1
|
Lee SM, Hong M, Ryoo JH. Sex-differential effect of waist circumference on new-onset cerebral infarction: a nationwide cohort study. Front Neurol 2024; 15:1448428. [PMID: 39445196 PMCID: PMC11496052 DOI: 10.3389/fneur.2024.1448428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Excessive abdominal adiposity represents a cardiovascular disease risk factor. Waist circumference (WC) reflects abdominal adiposity and is known as an easy-to-measure indicator of obesity. This study aimed to evaluate the relationship between WC level and the development of cerebral infarction in Koreans. Methods 209,442 Koreans were included among the general population registered in the National Health Information Database. Depending on the degree of WC, the possibility of cerebral infarction was tracked for 4.37 person-years. Identification of patients with cerebral infarction was confirmed through the diagnostic code ICD I63 of inpatient or outpatient. Participants' data were analyzed by sex. The hazard ratios (HRs) and confidence interval (CI) for cerebral infarction were calculated using the Cox proportional hazards model. Results and discussion Between 2009 and 2013, 2,403 cases (1.15%) of cerebral infarction occurred during the follow-up period of 915,223.6 person-years. The HRs (95% CI) for incident cerebral infarction in men was adjusted for multiple covariates, and comparison of WC levels second, third, and fourth quartile with the first quartile showed 1.10 (0.94-1.28), 1.11 (0.95-1.30), and 1.24 (1.07-1.45), respectively (P for trend 0.045). This association was not significant in women (P for trend 0.619). The severity of WC levels in men is significantly associated with the risk of developing cerebral infarction in Koreans. This finding indicates that other measurements for excessive adipose visceral tissue, except abdominal circumference, need to be taken into account to identify the risk of cerebral infarction in women.
Collapse
Affiliation(s)
- Sang Min Lee
- Department of Psychiatry, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Minha Hong
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Jae-Hong Ryoo
- Department of Occupational and Environmental Medicine, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kiosia A, Dagbasi A, Berkley JA, Wilding JPH, Prendergast AJ, Li JV, Swann J, Mathers JC, Kerac M, Morrison D, Drake L, Briend A, Maitland K, Frost G. The double burden of malnutrition in individuals: Identifying key challenges and re-thinking research focus. NUTR BULL 2024; 49:132-145. [PMID: 38576109 DOI: 10.1111/nbu.12670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The 'double burden of malnutrition' is a global health challenge that increasingly affects populations in both low- and middle-income countries (LMICs). This phenomenon refers to the coexistence of undernutrition and overweight or obesity, as well as other diet-related non-communicable diseases, in the same population, household or even individual. While noteworthy progress has been made in reducing undernutrition in some parts of the world, in many of these areas, the prevalence of overweight and obesity is increasing, particularly in urban areas, resulting in greater numbers of people who were undernourished in childhood and have overweight or obesity in adulthood. This creates a complex and challenging situation for research experts and policymakers who must simultaneously address the public health burdens of undernutrition and overweight/obesity. This review identifies key challenges and limitations in the current research on the double burden of malnutrition in individuals, including the need for a more comprehensive and nuanced understanding of the drivers of malnutrition, the importance of context-specific interventions and the need for greater attention to the food environment and food systems. We advocate for the re-evaluation of research strategies and focus, with a greater emphasis on multidisciplinary and systems approaches and greater attention to the synergistic relationship between the biological, environmental, commercial and socio-economic determinants of malnutrition. Addressing these key challenges can enable us to better comprehend and tackle the multifaceted and dynamic issues of the double burden of malnutrition, particularly in individuals and work towards more effective and sustainable solutions.
Collapse
Affiliation(s)
- Agklinta Kiosia
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Health Data Research Global, HDR UK, London, UK
| | - Aygul Dagbasi
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James A Berkley
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - John P H Wilding
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Clinical Sciences Centre, Aintree University Hospital, Liverpool, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jia V Li
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jon Swann
- School of Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
| | - John C Mathers
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, UK
| | - Marko Kerac
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Douglas Morrison
- Scottish Universities Environmental Research Centre, East Kilbride, UK
| | - Lesley Drake
- Partnership for Child Development, School of Public Health, Imperial College London, London, UK
| | - Andre Briend
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kathryn Maitland
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Surgery and Cancer, Institute of Global Health Innovation, Imperial College London, London, UK
| | - Gary Frost
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
3
|
Crino OL, Head ML, Jennions MD, Noble DWA. Mitochondrial function and sexual selection: can physiology resolve the 'lek paradox'? J Exp Biol 2024; 227:jeb245569. [PMID: 38206324 DOI: 10.1242/jeb.245569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Across many taxa, males use elaborate ornaments or complex displays to attract potential mates. Such sexually selected traits are thought to signal important aspects of male 'quality'. Female mating preferences based on sexual traits are thought to have evolved because choosy females gain direct benefits that enhance their lifetime reproductive success (e.g. greater access to food) and/or indirect benefits because high-quality males contribute genes that increase offspring fitness. However, it is difficult to explain the persistence of female preferences when males only provide genetic benefits, because female preferences should erode the heritable genetic variation in fitness that sexually selected traits signal. This 'paradox of the lek' has puzzled evolutionary biologists for decades, and inspired many hypotheses to explain how heritable variation in sexually selected traits is maintained. Here, we discuss how factors that affect mitochondrial function can maintain variation in sexually selected traits despite strong female preferences. We discuss how mitochondrial function can influence the expression of sexually selected traits, and we describe empirical studies that link the expression of sexually selected traits to mitochondrial function. We explain how mothers can affect mitochondrial function in their offspring by (a) influencing their developmental environment through maternal effects and (b) choosing a mate to increase the compatibility of mitochondrial and nuclear genes (i.e. the 'mitonuclear compatibility model of sexual selection'). Finally, we discuss how incorporating mitochondrial function into models of sexual selection might help to resolve the paradox of the lek, and we suggest avenues for future research.
Collapse
Affiliation(s)
- Ondi L Crino
- School of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
4
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Bordet S, Luaces JP, Herrera MI, Gonzalez LM, Kobiec T, Perez-Lloret S, Otero-Losada M, Capani F. Neuroprotection from protein misfolding in cerebral hypoperfusion concurrent with metabolic syndrome. A translational perspective. Front Neurosci 2023; 17:1215041. [PMID: 37650104 PMCID: PMC10463751 DOI: 10.3389/fnins.2023.1215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 09/01/2023] Open
Abstract
Based on clinical and experimental evidence, metabolic syndrome (MetS) and type 2 diabetes (T2D) are considered risk factors for chronic cerebral hypoperfusion (CCH) and neurodegeneration. Scientific evidence suggests that protein misfolding is a potential mechanism that explains how CCH can lead to either Alzheimer's disease (AD) or vascular cognitive impairment and dementia (VCID). Over the last decade, there has been a significant increase in the number of experimental studies regarding this issue. Using several animal paradigms and different markers of CCH, scientists have discussed the extent to which MetSor T2D causes a decrease in cerebral blood flow (CBF). In addition, different models of CCH have explored how long-term reductions in oxygen and energy supply can trigger AD or VCID via protein misfolding and aggregation. Research that combines two or three animal models could broaden knowledge of the links between these pathological conditions. Recent experimental studies suggest novel neuroprotective properties of protein-remodeling factors. In this review, we present a summarized updated revision of preclinical findings, discussing clinical implications and proposing new experimental approaches from a translational perspective. We are confident that research studies, both clinical and experimental, may find new diagnostic and therapeutic tools to prevent neurodegeneration associated with MetS, diabetes, and any other chronic non-communicable disease (NCD) associated with diet and lifestyle risk factors.
Collapse
Affiliation(s)
- Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Juan Pablo Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Maria Ines Herrera
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Liliana Mirta Gonzalez
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Santiago Perez-Lloret
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Observatorio de Salud Pública, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
6
|
He B, Li Z, Xu L, Liu L, Wang S, Zhan S, Song Y. Upper arm length and knee height are associated with diabetes in the middle-aged and elderly: evidence from the China Health and Retirement Longitudinal Study. Public Health Nutr 2023; 26:190-198. [PMID: 35581171 PMCID: PMC11077445 DOI: 10.1017/s1368980022001215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine if limb lengths, as markers of early life environment, are associated with the risk of diabetes in China. DESIGN We performed a cohort analysis using data from the China Health and Retirement Longitudinal Study (CHARLS), and multivariable-adjusted Cox proportional hazard regression models were used to examine the associations between baseline limb lengths and subsequent risk of diabetes. SETTING The CHARLS, 2011-2018. PARTICIPANTS The study confined the eligible subject to 10 711 adults aged over 45 years from the CHARLS. RESULTS During a mean follow-up period of 6·13 years, 1358 cases of incident diabetes were detected. When controlling for potential covariates, upper arm length was inversely related to diabetes (hazard ratio (HR) 0·95, 95 % CI (0·91, 0·99), P = 0·028), and for every 1-cm difference in knee height, the risk of diabetes decreased by about 4 % (HR 0·96, 95 % CI (0·93, 0·99), P = 0·023). The association between upper arm length and diabetes was only significant among females while the association between knee height and diabetes was only significant among males. In analyses stratified by BMI, significant associations between upper arm length/knee height and diabetes only existed among those who were underweight (HR 0·91, 95 % CI (0·83, 1·00), P = 0·049, HR 0·92, 95 % CI (0·86, 0·99), P = 0·031). CONCLUSIONS Inverse associations were observed between upper arm length, knee height and the risk for diabetes development in a large Asian population, suggesting early life environment, especially infant nutritional status, may play an important role in the determination of future diabetes risk.
