1
|
Yi R, Liu Y, Zhang X, Sun X, Wang N, Zhang C, Deng H, Yao X, Wang S, Yang G. Unraveling Quercetin's Potential: A Comprehensive Review of Its Properties and Mechanisms of Action, in Diabetes and Obesity Complications. Phytother Res 2024; 38:5641-5656. [PMID: 39307545 DOI: 10.1002/ptr.8332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 12/13/2024]
Abstract
The prevalence of diabetes is escalating alarmingly, placing a significant economic burden on the global healthcare system. The use of chemical substances extracted from plants has been demonstrated to be an effective method for the treatment and control of insulin resistance and Type 2 diabetes mellitus (T2DM). New research indicates that natural phytochemicals present in fruits and vegetables are expected to become drugs for the treatment of diabetes and the prevention of related complications. Quercetin, a widely distributed flavonoid, is well-known for its antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. This article provides a comprehensive account of the mechanism of action of quercetin on diabetes and obesity complications in vivo and in vitro. It elucidates the impact of quercetin on various cells. These include hepatocytes, renal cells, skeletal muscle cells, and adipocytes. Furthermore, this article discusses the mechanism of quercetin on organ damage in diabetic mice induced by STZ, alloxan, diet, and spontaneous Type 2 diabetic mice caused by genetic defects. Additionally, it addresses the pharmacokinetics of quercetin and its potential for synergistic effects with existing diabetic drugs.
Collapse
Affiliation(s)
- Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Gonçalves B, Aires A, Oliveira I, Baltazar M, Cosme F, Afonso S, Pinto T, Anjos MR, Inês A, Morais MC, Vilela A, Silva AP. From Orchard to Wellness: Unveiling the Health Effects of Sweet Cherry Nutrients. Nutrients 2024; 16:3660. [PMID: 39519493 PMCID: PMC11547742 DOI: 10.3390/nu16213660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper explores the multifaceted relationship between sweet cherry nutrients and human health, aiming to uncover the comprehensive impact of these bioactive compounds from orchard to wellness. Furthermore, it highlights how advanced crop techniques can be pivotal in optimizing these beneficial compounds. Synthesizing existing literature, the paper examines the diverse bioactive nutrients in sweet cherries, including antioxidants, polyphenols, vitamins, and minerals, and elucidating their mechanisms of action and potential health benefits. From antioxidant properties to anti-inflammatory effects, the paper elucidates how these nutrients may mitigate chronic diseases such as cardiovascular disorders, diabetes, and neurodegenerative conditions. Additionally, it explores their role in promoting gastrointestinal health, enhancing exercise recovery, and modulating sleep patterns. The review discusses emerging research on the potential anti-cancer properties of sweet cherry compounds, highlighting their promising role in cancer prevention and treatment. Furthermore, it delves into the impact of sweet cherry consumption on metabolic health, weight management, and skin health. By providing a comprehensive overview of the current understanding of sweet cherry nutrients and their health effects, this paper offers valuable insights for researchers, healthcare professionals, and consumers interested in utilizing nature's bounty for holistic wellness.
Collapse
Affiliation(s)
- Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Maria Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (F.C.); (A.I.); (A.V.)
| | - Ana Paula Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (A.A.); (I.O.); (M.B.); (S.A.); (T.P.); (M.R.A.); (M.C.M.); (A.P.S.)
| |
Collapse
|
3
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Rutkowska M, Olszewska MA. Anti-Diabetic Potential of Polyphenol-Rich Fruits from the Maleae Tribe-A Review of In Vitro and In Vivo Animal and Human Trials. Nutrients 2023; 15:3756. [PMID: 37686786 PMCID: PMC10489674 DOI: 10.3390/nu15173756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The Maleae tribe consists of over one thousand species, including many well-known polyphenol-containing fruit crops with wide-ranging biological properties, e.g., apples (Malus), chokeberries (Aronia), pears (Pyrus), quinces (Cydonia, Chaenomeles), saskatoon (Amelanchier), loquats (Eriobotrya), medlars (Mespilus), rowans (Sorbus), and hawthorns (Crataegus). Considering the current interest in the concept of functional foods and the still-insufficient methods of diabetes management, the anti-diabetic potential of fruits has been studied intensively, including those of the Maleae tribe. This paper is the first comprehensive overview of this selected topic, covering articles published from 2000 to 2023 (131 articles in total). The first part of this review focuses on the potential mechanisms of action of fruits investigated so far (46 species), including their effects on tissue-specific glucose transport and the expression or activity of proteins in the insulin signalling pathway. The second part covers the phytocompounds responsible for particular fruits' activity-primarily polyphenols (e.g., flavonols, dihydrochalcones, proanthocyanidins, anthocyanins, phenolic acids), but also polysaccharides, triterpenes, and their additive and synergistic effects. In summary, fruits from the Maleae tribe seem promising as functional foods and anti-diabetic agents; however, their prospects for more expansive pro-health application require further research, especially more profound in vivo trials.
Collapse
Affiliation(s)
- Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland;
| | | |
Collapse
|
5
|
Millán-Laleona A, Bielsa FJ, Aranda-Cañada E, Gómez-Rincón C, Errea P, López V. Antioxidant, Antidiabetic, and Anti-Obesity Properties of Apple Pulp Extracts ( Malus domestica Bork): A Comparative Study of 15 Local and Commercial Cultivars from Spain. BIOLOGY 2023; 12:891. [PMID: 37508324 PMCID: PMC10376420 DOI: 10.3390/biology12070891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023]
Abstract
Apples (Malus domestica Borkh.) have a great agricultural and economic impact worldwide; they also present an interesting nutritional value, and their consumption has been associated with beneficial health effects. In this study, 15 apple varieties (three commercial, 12 autochthonous genotypes) were collected from mountainous areas in Spain and were evaluated for their phenolic content, antioxidant, anti-obesity and antidiabetic activities. Quercetin was tested as the reference substance in bioassays due to its role as one of the most common flavonoids in apples and other vegetables. Total Phenolic Content (TPC) of apple pulp extracts was quantified using the Folin-Ciocalteu method. The antioxidant activity was determined by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging and xanthine/xanthine oxidase (X/XO) scavenging assays. Antidiabetic and anti-obesity potential were evaluated by inhibition of alpha-glucosidase (α-GLU), advance glycation end products (AGEs) formation and pancreatic lipase. The results showed in general higher phenol content in autochthonous varieties than in commercial apple pulp extracts. Phenolic-rich extracts showed better antioxidant profiles and significantly inhibited AGEs production and the α-glucosidase enzyme in a dose-dependent manner. None of them showed pancreatic lipase inhibitory effects but in general, the genotype known as "Amarilla de Octubre" was the best in terms of TPC and bioactive properties.
