
Affiliation(s)
- Jess A Gwin
- Oak Ridge Institute for Science and Education Supporting the Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA, United States.,Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - J Philip Karl
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Laura J Lutz
- Military Performance Division of the US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Erin Gaffney-Stomberg
- Military Performance Division of the US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - James P McClung
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Stefan M Pasiakos
- Military Nutrition Division of the US Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
19
|
Iron status and associations with physical performance during basic combat training in female New Zealand Army recruits. Br J Nutr 2019; 121:887-893. [PMID: 30862317 DOI: 10.1017/s0007114519000199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Decreases in Fe status have been reported in military women during initial training periods of 8-10 weeks. The present study aimed to characterise Fe status and associations with physical performance in female New Zealand Army recruits during a 16-week basic combat training (BCT) course. Fe status indicators - Hb, serum ferritin (sFer), soluble transferrin receptor (sTfR), transferrin saturation (TS) and erythrocyte distribution width (RDW) - were assessed at the beginning (baseline) and end of BCT in seventy-six volunteers without Fe-deficiency non-anaemia (sFer 10 mg/l at baseline or end. A timed 2·4 km run followed by maximum press-ups were performed at baseline and midpoint (week 8) to assess physical performance. Changes in Fe status were investigated using paired t tests and associations between Fe status and physical performance evaluated using Pearson correlation coefficients. sFer (56·6 (sd 33·7) v. 38·4 (sd 23·8) µg/l) and TS (38·8 (sd 13·9) v. 34·4 (sd 11·5) %) decreased (P<0·001 and P=0·014, respectively), while sTfR (1·21 (sd 0·27) v. 1·39 (sd 0·35) mg/l) and RDW (12·8 (sd 0·6) v. 13·2 (sd 0·7) %) increased (P<0·001) from baseline to end. Hb (140·6 (sd 7·5) v. 142·9 (sd 7·9) g/l) increased (P=0·009) during BCT. At end, sTfR was positively (r 0·29, P=0·012) and TS inversely associated (r -0·32, P=0·005) with midpoint run time. There were no significant correlations between Fe status and press-ups. Storage and functional Fe parameters indicated a decline in Fe status in female recruits during BCT. Correlations between tissue-Fe indicators and run times suggest impaired aerobic fitness. Optimal Fe status appears paramount for enabling success in female recruits during military training.
Collapse
|
20
|
Vitamin D3 supplementation for 8 weeks leads to improved haematological status following the consumption of an iron-fortified breakfast cereal: a double-blind randomised controlled trial in iron-deficient women. Br J Nutr 2019; 121:1146-1157. [PMID: 30819262 DOI: 10.1017/s0007114519000412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effect of 38 µg (1500 IU) daily vitamin D3 supplementation, consumed with an Fe-fortified breakfast cereal for 8 weeks, on haematological indicators in Fe-deficient female subjects was investigated. Fifty Fe-deficient subjects (plasma ferritin concentration <20 µg/l; mean age: 27·4 (sd 9·4) years) were randomised to consume an Fe-fortified breakfast cereal containing 9 mg of Fe daily, with either a vitamin D3 supplement or placebo. Blood samples were collected at baseline, interim (4 weeks) and post-intervention (8 weeks) for measurement of Fe and vitamin D status biomarkers. The effect of intervention was analysed using mixed-model repeated-measures ANOVA. Significant increases were observed in two main haematological indices: Hb concentration and haematocrit level from baseline to post-intervention in the vitamin D group but not in the placebo group. The increase from baseline to post-intervention in Hb concentration in the vitamin D group (135 (sd 11) to 138 (sd 10) g/l) was significantly higher compared with the placebo group (131 (sd 15) to 128 (sd 13) g/l) (P=0·037). The increase in haematocrit level from baseline to post-intervention was also significantly higher in the vitamin D group (42·0 (sd 3·0) to 43·8 (sd 3·4) %) compared with the placebo group (41·2 (sd 4·3) to 40·7 (sd 3·6) %) (P=0·032). Despite the non-significant changes in plasma ferritin concentration, this study demonstrates that 38 µg supplemental vitamin D, consumed daily, with Fe-fortified breakfast cereal led to improvement in Hb concentration and haematocrit levels in women with low Fe stores. These findings may have therapeutic implications in the recovery of Fe status in Fe-deficient populations at a healthcare level.
Collapse
|
21
|
McKay AKA, Peeling P, Pyne DB, Welvaert M, Tee N, Leckey JJ, Sharma AP, Ross MLR, Garvican-Lewis LA, van Swelm RPL, Laarakkers CM, Burke LM. Acute carbohydrate ingestion does not influence the post-exercise iron-regulatory response in elite keto-adapted race walkers. J Sci Med Sport 2019; 22:635-640. [PMID: 30630742 DOI: 10.1016/j.jsams.2018.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 12/29/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Adhering to a low carbohydrate (CHO) high fat (LCHF) diet can alter markers of iron metabolism in endurance athletes. This investigation examined the re-introduction of CHO prior to, and during exercise on the iron-regulatory response to exercise in a homogenous (in regard to serum ferritin concentration) group of athletes adapted to a LCHF diet. DESIGN Parallel groups design. METHODS Three weeks prior to the exercise trials, twenty-three elite race walkers adhered to either a CHO-rich (n=14) or LCHF diet (n=9). A standardised 19-25km race walk was performed while athletes were still adhering to their allocated dietary intervention (Adapt). A second test was performed three days later, where all athletes were placed on a high CHO diet (CHO Restoration). Venous blood samples were collected pre-, post- and 3h post-exercise and measured for interleukin-6 (IL-6) and hepcidin-25. RESULTS The post-exercise IL-6 increase was greater in LCHF (p<0.001) during both the Adapt (LCHF: 13.1-fold increase; 95% CI: 5.6-23.0, CHO: 8.0-fold increase; 5.1-11.1) and CHO Restoration trials (LCHF: 18.5-fold increase; 10.9-28.9, CHO: 6.3-fold increase; 3.9-9.5); outcomes were not different between trials (p=0.84). Hepcidin-25 concentrations increased 3h post-exercise (p<0.001), however, they did not differ between trials (p=0.46) or diets (p=0.84). CONCLUSIONS The elevated IL-6 response in athletes adapted to a LCHF diet was not attenuated by an acute increase in exogenous CHO availability. Despite diet-induced differences in IL-6 response to exercise, post-exercise hepcidin levels were similar between diets and trials, indicating CHO availability has minimal influence on post-exercise iron metabolism.
Collapse
Affiliation(s)
- Alannah K A McKay
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Australia; Australian Institute of Sport, Australia; Western Australian Institute of Sport, Australia.