Collapse
Affiliation(s)
- Bingjie He
- Department of Epidemiology and Biostatistics, School of Public
Health, Peking University, 38 Xueyuan Road, Haidian District,
Beijing100191, People’s Republic of China
| | - Zhengyang Li
- Department of Endocrinology, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Huaiyin
District, Jinan, People’s Republic of China
| | - Lu Xu
- Department of Epidemiology and Biostatistics, School of Public
Health, Peking University, 38 Xueyuan Road, Haidian District,
Beijing100191, People’s Republic of China
| | - Lili Liu
- Department of Epidemiology and Biostatistics, School of Public
Health, Peking University, 38 Xueyuan Road, Haidian District,
Beijing100191, People’s Republic of China
| | - Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public
Health, Peking University, 38 Xueyuan Road, Haidian District,
Beijing100191, People’s Republic of China
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public
Health, Peking University, 38 Xueyuan Road, Haidian District,
Beijing100191, People’s Republic of China
- Research Center of Clinical Epidemiology, Peking
University Third Hospital, Haidian District, Beijing,
People’s Republic of China
- Center for Intelligent Public Health, Institute for Artificial
Intelligence, Peking University, Beijing,
People’s Republic of China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Huaiyin
District, Jinan, People’s Republic of China
- Shandong Institute of Endocrine & Metabolic Diseases,
Shandong First Medical University, Jinan,
People’s Republic of China
| |
Collapse
|
7
|
Zhou X, Kang C, Hu Y, Wang X. Study on insulin resistance and ischemic cerebrovascular disease: A bibliometric analysis via CiteSpace. Front Public Health 2023; 11:1021378. [PMID: 36950100 PMCID: PMC10025569 DOI: 10.3389/fpubh.2023.1021378] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Background It is reported that insulin resistance widely exists in non-diabetic patients with a recent history of transient ischemic attack (TIA) or ischemic stroke. There is currently strong evidence to prove the bidirectional effect of glucose metabolism disorders and stroke events. Therefore, it is necessary to retrospectively tease out the current status, hotspots, and frontiers of insulin resistance and ischemic cerebrovascular disease through CiteSpace. Materials and methods We searched the Web of Science (WOS) for studies related to insulin resistance and ischemic cerebrovascular disease from 1999 to April 2022, then downloaded the data into CiteSpace to generate a knowledge visualization map. Results A total of 1,500 publications relevant to insulin resistance and ischemic cerebrovascular disease were retrieved. The USA had the most articles on this topic, followed by PEOPLES R CHINA and JAPAN. WALTER N KERNAN was the most prolific author, whose research mainly focused on insulin resistance intervention after stroke (IRIS) trial. The most common keywords were myocardial ischemia, metabolic syndrome, ischemic stroke, cerebral ischemia, association, oxidative stress, inflammation, and adipose tissue. Major ongoing research trends include three aspects: (1) the association between insulin resistance and ischemic cerebrovascular disease in non-diabetic patients, (2) the intrinsic pathological mechanism between insulin resistance and ischemic cerebrovascular disease, and (3) early intervention of insulin resistance to improve the prognosis of stroke. Conclusion The results of this bibliometric study provide the current status and trends of clinical research publications in the field of insulin resistance and ischemic cerebrovascular disease. Insulin resistance is strongly associated with the occurrence of ischemic stroke, early neurological deterioration in stroke patients, post-stroke depression, and cerebral small vessel disease. Early treatment of insulin resistance can be an effective way to prevent the onset of ischemic stroke and improve stroke prognosis. This study may help researchers to identify hot topics and explore new research directions.
Collapse
Affiliation(s)
- Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Kang
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - YuHong Hu
- Division of Cardiology, The 960th Hospital of the PLA Joint Logistic Support Force, Jinan, China
| | - XingChen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: XingChen Wang
| |
Collapse
|
8
|
Metwally AM, Sallam SF, Mawla MAA, Alian KM, Abdel-Latif GA, Hasanin HM, Kamal AN, Hanna C, Shebini SME, Ahmed NH, Mabrok HB, Mahmoud MH, Ismail AS, Boseila SAW, El-Alameey IR, Mahfouz NN, Shaaban FA, Ibrahim NA, Hassan NE, El-Masry SA, Naga MM, Khalil A. Promoting weaning practices and growth of Egyptian infants by using communication for behavioral development approach. BMC Pediatr 2022; 22:689. [DOI: https:/doi.org/10.1186/s12887-022-03741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 10/31/2023] Open
Abstract
AbstractBackgroundAccess to various affordable and nutritious foods is considered a challenging factor for households with limited resources affecting the proper weaning practices. In order to motivate communities to adhere to the right and proper weaning practices, the social aspect should be considered through close communication with the targeted communities. This study aimed to evaluate how impactful the use of the principles of Communication for Development (C4D) that respect parents’ beliefs and their cultural norms is in improving the weaning practices and growth of infants in an Egyptian village.MethodsAn interventional three-phase study was conducted for three years. The intervention targeted 464 mothers of infants up to 2 years of age. C4D interventions encouraged each mother to provide her baby with nutritious and varied options through age-appropriate introduction and diversification of nutrient-rich complementary foods under the slogan “ enjoy meals like a baby”. The effectiveness of the approach was measured by five essential weaning practices: Introduction of solid, semi-solid, or soft foods, Minimum dietary diversity, minimum meal frequency, Minimum acceptable diet, and consumption of iron-rich foods.ResultsThere was marked and significant improvement in the awareness and of the majority of the weaning practices’ indicators as a result of the interventions. This was noticed for the timely introduction of complementary foods which increased from 36.7% to 82.0%, the minimum meal frequency indicator (3–5) which increased from 25.3% to 67.3%, iron-rich or fortified food (68.0% to 82%) as well as a regular checkup for baby health at the health unit (71.3%). Indicators that were improved but failed to achieve the target were the “Minimum Dietary Diversity” (reached 32%) and the minimum acceptable diet (reached 22.0%). A significant effect on linear growth especially for females is evidenced by the remarkable decrease in wasting (from 31.5% to 11.1%) and obesity (from 12.0% to 0%) associated with a considerable decrease in underweight (from 40% to 16.7%).ConclusionTargeting caregivers through the C4D approach have succeeded in providing them with the support required for the provision of adequate nutrition for their infants that had significantly marked improvement in growth indices of their infants.
Collapse
|
9
|
Metwally AM, Sallam SF, Mawla MAA, Alian KM, Abdel-Latif GA, Hasanin HM, Kamal AN, Hanna C, Shebini SME, Ahmed NH, Mabrok HB, Mahmoud MH, Ismail AS, Boseila SAW, El-Alameey IR, Mahfouz NN, Shaaban FA, Ibrahim NA, Hassan NE, El-Masry SA, Naga MM, Khalil A. Promoting weaning practices and growth of Egyptian infants by using communication for behavioral development approach. BMC Pediatr 2022; 22:689. [PMID: 36456920 PMCID: PMC9713754 DOI: 10.1186/s12887-022-03741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Access to various affordable and nutritious foods is considered a challenging factor for households with limited resources affecting the proper weaning practices. In order to motivate communities to adhere to the right and proper weaning practices, the social aspect should be considered through close communication with the targeted communities. This study aimed to evaluate how impactful the use of the principles of Communication for Development (C4D) that respect parents' beliefs and their cultural norms is in improving the weaning practices and growth of infants in an Egyptian village. METHODS An interventional three-phase study was conducted for three years. The intervention targeted 464 mothers of infants up to 2 years of age. C4D interventions encouraged each mother to provide her baby with nutritious and varied options through age-appropriate introduction and diversification of nutrient-rich complementary foods under the slogan " enjoy meals like a baby". The effectiveness of the approach was measured by five essential weaning practices: Introduction of solid, semi-solid, or soft foods, Minimum dietary diversity, minimum meal frequency, Minimum acceptable diet, and consumption of iron-rich foods. RESULTS There was marked and significant improvement in the awareness and of the majority of the weaning practices' indicators as a result of the interventions. This was noticed for the timely introduction of complementary foods which increased from 36.7% to 82.0%, the minimum meal frequency indicator (3-5) which increased from 25.3% to 67.3%, iron-rich or fortified food (68.0% to 82%) as well as a regular checkup for baby health at the health unit (71.3%). Indicators that were improved but failed to achieve the target were the "Minimum Dietary Diversity" (reached 32%) and the minimum acceptable diet (reached 22.0%). A significant effect on linear growth especially for females is evidenced by the remarkable decrease in wasting (from 31.5% to 11.1%) and obesity (from 12.0% to 0%) associated with a considerable decrease in underweight (from 40% to 16.7%). CONCLUSION Targeting caregivers through the C4D approach have succeeded in providing them with the support required for the provision of adequate nutrition for their infants that had significantly marked improvement in growth indices of their infants.
Collapse
Affiliation(s)
- Ammal M. Metwally
- grid.419725.c0000 0001 2151 8157Community Medicine Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Sara F. Sallam
- grid.419725.c0000 0001 2151 8157Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Mohamed A. Abdel Mawla
- grid.419725.c0000 0001 2151 8157Pediatrics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Khadija M. Alian
- grid.419725.c0000 0001 2151 8157Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Ghada A. Abdel-Latif
- grid.419725.c0000 0001 2151 8157Community Medicine Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Hasanin M. Hasanin
- grid.419725.c0000 0001 2151 8157Pediatrics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Ayat N. Kamal
- grid.419725.c0000 0001 2151 8157Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Carine Hanna
- grid.419725.c0000 0001 2151 8157Community Medicine Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Salwa M. El Shebini
- grid.419725.c0000 0001 2151 8157Nutrition and Food Science Department, Food Technology and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Nihad H. Ahmed
- grid.419725.c0000 0001 2151 8157Nutrition and Food Science Department, Food Technology and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Hoda B. Mabrok
- grid.419725.c0000 0001 2151 8157Nutrition and Food Science Department, Food Technology and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Maha H. Mahmoud
- grid.419725.c0000 0001 2151 8157Nutrition and Food Science Department, Food Technology and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Ahmed S. Ismail
- grid.419725.c0000 0001 2151 8157Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Samia A. W. Boseila
- grid.419725.c0000 0001 2151 8157Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Inas R. El-Alameey
- grid.419725.c0000 0001 2151 8157Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt ,Faculty of Applied Medical Sciences, Clinical Nutrition Department, Taibahu University, Almadina almunawara, Saudi Arabia
| | - Nermine N. Mahfouz
- grid.419725.c0000 0001 2151 8157Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Fatma A. Shaaban
- grid.419725.c0000 0001 2151 8157Child Health Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Nihad A. Ibrahim
- grid.419725.c0000 0001 2151 8157Community Medicine Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Nayera E. Hassan
- grid.419725.c0000 0001 2151 8157Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Sahar A. El-Masry
- grid.419725.c0000 0001 2151 8157Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Maie M. Naga
- grid.419725.c0000 0001 2151 8157Community Medicine Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| | - Aya Khalil
- grid.419725.c0000 0001 2151 8157Biological Anthropology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 60014618 Egypt
| |
Collapse
|
10
|
Yeste N, Pérez-Valle J, Heras-Molina A, Pesántez-Pacheco JL, Porrini E, González-Bulnes A, Bassols A. A High-Fat Diet Modifies Brain Neurotransmitter Profile and Hippocampal Proteome and Morphology in an IUGR Pig Model. Nutrients 2022; 14:nu14163440. [PMID: 36014946 PMCID: PMC9416793 DOI: 10.3390/nu14163440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine Growth Restriction (IUGR) hinders the correct growth of the fetus during pregnancy due to the lack of oxygen or nutrients. The developing fetus gives priority to brain development ("brain sparing"), but the risk exists of neurological and cognitive deficits at short or long term. On the other hand, diets rich in fat exert pernicious effects on brain function. Using a pig model of spontaneous IUGR, we have studied the effect on the adult of a long-term high-fat diet (HFD) on the neurotransmitter profile in several brain areas, and the morphology and the proteome of the hippocampus. Our hypothesis was that animals affected by IUGR (born with low birth weight) would present a different susceptibility to an HFD when they become adults, compared with normal birth-weight animals. Our results indicate that HFD affected the serotoninergic pathway, but it did not provoke relevant changes in the morphology of the hippocampus. Finally, the proteomic analysis revealed that, in some instances, NBW and LBW individuals respond to HFD in different ways. In particular, NBW animals presented changes in oxidative phosphorylation and the extracellular matrix, whereas LBW animals presented differences in RNA splicing, anterograde and retrograde transport and the mTOR pathway.