Collapse
Affiliation(s)
- Adrián Millán-Laleona
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
| | - Francisco Javier Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
| | - Eduardo Aranda-Cañada
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
| | - Carlota Gómez-Rincón
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Errea
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
6
|
Yu C, Wan X, Li D, Guo X. Reduction of obesity and hepatic adiposity in high-fat diet-induced rats by besunyen slimming tea. Heliyon 2023; 9:e17383. [PMID: 37416691 PMCID: PMC10320021 DOI: 10.1016/j.heliyon.2023.e17383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Objective Obesity is a significant risk factor for metabolic syndrome, type 2 diabetes mellitus, hypertension, nonalcoholic fatty liver disease, and cardiovascular disorders. As a well-known Chinese tea product, Besunyen Slimming Tea (BST) is believed to effectively reduce body weight (BW) and lipid profile. In this study, we aimed to elucidate the mechanisms and effects of BST on treating obesity and hepatic steatosis using a rat model fed with a high-fat diet (HFD). Methods Sprague-Dawley rats were subjected to random separation into three categories: Animals were fed (1) a normal diet food (ND); (2) HFD, and (3) HFD + BST (n = 12/category). After successfully establishing the obesity model at week 8, the HFD + BST received BST (0.6 g/0.6 kg) orally, and the ND and HFD received the same amount (2 ml) of distilled water orally. Results HFD + BST reduced waist circumference (7.84%, P = 0.015), food intake (14.66%, P = 0.011), final BW (12.73%, P = 0.010), BW gain (964.16%, P < 0.001), and body mass index (8.97%, P = 0.044) compared with the HFD. BST supplementation also decreased hyperlipidemia, inflammation, and insulin resistance in rats with HFD. Furthermore, BST suppressed hepatic lipidosis by decreasing de novo lipogenesis and increasing fatty acid oxidation. Conclusions The results of this study offer evidence supporting the potential health benefits of BST in the management of metabolic disorders and obesity.
Collapse
|
7
|
Popiolek-Kalisz J, Glibowski P. Apple Peel Supplementation Potential in Metabolic Syndrome Prevention. Life (Basel) 2023; 13:life13030753. [PMID: 36983908 PMCID: PMC10056680 DOI: 10.3390/life13030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
(1) Introduction: Apples are a source of bioactive substances, e.g., anthocyanidins and flavonols, and dietary fiber. Their highest concentrations are observed in the skin. Metabolic syndrome (MetS) is a set of conditions originally associated with obesity. Excessive adipose tissue accompanying obesity leads to chronic inflammation and metabolic disorders, which result in the development of dyslipidemia, elevated blood pressure, and glucose levels. Thus, supplementation of apple peels, a source of antioxidant substances and fiber, could potentially be a method supporting the prevention of MetS. This paper summarizes the results of available research on the potential impact of apple peel supplementation on the components of MetS. (2) Results: The results from in vitro and animal model studies indicate a positive effect of apple peel supplementation on lipid profile, glucose levels, and blood pressure regulation mediators. Only one human study was performed, and it showed that the consumption of apple peels had an effect on endothelial function but not on other clinical parameters. At the moment, there are no results from observations on large groups of people available. (3) Conclusions: The results of in vitro and animal-model studies indicate the potential of apple peel supplementation in MetS prevention, but it has not been clinically confirmed in human studies. Conducting large human studies could allow a definite clarification of the role of apple peel supplementation in MetS prevention.
Collapse
Affiliation(s)
- Joanna Popiolek-Kalisz
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland
- Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, 20-718 Lublin, Poland
- Correspondence:
| | - Paweł Glibowski
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-704 Lublin, Poland
| |
Collapse
|
8
|
Ashour H, Rashed LA, Hassanein RTM, Aboulhoda BE, Ebrahim HA, Elsayed MH, Elkordy MA, Abdelwahed OM. Thymoquinone and quercetin protect against hepatic steatosis in association with SIRT1/AMPK stimulation and regulation of autophagy, perilipin-2, and cytosolic lipases. Arch Physiol Biochem 2023; 129:268-281. [PMID: 36264662 DOI: 10.1080/13813455.2022.2134423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We sought to investigate thymoquinone (TQ)/quercetin combination in preventing hepatic steatosis (HS). MATERIALS AND METHODS The included rat groups; (1) Control, (2) HS model, (3) HS treated with TQ 10 mg.kg-1.d-1, (4) HS treated with quercetin 50 mg.kg-1.d-1, and (5) HS treated with both compounds for 4 weeks. RESULTS TQ/quercetin co-treatment augmented the anti-steatosis potential of each ingredient. The results revealed more (p < 0.001) sirtuin (SIRT1)/AMP-activated protein kinase (p-AMPK) upregulation compared to each treatment in line with autophagy protein Atg7 enhancement, and suppressed pro-inflammatory and oxidation markers. They diminished the hepatic lipogenic enzymes and perilipin-2 and activated the cytosolic lipases adipose triglyceride lipase (ATGL). Histological and Biochemical analysis revealed diminished lipid deposition and improved liver enzymes (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) compared to the data of separate treatments. CONCLUSION TQ and quercitin effectively upregulated SIRT1/p-AMPK and regulated hepatic perilipin-2/ATGL, inflammation and oxidative stress, preserved liver structure and function. TQ/quercetin combination additively prevents HS.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Radwa T M Hassanein
- Department of Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Basma E Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hasnaa A Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed H Elsayed
- Department of Pediatrics ICU, Al-Ahrar Teaching Hospital, Zagazig, Egypt
- Department of Pediatrics ICU, King Fahd Armed Forces Hospital, Khamis Mushait, Saudi Arabia
| | - Miran A Elkordy
- Department of Pathology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Omaima M Abdelwahed
- Department of Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Nallappan D, Ong KC, Palanisamy UD, Chua KH, Kuppusamy UR. Myricetin derivative-rich fraction from Syzygium malaccense prevents high-fat diet-induced obesity, glucose intolerance and oxidative stress in C57BL/6J mice. Arch Physiol Biochem 2023; 129:186-197. [PMID: 32813560 DOI: 10.1080/13813455.2020.1808019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM A high-fat diet (HFD) can lead to obesity and related metabolic disorders. This study evaluated the preventive efficacy of myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract against HFD-induced obesity, hyperglycaemia, and oxidative stress in C57BL/6J mice. METHODS HFD-fed mice were administered MD (50 mg/kg, 100 mg/kg, and 150 mg/kg) or 2 mg/kg metformin (positive control) orally for 16 weeks. Normal diet and HFD-fed control groups received normal saline. RESULTS MD dose of 50 mg/kg was better than 100 mg/kg and 150 mg/kg in significantly reducing weight-gain, glucose intolerance, insulin resistance, lipid accumulation in liver and kidney, and improving the serum lipid profile. Lowered protein carbonyls and lipid hydroperoxides in urine and tissue homogenates and elevated reduced glutathione, ferric reducing antioxidant power (FRAP), and Trolox equivalent antioxidant capacity (TEAC) levels in tissue homogenates indicated amelioration of oxidative stress. CONCLUSION MD has therapeutic value in the prevention and management of obesity, hyperglycaemia, and oxidative stress.