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Australia; Western Australian Institute of Sport, Australia
| | - David B Pyne
- Australian Institute of Sport, Australia; Research Institute for Sport and Exercise, University of Canberra, Australia
| | - Marijke Welvaert
- Australian Institute of Sport, Australia; Research Institute for Sport and Exercise, University of Canberra, Australia
| | | | - Jill J Leckey
- Mary MacKillop Institute for Health Research, Australian Catholic University, Australia
| | - Avish P Sharma
- Australian Institute of Sport, Australia; Research Institute for Sport and Exercise, University of Canberra, Australia
| | - Megan L R Ross
- Australian Institute of Sport, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Australia
| | - Laura A Garvican-Lewis
- Australian Institute of Sport, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Australia
| | - Rachel P L van Swelm
- Department of Laboratory Medicine (TML 830), Radboud University Medical Center, The Netherlands; Hepcidinanalysis.com, The Netherlands
| | - Coby M Laarakkers
- Department of Laboratory Medicine (TML 830), Radboud University Medical Center, The Netherlands; Hepcidinanalysis.com, The Netherlands
| | - Louise M Burke
- Australian Institute of Sport, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Australia
| |
Collapse
|
22
|
Predictors of Intravenous Immunoglobulin Nonresponse and Racial Disparities in Kawasaki Disease. Pediatr Infect Dis J 2018; 37:1227-1234. [PMID: 29570178 DOI: 10.1097/inf.0000000000002019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Kawasaki disease (KD) is the most common cause of acquired heart disease in American children. Intravenous immunoglobulin (IVIG) nonresponse is a known risk factor for cardiac sequelae. Previously reported risk factors for nonresponse include age, male sex and laboratory abnormalities. We set out to identify additional risk factors for IVIG nonresponse in a racially diverse KD population. METHODS We conducted a retrospective chart review at a referral center in the Southeastern United States of children meeting ICD-9 (International Statistical Classification of Disease and Related Health Problems) criteria for KD and being treated with IVIG. RESULTS Four-hundred and fifty-nine children met inclusion criteria, 67 were excluded for subsequent rheumatologic diagnosis, unknown race, or failure to meet the American Heart Association guideline criteria. Our final cohort consisted of 392 subjects, with median age of 2.7 years, 65.1% male, 66.1% White, 24.2% Black, 4.9% Asian and 82.9% responded to a single dose of IVIG. Coronary ectasia or aneurysm developed in 27%; 7.4% developed aneurysms and 2.3% giant coronary aneurysms. Nonresponders were more likely to be Black, have higher white blood cell, erythrocyte sedimentation rate and C-reactive protein, lower hemoglobin, develop ectasia or aneurysm and require critical care and hospital readmission. Responders achieved echocardiographic normalization more often compared with nonresponders (81.3% vs. 60.9%, P = 0.002) and coronary artery pseudonormalization (87.2% vs. 69.7%, P = 0.03) at 1 year. Black nonresponders had the slowest normalization at 1 year (52.9%, P = 0.02). CONCLUSIONS Nonresponders have higher rates and greater severity of coronary involvement than responders. Our study uniquely demonstrates Black race as a risk factor for nonresponse and for delayed normalization of cardiac involvement at 1-year follow-up.
Collapse
|
23
|
Lutz LJ, Nakayama AT, Karl JP, McClung JP, Gaffney-Stomberg E. Serum and Erythrocyte Biomarkers of Nutrient Status Correlate with Short-Term Α-Carotene, Β-Carotene, Folate, and Vegetable Intakes Estimated by Food Frequency Questionnaire in Military Recruits. J Am Coll Nutr 2018; 38:171-178. [PMID: 30398960 DOI: 10.1080/07315724.2018.1490215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Food frequency questionnaires (FFQs) estimate habitual dietary intake and require evaluation in populations of interest in order to determine accuracy. Thus, the purpose of this study was to determine agreement between circulating biomarkers and FFQ estimated dietary intake in a military population consuming all meals in a dining facility over 12 weeks. METHODS 2014 Block FFQs were administered and fasted blood samples were drawn to assess nutritional biomarkers at the end of a 12-week training period in male (n = 141) and female (n = 125) Marine recruits undergoing initial military training. FFQ estimates of alpha- and beta-carotene, folate, and fruit and vegetable intake and circulating concentrations of serum alpha- and beta-carotene and serum and erythrocyte folate were measured. Partial correlations were used in the full model, and weighted kappa coefficients were used to determine agreement between ranking quartiles of dietary intake estimates with corresponding biomarker status quartiles. RESULTS Serum and dietary intake of alpha-carotene were positively associated in males (p = 0.009) and females (p < 0.001), as was serum and intake of beta-carotene (males, p = 0.002; females, p < 0.001). Alpha-carotene was positively associated with vegetable intake in males (p = 0.02) and beta-carotene with vegetable intake in females (p = 0.003). Serum folate in males (p = 0.002) and erythrocyte folate in females (p = 0.02) were associated with dietary folate intake. In females, the relationships between biomarker and dietary estimates yielded significant kappa coefficients. In males, a significant kappa coefficient was observed for erythrocyte folate and dietary intake of folate only. The kappa coefficient for serum and estimated intake of beta-carotene was not significant in males. CONCLUSION Twelve-week habitual intake of alpha-and beta-carotene and folate were correlated with circulating biomarkers in a military training population. The 2014 Block FFQ was able to accurately rank females into quartiles of nutrient status based on intake, while males were ranked less accurately than females.
Collapse
Affiliation(s)
- Laura J Lutz
- a Military Nutrition Division of the US Army Research Institute of Environmental Medicine , Natick , MA , USA
| | - Anna T Nakayama
- b Oak Ridge Institute for Science and Education supporting the Military Performance Division of the US Army Research Institute of Environmental Medicine , Natick , MA , USA
| | - J Philip Karl
- a Military Nutrition Division of the US Army Research Institute of Environmental Medicine , Natick , MA , USA
| | - James P McClung
- a Military Nutrition Division of the US Army Research Institute of Environmental Medicine , Natick , MA , USA
| | - Erin Gaffney-Stomberg
- c Military Performance Division of the US Army Research Institute of Environmental Medicine , Natick , MA , USA
| |
Collapse
|
24
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
25
|
Lutz LJ, Gaffney-Stomberg E, Karl JP, Hughes JM, Guerriere KI, McClung JP. Dietary Intake in Relation to Military Dietary Reference Values During Army Basic Combat Training; a Multi-center, Cross-sectional Study. Mil Med 2018; 184:e223-e230. [DOI: 10.1093/milmed/usy153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/22/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laura J Lutz
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA
| | - Erin Gaffney-Stomberg
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA
| | - J Philip Karl
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA
| | - Julie M Hughes
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA
| | - Katelyn I Guerriere
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA
| | - James P McClung
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, MA
| |
Collapse
|
26
|
Knapik JJ, Sharp MA, Steelman RA. Secular Trends in the Physical Fitness of United States Army Recruits on Entry to Service, 1975-2013. J Strength Cond Res 2017; 31:2030-2052. [PMID: 28403029 DOI: 10.1519/jsc.0000000000001928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knapik, JJ, Sharp, MA, and Steelman, RA. Secular trends in the physical fitness of United States Army recruits on entry to service, 1975-2013. J Strength Cond Res 31(7): 2030-2052, 2017-A systematic literature search was conducted to identify and analyze articles that reported on physical fitness of new US Army recruits. The National Library of Medicine's PubMed and the Defense Technical Information Center were searched using the keywords (military personnel OR trainee OR recruit OR soldier) AND (physical fitness OR strength OR endurance OR flexibility OR balance OR coordination OR muscle contraction OR running OR exercise OR physical conditioning). Reference lists of obtained articles and contact with authors enhanced the search. Studies were selected if they involved recruits in Basic Combat Training or One-Station Unit Training, provided a quantitative assessment of at least one fitness measure, and the fitness measure(s) were obtained early in training. Average values for each fitness measure were obtained, plotted by the year of data collection, and fitted to linear regression models (fitness measure × year). Fifty-three articles met the review criteria. Regression analysis indicated little temporal change in height, but body weight, body mass index, body fat, and fat-free mass increased over time. Limited V[Combining Dot Above]O2max data suggested no temporal change in male recruits, but those in female recruits V[Combining Dot Above]O2max seem to have slightly improved. Apparently contradicting the V[Combining Dot Above]O2max findings, performance on endurance runs (1- and 2-mile) declined, possibly because of the increase in body weight. Muscular endurance (push-ups, sit-ups) demonstrated little systematic change over time. Limited but multiple measures of muscular strength suggest a temporal increase in strength. Specific components of US Army recruit fitness seem to have changed over time.