Collapse
Affiliation(s)
- Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jorge Pérez-Valle
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ana Heras-Molina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - José Luis Pesántez-Pacheco
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Avda, Doce de Octubre, Cuenca 010220, Ecuador
| | - Esteban Porrini
- Departamento de Medicina Interna, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
11
|
Fischer SV, Appel MH, Naliwaiko K, Pagliosa DD, Araújo DN, Capote AE, Oliveira BAC, Fernandes LC. Early introduction of exercise prevents insulin resistance in postnatal overfed rats. Braz J Med Biol Res 2022; 55:e11987. [PMID: 35857997 PMCID: PMC9296124 DOI: 10.1590/1414-431x2022e11987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Early childhood obesity increases the risk of developing metabolic diseases. We
examined the early introduction of exercise in small-litter obese-induced rats
(SL) on glucose metabolism in the epididymal adipose tissue (AT) and soleus
muscle (SM). On day 3 post-birth, pups were divided into groups of ten or three
(SL). On day 22, rats were split into sedentary (S and SLS) and exercise (E and
SLE) groups. The rats swam three times/week carrying a load for 30 min. In the
first week, they swam without a load; in the 2nd week, they carried a load
equivalent to 2% of their body weight; from the 3rd week to the final week, they
carried a 5% body load. At 85 days of age, an insulin tolerance test was
performed in some rats. At 90 days of age, rats were killed, and blood was
harvested for plasma glucose, cholesterol, and triacylglycerol measurements.
Mesenteric, epididymal, retroperitoneal, and brown adipose tissues were removed
and weighed. SM and AT were incubated in the Krebs-Ringer bicarbonate buffer,
5.5 mM glucose for 1 h with or without 10 mU/mL insulin. Comparison between the
groups was performed by 3-way ANOVA followed by the Tukey
post-hoc test. Sedentary, overfed rats had greater body
mass, more visceral fat, lower lactate production, and insulin resistance. Early
introduction of exercise reduced plasma cholesterol and contained the deposition
of white adipose tissue and insulin resistance. In conclusion, the early
introduction of exercise prevents the effects of obesity on glucose metabolism
in adulthood in this rat model.
Collapse
Affiliation(s)
- S V Fischer
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - M H Appel
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil
| | - K Naliwaiko
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - D D Pagliosa
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - D N Araújo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - A E Capote
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - B A C Oliveira
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - L C Fernandes
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
12
|
Bhatti AA, Rana S. Association of genetic variants and behavioral factors with the risk of metabolic syndrome in Pakistanis. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Kalai FZ, Boulaaba M, Ferdousi F, Isoda H. Effects of Isorhamnetin on Diabetes and Its Associated Complications: A Review of In Vitro and In Vivo Studies and a Post Hoc Transcriptome Analysis of Involved Molecular Pathways. Int J Mol Sci 2022; 23:704. [PMID: 35054888 PMCID: PMC8775402 DOI: 10.3390/ijms23020704] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus, especially type 2 (T2DM), is a major public health problem globally. DM is characterized by high levels of glycemia and insulinemia due to impaired insulin secretion and insulin sensitivity of the cells, known as insulin resistance. T2DM causes multiple and severe complications such as nephropathy, neuropathy, and retinopathy causing cell oxidative damages in different internal tissues, particularly the pancreas, heart, adipose tissue, liver, and kidneys. Plant extracts and their bioactive phytochemicals are gaining interest as new therapeutic and preventive alternatives for T2DM and its associated complications. In this regard, isorhamnetin, a plant flavonoid, has long been studied for its potential anti-diabetic effects. This review describes its impact on reducing diabetes-related disorders by decreasing glucose levels, ameliorating the oxidative status, alleviating inflammation, and modulating lipid metabolism and adipocyte differentiation by regulating involved signaling pathways reported in the in vitro and in vivo studies. Additionally, we include a post hoc whole-genome transcriptome analysis of biological activities of isorhamnetin using a stem cell-based tool.
Collapse
Affiliation(s)
- Feten Zar Kalai
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Mondher Boulaaba
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan; (F.Z.K.); (M.B.); (F.F.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
14
|
Hsu CN, Hou CY, Hsu WH, Tain YL. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int J Mol Sci 2021; 22:11872. [PMID: 34769303 PMCID: PMC8584419 DOI: 10.3390/ijms222111872] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
One of the leading global public-health burdens is metabolic syndrome (MetS), despite the many advances in pharmacotherapies. MetS, now known as "developmental origins of health and disease" (DOHaD), can have its origins in early life. Offspring MetS can be programmed by various adverse early-life conditions, such as nutrition imbalance, maternal conditions or diseases, maternal chemical exposure, and medication use. Conversely, early interventions have shown potential to revoke programming processes to prevent MetS of developmental origins, namely reprogramming. In this review, we summarize what is currently known about adverse environmental insults implicated in MetS of developmental origins, including the fundamental underlying mechanisms. We also describe animal models that have been developed to study the developmental programming of MetS. This review extends previous research reviews by addressing implementation of reprogramming strategies to prevent the programming of MetS. These mechanism-targeted strategies include antioxidants, melatonin, resveratrol, probiotics/prebiotics, and amino acids. Much work remains to be accomplished to determine the insults that could induce MetS, to identify the mechanisms behind MetS programming, and to develop potential reprogramming strategies for clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Chen Kung University, Tainan 701, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
15
|
Cope HA, Blake BE, Love C, McCord J, Elmore SA, Harvey JB, Chappell VA, Fenton SE. Latent, sex-specific metabolic health effects in CD-1 mouse offspring exposed to PFOA or HFPO-DA (GenX) during gestation. EMERGING CONTAMINANTS 2021; 7:219-235. [PMID: 35097227 PMCID: PMC8794304 DOI: 10.1016/j.emcon.2021.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is an environmental contaminant associated with adverse metabolic outcomes in developmentally exposed human populations and mouse models. Hexafluoropropylene oxide-dimer acid (HFPO-DA, commonly called GenX) has replaced PFOA in many industrial applications in the U.S. and Europe and has been measured in global water systems from <1 to 9350 ng/L HFPO-DA. Health effects data for GenX are lacking. OBJECTIVE Determine the effects of gestational exposure to GenX on offspring weight gain trajectory, adult metabolic health, liver pathology and key adipose gene pathways in male and female CD-1 mice. METHODS Daily oral doses of GenX (0.2, 1.0, 2.0 mg/kg), PFOA (0.1, 1.0 mg/kg), or vehicle control were administered to pregnant mice (gestation days 1.5-17.5). Offspring were fed a high- or low-fat diet (HFD or LFD) at weaning until necropsy at 6 or 18 weeks, and metabolic endpoints were measured over time. PFOA and GenX serum and urine concentrations, weight gain, serum lipid parameters, body mass composition, glucose tolerance, white adipose tissue gene expression, and liver histopathology were evaluated. RESULTS Prenatal exposure to GenX led to its accumulation in the serum and urine of 5-day old pups (P = 0.007, P < 0.001), which was undetectable by weaning. By 18 weeks of age, male mice fed LFD in the 2.0 mg/kg GenX group displayed increased weight gain (P < 0.05), fat mass (P = 0.016), hepatocellular microvesicular fatty change (P = 0.015), and insulin sensitivity (P = 0.014) in comparison to control males fed LFD. Female mice fed HFD had a significant increase in hepatocyte single cell necrosis in 1.0 mg/kg GenX group (P = 0.022) and 1.0 mg/kg PFOA group (P = 0.003) compared to control HFD females. Both sexes were affected by gestational GenX exposure; however, the observed phenotype varied between sex with males displaying more characteristics of metabolic disease and females exhibiting liver damage in response to the gestational exposure. CONCLUSIONS Prenatal exposure to 1 mg/kg GenX and 1 mg/kg PFOA induces adverse metabolic outcomes in adult mice that are diet- and sex-dependent. GenX also accumulated in pup serum, suggesting that placental and potentially lactational transfer are important exposure routes for GenX.
Collapse
Affiliation(s)
- Harlie A. Cope
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Bevin E. Blake
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Charlotte Love
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - James McCord
- Multimedia Methods Branch, Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Susan A. Elmore
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, NIH, RTP, NC, USA
| | - Janice B. Harvey
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, NIH, RTP, NC, USA
| | - Vesna A. Chappell
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Suzanne E. Fenton
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Rifas-Shiman SL, Huh SY, Martin RM, Kramer M, Patel R, Bogdanovich N, Vilchuck K, Thompson J, Oken E. Delivery by caesarean section and offspring adiposity and cardio-metabolic health at ages 6.5, 11.5 and 16 years: results from the PROBIT cohort in Belarus. Pediatr Obes 2021; 16:e12783. [PMID: 33660413 DOI: 10.1111/ijpo.12783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Caesarean delivery has been associated with later adiposity, perhaps via early programming or perhaps because of residual confounding by maternal or birth characteristics. OBJECTIVES Examine associations of caesarean delivery with adiposity and cardio-metabolic biomarkers. METHODS Observational analysis of 15 069 children in the PROBIT cohort in Belarus. We examined measures of child anthropometry and blood pressure at 6.5, 11.5 and 16 years and fasting blood (11.5 years). RESULTS Caesarean-delivered children were slightly heavier at 6.5 (mean BMI 15.8 vs. 15.6 kg/m2 ), 11.5 (18.4 vs. 18.2) and 16 years (21.5 vs. 21.3). After adjustment for prenatal characteristics including maternal third trimester BMI, however, we observed no association of caesarean versus vaginal delivery with child BMI (β 0.05 kg/m2 ; 95%CI: -0.03, 0.14), sum of skinfolds (0.14 mm; -0.13, 0.42), waist circumference (-0.07 cm; -0.23, 0.10), obesity (OR 0.99; 0.76, 1.29), or systolic (-0.20 mmHg; -0.70, 0.30) or diastolic (-0.17 mmHg, -0.60, 0.26) blood pressure at 6.5 years; results were similar at 11.5 and 16 years. At 11.5 years, we observed a modest association of caesarean delivery with fasting insulin (0.33 mU/L; 0.00, 0.65). CONCLUSIONS Caesarean delivery had little or no association with adiposity or related cardio-metabolic biomarkers in childhood. Adjustment for maternal BMI attenuated all outcome effect estimates.