Collapse
Affiliation(s)
- Devi Nallappan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Science, Monash University, Bandar Sunway, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Alaqeel NK, AlSheikh MH, Al-Hariri MT. Quercetin Nanoemulsion Ameliorates Neuronal Dysfunction in Experimental Alzheimer's Disease Model. Antioxidants (Basel) 2022; 11:1986. [PMID: 36290710 PMCID: PMC9598210 DOI: 10.3390/antiox11101986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 09/05/2023] Open
Abstract
Aluminum is the most abundant metal that can get admission to the human through several means that include our food, drinking water, cans, drugs, and deodorants, causing neurodegenerative diseases such as Alzheimer's disease (AD). The present study aims to evaluate the role of quercetin nanoemulsion (QCNE) in attenuating neuronal dysfunction in aluminum chloride (AlCl3)-induced experimental AD. All animals were classified into six groups including negative control group (I): received a vehicle; QC group: received intraperitoneal (IP) injection of QC; Alzheimer's group: received AlCl3 orally; treated group (I): received AlCl3 orally and IP injection of QC; treated group (II): received AlCl3 orally and QC orally; and treated group (III): received AlCl3 orally and IP injection of QCNE. At the end of the experimental period (30 days), the brain was used to study biochemical parameters (measurement of neurotransmitters (serotonin, dopamine, and norepinephrine), oxidant/antioxidant parameters (reduced glutathione, malondialdehyde, superoxide dismutase, and advanced oxidation protein product), and inflammatory markers (adiponectin, interleukin 1β, and plasma tumor necrosis factor-alpha)), while another part was for brain immune-histochemical analysis (study cyclooxygenases (COX-1 and COX-2)). Results showed that the mean value of oxidative stress markers was significantly increased in the AD group as well as the inflammatory biomarkers and all the study neurotransmitters, whereas these parameters were attenuated in treated groups, especially those that received QCNE. The immunohistochemistry findings confirm our results. Both approaches (QC and QCNE) succeeded in retracting the negative impact of AlCl3. Meanwhile, the effect of QCNE is more potent in mitigating the impact mediated by AlCl3 in treated animals. In conclusion, the treatment mainly by QCNE has huge potential in protecting against AlCl3-induced neuronal dysfunction, as shown in our results by the elevation of brain antioxidant/anti-inflammatory activities and neurotransmitter levels as well as mending of the histopathological changes in animal models.
Collapse
Affiliation(s)
- Nouf K. Alaqeel
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mona H. AlSheikh
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| | - Mohammed T. Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| |
Collapse
|
11
|
Zhu Y, Scholle F, Kisthardt SC, Xie DY. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology 2022; 571:21-33. [PMID: 35439707 PMCID: PMC9002334 DOI: 10.1016/j.virol.2022.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
Since December 2019, the deadly novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current COVID-19 pandemic. To date, vaccines are available in the developed countries to prevent the infection of this virus; however, medicines are necessary to help control COVID-19. Human coronavirus 229E (HCoV-229E) causes the common cold. The main protease (Mpro) is an essential enzyme required for the multiplication of these two viruses in the host cells, and thus is an appropriate candidate to screen potential medicinal compounds. Flavonols and dihydroflavonols are two groups of plant flavonoids. In this study, we report docking simulation with two Mpro enzymes and five flavonols and three dihydroflavonols, in vitro inhibition of the SARS-CoV-2 Mpro, and in vitro inhibition of the HCoV 229E replication. The docking simulation results predicted that (+)-dihydrokaempferol, (+)- dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercitrin, and rutin could bind to at least two subsites (S1, S1', S2, and S4) in the binding pocket and inhibit the activity of SARS-CoV-2 Mpro. Their affinity scores ranged from -8.8 to -7.4 (kcal/mol). Likewise, these compounds were predicted to bind and inhibit the HCoV-229E Mpro activity with affinity scores ranging from -7.1 to -7.8 (kcal/mol). In vitro inhibition assays showed that seven available compounds effectively inhibited the SARS-CoV-2 Mpro activity and their IC50 values ranged from 0.125 to 12.9 μM. Five compounds inhibited the replication of HCoV-229E in Huh-7 cells. These findings indicate that these antioxidative flavonols and dihydroflavonols are promising candidates for curbing the two viruses.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| | | | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
12
|
Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y, Zhu Z, Zhang H, Yin D. Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. ENVIRONMENT INTERNATIONAL 2022; 163:107209. [PMID: 35358787 DOI: 10.1016/j.envint.2022.107209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guangming Xie
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yunwei Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyan Chen
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
13
|
Lu L, Cai X, Guo L, Ji H, Ren J, Ni H, Feng X. Fabrication of Quercitrin Nano Micellar Delivery System and Its Therapeutic Effect on Unexplained Recurrent Abortion. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepared a quercitrin nano micellar delivery system in this study to evaluate its oral bioavailability. The optimal formulation of quercetin nano micelles was determined through an orthogonal test. Characteristics (size of particles-SOP, morphology, efficiency of encapsulation-EE
and stability) and the therapeutic property of quercitrin nano micelles on unexplained recurrent abortion (URSA) were evaluated. The SOP of quercitrin nano micelles was 111.88±3.70 nm with an EE of 95.66±0.57. A substantially increased release rate of quercetin from the micellar
system was observed in different dissolution media comparable to that of quercitrin. Also, through quercitrin micelles, the oral bioavailability of quercetin was increased by 15.45-fold compared to quercitrin solution. Significantly, quercetin could reduce the levels of LDH and SOD as well
as increase the level of MDA in serum restricted HTR-8/SVneo cells. Western blotting (WB) experiments showed that quercitrin had a protective effect on H2O2 induced oxidative stress injury of a human placental trophoblast HTR8-SVneo cell line. The developed nano micelles
are a potential carrier that could enhance the aqueous solubility, oral in vivo availability and potential therapeutic abortion effect of quercitrin.