Collapse
Affiliation(s)
- Joseph J Knapik
- 1US Army Research Institute of Environmental Medicine, Natick, Massachusetts; 2US Army Public Health Center, Aberdeen Proving Ground, Maryland; 3Oak Ridge Institute for Science and Education, Belcamp, Maryland; and 4Defense Health Agency, Falls Church, Virginia
| | | | | |
Collapse
|
27
|
Pompano LM, Haas JD. Efficacy of iron supplementation may be misinterpreted using conventional measures of iron status in iron-depleted, nonanemic women undergoing aerobic exercise training. Am J Clin Nutr 2017; 106:1529-1538. [PMID: 29092885 DOI: 10.3945/ajcn.117.152777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/05/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Despite its known detrimental effects, iron deficiency remains the most common micronutrient deficiency in the world. Many interventions that aim to improve iron status involve physically active populations. Intense aerobic exercise training negatively affects iron status; however, the impact of regular moderate aerobic exercise on the effectiveness of iron supplementation remains unclear.Objective: This study aimed to determine whether aerobic training modifies the assessment of the effectiveness of iron supplementation in improving conventional iron status measures.Design: Seventy-two iron-depleted, nonanemic Chinese women [serum ferritin (sFer) <25 μg/L and hemoglobin >110 g/L] were included in an 8-wk, partially blinded, randomized controlled trial with a 2 × 2 factorial design including iron supplements (42 mg elemental Fe/d) or placebo and aerobic training (five 25-min sessions/wk at 75-85% of maximum heart rate) or no training. Linear mixed models were used to evaluate the relation between supplement type, training, and changes in iron status over time, measured by sFer, hemoglobin, soluble transferrin receptor (sTfR), and estimated total body iron.Results: After treatment, both the iron-supplemented trained and untrained groups showed significantly improved sFer, sTfR, and body iron values compared with either of the placebo groups. Similarly, trained participants had significantly higher aerobic fitness measures than untrained participants. Training modified the sFer response to supplementation (training by supplement interaction, P = 0.07), with the iron-supplemented trained group having significantly lower sFer than the iron-supplemented untrained group at week 8 (mean ± SD: 31.8 ± 13.5 and 47.6 ± 15.7 μg/L, respectively; P = 0.042), whereas there was no significant difference between the placebo trained and untrained groups (21.3 ± 12.2 and 20.3 ± 7.0 μg/L, respectively; P = 1.00).Conclusions: Regular aerobic training reduces the apparent effectiveness of iron supplementation in improving sFer and calls into question whether conventional measures of iron status accurately reflect iron metabolism in physically active, nonanemic women. This trial was registered at clinicaltrials.gov as NCT03002090.
Collapse
Affiliation(s)
- Laura M Pompano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Jere D Haas
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| |
Collapse
|
28
|
Vieyra-Reyes P, Oros-Pantoja R, Torres-García E, Gutiérrez-Ruiz A, Pérez-Honorato J. 67Ga as a biosensor of iron needs in different organs: Study performed on male and female rats subjected to iron deficiency and exercise. J Trace Elem Med Biol 2017; 44:93-98. [PMID: 28965608 DOI: 10.1016/j.jtemb.2017.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 06/24/2017] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to determine the iron needs in different organs and tissues using 67Ga as a biosensor in males and females rats subjected to iron deficiency (ID) and voluntary exercise (EX). 67Ga citrate was injected i.p. to female and male Wistar rats (n=5/sex/group). Groups: Control (sedentary conditions), Control+EX, ID and ID+EX. To determine the 67Ga uptake, samples from the following regions of interest (ROIs) were extracted 12h post-injection: blood, liver, gonads, bone marrow, heart, adrenal glands, skeletal muscle, stomach, kidney, eyeball, sciatic nerve, small intestine and peritoneum. The total 67Ga uptake was 412% higher in ID subjects than in control subjects, being 1011% higher in ID-males than ID-females. In ID-females, the ROIs with the greater 67Ga uptake were blood, kidney and bone marrow, while in ID-males they were sciatic nerve, eyeball and adrenals, which demonstrates that the biodistribution differed between sexes in sedentary conditions but when subjected to EX, the biodistribution was similar in each sex group although females had a greater 67Ga uptake. In ID+EX subjects, the ROIs that showed the highest uptake were sciatic nerve, eyeball and adrenal glands. Using 67Ga as a biosensor, it is possible to identify the needs of iron that each organ requires to perform their functions in normal physiological conditions. In addition, a higher or lower 67Ga uptake in a specific organ may indicate its malfunction or show damage.
Collapse
Affiliation(s)
- Patricia Vieyra-Reyes
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N esquina Jesús Carranza, Colonia Moderna de la Cruz, 50180 Toluca, Estado de México, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N esquina Jesús Carranza, Colonia Moderna de la Cruz, 50180 Toluca, Estado de México, Mexico
| | - Eugenio Torres-García
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N esquina Jesús Carranza, Colonia Moderna de la Cruz, 50180 Toluca, Estado de México, Mexico.
| | - Agustín Gutiérrez-Ruiz
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N esquina Jesús Carranza, Colonia Moderna de la Cruz, 50180 Toluca, Estado de México, Mexico
| | - Jonathan Pérez-Honorato
- Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan S/N esquina Jesús Carranza, Colonia Moderna de la Cruz, 50180 Toluca, Estado de México, Mexico
| |
Collapse
|
29
|
Goto K, Sumi D, Kojima C, Ishibashi A. Post-exercise serum hepcidin levels were unaffected by hypoxic exposure during prolonged exercise sessions. PLoS One 2017; 12:e0183629. [PMID: 28829838 PMCID: PMC5567555 DOI: 10.1371/journal.pone.0183629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/30/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study was to determine the influence of hypoxic exposure during prolonged endurance exercise sessions (79 min in total) on post-exercise hepcidin levels in trained male endurance athletes. Ten endurance athletes (mean ± standard deviation; height: 169.8 ± 7.1 cm, weight: 57.1 ± 5.0 kg) conducted two endurance exercise sessions under either a normobaric hypoxic condition [inspired O2 fraction (FiO2) = 14.5%] or a normoxic condition (FiO2 = 20.9%). Exercise consisted of 10 × 3 min running on a treadmill at 95% of maximal oxygen uptake ([Formula: see text]) with 60s of active rest at 60% of [Formula: see text]. After 10 min of rest, they subsequently performed 30 min of continuous running at 85% of [Formula: see text]. Running velocities were significantly lower in the HYPO than in the NOR (P < 0.0001). Exercise-induced blood lactate elevation was significantly greater in the HYPO (P < 0.01). There were significant increases in plasma interleukin-6, serum iron, and blood glucose levels after exercise, with no significant difference between the trials [interaction (trial × time) or main effect for trial, P > 0.05]. Serum hepcidin levels increased significantly 120 min after exercise (HYPO: from 10.7 ± 9.4 ng/mL to 15.8 ± 11.2 ng/mL; NOR: from 7.9 ± 4.7 ng/mL to 13.2 ± 7.9 ng/mL, P < 0.05), and no difference was observed between the trials. In conclusion, endurance exercise at lower running velocity in hypoxic conditions resulted in similar post-exercise hepcidin elevations as higher running velocity in normoxic conditions.
Collapse
Affiliation(s)
- Kazushige Goto
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| | - Daichi Sumi
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Chihiro Kojima
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Aya Ishibashi
- Graduate School of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- Japan Institute of Sports Sciences, Kitaku, Tokyo, Japan
| |
Collapse
|
30
|
Ishibashi A, Maeda N, Kamei A, Goto K. Iron Supplementation during Three Consecutive Days of Endurance Training Augmented Hepcidin Levels. Nutrients 2017; 9:nu9080820. [PMID: 28758951 PMCID: PMC5579614 DOI: 10.3390/nu9080820] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022] Open
Abstract
Iron supplementation contributes an effort to improving iron status among athletes, but it does not always prevent iron deficiency. In the present study, we explored the effect of three consecutive days of endurance training (twice daily) on the hepcidin-25 (hepcidin) level. The effect of iron supplementation during this period was also determined. Fourteen male endurance athletes were enrolled and randomly assigned to either an iron-treated condition (Fe condition, n = 7) or a placebo condition (Control condition; CON, n = 7). They engaged in two 75-min sessions of treadmill running at 75% of maximal oxygen uptake on three consecutive days (days 1-3). The Fe condition took 12 mg of iron twice daily (24 mg/day), and the CON condition did not. On day 1, both conditions exhibited significant increases in serum hepcidin and plasma interleukin-6 levels after exercise (p < 0.05). In the CON condition, the hepcidin level did not change significantly throughout the training period. However, in the Fe condition, the serum hepcidin level on day 4 was significantly higher than that of the CON condition (p < 0.05). In conclusion, the hepcidin level was significantly elevated following three consecutive days of endurance training when moderate doses of iron were taken.
Collapse
Affiliation(s)
- Aya Ishibashi
- Department of Sports Science, Japan Institute of Sports Science, Nishigaoka, Kitaku, Tokyo 115-0056, Japan.