Collapse
Affiliation(s)
- Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Susanna Y Huh
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Richard M Martin
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Michael Kramer
- Departments of Pediatrics and of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Rita Patel
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Natalia Bogdanovich
- Department of Obstetrics, National Research and Applied Medicine Mother and Child Centre, Minsk, Belarus
| | - Konstanin Vilchuck
- Department of Obstetrics, National Research and Applied Medicine Mother and Child Centre, Minsk, Belarus
| | - Jennifer Thompson
- Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Auker L, Cordingley L, Griffiths CEM, Young HS. Physical activity is important for cardiovascular health and cardiorespiratory fitness in patients with psoriasis. Clin Exp Dermatol 2021; 47:289-296. [PMID: 34368977 PMCID: PMC9291751 DOI: 10.1111/ced.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
Background Patients with psoriasis have a level of physical activity below that recommended for cardiovascular health, which is significantly limited by disease severity and other psoriasis‐specific barriers. We hypothesized that physical activity is important for cardiovascular health in patients with psoriasis and that its objective measurement could have clinical utility. Aim To explore whether physical activity influences the risk of cardiovascular disease (CVD) in patients with psoriasis. Methods In total, 242 patients with chronic plaque psoriasis were recruited. History, examination and physical activity were assessed and arteriography, the noninvasive measurement of arterial function, was performed for each participant. Results We observed a significant relationship between volume of physical activity and the likelihood of future CVD as measured by pulse wave velocity (PWV; P < 0.02). We identified a significant relationship between the diastolic reflection area (DRA) and health‐promoting levels of physical activity (P < 0.001), in addition to a significant correlation between DRA and the likelihood of future CVD (P < 0.001). The DRA is a complex, dimensionless variable that describes the intensity of diastolic wave reflection and the duration of diastole, which are key determinants of the blood supply to the left ventricle. Our data suggest that DRA may represent a surrogate marker for cardiorespiratory fitness. Conclusion Our study describes a significant relationship between exercise, cardiorespiratory fitness and PWV, a preclinical indicator of future CVD risk, in patients with psoriasis. The DRA offers a noninvasive, objective measurement of exercise adherence, which could have clinical utility in the future.
Collapse
Affiliation(s)
- L Auker
- Centre for Dermatology Research, Salford Royal Hospital, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - L Cordingley
- Centre for Dermatology Research, Salford Royal Hospital, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - C E M Griffiths
- Centre for Dermatology Research, Salford Royal Hospital, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| | - H S Young
- Centre for Dermatology Research, Salford Royal Hospital, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Wilkins E, Wickramasinghe K, Pullar J, Demaio AR, Roberts N, Perez-Blanco KM, Noonan K, Townsend N. Maternal nutrition and its intergenerational links to non-communicable disease metabolic risk factors: a systematic review and narrative synthesis. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2021; 40:20. [PMID: 33902746 PMCID: PMC8077952 DOI: 10.1186/s41043-021-00241-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Non-communicable diseases (NCDs) are the leading cause of death and disability globally, while malnutrition presents a major global burden. An increasing body of evidence suggests that poor maternal nutrition is related to the development of NCDs and their risk factors in adult offspring. However, there has been no systematic evaluation of this evidence. METHODS We searched eight electronic databases and reference lists for primary research published between 1 January 1996 and 31 May 2016 for studies presenting data on various dimensions of maternal nutritional status (including maternal exposure to famine, maternal gestational weight gain (GWG), maternal weight and/or body mass index (BMI), and maternal dietary intake) during pregnancy or lactation, and measures of at least one of three NCD metabolic risk factors (blood pressure, blood lipids and blood glucose) in the study population of offspring aged 18 years or over. Owing to high heterogeneity across exposures and outcomes, we employed a narrative approach for data synthesis (PROSPERO= CRD42016039244, CRD42016039247). RESULTS Twenty-seven studies from 10 countries with 62,607 participants in total met our inclusion criteria. The review revealed considerable heterogeneity in findings across studies. There was evidence of a link between maternal exposure to famine during pregnancy with adverse blood pressure, blood lipid, and glucose metabolism outcomes in adult offspring in some contexts, with some tentative support for an influence of adult offspring adiposity in this relationship. However, the evidence base for maternal BMI, GWG, and dietary intake of specific nutrients during pregnancy was more limited and revealed no consistent support for a link between these exposures and adult offspring NCD metabolic risk factors. CONCLUSION The links identified between maternal exposure to famine and offspring NCD risk factors in some contexts, and the tentative support for the role of adult offspring adiposity in influencing this relationship, suggest the need for increased collaboration between maternal nutrition and NCD sectors. However, in view of the current scant evidence base for other aspects of maternal nutrition, and the overall heterogeneity of findings, ongoing monitoring and evaluation using large prospective studies and linked data sets is a major priority.
Collapse
Affiliation(s)
- Elizabeth Wilkins
- Centre on Population Approaches for NCD Prevention, University of Oxford, Oxford, UK
| | | | - Jessie Pullar
- Centre on Population Approaches for NCD Prevention, University of Oxford, Oxford, UK
| | | | - Nia Roberts
- Health Library, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | - Nick Townsend
- Department for Health, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
19
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
20
|
Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reprod Toxicol 2021; 99:168-176. [DOI: 10.1016/j.reprotox.2020.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
|
21
|
Zhang X, Gao B, Xu B. Association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and risk of Alzheimer's disease, metabolic syndrome, and female infertility: A meta-analysis. Medicine (Baltimore) 2020; 99:e23660. [PMID: 33327353 PMCID: PMC7738113 DOI: 10.1097/md.0000000000023660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) is considered to be involved in the physiopathological mechanisms of Alzheimer's disease (AD), metabolic syndrome (MetS), and female infertility. Previous studies investigating the association between PAI-14G/5G (rs1799889) gene polymorphism and the risk of AD, MetS, and female infertility have reported inconsistent results. The aim of the present study was to investigate possible associations. METHODS Eligible studies were retrieved through PubMed, Medline, EMBASE, CNKI, and WANFANG databases. The odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the associations. Subgroup analyses by ethnicity and mean age, sensitivity analyses, and publication bias were performed. RESULTS Five studies (four articles) for AD, six studies (six articles) for MetS, and four studies (four articles) for female infertility were included in this meta-analysis. Our results showed no significant associations between the PAI-14G/5G polymorphism and the risk of AD and female infertility in five genetic models. For the risk of MetS, the PAI-1 4G/5G (rs1799889) polymorphism may be associated with the risk of MetS (4G vs 5G, OR = 1.31, 95%CI = 1.04-1.64, P = .021), especially in Asians (4G/4G vs 4G/5G+5G/5G, OR = 1.38, 95%CI = 1.01-1.87, P = .041) and patients with mean age > 50 years old (4G/4G vs 4G/5G+5G/5G, OR = 1.36, 95%CI = 1.03-1.78, P = .029). CONCLUSION The present meta-analysis suggested that the PAI-1 4G/5G polymorphism might be associated with the risk of MetS, but no evidence was detected for AD and female infertility.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, Shenyang First People's Hospital, Dadong District
| | - Bai Gao
- Department of Nerve Function, ShengJing Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, People's Republic of China
| | - Bing Xu
- Department of Neurology, Shenyang First People's Hospital, Dadong District
| |
Collapse
|
22
|
Polan DM, Alansari M, Lee B, Grewal SS. Early-life hypoxia alters adult physiology and reduces stress resistance and lifespan in Drosophila. J Exp Biol 2020; 223:jeb226027. [PMID: 32988998 PMCID: PMC10668336 DOI: 10.1242/jeb.226027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/18/2020] [Indexed: 08/25/2023]
Abstract
In many animals, short-term fluctuations in environmental conditions in early life often exert long-term effects on adult physiology. In Drosophila, one ecologically relevant environmental variable is hypoxia. Drosophila larvae live on rotting, fermenting food rich in microorganisms, an environment characterized by low ambient oxygen. They have therefore evolved to tolerate hypoxia. Although the acute effects of hypoxia in larvae have been well studied, whether early-life hypoxia affects adult physiology and fitness is less clear. Here, we show that Drosophila exposed to hypoxia during their larval period subsequently show reduced starvation stress resistance and shorter lifespan as adults, with these effects being stronger in males. We find that these effects are associated with reduced whole-body insulin signaling but elevated TOR kinase activity, a manipulation known to reduce lifespan. We also identify a sexually dimorphic effect of larval hypoxia on adult nutrient storage and mobilization. Thus, we find that males, but not females, show elevated levels of lipids and glycogen. Moreover, we see that both males and females exposed to hypoxia as larvae show defective lipid mobilization upon starvation stress as adults. These data demonstrate how early-life hypoxia can exert persistent, sexually dimorphic, long-term effects on Drosophila adult physiology and lifespan.
Collapse
Affiliation(s)
- Danielle M Polan
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Mohammed Alansari
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
23
|
Wang Q, Ren D, Bi Y, Yuan R, Li D, Wang J, Wang R, Zhang L, He G, Liu B. Association and functional study between ADIPOQ and metabolic syndrome in elderly Chinese Han population. Aging (Albany NY) 2020; 12:25819-25827. [PMID: 33232281 PMCID: PMC7803488 DOI: 10.18632/aging.104203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/06/2020] [Indexed: 12/23/2022]
Abstract
Objective: Metabolic syndrome (MetS) is a cluster of health problems that places individuals at higher risk of developing cardiovascular disease, diabetes and stroke. The prevalence of MetS is increasing worldwide. It is also well accepted that genetic and environmental factors play significant roles in the occurrence/development of MetS, but studies exploring genetic factors are still lacking. Here, we aimed to investigate the association of ADIPOQ gene variants with MetS in an elderly Chinese Han population. Results: We found that the allelic frequencies of rs6773957 and rs3774261 were significantly different between MetS and the control (p = 0.031; p = 0.049). Furthermore, a reduction in luciferase activity was observed when HEK293T cells were transfected with rs6773957 mutant fragments compared with wild type. Conclusion: Our results suggest that rs6773957 and rs3774261 of ADIPOQ were associated with MetS in the elderly Chinese Han population. The functional assays performed indicate that the rs6773957 variant might be pathogenic and may provide evidence for mechanistic studies of MetS in the future. Methods: Four single nucleotide polymorphisms (SNPs) were selected and genotyped (rs6773957, rs182052, rs3774261 and rs17366568) in 1337 subjects, including 569 healthy controls and 768 MetS cases. The clinical characteristics of all the subjects were obtained and analyzed. Additionally, a functional study of rs6773957 in regulating the expression of ADIPOQ was performed in this study.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes of Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes of Shanghai Jiao Tong University, Shanghai, China
| | - Ruixue Yuan
- Bio-X Institutes of Shanghai Jiao Tong University, Shanghai, China
| | - Dong Li
- Zhangjiang Community Health Service Center of Pudong New, Shanghai, China
| | - Jianying Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes of Shanghai Jiao Tong University, Shanghai, China
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Ly C, Essman M, Zimmer C, Ng SW. Developing an index to estimate the association between the food environment and CVD mortality rates. Health Place 2020; 66:102469. [PMID: 33130450 PMCID: PMC7683359 DOI: 10.1016/j.healthplace.2020.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/26/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
The food environment has been shown to influence dietary patterns, which ultimately affects nutrition-related diseases such as diabetes, obesity, and cardiovascular disease (CVD). Measures of food accessibility and socioeconomics were combined to develop the Food Environment Index (FEI), characterizing all U.S. counties between 2008 and 2016. Multi-level regression models showed that this index is significantly negatively associated with CVD death rates across the two time periods studied (2008-2010 and 2013-2016). The FEI may be a useful proxy for identifying differences in the food environment to inform future interventions.