Collapse
Affiliation(s)
- Lidan Lu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Ximei Cai
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Luqin Guo
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| | - Hongjian Ji
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214000, China
| | - Jiajie Ren
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| | - Haiyan Ni
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Xiaoling Feng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| |
Collapse
|
14
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
16
|
Ikewuchi JC, Ikewuchi CC, Ifeanacho MO, Jaja VS, Okezue EC, Jamabo CN, Adeku KA. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114004. [PMID: 33727109 DOI: 10.1016/j.jep.2021.114004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chromolaena odorata (L) King and Robinson and Tridax procumbens Linn are used in traditional medicine in the treatment of diabetes mellitus and hypertension. AIM OF THE STUDY This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against cardiotoxicity induced by doxorubicin. MATERIALS AND METHODS To this end, their impact on plasma markers of cardiac integrity, cardiac markers of oxidative stress, cardiac lipids and electrolyte profiles, and activities of cardiac ATPases, lactate dehydrogenase and creatine kinase, were monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and both extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while cardiotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally, once on the 12th day of study). RESULTS The plasma activities of creatine kinase, lactate dehydrogenase and AST of Test control were significantly (p < 0.05) higher than those of the other groups. Also, the cardiac malondialdehyde, calcium, chloride, sodium, cholesterol and triglyceride concentrations of Test control were significantly (p < 0.05) higher than those of the others. However, the cardiac concentrations of ascorbic acid, reduced glutathione, magnesium and potassium, and cardiac activities of catalase, glutathione peroxidase, superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase, Na+,K+-ATPase, creatine kinase and lactate dehydrogenase of Test control were significantly (p < 0.05) lower than those of the others. CONCLUSIONS Pre-treatment with the extracts and metformin elicited a cardioprotective effect, as indicated by the prevention of doxorubicin-induced cardiac oxidative stress and prevention of adverse alterations in plasma cardiac markers, cardiac lipids and electrolyte profiles, as well as improvement of the activities of cardiac ATPases, creatine kinase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Jude C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Catherine C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, Nigeria.
| | - Victoria S Jaja
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Esther C Okezue
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Caius N Jamabo
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Kehinde A Adeku
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| |
Collapse
|
17
|
|
18
|
Nani A, Murtaza B, Sayed Khan A, Khan NA, Hichami A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021; 26:985. [PMID: 33673390 PMCID: PMC7918790 DOI: 10.3390/molecules26040985] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/02/2023] Open
Abstract
Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.
Collapse
Affiliation(s)
- Abdelhafid Nani
- Laboratory of Saharan Natural Resources, African University Ahmed Draia, Adrar 01000, Algeria
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France; (B.M.); (A.S.K.); (N.A.K.)
| |
Collapse
|
19
|
Yousof Ali M, Jannat S, Mizanur Rahman M. Investigation of C-glycosylated apigenin and luteolin derivatives’ effects on protein tyrosine phosphatase 1B inhibition with molecular and cellular approaches. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.comtox.2020.100141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Ikewuchi CC, Ifeanacho MO, Ikewuchi JC. Moderation of doxorubicin-induced nephrotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. Porto Biomed J 2021; 6:e129. [PMID: 33884325 PMCID: PMC8055491 DOI: 10.1097/j.pbj.0000000000000129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The major draw-back of doxorubicin's use in chemotherapy is its toxicity on various organs including the kidneys. This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against nephrotoxicity induced by doxorubicin. METHODS To this end, their impact on plasma biomarkers of kidney function, as well as renal lipid profile, biomarkers of oxidative stress, electrolyte profile and activities of renal ATPases was monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and the extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while nephrotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally), once on the 12th day of study. RESULTS The plasma concentrations of creatinine, and urea; as well as the renal malondialdehyde, cholesterol, calcium and sodium concentrations in the Test control, were significantly (P < .05) higher than those of all the other groups. However, the renal concentrations of ascorbic acid, chloride, magnesium and potassium, and the renal activities of catalase, glutathione peroxidase superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase and Na+,K+-ATPase in the Test control were significantly (P < .05) lower than those of all the other groups. CONCLUSIONS Pre-treatment with the extracts and metformin boosted endogenous antioxidants, and prevented doxorubicin-induced renal damage, as indicated by the attenuation of doxorubicin-induced renal oxidative stress, as well as the attenuation of doxorubicin-induced adverse alterations in renal cholesterol, ATPases and electrolyte balance, and plasma biomarkers of kidney function, and keeping them at near-normal values.
Collapse
Affiliation(s)
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria
| | | |
Collapse
|
21
|
Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, Nepovimova E, Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants (Basel) 2020; 9:E1123. [PMID: 33202871 PMCID: PMC7698232 DOI: 10.3390/antiox9111123] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Aging is a complicated biological process in which functional and structural alterations in a living organism take place over time. Reactive oxygen species is one of the main factors responsible for aging and is associated with several chronic pathologies. The relationship between aging and diet is quite interesting and has attained worldwide attention. Healthy food, in addition to dietary antioxidants, are required to delay the process of aging and improve the quality of life. Many healthy foods such as fruits are a good source of dietary nutrients and natural bioactive compounds which have antioxidant properties and are involved in preventing aging and other age-related disorders. Health benefits linked with healthy consumption of fruit have drawn increased interest. A significant number of studies have documented the advantages of fruit intake, as it suppresses free-radical development that further reduces the oxidative stress created in the body and protects against several types of diseases such as cancer, type 2 diabetes, inflammatory disorders, and other cardiovascular diseases that ultimately prevent aging. In addition, fruits have numerous other properties like anti-inflammatory, anti-cancerous, anti-diabetic, neuroprotective, and have health-promoting effects. Mechanisms of various bioactive compounds that aids in preventing various diseases and increases longevity are also described. This manuscript provides a summary of various bioactive components present in fruits along with their health-promoting and antiaging properties.
Collapse
Affiliation(s)
- Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India;
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan (Himachal Pradesh) 173229, India; (R.D.); (S.P.)
| | - Ashwani Tapwal
- Himalayan Forest Research Institute, Shimla H.P. 171009, India;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic;
| |
Collapse
|
22
|
Role of Flavonoids in The Interactions among Obesity, Inflammation, and Autophagy. Pharmaceuticals (Basel) 2020; 13:ph13110342. [PMID: 33114725 PMCID: PMC7692407 DOI: 10.3390/ph13110342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, obesity is considered as one of the main concerns for public health worldwide, since it encompasses up to 39% of overweight and 13% obese (WHO) adults. It develops because of the imbalance in the energy intake/expenditure ratio, which leads to excess nutrients and results in dysfunction of adipose tissue. The hypertrophy of adipocytes and the nutrients excess trigger the induction of inflammatory signaling through various pathways, among others, an increase in the expression of pro-inflammatory adipocytokines, and stress of the endoplasmic reticulum (ER). A better understanding of obesity and preventing its complications are beneficial for obese patients on two facets: treating obesity, and treating and preventing the pathologies associated with it. Hitherto, therapeutic itineraries in most cases are based on lifestyle modifications, bariatric surgery, and pharmacotherapy despite none of them have achieved optimal results. Therefore, diet can play an important role in the prevention of adiposity, as well as the associated disorders. Recent results have shown that flavonoids intake have an essential role in protecting against oxidative damage phenomena, and presents biochemical and pharmacological functions beneficial to human health. This review summarizes the current knowledge of the anti-inflammatory actions and autophagic flux of natural flavonoids, and their molecular mechanisms for preventing and/or treating obesity.