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Naho Maeda
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Akiko Kamei
- Department of Sports Science, Japan Institute of Sports Science, Nishigaoka, Kitaku, Tokyo 115-0056, Japan.
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
31
|
Farina EK, Taylor JC, Means GE, Murphy NE, Pasiakos SM, Lieberman HR, McClung JP. Effects of deployment on diet quality and nutritional status markers of elite U.S. Army special operations forces soldiers. Nutr J 2017; 16:41. [PMID: 28673301 PMCID: PMC5496422 DOI: 10.1186/s12937-017-0262-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/21/2017] [Indexed: 12/03/2022] Open
Abstract
Background Special Operations Forces (SOF) Soldiers deploy frequently and require high levels of physical and cognitive performance. Nutritional status is linked to cognitive and physical performance. Studies evaluating dietary intake and nutritional status in deployed environments are lacking. Therefore, this study assessed the effects of combat deployment on diet quality and serum concentrations of nutritional status markers, including iron, vitamin D, parathyroid hormone (PTH), glucose, and lipids, among elite United States (U.S.) Army SOF Soldiers. Methods Changes from baseline to post-deployment were determined with a repeated measure within-subjects design for Healthy Eating Index-2010 (HEI-2010) scores, intake of foods, food groups, key nutrients, and serum nutritional status markers. Dietary intake was assessed with a Block Food Frequency Questionnaire. The association between post-deployment serum 25-hydroxy vitamin D (25-OH vitamin D) and PTH was determined. Analyses of serum markers were completed on 50 participants and analyses of dietary intake were completed on 33 participants. Results In response to deployment, HEI-2010 scores decreased for total HEI-2010 (70.3 ± 9.1 vs. 62.9 ± 11.1), total fruit (4.4 ± 1.1 vs. 3.7 ± 1.5), whole fruit (4.6 ± 1.0 vs. 4.2 ± 1.4), dairy (6.2 ± 2.7 vs. 4.8 ± 2.4), and empty calories (14.3 ± 3.2 vs. 11.1 ± 4.5) (P ≤ 0.05). Average daily intakes of foods and food groups that decreased included total dairy (P < 0.01), milk (P < 0.01), and non-juice fruit (P = 0.03). Dietary intake of calcium (P = 0.05) and vitamin D (P = 0.03) decreased. PTH increased from baseline (3.4 ± 1.6 vs. 3.8 ± 1.4 pmol/L, P = 0.04), while there was no change in 25-OH vitamin D. Ferritin decreased (385 ± 173 vs. 354 ± 161 pmol/L, P = 0.03) and soluble transferrin receptor increased (16.3 ± 3.7 vs. 17.1 ± 3.5 nmol/L, P = 0.01). There were no changes in glucose or lipids. Post-deployment, serum 25-OH vitamin D was inversely associated with PTH (r = −0.43, P < 0.01). Conclusions HEI-2010 scores and dietary intake of milk, calcium, and vitamin D decreased following deployment. Serum PTH increased and iron stores were degraded. No Soldiers were iron deficient. Personnel that deploy frequently should maintain a high diet quality in the U.S. and while deployed by avoiding empty calories and consuming fruits, vegetables, and adequate sources of calcium, vitamin D, and iron. Improving availability and quality of perishable food during deployment may improve diet quality.
Collapse
Affiliation(s)
- Emily K Farina
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720-A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA. .,Oak Ridge Institute for Science and Education, 492 Millennium Drive, Suite 101, Belcamp, MD, 21017, USA. .,U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, 10 General Greene Avenue, Building 42, Natick, MA, 01760, USA.
| | - Jonathan C Taylor
- Department of Health and Human Sciences, Office of the National Coordinator for Health Information Technology, 330 C Street, NW, Washington, DC, 20201, USA
| | - Gary E Means
- U.S. Army Special Operations Command, 2929 Desert Storm Drive, Fort Bragg, NC, 28303, USA
| | - Nancy E Murphy
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, 10 General Greene Avenue, Building 42, Natick, MA, 01760, USA
| | - Stefan M Pasiakos
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, 10 General Greene Avenue, Building 42, Natick, MA, 01760, USA
| | - Harris R Lieberman
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, 10 General Greene Avenue, Building 42, Natick, MA, 01760, USA
| | - James P McClung
- U.S. Army Research Institute of Environmental Medicine, Military Nutrition Division, 10 General Greene Avenue, Building 42, Natick, MA, 01760, USA
| |
Collapse
|
32
|
Karl JP, Margolis LM, Madslien EH, Murphy NE, Castellani JW, Gundersen Y, Hoke AV, Levangie MW, Kumar R, Chakraborty N, Gautam A, Hammamieh R, Martini S, Montain SJ, Pasiakos SM. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol 2017; 312:G559-G571. [PMID: 28336545 DOI: 10.1152/ajpgi.00066.2017] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers (n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P < 0.001) during STRESS independent of diet group and was associated with increased inflammation. Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress.NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal microbiota responses to stress, resulted in increased intestinal permeability concomitant with changes in intestinal microbiota composition and metabolism. Prestress intestinal microbiota composition and changes in fecal concentrations of metabolites linked to the microbiota were associated with increased intestinal permeability. Findings suggest that targeting the intestinal microbiota could provide novel strategies for mitigating increases in intestinal permeability during stress.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts;
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Nancy E Murphy
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - John W Castellani
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Allison V Hoke
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland.,Geneva Foundation, Fort Detrick, Maryland; and
| | - Michael W Levangie
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland.,Geneva Foundation, Fort Detrick, Maryland; and
| | - Raina Kumar
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nabarun Chakraborty
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland.,Geneva Foundation, Fort Detrick, Maryland; and
| | - Aarti Gautam
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland
| | - Rasha Hammamieh
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland
| | - Svein Martini
- Norwegian Defense Research Establishment, Kjeller, Norway
| | - Scott J Montain
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
33
|
Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J 2017; 31:3719-3728. [PMID: 28507168 DOI: 10.1096/fj.201700080r] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/24/2017] [Indexed: 01/24/2023]
Abstract
IL-6 is a pleiotropic cytokine with a wide range of biologic effects. In response to prolonged exercise, IL-6 is synthesized by contracting skeletal muscle and released into circulation. Circulating IL-6 is thought to maintain energy status during exercise by acting as an energy sensor for contracting muscle and stimulating glucose production. If tissue damage occurs, immune cells infiltrate and secrete cytokines, including IL-6, to repair skeletal muscle damage. With adequate rest and nutrition, the IL-6 response to exercise is attenuated as skeletal muscle adapts to training. However, sustained elevations in IL-6 due to repeated bouts of unaccustomed activities or prolonged exercise with limited rest may result in untoward physiologic effects, such as accelerated muscle proteolysis and diminished nutrient absorption, and may impair normal adaptive responses to training. Recent intervention studies have explored the role of mixed meals or carbohydrate, protein, ω-3 fatty acid, or antioxidant supplementation in mitigating exercise-induced increases in IL-6. Emerging evidence suggests that sufficient energy intake before exercise is an important factor in attenuating exercise-induced IL-6 by maintaining muscle glycogen. We detail various nutritional interventions that may affect the IL-6 response to exercise in healthy human adults and provide recommendations for future research exploring the role of IL-6 in the adaptive response to exercise.-Hennigar, S. R., McClung, J. P., Pasiakos, S. M. Nutritional interventions and the IL-6 response to exercise.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA; .,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| |
Collapse
|
34
|
Peeling P, McKay AKA, Pyne DB, Guelfi KJ, McCormick RH, Laarakkers CM, Swinkels DW, Garvican-Lewis LA, Ross MLR, Sharma AP, Leckey JJ, Burke LM. Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur J Appl Physiol 2017; 117:1233-1239. [PMID: 28409396 DOI: 10.1007/s00421-017-3611-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/09/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE The extent to which hepcidin regulation after acute bouts of exercise is influenced by baseline (resting) concentrations of key iron parameters remains uncertain. This investigation explored the influence of selected iron parameters and 25-km race walk time on 3-h post-exercise hepcidin-25 levels in international-level race walkers. METHODS Twenty-four male race walkers completed a graded exercise test and a 25-km race-walk trial. Throughout the 25-km race-walk, venous blood samples were collected pre-exercise, immediately post-exercise, and at 3-h post-exercise. Blood was analysed for serum ferritin, serum iron, Interleukin-6 (IL-6), and hepcidin-25 concentration. RESULTS IL-6 and hepcidin-25 increased (7.6- and 7.5-fold, respectively) in response to the 25-km race-walk trial (both p < 0.01). Significant individual relationships were evident between 3-h post-exercise hepcidin-25, baseline serum ferritin and serum iron (r > 0.62; p < 0.05). Multiple regression analysis showed that these two iron parameters, in addition to post-exercise IL-6 concentration and 25-km race-walk time, accounted for ~77% of the variance in 3-h post-exercise hepcidin-25 (p < 0.01). A median split by the cohort's baseline serum ferritin concentration (LOW: 58.0 vs. HIGH: 101.8 µg/L; p < 0.01) showed a significant between group difference in the 3-h post-exercise hepcidin-25 (LOW: 6.0 ± 3.6 vs. 11.3 ± 5.4 nM; p = 0.01), despite no differences in baseline serum iron, post-exercise IL-6, or 25-km race-walk time (all p > 0.05). CONCLUSION Despite exercise activating numerous hepcidin regulators, baseline iron status appears to play a dominant role in the regulation of hepcidin-25 in elite-level athletes subsequent to endurance exercise.