Collapse
Affiliation(s)
- Christopher Ly
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Michael Essman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Catherine Zimmer
- Department of Sociology, Howard W. Odum Institute for Social Science, University of North Carolina, 208 Raleigh Street, Chapel Hill, NC, 27514, USA
| | - Shu Wen Ng
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA; Carolina Population Center, University of North Carolina, 123 W Franklin Street, Chapel Hill, NC, 27599-8120, USA.
| |
Collapse
|
25
|
The Stimulation of Neurogenesis Improves the Cognitive Status of Aging Rats Subjected to Gestational and Perinatal Deficiency of B9-12 Vitamins. Int J Mol Sci 2020; 21:ijms21218008. [PMID: 33126444 PMCID: PMC7662762 DOI: 10.3390/ijms21218008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
A deficiency in B-vitamins is known to lead to persistent developmental defects in various organs during early life. The nervous system is particularly affected with functional retardation in infants and young adults. In addition, even if in some cases no damage appears evident in the beginning of life, correlations have been shown between B-vitamin metabolism and neurodegenerative diseases. However, despite the usual treatment based on B-vitamin injections, the neurological outcomes remain poorly rescued in the majority of cases, compared with physiological functions. In this study, we explored whether a neonatal stimulation of neurogenesis could compensate atrophy of specific brain areas such as the hippocampus, in the case of B-vitamin deficiency. Using a physiological mild transient hypoxia within the first 24 h after birth, rat-pups, submitted or not to neonatal B-vitamin deficiency, were followed until 330-days-of-age for their cognitive capacities and their hippocampus status. Our results showed a gender effect since females were more affected than males by the deficiency, showing a persistent low body weight and poor cognitive performance to exit a maze. Nevertheless, the neonatal stimulation of neurogenesis with hypoxia rescued the maze performance during adulthood without modifying physiological markers, such as body weight and circulating homocysteine. Our findings were reinforced by an increase of several markers at 330-days-of-age in hypoxic animals, such as Ammon’s Horn 1hippocampus (CA1) thickness and the expression of key actors of synaptic dynamic, such as the NMDA-receptor-1 (NMDAR1) and the post-synaptic-density-95 (PSD-95). We have not focused our conclusion on the neonatal hypoxia as a putative treatment, but we have discussed that, in the case of neurologic retardation associated with a reduced B-vitamin status, stimulation of the latent neurogenesis in infants could ameliorate their quality of life during their lifespan.
Collapse
|
26
|
Akintoye OO, Owoyele BV, Fabunmi OA, Raimi TH, Oniyide AA, Akintoye AO, Ajibare AJ, Ajayi DD, Adeleye GS. Diabetic neuropathy is associated with increased pain perception, low serum beta-endorphin and increase insulin resistance among Nigerian cohorts in Ekiti State. Heliyon 2020; 6:e04377. [PMID: 32685721 PMCID: PMC7358268 DOI: 10.1016/j.heliyon.2020.e04377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION There has been an increase in the global prevalence of diabetic polyneuropathy and research evidence suggests that insulin resistance plays an important role in its development and prognosis. However, there seem to be a dearth of information in understanding the likely interplay between beta endorphin, insulin resistance and pain perception especially in the setting of painful diabetic neuropathy. METHOD This study recruited 120 volunteers divided into four groups (30 per group): group 1 healthy volunteer (control); group 2 DM type 2 without neuropathy (DM group); group 3 DM type 2 with painful neuropathy (DPN group); group 4 DM type 2 without painful neuropathy (DN). All subjects were evaluated for pain threshold and neuropathy using an ischemia-induced pain model and biothesiometer respectively. Their beta-endorphin, glycated hemoglobin, fasting plasma insulin, and HOMA values were determined and means compared using ANOVA. RESULT Serum beta-endorphin is significantly reduced in DN and DPN (∗p < 0.001) compared with the control and DM group. Also, DPN and DN patients have significantly increased insulin resistance compared to those without neuropathy (∗p < 0.001; ∗p < 0.0001 respectively). There is a significant positive correlation between the pain threshold and beta-endorphin in all the groups except DN group. The correlation between beta-endorphin and insulin resistance was negative and significant in control and DM groups only. Suggestive that the fact that insulin resistance plays an important role in diabetes polyneuropathy, does not alone explain the chronic pain perception noticed in the DPN patients. CONCLUSION The present study demonstrates that diabetic neuropathy patients have a poor endogenous opioid peptide system which is associated with increased pain perception and high insulin resistance. However, insulin resistance alone does not explain the chronic pain perception noticed in the DPN patients. Thus, further study is required.
Collapse
Affiliation(s)
- Olabode O. Akintoye
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Bamidele V. Owoyele
- Physiology Department, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Oyesanmi A. Fabunmi
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Taiwo H. Raimi
- Department of Medicine, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Adesola A. Oniyide
- Physiology Department, College of Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Abimbola O. Akintoye
- Department of Medicine, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Ayodeji J. Ajibare
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - David D. Ajayi
- Department of Chemical Pathology, Ekiti State University Teaching Hospital, Ado Ekiti, Nigeria
| | - Gbenga S. Adeleye
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| |
Collapse
|
27
|
Taliyan R, Chandran SK, Kakoty V. Therapeutic Approaches to Alzheimer's Type of Dementia: A Focus on FGF21 Mediated Neuroprotection. Curr Pharm Des 2020; 25:2555-2568. [PMID: 31333086 DOI: 10.2174/1381612825666190716101411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer's Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Sarathlal K Chandran
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
28
|
Auker L, Cordingley L, Pye SR, Griffiths CEM, Young HS. What are the barriers to physical activity in patients with chronic plaque psoriasis? Br J Dermatol 2020; 183:1094-1102. [PMID: 32107775 PMCID: PMC7754450 DOI: 10.1111/bjd.18979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Abstract
Background Psoriasis is associated with an increased risk of cardiovascular disease. Despite recommendation that exercise is important for cardiorespiratory fitness, patients with psoriasis avoid participation in physical activities for reasons that are, as yet, unclear. Objectives This study investigated the relationship between psoriasis‐specific experiences and self‐reported patterns of exercise, hypothesizing that individuals with psoriasis are less likely to engage in physical activity for reasons that are related to their psoriasis. Methods In total 404 patients with chronic plaque psoriasis were recruited. History, examination and physical activity were assessed for each participant. Results Overall, 52·8% (n = 188) of patients with psoriasis aged 18–65 years and 66% (n = 37) of those aged > 65 years engaged in less than the recommended amount of physical activity for cardiorespiratory fitness. As the severity and psychosocial impact of psoriasis increased, the participation in exercise (of all intensities) decreased. There was a significant negative correlation between Psoriasis Area and Severity Index and total activity in women aged 18–65 years (r = −0·19, 95% confidence interval −0·36 to 0; P = 0·04) and a significant negative correlation between physical activity and Dermatology Life Quality Index (DLQI) in all participants (r = −0·11, 95% confidence interval −0·21 to 0; P = 0·04). Individual components of the DLQI identified barriers to physical activity including skin sensitivity and reluctance to participate in leisure activities. Conclusions Psoriasis‐specific factors – severity, skin sensitivity, clothing choice, participation in social/leisure activities, and treatments – contribute to exercise avoidance and may augment the increased risk of cardiovascular disease in patients with psoriasis. What is already known about this topic? Psoriasis is associated with an increased prevalence of risk factors for cardiovascular disease. Despite recommendation that exercise is important for cardiorespiratory fitness, patients with moderate‐to-severe psoriasis participate in very little physical exercise for reasons that are, as yet, unclear.
What does this study add? This study quantifies the significant lack of engagement with exercise in the population of people with psoriasis. Physical activity in those with psoriasis is significantly influenced by psoriasis severity, quality of life and a number of previously unrecognized psoriasis‐specific barriers.
What is the translational message? Supporting patients with psoriasis to undertake regular physical activity could directly benefit weight management, cardiovascular disease and risk of metabolic syndrome, and increase wellbeing and psychosocial functioning.
Linked Comment:Jarrett.Br J Dermatol 2020; 183:988–989. Plain language summary available online
Collapse
Affiliation(s)
- L Auker
- Centre for Dermatology Research, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - L Cordingley
- Centre for Dermatology Research, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - S R Pye
- Division of Population Health, Health Services Research and Primary Care, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - H S Young
- Centre for Dermatology Research, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
29
|
Creus A, Chicco A, Álvarez SM, Giménez MS, de Lombardo YB. Dietary Salvia hispanica L. reduces cardiac oxidative stress of dyslipidemic insulin-resistant rats. Appl Physiol Nutr Metab 2020; 45:761-768. [PMID: 31935117 DOI: 10.1139/apnm-2019-0769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salvia hispanica L., commonly known as chia seed, has beneficial effects upon some signs of metabolic syndrome (MS), such as dyslipidemia and insulin resistance. However, its action on cardiac oxidative stress associated with MS remains unknown. The goal of this study was to analyze the possible beneficial effects of chia seed (variety Salba) upon the oxidative stress of left ventricle heart muscle (LV) of a well-established dyslipidemic insulin-resistant rat model induced by feeding them a sucrose-rich diet (SRD). Male Wistar rats received an SRD for 3 months. After that, for 3 additional months, half of the animals continued with the SRD, while the other half received the SRD containing chia as the source of dietary fat instead corn oil (SRD+chia). In the LV of SRD-fed rats, chia seed improved/reverted the depleted activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD), and catalase, and ameliorated manganese superoxide dismutase messenger RNA (mRNA) levels increasing the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2). Improved the glutathione redox estate, reactive oxygen species, and thiobarbituric acid reactive substances contents normalizing the p47NOX subunit mRNA level. Furthermore, chia normalized hypertension and plasma levels of pro-inflammatory cytokines and oxidative stress biomarkers. The findings show that chia seed intake impacts positively upon oxidative imbalance of LV of dyslipidemic insulin-resistant rats. Novelty Healthy effects of chia seed involve an improvement of cardiac antioxidant defenses through Nrf2 induction. Chia seed intake reduces cardiac oxidative stress markers of dyslipidemic insulin-resistant rats. Dietary chia seed restores cardiac unbalanced redox state of dyslipidemic insulin-resistant rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina
| | - Adriana Chicco
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina
| | - Silvina M Álvarez
- Laboratory of Molecular Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Avenida Ejercito de Los Andes 950, and IMIBIO-SL CONICET, San Luis, Argentina
| | - María S Giménez
- Laboratory of Molecular Biochemistry, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Avenida Ejercito de Los Andes 950, and IMIBIO-SL CONICET, San Luis, Argentina
| | - Yolanda Bolzón de Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina
| |
Collapse
|
30
|
Xiang A, Chu G, Zhu Y, Ma G, Yang G, Sun S. IGFBP5 suppresses oleate-induced intramyocellular lipids deposition and enhances insulin signaling. J Cell Physiol 2019; 234:15288-15298. [PMID: 30684263 DOI: 10.1002/jcp.28174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Excess intramyocellular lipids are often accompanied by muscle insulin resistance (IR) and type 2 diabetes. The mechanism of the formation of intramyocellular lipids is unclear yet. In this study, we optimized the cellular model of intramyocellular lipids from differentiated C2C12 cells and identified that the expression of insulin-like growth factor-binding protein 5 (IGFBP5) is diminished in this process. Then, we added exogenous recombinant IGFBP5 during myocyte triglyceride (TAG) formation and found decreased lipids accumulation. In addition, IGFBP5 could promote lipolysis when added to the cellular model after the formation of intramyocellular lipids. Moreover, IGFBP5 could enhance myocyte insulin sensitivity by inhibiting the expression of the thioredoxin-interacting protein (TXNIP) and arrestin domain-containing 4 (ARRDC4), which are a negative regulator of insulin signaling in both cases. Meanwhile, IGFBP5 also inhibited the expression of glycerol-3-phosphate acyltransferase (GPAM) and diglyceride acyltransferase 2 (DGAT2), which were involved in TAG synthesis from a fatty acid. IGFBP5 also reduced TAG storage by promoting lipolysis. Therefore, IGFBP5 may play a role in the excess accumulation of lipid in muscle cells of diabetic patients and serve as a reference for further research and treatment of muscle IR and diabetes.