Collapse
|
23
|
Sun C, Liu Y, Zhan L, Rayat GR, Xiao J, Jiang H, Li X, Chen K. Anti-diabetic effects of natural antioxidants from fruits. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Gois Ruivo da Silva M, Skrt M, Komes D, Poklar Ulrih N, Pogačnik L. Enhanced Yield of Bioactivities from Onion ( Allium cepa L.) Skin and Their Antioxidant and Anti-α-Amylase Activities. Int J Mol Sci 2020; 21:ijms21082909. [PMID: 32326342 PMCID: PMC7216267 DOI: 10.3390/ijms21082909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing concern for reduction of the ecological impacts of industrial waste caused by fruits and vegetables. To reduce costs of onion waste disposal while obtaining value-added products, onion skin can be used to extract quercetin, a natural flavonoid with antioxidant, anti-inflammatory and anti-cancer effects. The aim was to optimize quercetin extraction from brown onion (Allium cepa L.) skin through investigation of the effects of different parameters on quercetin yield. Operational parameters for conventional maceration extraction and for ultrasound-assisted extraction were compared: solvent type, mass-to-liquid ratio, extraction time and temperature. Antioxidant capacity was determined using DPPH· radical scavenging assays and quercetin yield using HPLC/DAD. Anti-α-amylase activity of onion skin extracts was investigated using α-amylase inhibition assays. Optimal extraction conditions of quercetin from onion skin were obtained with maceration extraction, 50% ethanol, 1:100 mass-to-liquid ratio, 25 °C, for 15 min. Under these conditions, the antioxidant capacity (expressed as quercetin equivalents) was 18.7 mg/g and the mass fraction of quercetin was 7.96 mg/g. The onion skin extracts showed a dose-dependent relationship between dry extract concentration and α-amylase inhibition, which confirms that this onion skin extract can be considered as an anti-diabetes agent.
Collapse
Affiliation(s)
- Mariana Gois Ruivo da Silva
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
| | - Mihaela Skrt
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
| | - Draženka Komes
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
- The Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, 1000 Ljubljana, Slovenia
| | - Lea Pogačnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.G.R.d.S.); (M.S.); (N.P.U.)
- Correspondence:
| |
Collapse
|
25
|
Luo T, Goldfinger T, Shay N. Metabolic Syndrome Is Reduced in C57BL/6J Mice Fed High-Fat Diets Supplemented with Oak Tannins. Curr Dev Nutr 2020; 4:nzaa033. [PMID: 32258991 PMCID: PMC7101168 DOI: 10.1093/cdn/nzaa033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wine aged in oak barrels will incorporate polyphenols inherent in the staves, suggesting that wine stored in these wooden containers will introduce oak compounds into the human body after consumption. OBJECTIVE The purpose of the present study is to test whether consumption of these oak compounds could favorably influence metabolism in mice fed an obesogenic diet. METHODS C57BL/6 male mice (n = 8) were fed diets for 10 wk as follows: low-fat (LF), high-fat (HF), and HF containing 0.17% of oak tannin (HF+OT). A second 10-wk study was completed; mice were provided LF, HF, and HF diets supplemented with 7.0% of concentrates made from oaked wine (HF+OWC) or unoaked wine (HF+UWC). Physiological parameters were measured during the feeding trial and serum markers and hepatic gene expression measured from samples obtained at necropsy. RESULTS Intake of HF+OT significantly reduced body-weight gain (18.4 ± 1.2 g in HF vs. 13.2 ± 1.4 g in HF+OT, P < 0.05). Serum resistin concentrations were lower in HF+OT mice compared with HF mice (301 ± 10.1 pg/mL in HF+OT vs. 374 ± 10.9 pg/mL in HF; P < 0.05). Hepatic lipid accumulation and expression of glutathione-S-transferase-m2 (Gstm2) and NAD(P)H:quinone oxidoreductase (Nqo1) mRNAs were significantly decreased in HF+OT compared with HF mice (P < 0.05). When compared with HF-fed mice, intake of both OWC and UWC decreased body-weight gain (P < 0.05), with no significant impact on food consumption. Fasting glucose concentrations, serum insulin, and hepatic lipid accumulation were reduced in HF+OWC-fed mice compared with HF+UWC-fed mice (P < 0.05). Furthermore, hepatic glutathione-S-transferase-a1 (Gsta1) mRNA levels were significantly reduced in OWC-supplemented (0.25 ± 0.08) compared with UWC-supplemented (1.71 ± 0.24) mice (P < 0.05). CONCLUSIONS In this mouse model of metabolic disease, intake of OTs and a concentrate made from an oaked wine had a potent impact on alleviating HF-induced metabolic syndrome. Thus, intake of OTs, provided passively in oaked wine or as a dietary supplement, may act as an agent to attenuate the markers of metabolic syndrome.
Collapse
Affiliation(s)
- Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | | | - Neil Shay
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
26
|
Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food Chem Toxicol 2020; 139:111248. [PMID: 32156568 DOI: 10.1016/j.fct.2020.111248] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Polyphenols are secondary metabolites widely distributed in many plant foods, such a tea, coffee, chocolate and fruits. The consumption of these compounds is related to the improvement or amelioration of many diseases, including diabetes. Nevertheless, the great barrier to the therapeutic use of polyphenols is the low bioavailability of these compounds once ingested. For that reason, the encapsulation of polyphenols in different matrices may protect them from digestion and improve their release and subsequent absorption to obtain target-specific health effects. Some studies have reported the beneficial effect of encapsulation to increase both bioavailability and bioaccessibility. However, these works have mostly been carried out in vitro and few studies are specifically addressed at improving diabetes. In the current work, an overview of the knowledge related to nanoparticles and their use in the diabetic condition has been reviewed.
Collapse
|
27
|
Ballard CR, Galvão TF, Cazarin CB, Maróstica MR. Effects of Polyphenol-Rich Fruit Extracts on Diet-Induced Obesity in Rodents: Systematic Review and Meta-Analysis. Curr Pharm Des 2019; 25:3484-3497. [DOI: 10.2174/1381612824666191010170100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Background::Obesity is a complex condition of high prevalence and cost to the public health system. Recent research has demonstrated the potential of natural products, such as polyphenol-rich fruit extracts, for use in the treatment of obesity. The goal of this systematic review and meta-analysis is to determine the metabolic effects of polyphenol-rich fruit extracts on diet-induced obesity (DIO) in rodents.Methods:We searched MEDLINE, EMBASE, and Web of Science databases to identify preclinical studies that assessed polyphenol-rich fruit extracts compared to placebo on DIO in rodents in December 2018. Two researchers selected the studies, extracted the data, and assessed the quality of studies. Meta-analyses of standardized mean difference (SMD) of outcomes were calculated in Stata 11, and causes of heterogeneity were assessed by meta-regression.Results:We included 14 studies in the systematic review and 13 studies with 21 matched groups in the metaanalysis. Polyphenol-rich fruit extracts reduced the total body weight gain (SMD = -1.48; confidence interval: - 1.95, -1.01), energy intake (SMD = -0.42; -0.67, -0.17), visceral adipose tissue (SMD = -0.96; -1.25, -0.66), triglycerides (SMD = -1.00; -1.39, -0.62), cholesterol (SMD = -1.18, -1.66, -0.69), LDL- c (SMD = -1.15; -1.65, - 0.65), fasting glucose (SMD = -1.05; -1.65, -0.46), and fasting insulin (SMD = -1.40; -1.80, -1.00) when compared to vehicle.Conclusion:Polyphenol-rich fruit extract had positive effects on weight gain, dyslipidaemia, insulin resistance at different doses, and fruit source in male mice.