Collapse
Affiliation(s)
- Peter Peeling
- Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
- Western Australian Institute of Sport, Mt Claremont, WA, 6010, Australia.
| | - Alannah K A McKay
- Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Australian Institute of Sport, Bruce, ACT, 2617, Australia
| | - David B Pyne
- Australian Institute of Sport, Bruce, ACT, 2617, Australia
- Research Institute for Sport and Exercise, University of Canberra, Canberra, 2601, Australia
| | - Kym J Guelfi
- Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Rachel H McCormick
- Sport Science, Exercise and Health, School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Western Australian Institute of Sport, Mt Claremont, WA, 6010, Australia
| | - Coby M Laarakkers
- Department of Laboratory Medicine (LGEM 830), Radboud University Medical Center, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA, Nijmegen, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine (LGEM 830), Radboud University Medical Center, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA, Nijmegen, The Netherlands
| | | | - Megan L R Ross
- Australian Institute of Sport, Bruce, ACT, 2617, Australia
| | - Avish P Sharma
- Australian Institute of Sport, Bruce, ACT, 2617, Australia
| | - Jill J Leckey
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, 3000, Australia
| | - Louise M Burke
- Australian Institute of Sport, Bruce, ACT, 2617, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, 3000, Australia
| |
Collapse
|
35
|
Buyukyazi G, Ulman C, Çelik A, Çetinkaya C, Şişman AR, Çimrin D, Doğru Y, Kaya D. The effect of 8-week different-intensity walking exercises on serum hepcidin, IL-6, and iron metabolism in pre-menopausal women. Physiol Int 2017; 104:52-63. [DOI: 10.1556/2060.104.2017.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective
Hepcidin may be an important mediator in exercise-induced iron deficiency. Despite the studies investigating acute exercise effects on hepcidin and markers of iron metabolism, we found no studies examining the chronic effects of walking exercises (WE) on hepcidin and markers of iron metabolism in premenopausal women. The chronic effects of two 8-week different-intensity WE on hepcidin, interleukin 6 (IL-6), and markers of iron metabolism in pre-menopausal women were examined.
Methods
Exercise groups (EG) [moderate tempo walking group (MTWG), n = 11; brisk walking group (BWG), n = 11] walked 3 days/week, starting from 30 to 51 min. Control group (CG; n = 8) did not perform any exercises. BWG walked at ∼70%–75%; MTWG at ∼50%–55% of HRRmax. VO2max, hepcidin, IL-6, and iron metabolism markers were determined before and after the intervention.
Results
VO2max increased in both EGs, favoring the BWG. Hepcidin increased in the BWG (p < 0.01) and CG (p < 0.05). IL-6 decreased in the BWG and the MTWG (p < 0.05; p < 0.01). While iron, ferritin, transferrin, and transferrin saturation levels did not change in any group, total iron binding capacity (p < 0.05), red blood cells (p < 0.05), and hematocrit (p < 0.01) increased only in the BWG.
Conclusion
Both WE types may be useful to prevent inflammation. However, brisk walking is advisable due to the positive changes in VO2max and some iron metabolism parameters, which may contribute to prevent iron deficiency. The increase in hepcidin levels remains unclear and necessitates further studies.
Collapse
Affiliation(s)
- G Buyukyazi
- 1 School of Sport Sciences and Technology, Dokuz Eylül University, Izmir, Turkey
| | - C Ulman
- 2 Department of Biochemistry, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - A Çelik
- 1 School of Sport Sciences and Technology, Dokuz Eylül University, Izmir, Turkey
| | - C Çetinkaya
- 1 School of Sport Sciences and Technology, Dokuz Eylül University, Izmir, Turkey
| | - AR Şişman
- 3 Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - D Çimrin
- 3 Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Y Doğru
- 4 Department of Biochemistry, School of Physical Education and Sports, Ege University, Izmir, Turkey
| | - D Kaya
- 5 Department of Cardiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
36
|
Pasiakos SM, Margolis LM, Murphy NE, McClung HL, Martini S, Gundersen Y, Castellani JW, Karl JP, Teien HK, Madslien EH, Stenberg PH, Young AJ, Montain SJ, McClung JP. Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiol Rep 2016; 4:4/11/e12820. [PMID: 27273884 PMCID: PMC4908496 DOI: 10.14814/phy2.12820] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/07/2016] [Indexed: 01/28/2023] Open
Abstract
Load carriage (LC) exercise may exacerbate inflammation during training. Nutritional supplementation may mitigate this response by sparing endogenous carbohydrate stores, enhancing glycogen repletion, and attenuating negative energy balance. Two studies were conducted to assess inflammatory responses to acute LC and training, with or without nutritional supplementation. Study 1: 40 adults fed eucaloric diets performed 90-min of either LC (treadmill, mean ± SD 24 ± 3 kg LC) or cycle ergometry (CE) matched for intensity (2.2 ± 0.1 VO2peak L min(-1)) during which combined 10 g protein/46 g carbohydrate (223 kcal) or non-nutritive (22 kcal) control drinks were consumed. Study 2: 73 Soldiers received either combat rations alone or supplemented with 1000 kcal day(-1) from 20 g protein- or 48 g carbohydrate-based bars during a 4-day, 51 km ski march (~45 kg LC, energy expenditure 6155 ± 515 kcal day(-1) and intake 2866 ± 616 kcal day(-1)). IL-6, hepcidin, and ferritin were measured at baseline, 3-h post exercise (PE), 24-h PE, 48-h PE, and 72-h PE in study 1, and before (PRE) and after (POST) the 4-d ski march in study 2. Study 1: IL-6 was higher 3-h and 24-h post exercise (PE) for CE only (mode × time, P < 0.05), hepcidin increased 3-h PE and recovered by 48-h, and ferritin peaked 24-h and remained elevated 72-h PE (P < 0.05), regardless of mode and diet. Study 2: IL-6, hepcidin and ferritin were higher (P < 0.05) after training, regardless of group assignment. Energy expenditure (r = 0.40), intake (r = -0.26), and balance (r = -0.43) were associated (P < 0.05) with hepcidin after training. Inflammation after acute LC and CE was similar and not affected by supplemental nutrition during energy balance. The magnitude of hepcidin response was inversely related to energy balance suggesting that eating enough to balance energy expenditure might attenuate the inflammatory response to military training.