Collapse
Affiliation(s)
- Aoqi Xiang
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Youbo Zhu
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangjun Ma
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiduo Sun
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
31
|
Opheim GL, Henriksen T, Haugen G. The effect of a maternal meal on fetal liver blood flow. PLoS One 2019; 14:e0216176. [PMID: 31188835 PMCID: PMC6561550 DOI: 10.1371/journal.pone.0216176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/14/2019] [Indexed: 01/06/2023] Open
Abstract
Introduction During the third trimester of development, the human fetus accumulates fat, an important energy reservoir during the early postnatal period. The fetal liver, perfused by the nutrient-rich and well-oxygenated blood coming directly from the placenta, is assumed to play a central role in these processes. Earlier studies have linked fetal liver blood flow with maternal nutritional status and response to the maternal oral glucose tolerance test. Our aim was to explore the effect of a regular maternal meal on fetal liver blood flow at two timepoints during the third trimester, representing the start and towards the end of the fetal fat accretion period. We also sought to explore the influence of prepregancy body mass index on how the maternal meal affects fetal liver blood flow. Methods Using ultrasound Doppler, we examined 108 healthy women with singleton pregnancies in gestational weeks 30 and 36. At each visit, the first examination was performed with the participant in a fasting state at 08.30 a.m., followed by a standard breakfast meal of approximately 400 kcal. The examination was repeated after 105 minutes. Umbilical vein and ductus venosus blood flow was estimated from diameter and blood flow velocity measurements. Fetal liver flow was calculated as umbilical vein flow minus ductus venosus flow, and change in liver blood flow as flow after minus before the meal. The total group was divided into a normal-weight group (prepregancy body mass index 18.5–25.0 kg/m2; n = 83) and an overweight group (prepregancy body mass index >25.0 kg/m2; n = 21). Four women with prepregancy body mass index <18.5 kg/m2 were excluded from these analyses. Non-parametric statistical hypothesis tests were used for group comparisons. Results For the total group, we observed a significant increase in median (10th - 90th percentile) liver flow 28.9 (‒67.9–111.6) ml/min (p = 0.002) following the meal in week 36, but not in week 30, ‒2.63 (‒53.2–65.0) ml/min (p = 0.91). This result in turn yielded a statistically significant increase in delta liver flow from weeks 30 to 36 of 26.0 (‒107.1–146.6) ml/min (p = 0.008). The increase in postprandial liver flow was observed only in the normal-weight group in week 36. Accordingly, the delta liver flow values between the two weight groups were significantly different in week 36 (p = 0.006) but not in week 30 (p = 0.155). Among the normal-weight women, the increase in delta liver blood flow from weeks 30 to 36 was 39.3 (‒83.0–156.1) ml/min (p<0.001); in contrast, we observed no statistically significant change in the overweight group (‒44.5 (‒229.0–123.2) ml/min; p = 0.073). As a substitute for liver size, we divided the delta liver flow values by abdominal circumference and found no changes in the statistical significance results within or between the two weight groups. Conclusion In our healthy study population, we observed a statistically significant difference in liver blood flow after maternal intake of a regular meal. This effect depended on gestational age and maternal prepregancy body mass index, but apparently was independent of liver size, based on abdominal circumference as a proxy measure.
Collapse
Affiliation(s)
- Gun Lisbet Opheim
- Department of Fetal medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Norwegian Advisory Unit on Women`s Health, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Tore Henriksen
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
- Department of Obstetrics, Oslo University Hospital—Rikshospitalet, Oslo, Norway
| | - Guttorm Haugen
- Department of Fetal medicine, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Gomes A, Soares R, Costa R, Marino F, Cosentino M, Malagon MM, Ribeiro L. High-fat diet promotes adrenaline production by visceral adipocytes. Eur J Nutr 2019; 59:1105-1114. [PMID: 31011795 DOI: 10.1007/s00394-019-01971-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Catecholamines (CA) play a major role in metabolism and immune response. Recent reports showing adipose tissue can synthetize CA enlighten new roles for these amines in obesity. This study aimed to evaluate the expression of both tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) and CA content along preadipocytes differentiation, under normal and obesigenic conditions. METHODS 8-9 week-old male C57BL/6 mice were divided in two groups: one fed with a high-fat diet (HFD) and other with a standard diet (SD) for 20 weeks. Afterwards, both TH and PNMT expression, localization, and CA content in adipocytes, were evaluated. RESULTS qPCR results showed no changes for TH and PNMT expression during the differentiation process for visceral and subcutaneous preadipocytes from mice fed with SD. Comparing to SD, HFD increased TH gene expression of subcutaneous preadipocytes and PNMT gene expression of both visceral preadipocytes and adipocytes. HPLC-ED analyses revealed HFD increased visceral adipocytes noradrenaline intracellular content comparing with preadipocytes (p = 0.037). When compared with SD, HFD raised and decreased noradrenaline content, respectively, in visceral adipocytes (p = 0.004) and subcutaneous preadipocytes (p = 0.001). Along the differentiation process, HFD increased visceral adrenaline intracellular content comparing with SD (p < 0.001). HFD increased visceral comparing to subcutaneous adrenaline content for both preadipocytes (p = 0.004) and adipocytes (p = 0.001). CONCLUSIONS TH and PNMT expression in adipose tissue is differently modulated in visceral and subcutaneous adipose depots, and seems to depend on diet. Differences observed in visceral adipose CA handling in HFD-fed mice might uncover novel pharmacological/nutritional strategies against obesity and cardiovascular risk.
Collapse
Affiliation(s)
- Andreia Gomes
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Raquel Costa
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varèse, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varèse, Italy
| | - Maria M Malagon
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica (IMIBIC), Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Laura Ribeiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
33
|
Liang H, Mokrani A, Chisomo-Kasiya H, Ji K, Ge X, Ren M, Liu B, Xi B, Sun A. Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:719-732. [PMID: 30632024 DOI: 10.1007/s10695-018-0594-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/26/2018] [Indexed: 05/12/2023]
Abstract
The present study evaluated the mechanisms governing insulin signaling, glucose metabolism, and lipogenesis in juvenile fish fed with different dietary leucine levels. Fish were fed six practical diets with graded leucine levels ranging from 0.90 to 2.94% of dry basis for 8 weeks. The trial results showed that, compared to the control group (0.90%), optimal dietary leucine level (1.72%) resulted in the up-regulation of mRNA expression related to insulin signaling pathway, including target of rapamycin (TOR), insulin receptor substrate 1 (IRS-1), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt). However, an excessive leucine level (2.94%) led to protein S6 kinase 1 (S6K1) overexpression and inhibited TOR, IRS-1, PI3K, and Akt mRNA expressions. The protein level of TOR, S6K1, IRS-1, PI3K, and Akt showed a similar result with mRNA level of these genes. Optimal dietary leucine level (1.72%) significantly improved plasma insulin content, while high level of leucine showed an inhibiting phenomenon. Optimal dietary leucine level (1.72%) could reduce plasma glucose by enhancing the ability of glycometabolism including improving glucose transporter 2 (GLUT2), glucokinase (GK) expressions and down-regulating phosphoenolpyruvate carboxykinase (PEPCK) expression. While an excessive leucine level (2.94%) resulted in high plasma glucose by inhibiting the ability of glycometabolism including lowering GLUT2 and GK expressions, and improving glucose-6-phosphatase (G6Pase) and PEPCK expressions. The relative expressions of pyruvate kinase (PK) and glycogen synthase (GS) were not significantly affected by dietary leucine levels. Dietary leucine level of 1.33% could improve plasma triglyceride content (TG) by enhancing lipogenesis including improving sterol-response element-binding protein 1 (SREBP1), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and glucose-6-phosphate dehydrogenase (G6PDH) expressions compared to the control group (0.90%). Total cholesterol (TC) was not significantly affected by dietary leucine levels. The present results indicate that optimal leucine level could improve glycolysis and fatty acid synthesis through improving insulin sensitivity in juvenile blunt snout bream. However, excessive dietary leucine level resulted in high plasma glucose, which led to insulin resistance by inhibiting the gene expressions of insulin signaling pathway and activating gluconeogenesis-related gene expression.
Collapse
Affiliation(s)
- Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Ahmed Mokrani
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | | | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ajun Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| |
Collapse
|
34
|
Lee WC, Wu KLH, Leu S, Tain YL. Translational insights on developmental origins of metabolic syndrome: Focus on fructose consumption. Biomed J 2019; 41:96-101. [PMID: 29866605 PMCID: PMC6138777 DOI: 10.1016/j.bj.2018.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a highly prevalent complex trait despite recent advances in pathophysiology and pharmacological treatment. MetS can begin in early life by so-called the developmental origins of health and disease (DOHaD). The DOHaD concept offers a novel approach to prevent MetS through reprogramming. High fructose (HF) intake has been associated with increased risk of MetS. HF diet becomes one of the most commonly used animal model to induce MetS. This review discusses the maternal HF diet induced programming process and reprogramming strategy to prevent MetS of developmental origin, with an emphasis on: (1) an overview of metabolic effects of fructose consumption on MetS; (2) insight from maternal HF animal models on MetS-related phenotypes; (3) impact of HF consumption induces organ-specific transcriptome changes; and (4) application of reprogramming strategy to prevent maternal HF consumption-induced MetS. Research into the preventions and treatments of MetS that begin early in life will have a lifelong impact and profound savings in disease burden and financial costs.