Collapse
Affiliation(s)
- Cíntia R. Ballard
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Tais F. Galvão
- School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Cinthia B.B. Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Mário R. Maróstica
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
28
|
Lee S, Lee J, Lee H, Sung J. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J Food Biochem 2019; 43:e13002. [PMID: 31378953 DOI: 10.1111/jfbc.13002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022]
Abstract
Alcoholic liver diseases has been known to be one of the major health risks worldwide. The purpose of this study was aimed to demonstrate the relative protective effect of quercetin, quercetin-3-glucoside, and rutin on alcohol-induced damage in hepatocytes. The hepatotoxicity, antioxidant enzymatic defense mechanisms, and pro-inflammatory mediators were examined for evaluating the hepatoprotective effects of quercetins in hepG2 cells. The results revealed that quercetin and its glucoside derivatives significantly prevented ethanol-induced hepatotoxicity by decreasing hepatic aminotransferase activities and inflammatory response in HepG2 cells. Moreover, the quercetins significantly induced detoxifying enzymes via the nuclear accumulation of the NF-E2-related factor 2 (Nrf2) and induction of antioxidant response element (ARE) gene. These hepatoprotective activities were observed to be more effective with quercetin aglycone than quercetin glucosides. From the above findings, the present study imply that quercetin aglycone may have a vital function in the therapeutic and preventive strategies of alcoholic liver diseases. PRACTICAL APPLICATIONS: Quercetin is commonly present in fruits and vegetables as aglycone and glucoside-derived forms. In the present study, quercetin and its glycosides was shown to alleviate oxidative stress, glutathione depletion, and pro-inflammatory cytokines in alcohol-induced HepG2 cells via the Nrf2/ARE antioxidant pathway. Moreover, quercetin aglycone had better protective effects against alcohol-induced liver damage in vitro, compared to its glycosylated form. The present study proposed that quercetin aglycone may be a more efficient hepatoprotective agent than its glucoside derivatives such as rutin in the amelioration of alcohol-induced liver diseases.
Collapse
Affiliation(s)
- Seyun Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Hana Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeehye Sung
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
29
|
A Review of the Science of Colorful, Plant-Based Food and Practical Strategies for "Eating the Rainbow". J Nutr Metab 2019; 2019:2125070. [PMID: 33414957 PMCID: PMC7770496 DOI: 10.1155/2019/2125070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
Over the past decades, thousands of published studies have amassed supporting recommendations to consume fruits and vegetables for physiological and psychological health. Newer research has emerged to suggest that these plant-based foods contain a plethora of not only vitamins and minerals, but perhaps, most importantly, phytonutrients. These phytonutrients have known pleiotropic effects on cellular structure and function, ultimately resulting in the modulation of protein kinases and subsequent epigenetic modification in a manner that leads to improved outcomes. Even though eating fruits and vegetables is a well-known feature of a healthy dietary pattern, population intakes continue to be below federal recommendations. To encourage consumers to include fruits and vegetables into their diet, an “eat by color” approach is proposed in this review. Although each individual food may have numerous effects based on its constituents, the goal of this simplified approach was to identify general patterns of benefits based on the preponderance of scientific data and known mechanisms of food-based constituents. It is suggested that such a consumer-oriented categorization of these plant-based foods may lead to greater recognition of their importance in the daily diet throughout the lifespan. Other adjunctive strategies to heighten awareness of fruits and vegetables are discussed.
Collapse
|
30
|
Carrasco-Pozo C, Cires MJ, Gotteland M. Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J Med Food 2019; 22:753-770. [PMID: 31084513 DOI: 10.1089/jmf.2018.0193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is a worldwide epidemic, which is characterized by the excess accumulation of adipose tissue and to an extent that impairs both the physical and psychosocial health and well-being. There are several weight-loss strategies available, including dietary modification, pharmacotherapy, and bariatric surgery, but many are ineffective or not a long-term solution. Bioactive compounds present in medicinal plants and plant extracts, like polyphenols, constitute the oldest and most extensive form of alternative treatments for the prevention and management of obesity. Their consumption is currently increasing in the population due to the high cost, potential adverse effects, and limited benefits of the currently available pharmaceutical drugs. A great number of studies has explored how dietary polyphenols can interfere with the different mechanisms associated with obesity development. They suggest that these compounds can decrease energy and food intake, lipogenesis, and preadipocyte differentiation and proliferation, while increasing energy expenditure, lipolysis, and fat oxidation. Both quercetin, one of the most common dietary flavonols in the western diet, and epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea, exhibit antiobesity effects in adipocyte cultures and animal models. However, the extrapolation of these potential benefits to obese humans remains unclear. Although quercetin supplementation does not seem to exert any beneficial effects on body weight, this polyphenol could prevent the obesity-associated mortality by reducing cardiovascular disease risk. An important consideration for the design of further trials is the occurrence of gene polymorphisms in key enzymes involved in flavanol metabolism, which determines a subject's sensitivity to catechins and seems, therefore, crucial for the success of the antiobesity intervention. Although the evidence supporting antiobesity effects is more consistent in EGCG than with quercetin studies, they could still be beneficial by reducing the cardiovascular risk of obese subjects, rather than inducing body weight loss.