Collapse
Affiliation(s)
- Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Holy L McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Svein Martini
- Norwegian Defence Research Establishment, Kjeller, Norway
| | | | - John W Castellani
- Thermal Mountain and Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - James P Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Hilde K Teien
- Norwegian Defence Research Establishment, Kjeller, Norway
| | | | - Pal H Stenberg
- General Defence Material/Catering and Combat Feeding Section, Norwegian Navy, Rødskiferveien, Norway
| | - Andrew J Young
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Scott J Montain
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - James P McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
37
|
|
38
|
Guimarães JS, Cominal JG, Silva-Pinto AC, Olbina G, Ginzburg YZ, Nandi V, Westerman M, Rivella S, de Souza AM. Altered erythropoiesis and iron metabolism in carriers of thalassemia. Eur J Haematol 2014; 94:511-8. [PMID: 25307880 DOI: 10.1111/ejh.12464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
Abstract
The thalassemia syndromes (α- and β-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of α- or β-globin chain production results in impaired red blood cell synthesis, anemia, and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis, and dysfunctional iron metabolism has not been investigated in both α-thalassemia carriers (ATC) and β-thalassemia carriers (BTC). Here, we demonstrate that ATC have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, BTC have several hematological parameters significantly different from controls, including increased soluble transferrin receptor and erythropoietin levels. These changes in both groups suggest an altered balance between erythropoiesis and iron metabolism. The index sTfR/log ferritin and (hepcidin/ferritin)/sTfR are, respectively, increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we showed in this study, for the first time in the literature, that thalassemia carriers have altered iron metabolism and erythropoiesis.
Collapse
Affiliation(s)
- Jacqueline S Guimarães
- Laboratório de Hematologia Clínica, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,The Strauss Thalassemia Laboratory, Pediatric Hematology-Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Juçara G Cominal
- Laboratório de Hematologia Clínica, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Silva-Pinto
- Centro Regional de Hemoterapia de Ribeirão Preto, Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Stefano Rivella
- The Strauss Thalassemia Laboratory, Pediatric Hematology-Oncology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ana Maria de Souza
- Laboratório de Hematologia Clínica, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
39
|
Lieberman HR, Karl JP, Niro PJ, Williams KW, Farina EK, Cable SJ, McClung JP. Positive effects of basic training on cognitive performance and mood of adult females. HUMAN FACTORS 2014; 56:1113-1123. [PMID: 25277020 DOI: 10.1177/0018720813519472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVE This study investigated whether a stressful military training program, the 9- to 10-week U.S. Army basic combat training (BCT) course, alters the cognitive performance and mood of healthy young adult females. BACKGROUND Structured training programs including adolescent boot camps, sports training camps, learning enrichment programs, and military basic training are accepted methods for improving academic and social functioning. However, limited research is available on the behavioral effects of structured training programs in regard to cognitive performance and mood. METHOD Two separate, within-subject studies were conducted with different BCT classes; in total 212 female volunteers were assessed before and after BCT. In Study 1, Four-Choice Reaction Time, Match-to-Sample, and Grammatical Reasoning tests were administered. The Psychomotor Vigilance Test (PVT) was administered in Study 2. The Profile of Mood States (POMS) was administered in both studies. RESULTS In Study 1, reaction time to correct responses on all three of the performance tests improved from pre- to post-BCT. In Study 2, PVT reaction time significantly improved. All POMS subscales improved over time in the second study, whereas POMS subscales in the first study failed to meet criteria for statistically significant differences over time. CONCLUSION Cognition and mood substantially improved over military basic training. These changes may be a result of structured physical and mental training experienced during basic training or other factors not as yet identified. APPLICATION Properly structured training may have extensive, beneficial effects on cognitive performance and mood; however, additional research is needed to determine what factors are responsible for such changes.
Collapse
|
40
|
Htet MK, Dillon D, Rosida A, Timan I, Fahmida U, Thurnham DI. Hepcidin Profile of Anemic Adolescent Schoolgirls in Indonesia at the End of 12 Weeks of Iron Supplementation. Food Nutr Bull 2014; 35:160-6. [DOI: 10.1177/156482651403500202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Iron deficiency is still the major nutritional problem in the developing world, and iron supplementation remains one of the most effective intervention strategies. Hepcidin, a newly discovered iron regulatory hormone, is an acute phase protein, and its role in iron supplementation has not been well explored. Objective To investigate the hepcidin profiles of anemic adolescent girls who had received weekly iron supplementation. Methods A cross-sectional study was conducted at the end of iron supplementation among adolescent schoolgirls ( n = 83) in Pramuka Island, Indonesia. All the girls were anemic at the beginning and received 60 mg of elemental iron twice weekly for 12 weeks. Hemoglobin, hepcidin, serum ferritin, and red cell parameters were measured, together with inflammation markers. Results At the end of the 12-week supplementation, 65.1% (n=64) of the girls were no longer anemic, but 43.4% ( n = 36) were still iron deficient. The rate of sub-clinical inflammation, measured by C-reactive protein (CRP) and α-1-acid glycoprotein (AGP), was 38.6% ( n = 32). Hepcidin was not correlated with either ferritin or red cell parameters. There was no association between hepcidin and the inflammatory markers CRP and AGP. The mean hepcidin concentration was 42.9 ± 17.9 ng/mL and was not significantly different between anemic and nonanemic girls (44.2 ± 14.9 and 42.3 ± 19.2 ng/mL, respectively; p = .708). However, hepcidin concentration was slightly higher in the iron replete-group than in the iron-deficient group (45.2 ± 20.0 and 39.3 ± 13.5 ng/mL, respectively), a suggestive trend that did not reach statistical significance ( p = .218). Conclusions Hepcidin concentrations tended to be higher among the subset of girls who responded poorly to iron supplementation as a consequence of increased subclinical inflammation. A longitudinal study should be conducted to explore the role of hepcidin in iron supplementation.
Collapse
|
41
|
Sim M, Dawson B, Landers GJ, Swinkels DW, Tjalsma H, Wiegerinck ET, Trinder D, Peeling P. A seven day running training period increases basal urinary hepcidin levels as compared to cycling. J Int Soc Sports Nutr 2014; 11:14. [PMID: 24716892 PMCID: PMC3991905 DOI: 10.1186/1550-2783-11-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
Background This investigation compared the effects of an extended period of weight-bearing (running) vs. non-weight-bearing (cycling) exercise on hepcidin production and its implications for iron status. Methods Ten active males performed two separate exercise training blocks with either running (RTB) or cycling (CTB) as the exercise mode. Each block consisted of five training sessions (Day 1, 2, 4, 5, 6) performed over a seven day period that were matched for exercise intensity. Basal venous blood samples were obtained on Day 1 (D1), and on Recovery Days 3 (R3) and 7 (R7) to assess iron status, while basal and 3 h post-exercise urinary hepcidin levels were measured on D1, D2, D6, as well as R3 and R7 (basal levels only) for each condition. Results Basal urinary hepcidin levels were significantly elevated (p ≤ 0.05) at D2, R3 and R7 as compared to D1 in RTB. Furthermore, 3 h post-exercise urinary hepcidin levels on D1 were also significantly higher in RTB compared to CTB (p ≤ 0.05). In CTB, urinary hepcidin levels were not statistically different on D1 as compared to R7. Iron parameters were not significantly different at D1 compared to R3 and R7 during both conditions. Conclusions These results suggest that basal hepcidin levels may increase over the course of an extended training program, especially if a weight-bearing exercise modality is undertaken. However, despite any variations in hepcidin production, serum iron parameters in both RTB and CTB were unaffected, possibly due to the short duration of each training block. In comparing running to cycling, non-weight-bearing activity may require more training sessions, or sessions of extended duration, before any significant changes in basal hepcidin levels appear. Chronic elevations in hepcidin levels may help to explain the high incidence of iron deficiency in athletes.