Collapse
Affiliation(s)
- Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
35
|
A New Insight into the Roles of MiRNAs in Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7372636. [PMID: 30648107 PMCID: PMC6311798 DOI: 10.1155/2018/7372636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS), which includes several clinical components such as abdominal obesity, insulin resistance (IR), dyslipidemia, microalbuminuria, hypertension, proinflammatory state, and oxidative stress (OS), has become a global epidemic health issue contributing to a high risk of type 2 diabetes mellitus (T2DM). In recent years, microRNAs (miRNAs), used as noninvasive biomarkers for diagnosis and therapy, have aroused global interest in complex processes in health and diseases, including MetS and its components. MiRNAs can exist stably in serum, liver, skeletal muscle (SM), heart muscle, adipose tissue (AT), and βcells, because of their ability to escape the digestion of RNase. Here we first present an overall review on recent findings of the relationship between miRNAs and several main components of MetS, such as IR, obesity, diabetes, lipid metabolism, hypertension, hyperuricemia, and stress, to illustrate the targeting proteins or relevant pathways that are involved in the progress of MetS and also help us find promising novel diagnostic and therapeutic strategies.
Collapse
|
36
|
Can Nurturing the Young Be the Key to Tackling Chronic Diseases in the Old? A Narrative Review With a Global Perspective. Ochsner J 2018; 18:364-369. [PMID: 30559622 DOI: 10.31486/toj.18.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background One of the greatest challenges in healthcare today is dealing with a growing burden of multimorbid chronic diseases in an aging population. Awareness is growing that a healthy start in life plays a critical role in reversing this trend, especially for young women, pregnant mothers, and children in their first 2 years of life. Methods We reviewed the international literature on early childhood nutrition and development, based on the landmark Lancet series on maternal and child nutrition and child development, and World Health Organization reports. Results Contemporary literature points to the importance of strategies that focus on early childhood for enhancing both health and socioeconomic outcomes. We discuss programs and initiatives that aim to improve the health of mothers and children at a global level, with a focus on high-income countries such as Australia and the United States. Conclusion Tackling the epidemic of chronic diseases requires a comprehensive life course approach that must include pregnant women and their young children. Healthcare systems and professionals play an important role. The health and well-being of the next generation must be everyone's business.
Collapse
|
37
|
Mogul DB, Brereton N, Carson KA, Pittarelli M, Daniel H, Torbenson M, Schwarz KB. Development of a Dietary Methyl Donor Food Frequency Questionnaire to Assess Folate and Vitamin B 12 Status in Children with Chronic Hepatitis B Virus Infection. J Pediatr 2018; 203:41-46.e2. [PMID: 30243534 DOI: 10.1016/j.jpeds.2018.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To develop a dietary methyl donor food frequency questionnaire (DMD-FFQ) that is validated in a cohort of US children and to determine whether the consumption of folate and vitamin B12, principal DMDs, correlates with HBV DNA levels and its methylation density. STUDY DESIGN We developed a semiquantitative DMD-FFQ to estimate intake of folate and vitamin B12 and validated this instrument against a 24-hour dietary recall and biomarkers-red blood cell folate, serum vitamin B12, and homocysteine-in 35 children with chronic HBV infection without other medical comorbidities. Estimates of DMD, as well as the serum biomarkers, were correlated with the methylation density of HBV CpG island 2 and HBV DNA levels. RESULTS Folate per kilogram of body weight by the DMD-FFQ correlated positively with 24-hour recall (r = 0.60; P < .001) and red blood cell folate (r = 0.40; P = .02), and negatively with homocysteine (r = -0.54; P < .001). Vitamin B12 per kilogram by DMD-FFQ also correlated positively with 24-hour recall (r = 0.57; P < .001) and serum vitamin B12 (r = 0.36, P = .04), and negatively with homocysteine (r = -0.44; P = .008). Neither DMD intake (from DMD-FFQ or 24-hour recall) nor serum biomarkers correlated with HBV DNA levels or its methylation density. CONCLUSIONS Our DMD-FFQ correlates well with a 24-hour recall and circulating biomarkers. Although little evidence existed that consumption of these micronutrients correlated with HBV replication, this tool could prove useful for investigating epigenetic modification by diet for several pediatric diseases.
Collapse
Affiliation(s)
- Douglas B Mogul
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Nga Brereton
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathryn A Carson
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Maria Pittarelli
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hubert Daniel
- Department of Pathology, Johns Hopkins Hospital, Baltimore, MD
| | | | - Kathleen B Schwarz
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
38
|
Selenscig D, Ferreira MDR, Chicco A, Lombardo YB. Dietary fish oil ameliorates adipose tissue dysfunction in insulin-resistant rats fed a sucrose-rich diet improving oxidative stress, peroxisome proliferator-activated receptor γ and uncoupling protein 2. Food Funct 2018; 9:2496-2507. [PMID: 29645025 DOI: 10.1039/c7fo01993a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work aims to assess the possible beneficial effects of dietary fish oil (FO) on the pre-existing adipose tissue dysfunction through the improvement or reversion of the mechanisms underlying oxidative stress and pro-inflammatory cytokines in dyslipemic insulin-resistant rats. Wistar rats were fed a sucrose rich diet (SRD) for 6 months. After that half of the animals continued with the SRD until month 8 while in the other half corn oil was replaced by FO for 2 months (SRD + FO). A reference group consumed a control diet all the time. In an epididymal fat pad, we analyzed antioxidant and oxidant enzyme activities, ROS content, glutathione redox state, the protein level of peroxisome proliferator-activated receptor gamma (PPARγ) and the expression and protein levels of uncoupling protein 2 (UCP2) as well as oxidative stress biomarkers and TNF-α and IL-6 plasma levels. Besides these, insulin sensitivity and the composition of fatty acid phospholipids of adipose tissue were measured. Compared with the SRD the SRD + FO fed group showed a decrease of fat pad weight and the antioxidant and oxidant enzyme activities and ROS content returned to control values along with normal plasma TNF-α and IL-6 levels. FO normalized both the decrease of PPARγ protein and the increase of protein and expression of UCP2. Furthermore, FO increased the n-3/n-6 fatty acid ratio in the adipose tissue phospholipids and normalized dyslipidemia and insulin resistance. Finally, these findings reinforce the view that dietary FO may exert a beneficial effect in ameliorating the dyslipidemia and insulin resistance in this animal model.
Collapse
Affiliation(s)
- Dante Selenscig
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242 (3000) Santa Fe and (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| | | | | | | |
Collapse
|
39
|
Flister KFT, Pinto BAS, França LM, Coêlho CFF, Dos Santos PC, Vale CC, Kajihara D, Debbas V, Laurindo FRM, Paes AMDA. Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice. J Nutr Biochem 2018; 62:155-166. [PMID: 30300835 DOI: 10.1016/j.jnutbio.2018.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/27/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Childhood consumption of added sugars, such as sucrose, has been associated to increased risk of metabolic syndrome (MetS) and nonalcoholic fatty liver disease (NAFLD). Although the mechanisms underlying NAFLD onset are incompletely defined, recent evidence has proposed a role for the endoplasmic reticulum (ER) stress. Thus, the present study sought to investigate the metabolic outcomes of high-sucrose intake on weaned Swiss mice fed a 25% sucrose diet for 30, 60 and 90 days in comparison to regular chow-fed controls. High-sucrose feeding promoted progressive metabolic and oxidative disturbances, starting from fasting and fed hyperglycemia, hyperinsulinemia, glucose intolerance and increased adiposity at 30-days; passing by insulin resistance, hypertriglyceridemia and NAFLD onset at 60 days; until late hepatic oxidative damage at 90 days. In parallel, assessment of transcriptional and/or translational levels of de novo lipogenesis (DNL) and ER stress markers showed up-regulation of both fatty acid synthesis (ChREBP and SCD1) and oxidation (PPARα and CPT-1α), as well as overexpression of unfolded protein response sensors (IRE1α, PERK and ATF6), chaperones (GRP78 and PDIA1) and antioxidant defense (NRF2) genes at 30 days. At 60 days, fatty acid oxidation genes were down-regulated, and ER stress switched over toward a proapoptotic pattern via up-regulation of BAK protein and CHOP gene levels. Finally, down-regulation of both NRF2 and CPT-1α protein levels led to late up-regulation of SREBP-1c and exponential raise of fatty acids synthesis. In conclusion, our study originally demonstrates a temporal relationship between DNL and ER stress pathways toward MetS and NAFLD development on weaned rats fed a high-sucrose diet.
Collapse
Affiliation(s)
- Karla Frida Torres Flister
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Caio Fernando Ferreira Coêlho
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Pâmela Costa Dos Santos
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Caroline Castro Vale
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil
| | - Daniela Kajihara
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, (SP), Brazil
| | - Victor Debbas
- Laboratory of Vascular Biology, Heart Institute of the School of Medicine, University of São Paulo, São Paulo, (SP), Brazil
| | | | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, (MA), Brazil.
| |
Collapse
|
40
|
Tain YL, Hsu CN. Developmental Programming of the Metabolic Syndrome: Can We Reprogram with Resveratrol? Int J Mol Sci 2018; 19:ijms19092584. [PMID: 30200293 PMCID: PMC6164855 DOI: 10.3390/ijms19092584] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is a mounting epidemic worldwide. MetS can start in early life, in a microenvironment that is now known as the developmental origins of health and disease (DOHaD). The concept of DOHaD also offers opportunities for reprogramming strategies that aim to reverse programming processes in early life. Resveratrol, a polyphenolic compound has a wide spectrum of beneficial effects on human health. In this review, we first summarize the epidemiological and experimental evidence supporting the developmental programming of MetS. This review also presents an overview of the evidence linking different molecular targets of resveratrol to developmental programming of MetS-related disorders. This will be followed by studies documenting resveratrol as a reprogramming agent to protect against MetS-related disorders. Further clinical studies are required in order to bridge the gap between animal models and clinical trials in order to establish the effective dose and therapeutic duration for resveratrol as a reprogramming therapy on MetS disorders from developmental origins.
Collapse
Affiliation(s)
- You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
41
|
Herrera MI, Udovin LD, Toro-Urrego N, Kusnier CF, Luaces JP, Otero-Losada M, Capani F. Neuroprotection Targeting Protein Misfolding on Chronic Cerebral Hypoperfusion in the Context of Metabolic Syndrome. Front Neurosci 2018; 12:339. [PMID: 29904335 PMCID: PMC5990610 DOI: 10.3389/fnins.2018.00339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors that lead to microvascular dysfunction and chronic cerebral hypoperfusion (CCH). Long-standing reduction in oxygen and energy supply leads to brain hypoxia and protein misfolding, thereby linking CCH to Alzheimer's disease. Protein misfolding results in neurodegeneration as revealed by studying different experimental models of CCH. Regulating proteostasis network through pathways like the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), chaperone-mediated autophagy (CMA), and macroautophagy emerges as a novel target for neuroprotection. Lipoxin A4 methyl ester, baclofen, URB597, N-stearoyl-L-tyrosine, and melatonin may pose potential neuroprotective agents for rebalancing the proteostasis network under CCH. Autophagy is one of the most studied pathways of proteostatic cell response against the decrease in blood supply to the brain though the role of the UPR-specific chaperones and the UPS system in CCH deserves further research. Pharmacotherapy targeting misfolded proteins at different stages in the proteostatic pathway might be promising in treating cognitive impairment following CCH.