Collapse
Affiliation(s)
- Catalina Carrasco-Pozo
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,2Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - María Jose Cires
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile
| | - Martin Gotteland
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,3Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Corbo F, Brunetti G, Crupi P, Bortolotti S, Storlino G, Piacente L, Carocci A, Catalano A, Milani G, Colaianni G, Colucci S, Grano M, Franchini C, Clodoveo ML, D'Amato G, Faienza MF. Effects of Sweet Cherry Polyphenols on Enhanced Osteoclastogenesis Associated With Childhood Obesity. Front Immunol 2019; 10:1001. [PMID: 31130968 PMCID: PMC6509551 DOI: 10.3389/fimmu.2019.01001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Childhood obesity is associated with the development of severe comorbidities, such as diabetes, cardiovascular diseases, and increased risk of osteopenia/osteoporosis and fractures. The status of low-grade inflammation associated to obesity can be reversed through an enhanced physical activity and by consumption of food enrich of anti-inflammatory compounds, such as omega-3 fatty acids and polyphenols. The aim of this study was to deepen the mechanisms of bone impairment in obese children and adolescents through the evaluation of the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs), and the assessment of the serum levels of RANKL and osteoprotegerin (OPG). Furthermore, we aimed to evaluate the in vitro effects of polyphenol cherry extracts on osteoclastogenesis, as possible dietary treatment to improve bone health in obese subjects. High RANKL levels were measured in obese with respect to controls (115.48 ± 35.20 pg/ml vs. 87.18 ± 17.82 pg/ml; p < 0.01), while OPG levels were significantly reduced in obese than controls (378.02 ± 61.15 pg/ml vs. 436.75 ± 95.53 pg/ml, respectively, p < 0.01). Lower Ad-SoS- and BTT Z-scores were measured in obese compared to controls (p < 0.05). A significant elevated number of multinucleated TRAP+ osteoclasts (OCs) were observed in the un-stimulated cultures of obese subjects compared to the controls. Interestingly, obese subjects displayed a higher percentage of CD14+/CD16+ than controls. Furthermore, in the mRNA extracts of obese subjects we detected a 2.5- and 2-fold increase of TNFα and RANKL transcripts compared to controls, respectively. Each extract of sweet cherries determined a dose-dependent reduction in the formation of multinucleated TRAP+ OCs. Consistently, 24 h treatment of obese PBMCs with sweet cherry extracts from the three cultivars resulted in a significant reduction of the expression of TNFα. In conclusion, the bone impairment in obese children and adolescents is sustained by a spontaneous osteoclastogenesis that can be inhibited in vitro by the polyphenol content of sweet cherries. Thus, our study opens future perspectives for the use of sweet cherry extracts, appropriately formulated as nutraceutical food, as preventive in healthy children and therapeutic in obese ones.
Collapse
Affiliation(s)
- Filomena Corbo
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Crupi
- CREA-VE, Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology, Turi, Italy
| | - Sara Bortolotti
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Laura Piacente
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Gualtiero Milani
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic and Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Section of Human Anatomy and Histology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
32
|
Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis. J Nutr Sci 2019; 8:e15. [PMID: 31037218 PMCID: PMC6477661 DOI: 10.1017/jns.2019.10] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
Coffee consumption is inversely associated with the risk of non-alcoholic fatty liver disease (NAFLD). A gap in the literature still exists concerning the intestinal mechanisms that are involved in the protective effect of coffee consumption towards NAFLD. In this study, twenty-four C57BL/6J mice were divided into three groups each receiving a standard diet, a high-fat diet (HFD) or an HFD plus decaffeinated coffee (HFD+COFFEE) for 12 weeks. Coffee supplementation reduced HFD-induced liver macrovesicular steatosis (P < 0·01) and serum cholesterol (P < 0·001), alanine aminotransferase and glucose (P < 0·05). Accordingly, liver PPAR- α (P < 0·05) and acyl-CoA oxidase-1 (P < 0·05) as well as duodenal ATP-binding cassette (ABC) subfamily A1 (ABCA1) and subfamily G1 (ABCG1) (P < 0·05) mRNA expressions increased with coffee consumption. Compared with HFD animals, HFD+COFFEE mice had more undigested lipids in the caecal content and higher free fatty acid receptor-1 mRNA expression in the duodenum and colon. Furthermore, they showed an up-regulation of duodenal and colonic zonulin-1 (P < 0·05), duodenal claudin (P < 0·05) and duodenal peptide YY (P < 0·05) mRNA as well as a higher abundance of Alcaligenaceae in the faeces (P < 0·05). HFD+COFFEE mice had an energy intake comparable with HFD-fed mice but starting from the eighth intervention week they gained significantly less weight over time. Data altogether showed that coffee supplementation prevented HFD-induced NAFLD in mice by reducing hepatic fat deposition and metabolic derangement through modification of pathways underpinning liver fat oxidation, intestinal cholesterol efflux, energy metabolism and gut permeability. The hepatic and metabolic benefits induced by coffee were accompanied by changes in the gut microbiota.
Collapse
Key Words
- ABCA1, ATP-binding cassette subfamily A1
- ABCG1, ATP-binding cassette subfamily G1
- ACOX1, acyl-CoA oxidase 1
- ALT, alanine aminotransferase
- FFAR, free fatty acid receptor
- Gut microbiota
- Gut permeability
- HFD+COFFEE, HFD plus decaffeinated coffee
- HFD, high-fat diet
- LXR-α, liver X receptor-α
- Metabolic syndrome
- NAFLD, non-alcoholic fatty liver disease
- Non-alcoholic steatohepatitis
- PYY, peptide YY
- Polyphenols
- SD, standard diet
- ZO-1, zonulin-1
Collapse
|
33
|
Eseberri I, Miranda J, Lasa A, Mosqueda-Solís A, González-Manzano S, Santos-Buelga C, Portillo MP. Effects of Quercetin Metabolites on Triglyceride Metabolism of 3T3-L1 Preadipocytes and Mature Adipocytes. Int J Mol Sci 2019; 20:ijms20020264. [PMID: 30641871 PMCID: PMC6359054 DOI: 10.3390/ijms20020264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Quercetin (Q) has rapid metabolism, which may make it worthwhile to focus on the potential activity of its metabolites. Our aim was to evaluate the triglyceride-lowering effects of Q metabolites in mature and pre-adipocytes, and to compare them to those induced by Q. 3T3-L1 mature and pre-adipocytes were treated with 0.1, 1 and 10 µM of Q, tamarixetin (TAM), isorhamnetin (ISO), quercetin-3-O-glucuronide (3G), quercetin-3-O-sulfate (3S), as well as with 3S and quercetin-4-O-sulfate (4S) mixture (3S+4S). Triglyceride (TG) content in both cell types, as well as free fatty acid (FFA) and glycerol in the incubation medium of mature adipocytes were measured spectrophotometrically. Gene expression was assessed by RT-PCR. In mature adipocytes, Q decreased TG at 1 and 10 µM, 3S metabolite at 1 and 10 µM, and 3S+4S mixture at 10 µM. 3S treatment modified the glucose uptake, and TG assembling, but not lipolysis or apoptosis. During differentiation, only 10 µM of ISO reduced TG content, as did Q at physiological doses. In conclusion, 3S metabolite but not ISO, 3G, 4S and TAM metabolites can contribute to the in vivo delipidating effect of Q.
Collapse
Affiliation(s)
- Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Jonatan Miranda
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Arrate Lasa
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Andrea Mosqueda-Solís
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain.