Collapse
Affiliation(s)
- Marc Sim
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Peeling P, Sim M, Badenhorst CE, Dawson B, Govus AD, Abbiss CR, Swinkels DW, Trinder D. Iron status and the acute post-exercise hepcidin response in athletes. PLoS One 2014; 9:e93002. [PMID: 24667393 PMCID: PMC3965532 DOI: 10.1371/journal.pone.0093002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/27/2014] [Indexed: 12/21/2022] Open
Abstract
This study explored the relationship between serum ferritin and hepcidin in athletes. Baseline serum ferritin levels of 54 athletes from the control trial of five investigations conducted in our laboratory were considered; athletes were grouped according to values <30 μg/L (SF<30), 30-50 μg/L (SF30-50), 50-100 μg/L (SF50-100), or >100 μg/L (SF>100). Data pooling resulted in each athlete completing one of five running sessions: (1) 8 × 3 min at 85% vVO2peak; (2) 5 × 4 min at 90% vVO2peak; (3) 90 min continuous at 75% vVO2peak; (4) 40 min continuous at 75% vVO2peak; (5) 40 min continuous at 65% vVO2peak. Athletes from each running session were represented amongst all four groups; hence, the mean exercise duration and intensity were not different (p>0.05). Venous blood samples were collected pre-, post- and 3 h post-exercise, and were analysed for serum ferritin, iron, interleukin-6 (IL-6) and hepcidin-25. Baseline and post-exercise serum ferritin levels were different between groups (p<0.05). There were no group differences for pre- or post-exercise serum iron or IL-6 (p>0.05). Post-exercise IL-6 was significantly elevated compared to baseline within each group (p<0.05). Pre- and 3 h post-exercise hepcidin-25 was sequentially greater as the groups baseline serum ferritin levels increased (p<0.05). However, post-exercise hepcidin levels were only significantly elevated in three groups (SF30-50, SF50-100, and SF>100; p<0.05). An athlete's iron stores may dictate the baseline hepcidin levels and the magnitude of post-exercise hepcidin response. Low iron stores suppressed post-exercise hepcidin, seemingly overriding any inflammatory-driven increases.
Collapse
Affiliation(s)
- Peter Peeling
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Marc Sim
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Claire E. Badenhorst
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Brian Dawson
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Andrew D. Govus
- Centre for Exercise and Sports Science Research, School of Exercise and Health Science, Edith Cowan University, Western Australia, Australia
| | - Chris R. Abbiss
- Centre for Exercise and Sports Science Research, School of Exercise and Health Science, Edith Cowan University, Western Australia, Australia
| | - Dorine W. Swinkels
- Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Debbie Trinder
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
43
|
Badenhorst CE, Dawson B, Goodman C, Sim M, Cox GR, Gore CJ, Tjalsma H, Swinkels DW, Peeling P. Influence of post-exercise hypoxic exposure on hepcidin response in athletes. Eur J Appl Physiol 2014; 114:951-9. [PMID: 24487960 DOI: 10.1007/s00421-014-2829-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/20/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE To assess the influence of a simulated altitude exposure (~2,900 m above sea level) for a 3 h recovery period following intense interval running on post-exercise inflammation, serum iron, ferritin, erythropoietin, and hepcidin response. METHODS In a cross-over design, ten well-trained male endurance athletes completed two 8 × 3 min interval running sessions at 85 % of their maximal aerobic velocity on a motorized treadmill, before being randomly assigned to either a hypoxic (HYP: F IO2 ~0.1513) or a normoxic (NORM: F IO2 0.2093) 3 h recovery period. Venous blood was collected pre- and immediately post-exercise, and after 3 and 24 h of recovery. Blood was analyzed for interleukin-6, serum iron, ferritin, erythropoietin, and hepcidin. RESULTS Interleukin-6 was significantly elevated (p < 0.01) immediately post-exercise compared to baseline (NORM: 1.08 ± 0.061 to 3.12 ± 1.80) (HYP: 1.32 ± 0.86 to 2.99 ± 2.02), but was not different between conditions. Hepcidin levels were significantly elevated (p < 0.01) at 3 h post-exercise for both conditions when compared to baseline (NORM: 3.25 ± 1.23 to 7.40 ± 4.00) (HYP: 3.24 ± 1.94 to 5.42 ± 3.20), but were significantly lower (p < 0.05) in the HYP trial compared to NORM. No significant differences existed between HYP and NORM for erythropoietin, serum iron, or ferritin. CONCLUSION Simulated altitude exposure (~2,900 m) for 3 h following intense interval running attenuates the peak hepcidin levels recorded at 3 h post-exercise. Consequently, a hypoxic recovery after exercise may be useful for athletes with compromised iron status to potentially increase acute dietary iron absorption.
Collapse
Affiliation(s)
- Claire E Badenhorst
- School of Sport Science, Exercise and Health, The University of Western Australia, M408, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Blanton C. Improvements in iron status and cognitive function in young women consuming beef or non-beef lunches. Nutrients 2013; 6:90-110. [PMID: 24379009 PMCID: PMC3916851 DOI: 10.3390/nu6010090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 11/17/2022] Open
Abstract
Iron status is associated with cognitive performance and intervention trials show that iron supplementation improves mental function in iron-deficient adults. However, no studies have tested the efficacy of naturally iron-rich food in this context. This investigation measured the hematologic and cognitive responses to moderate beef consumption in young women. Participants (n=43; age 21.1±0.4 years) were randomly assigned to a beef or non-beef protein lunch group [3-oz (85 g), 3 times weekly] for 16 weeks. Blood was sampled at baseline, and weeks 8 and 16, and cognitive performance was measured at baseline and week 16. Body iron increased in both lunch groups (p<0.0001), with greater improvement demonstrated in women with lower baseline body iron (p<0.0001). Body iron had significant beneficial effects on spatial working memory and planning speed (p<0.05), and ferritin responders (n=17) vs. non-responders (n=26) showed significantly greater improvements in planning speed, spatial working memory strategy, and attention (p<0.05). Lunch group had neither significant interactions with iron status nor consistent main effects on test performance. These findings support a relationship between iron status and cognition, but do not show a particular benefit of beef over non-beef protein consumption on either measure in young women.
Collapse
Affiliation(s)
- Cynthia Blanton
- Dietetic Programs, Idaho State University, Pocatello, ID 83209, USA.
| |
Collapse
|
45
|
McClung JP, Martini S, Murphy NE, Montain SJ, Margolis LM, Thrane I, Spitz MG, Blatny JM, Young AJ, Gundersen Y, Pasiakos SM. Effects of a 7-day military training exercise on inflammatory biomarkers, serum hepcidin, and iron status. Nutr J 2013; 12:141. [PMID: 24188143 PMCID: PMC3830559 DOI: 10.1186/1475-2891-12-141] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepcidin, a peptide that is released into the blood in response to inflammation, prevents cellular iron export and results in declines in iron status. Elevated serum and urinary levels of hepcidin have been observed in athletes following exercise, and declines in iron status have been reported following prolonged periods of training. The objective of this observational study was to characterize the effects of an occupational task, military training, on iron status, inflammation, and serum hepcidin. FINDINGS Volunteers (n = 21 males) included Norwegian Soldiers participating in a 7-day winter training exercise that culminated in a 3-day, 54 km ski march. Fasted blood samples were collected at baseline, on day 4 (PRE, prior to the ski march), and again on day 7 (POST, following the ski march). Samples were analyzed for hemoglobin, serum ferritin, soluble transferrin receptor (sTfR), interleukin-6 (IL-6), and serum hepcidin. Military training affected inflammation and serum hepcidin levels, as IL-6 and hepcidin concentrations increased (P < 0.05) from the baseline to POST (mean ± SD, 9.1 ± 4.9 vs. 14.5 ± 8.4 pg/mL and 6.5 ± 3.5 vs. 10.2 ± 6.9 ng/mL, respectively). Iron status was not affected by the training exercise, as sTfR levels did not change over the course of the 7-day study. CONCLUSIONS Military training resulted in significant elevations in IL-6 and serum hepcidin. Future studies should strive to identify the role of hepcidin in the adaptive response to exercise, as well as countermeasures for the prevention of chronic or repeated elevations in serum hepcidin due to exercise or sustained occupational tasks which may result in longer term decrements in iron status.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.
| |
Collapse
|
46
|
Das JK, Salam RA, Kumar R, Bhutta ZA. Micronutrient fortification of food and its impact on woman and child health: a systematic review. Syst Rev 2013; 2:67. [PMID: 23971426 PMCID: PMC3765883 DOI: 10.1186/2046-4053-2-67] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies. METHODS A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1. RESULTS Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children. CONCLUSION Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality.