Collapse
Affiliation(s)
- María I Herrera
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología y Psicopedagogía, Universidad Católica Argentina, Buenos Aires, Argentina.,Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Lucas D Udovin
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Carlos F Kusnier
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Juan P Luaces
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas (ININCA), Universidad de Buenos Aires (UBA-CONICET), Buenos Aires, Argentina.,Facultad de Medicina, Universidad Católica Argentina, Buenos Aires, Argentina.,Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
42
|
Fontenelle LC, Feitosa MM, Morais JBS, Severo JS, Freitas TECD, Beserra JB, Henriques GS, Marreiro DDN. The role of selenium in insulin resistance. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000100139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Ludwig‐Walz H, Schmidt M, Günther ALB, Kroke A. Maternal prepregnancy BMI or weight and offspring's blood pressure: Systematic review. MATERNAL & CHILD NUTRITION 2018; 14:e12561. [PMID: 29171150 PMCID: PMC6865974 DOI: 10.1111/mcn.12561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/31/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
Emerging evidence suggests that maternal prepregnancy body mass index or weight (MPBW) may be associated with offspring's blood pressure (BP). Therefore, we conducted a systematic review-following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement-to assess and judge the evidence for an association between MPBW with offspring's later BP. Five data bases were searched without limits. Risk of bias was assessed using the "Tool to Assess Risk of Bias in Cohort Studies," and an evidence grade was allocated following the World Cancer Research Fund criteria. Of 2,011 publications retrieved, 16 studies (all cohort studies) were included in the systematic review; thereof, 5 studies (31%) were rated as good-quality studies. Overall, data from 63,959 participants were enclosed. Systolic BP was analysed in 15 (5 good quality), diastolic BP in 12 (3 good quality), and mean arterial pressure in 3 (no good quality) studies. Five good-quality studies of MPBW with offspring's systolic BP as the outcome and 1 good-quality study with offspring's diastolic BP as the outcome observed a significant association. However, after adding offspring's anthropometry variables to the statistical model, the effect attenuated in 4 studies with systolic BP to nonsignificance, the study with diastolic BP remained significant. No good-quality studies were found with respect to offspring's later mean arterial pressure. In conclusion, this systematic review found suggestive, but still limited, evidence for an association between MPBW with offspring's later BP. The available data suggest that the effect might be mainly mediated via offspring's anthropometry.
Collapse
Affiliation(s)
- Helena Ludwig‐Walz
- Department of Nutritional, Food and Consumer SciencesFulda University of Applied SciencesFuldaGermany
| | - Milan Schmidt
- Department of Nutritional, Food and Consumer SciencesFulda University of Applied SciencesFuldaGermany
| | - Anke L. B. Günther
- Department of Nutritional, Food and Consumer SciencesFulda University of Applied SciencesFuldaGermany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer SciencesFulda University of Applied SciencesFuldaGermany
| |
Collapse
|
44
|
Uchinaka A, Kawashima Y, Sano Y, Ito S, Sano Y, Nagasawa K, Matsuura N, Yoneda M, Yamada Y, Murohara T, Nagata K. Effects of ramelteon on cardiac injury and adipose tissue pathology in rats with metabolic syndrome. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ayako Uchinaka
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuri Kawashima
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Yuki Sano
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Shogo Ito
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yusuke Sano
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kai Nagasawa
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Natsumi Matsuura
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mamoru Yoneda
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuichiro Yamada
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toyoaki Murohara
- Department of Cardiology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
45
|
Modulation of Adipocyte Differentiation and Proadipogenic Gene Expression by Sulforaphane, Genistein, and Docosahexaenoic Acid as a First Step to Counteract Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1617202. [PMID: 29576843 PMCID: PMC5821952 DOI: 10.1155/2018/1617202] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
Obesity is characterized by excess body fat accumulation due to an increase in the size and number of differentiated mature adipocytes. Adipocyte differentiation is regulated by genetic and environmental factors, and its inhibition could represent a strategy for obesity prevention and treatment. The current study was designed with two aims: (i) to evaluate the changes in the expression of adipogenic markers (C/EBPα, PPARγ variant 1 and variant 2, and GLUT4) in 3T3-L1 murine preadipocytes at four stages of the differentiation process and (ii) to compare the effectiveness of sulforaphane, genistein, and docosahexaenoic acid in reducing lipid accumulation and modulating C/EBPα, PPARγ1, PPARγ2, and GLUT4 mRNA expression in mature adipocytes. All bioactive compounds were shown to suppress adipocyte differentiation, although with different effectiveness. These results set the stage for further studies considering natural food constituents as important agents in preventing or treating obesity.
Collapse
|
46
|
Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model. Br J Nutr 2017; 119:131-142. [PMID: 29268800 DOI: 10.1017/s000711451700321x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (P<0·001) reduced the plasma NEFA levels and normalised dyslipidaemia and glucose homoeostasis, improving insulin resistance. The protein levels of fatty acid translocase at basal state and under insulin stimulation and the protein levels and activity of muscle-type carnitine palmitoyltransferase 1 were normalised. Second, a significant (P<0·001) reduction of TAG, long-chain acyl CoA and diacylglycerol levels was observed in the heart muscle. Third, soya protein significantly increased (P<0·01) GLUT4 protein level under insulin stimulation and normalised glucose phosphorylation and oxidation. A reduction of phosphorylated AMP protein kinase protein level was recorded without changes in uncoupling protein 2 and PPARα. Fourth, hydroxyproline concentration decreased in the left ventricle and hypertension was normalised. The new information provided shows the beneficial effects of soya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.
Collapse
|
47
|
Lagranha CJ, Silva TLA, Silva SCA, Braz GRF, da Silva AI, Fernandes MP, Sellitti DF. Protective effects of estrogen against cardiovascular disease mediated via oxidative stress in the brain. Life Sci 2017; 192:190-198. [PMID: 29191645 DOI: 10.1016/j.lfs.2017.11.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/07/2017] [Accepted: 11/26/2017] [Indexed: 01/27/2023]
Abstract
During their reproductive years women produce significant levels of estrogens, predominantly in the form of estradiol, that are thought to play an important role in cardioprotection. Mechanisms underlying this action include both estrogen-mediated changes in gene expression, and post-transcriptional activation of protein signaling cascades in the heart and in neural centers controlling cardiovascular function, in particular, in the brainstem. There, specific neurons, especially those of the bulbar region play an important role in the neuronal control of the cardiovascular system because they control the outflow of sympathetic activity and parasympathetic activity as well as the reception of chemical and mechanical signals. In the present review, we discuss how estrogens exert their cardioprotective effect in part by modulating the actions of internally generated products of cellular oxidation such as reactive oxygen species (ROS) in brain stem neurons. The significance of this review is in integrating the literature of oxidative damage in the brain with the literature of neuroprotection by estrogen in order to better understand both the benefits and limitations of using this hormone to prevent cardiovascular disease.
Collapse
Affiliation(s)
- Claudia J Lagranha
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco, 50670-901, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-CAV, Vitória de Santo Antão 55608-680, Brazil.
| | - Tercya Lucidi Araujo Silva
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco, 50670-901, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-CAV, Vitória de Santo Antão 55608-680, Brazil
| | - Severina Cassia A Silva
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-CAV, Vitória de Santo Antão 55608-680, Brazil
| | - Glaber Ruda F Braz
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-CAV, Vitória de Santo Antão 55608-680, Brazil
| | - Aline Isabel da Silva
- Neuropsychiatry and Behavior Science Graduate Program, Federal University of Pernambuco, 50670-901, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-CAV, Vitória de Santo Antão 55608-680, Brazil
| | - Mariana Pinheiro Fernandes
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco-CAV, Vitória de Santo Antão 55608-680, Brazil
| | - Donald F Sellitti
- Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
48
|
Grueber CE, Gray LJ, Morris KM, Simpson SJ, Senior AM. Intergenerational effects of nutrition on immunity: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2017; 93:1108-1124. [DOI: 10.1111/brv.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Catherine E. Grueber
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- San Diego Zoo Global; PO Box 120551, San Diego CA 92112 U.S.A
| | - Lindsey J. Gray
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
| | - Katrina M. Morris
- The Roslin Institute; The University of Edinburgh; Easter Bush Campus, Midlothian EH25 9RG U.K
| | - Stephen J. Simpson
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences; NSW 2006 Australia
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
| | - Alistair M. Senior
- The University of Sydney; Charles Perkins Centre; NSW 2006 Australia
- The University of Sydney, Faculty of Science; School of Mathematics and Statistics; NSW 2006 Australia
| |
Collapse
|
49
|
Demaio AR, Branca F. Decade of action on nutrition: our window to act on the double burden of malnutrition. BMJ Glob Health 2017; 3:e000492. [PMID: 29379647 PMCID: PMC5759727 DOI: 10.1136/bmjgh-2017-000492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alessandro Rhyl Demaio
- Department of Nutrition for Health and Development, World Health Organization, Geneva, Switzerland.,Copenhagen School of Global Health, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Branca
- Department of Nutrition for Health and Development, World Health Organization, Geneva, Switzerland
| |
Collapse
|
50
|
Stefana MI, Driscoll PC, Obata F, Pengelly AR, Newell CL, MacRae JI, Gould AP. Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nat Commun 2017; 8:1384. [PMID: 29123106 PMCID: PMC5680271 DOI: 10.1038/s41467-017-01740-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
Early-life nourishment exerts long-term influences upon adult physiology and disease risk. These lasting effects of diet are well established but the underlying mechanisms are only partially understood. Here we show that restricting dietary yeast during Drosophila development can, depending upon the subsequent adult environment, more than double median lifespan. Developmental diet acts via a long-term influence upon the adult production of toxic molecules, which we term autotoxins, that are shed into the environment and shorten the lifespan of both sexes. Autotoxins are synthesised by oenocytes and some of them correspond to alkene hydrocarbons that also act as pheromones. This study identifies a mechanism by which the developmental dietary history of an animal regulates its own longevity and that of its conspecific neighbours. It also has important implications for the design of lifespan experiments as autotoxins can influence the regulation of longevity by other factors including diet, sex, insulin signalling and population density.
Collapse
Affiliation(s)
- M Irina Stefana
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fumiaki Obata
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Clare L Newell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alex P Gould
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|