Collapse
Affiliation(s)
- Jai K Das
- Centre of Excellence in Women & Child Health, Aga Khan University, Karachi 74800, Pakistan.
| | | | | | | |
Collapse
|
47
|
Auersperger I, Škof B, Leskošek B, Knap B, Jerin A, Lainscak M. Exercise-induced changes in iron status and hepcidin response in female runners. PLoS One 2013; 8:e58090. [PMID: 23472137 PMCID: PMC3589469 DOI: 10.1371/journal.pone.0058090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/30/2013] [Indexed: 12/21/2022] Open
Abstract
Background and Aims Exercise-induced iron deficiency is a common finding in endurance athletes. It has been suggested recently that hepcidin may be an important mediator in this process. Objective To determine hepcidin levels and markers of iron status during long-term exercise training in female runners with depleted and normal iron stores. Methods Fourteen runners were divided into two groups according to iron status. Blood samples were taken during a period of eight weeks at baseline, after training and after ten days’ recovery phase. Results Of 14 runners, 7 were iron deficient at baseline and 10 after training. Hepcidin was lower at recovery compared with baseline (p<0.05). The mean cell haemoglobin content, haemoglobin content per reticulocyte and total iron binding capacity all decreased, whereas soluble transferrin receptor and hypochromic red cells increased after training and recovery (p<0.05 for all). Conclusion The prevalence of depleted iron stores was 71% at the end of the training phase. Hepcidin and iron stores decreased during long-term running training and did not recover after ten days, regardless of baseline iron status.
Collapse
Affiliation(s)
| | - Branko Škof
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Leskošek
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Knap
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleš Jerin
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mitja Lainscak
- Division of Cardiology, University Clinic Golnik, Golnik, Slovenia
- Applied Cachexia Research, Department of Cardiology, Charité, Campus Virchow-Klinikum, Berlin, Germany
- * E-mail:
| |
Collapse
|
48
|
Margolis LM, Pasiakos SM, Karl JP, Rood JC, Cable SJ, Williams KW, Young AJ, McClung JP. Differential effects of military training on fat-free mass and plasma amino acid adaptations in men and women. Nutrients 2012; 4:2035-46. [PMID: 23250145 PMCID: PMC3546621 DOI: 10.3390/nu4122035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/30/2012] [Accepted: 12/13/2012] [Indexed: 01/14/2023] Open
Abstract
Fat-free mass (FFM) adaptations to physical training may differ between sexes based on disparities in fitness level, dietary intake, and levels of plasma amino acids (AA). This investigation aimed to determine FFM and plasma AA responses to military training, examine whether adaptations differ between male and female recruits, and explore potential associations between FFM and AA responses to training. Body composition and plasma AA levels were assessed in US Army recruits (n = 209, 118 males, 91 females) before (baseline) and every three weeks during basic combat training (BCT), a 10-week military training course. Body weight decreased in men but remained stable in women during BCT (sex-by-time interaction, P < 0.05). Fifty-eight percent of recruits gained FFM during BCT, with more (P < 0.05) females (88%) gaining FFM than males (36%). Total plasma AA increased (P < 0.05) during BCT, with greater (P < 0.05) increases observed in females (17%) then in males (4%). Essential amino acids (EAA) and branched-chain amino acids (BCAA) were increased (P < 0.05) in females but did not change in males (sex-by-time interaction, P < 0.05). Independent of sex, changes in EAA (r = 0.34) and BCAA (r = 0.27) from baseline were associated with changes in FFM (P < 0.05); greater (P < 0.05) increases in AA concentrations were observed for those who gained FFM. Increases in FFM and plasma AA suggest that BCT elicits a more pronounced anabolic response in women compared to men, which may reflect sex-specific differences in the relative intensity of the combined training and physiological stimulus associated with BCT.
Collapse
Affiliation(s)
- Lee M. Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 15 Kansas Street, Natick, MA 01760, USA; E-Mails: (L.M.M.); (S.M.P.); (J.P.K.); (A.J.Y.)
| | - Stefan M. Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 15 Kansas Street, Natick, MA 01760, USA; E-Mails: (L.M.M.); (S.M.P.); (J.P.K.); (A.J.Y.)
| | - J. Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 15 Kansas Street, Natick, MA 01760, USA; E-Mails: (L.M.M.); (S.M.P.); (J.P.K.); (A.J.Y.)
| | - Jennifer C. Rood
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA; E-Mail:
| | - Sonya J. Cable
- Experimentation and Analysis Element, Directorate of Basic Combat Training, Fort Jackson, SC 29207, USA; E-Mails: (S.J.C.); (K.W.W.)
| | - Kelly W. Williams
- Experimentation and Analysis Element, Directorate of Basic Combat Training, Fort Jackson, SC 29207, USA; E-Mails: (S.J.C.); (K.W.W.)
| | - Andrew J. Young
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 15 Kansas Street, Natick, MA 01760, USA; E-Mails: (L.M.M.); (S.M.P.); (J.P.K.); (A.J.Y.)
| | - James P. McClung
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, 15 Kansas Street, Natick, MA 01760, USA; E-Mails: (L.M.M.); (S.M.P.); (J.P.K.); (A.J.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-508-233-4979; Fax: +1-508-233-4869
| |
Collapse
|
49
|
Gaffney-Stomberg E, McClung JP. Inflammation and diminished iron status: mechanisms and functional outcomes. Curr Opin Clin Nutr Metab Care 2012; 15:605-13. [PMID: 23075938 DOI: 10.1097/mco.0b013e328357f63b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To summarize recent findings regarding the effects of inflammation on iron (Fe) metabolism and to review studies detailing the influence of poor Fe status on physical and cognitive performance. RECENT FINDINGS Hepatic expression and release of hepcidin, a negative regulator of Fe status, is increased by the actions of the inflammatory cytokine interleukin-6. Inflammation associated with chronic disease, obesity, and exercise is associated with elevated interleukin-6 and hepcidin levels, which may result in diminished Fe status. SUMMARY Decrements in Fe status due to insufficient dietary Fe intake and/or the inflammatory response may degrade physical and cognitive performance. Future studies should clarify whether dietary or other therapeutic interventions to mitigate inflammation attenuate hepcidin-mediated declines in Fe status.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760, USA
| | | |
Collapse
|
50
|
Casgrain A, Collings R, Harvey LJ, Hooper L, Fairweather-Tait SJ. Effect of iron intake on iron status: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2012; 96:768-80. [PMID: 22932280 DOI: 10.3945/ajcn.112.040626] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The response of status biomarkers to an increase in iron supply depends on several physiologic and environmental factors, which make it difficult to predict the outcome of an intervention. OBJECTIVE We assessed effects of baseline iron status, sex, menopausal status, duration of intervention, iron form, and daily dose on the change in iron status in response to iron supplementation. DESIGN A systematic review of randomized controlled trials (RCTs) of iron-supplementation and -fortification trials that assessed effects on hemoglobin, serum ferritin (SF), soluble transferrin receptor, or body iron was conducted. Subgrouping and straight-line and curved metaregression were used to describe the magnitude and dose-responsiveness of effect modifiers with respect to changes in status. RESULTS Forty-one RCTs were included; none of the RCTs were judged at low risk of bias. Random-effects meta-analyses showed that iron supplementation significantly improved iron status but with high levels of heterogeneity. Metaregression explained approximately one-quarter of between-study variance in effect size. There were clear effects on SF with study duration (increase in SF concentration/wk: 0.51 μg/L; 95% CI: 0.02, 1.00 μg/L; P = 0.04) and dose (increase in SF concentration/g Fe: 0.10 μg/L; 95% CI: 0.01, 0.20 μg/L; P = 0.036) and on hemoglobin concentrations with baseline iron status [-0.08 g/dL (95% CI: 0.15, 0.00 g/dL) per 10-μg/L increase in baseline SF concentration; P = 0.02]. Insufficient data were available to assess effects on body iron, sex, or menopausal status. CONCLUSION Quantitative relations between baseline iron status, study duration, and iron dose on changes in iron-status biomarkers, which were generated from the meta-analyses, can be used to predict effects of trials of iron supplementation and fortification and to design iron-intervention programs.
Collapse
Affiliation(s)
- Amelie Casgrain
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|