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain.
| | - Maria P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
34
|
Reis LCRD, Facco EMP, Salvador M, Flôres SH, Rios ADO. Characterization of Orange Passion Fruit Peel Flour and Its Use as an Ingredient in Bakery Products. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2018. [DOI: 10.1080/15428052.2018.1564103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Luzia Caroline Ramos dos Reis
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | - Elizete Maria Pesamosca Facco
- Departamento de Bromatologia, Universidade de Caxias do Sul (UCS), Centro de Ciências da saúde, Caxias do Sul, RS, Brasil
| | - Mirian Salvador
- Laboratório de Estresse Oxidativo e Antioxidantes, Universidade de Caxias do Sul – Instituto de Biotecnologia, Caxias do Sul, RS, Brasil
| | - Simone Hickmann Flôres
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| |
Collapse
|
35
|
Corrêa TA, Rogero MM. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition 2018; 59:150-157. [PMID: 30471527 DOI: 10.1016/j.nut.2018.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
Obesity is one of the most prevalent health problems worldwide. It is a complex disease that is generally accompanied by insulin resistance, increases in oxidative stress and inflammation biomarkers, and potentially, microRNA (miRNA) dysregulation. Polyphenols may act on obesity and its metabolic consequences. Circulating miRNAs have been studied as potential biomarkers for inflammatory and metabolic diseases, and their use may improve the diagnostic tools currently available and the ability to diagnose specific diseases. To our knowledge, data regarding the link between the consumption of polyphenols from food sources, miRNA expression, and inflammation biomarkers related to obesity is scarce, and most data available describing this relationship are found in cancer studies. This review focuses on the polyphenols that modulate the metabolism, inflammation, or both related to obesity to understand the extent to which miRNA expression can be modulated by dietary interventions.
Collapse
Affiliation(s)
- Telma Af Corrêa
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
36
|
Van der Werf R, Walter C, Bietiger W, Seyfritz E, Mura C, Peronet C, Legrandois J, Werner D, Ennahar S, Digel F, Maillard-Pedracini E, Pinget M, Jeandidier N, Marchioni E, Sigrist S, Dal S. Beneficial effects of cherry consumption as a dietary intervention for metabolic, hepatic and vascular complications in type 2 diabetic rats. Cardiovasc Diabetol 2018; 17:104. [PMID: 30029691 PMCID: PMC6054718 DOI: 10.1186/s12933-018-0744-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background Oxidative stress (OS) plays an important role in type 2 diabetes (T2D) pathogenesis and its complications. New therapies target natural antioxidants as an alternative and/or supplemental strategy to prevent and control them. Our previous chemical and biological studies highlighted the important antioxidant activities of cherries, among other fruits and vegetables, thus we aimed to determine in vivo effects of 2-month long cherry consumption using a high-fat/high-fructose (HFHF) model of diabetic-rats (Lozano et al. in Nutr Metab 13:15, 2016). Methods After 2 months of HFHF, male Wistar rats were divided into: HFHF and HFHF enriched in cherry (nutritional approach) or standard diet ND (lifestyle measures) and ND plus cherry during 2 months. Metabolic, lipidic, oxidative parameters were quantified. Tissues (liver, pancreas and vessels) OS were assessed and hepatic (steatosis, fibrosis, inflammation) and vascular (endothelial dysfunction) complications were characterized. Results T2D was induced after 2 months of HFHF diet, characterized by systemic hyperglycaemia, hyperinsulinemia, glucose intolerance, dyslipidaemia, hyperleptinemia, and oxidative stress associated with endothelial dysfunction and hepatic complications. Cherry consumption for 2 months, in addition to lifestyle measures, in T2D-rats decreased and normalized the systemic disturbances, including oxidative stress complications. Moreover, in the vessel, cherry consumption decreased oxidative stress and increased endothelial nitric oxide (NO) synthase levels, thus increasing NO bioavailability, ensuring vascular homeostasis. In the liver, cherry consumption decreased oxidative stress by inhibiting NADPH oxidase subunit p22phox expression, nuclear factor erythroid-2 related factor 2 (Nrf2) degradation and the formation of reactive oxygen species. It inhibited the activation of sterol regulatory element-binding proteins (1c and 2) and carbohydrate-responsive element-binding protein, and thus decreased steatosis as observed in T2D rats. This led to the improvement of metabolic profiles, together with endothelial and hepatic function improvements. Conclusion Cherry consumption normalized vascular function and controlled hepatic complications, thus reduced the risk of diabetic metabolic disorders. These results demonstrate that a nutritional intervention with a focus on OS could prevent and/or delay the onset of vascular and hepatic complications related to T2D. Electronic supplementary material The online version of this article (10.1186/s12933-018-0744-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Remmelt Van der Werf
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Walter
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - William Bietiger
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Elodie Seyfritz
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Carole Mura
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Claude Peronet
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | | | | | - Said Ennahar
- IPHC-LC4, UMR 7178, Faculté de Pharmacie, Equipe de Chimie Analytique des Molécules BioActives, Illkirch, France
| | - Fabien Digel
- Interprofession des Fruits et Légumes d'Alsace (IFLA), Sainte Croix en Plaine, France
| | - Elisa Maillard-Pedracini
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Michel Pinget
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| | - Nathalie Jeandidier
- Structure d'Endocrinologie, Diabète, Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, (HUS), 67000, Strasbourg, France
| | - Eric Marchioni
- IPHC-LC4, UMR 7178, Faculté de Pharmacie, Equipe de Chimie Analytique des Molécules BioActives, Illkirch, France
| | - Séverine Sigrist
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France.
| | - Stéphanie Dal
- DIATHEC EA 7294, Fédération de Médecine Translationnelle de Strasbourg, Centre Européen d'Etude du Diabète, Boulevard René Leriche, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
37
|
Noratto GD, Lage NN, Chew BP, Mertens-Talcott SU, Talcott ST, Pedrosa ML. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chem 2018; 266:405-414. [PMID: 30381205 DOI: 10.1016/j.foodchem.2018.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Anthocyanin-rich cherries are known for preventing/decreasing risk factors associated with obesity; however, the specific benefits exerted by cherry non-anthocyanin phenolics are not clear. Obese diabetic (db/db) mice fed a diet supplemented with anthocyanin-depleted cherry powder (cherry) were compared to db/db (obese) or lean counterparts (lean) fed a control isocaloric diet for 12 weeks. The reduced plasma interleukin (IL)-6 and improved liver health may be mediated by cherry fibre and non-anthocyanin phenolics. Benefits for liver health included reduction of lipids and protein carbonyls, and modulation of peroxisome proliferator-activated receptor (PPAR)δ mRNA to resemble levels in lean. Lack of plasma antilipidemic, improvement of antioxidant defenses, and PPARα/γ mRNA modulation in liver suggest cherry anthocyanins specific benefits. This is the first study to elucidate in vivo the potential benefits of cherry non-anthocyanin phenolics for diabetes-induced liver disorders and the importance of choosing processing technologies that preserve anthocyanins and health benefits of whole cherries.
Collapse
Affiliation(s)
- Giuliana D Noratto
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States.
| | - Nara N Lage
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States; Research Center in Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Boon P Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | | | - Stephen T Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States
| | - Maria L Pedrosa
- Research Center in Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
38
|
Kelley DS, Adkins Y, Laugero KD. A Review of the Health Benefits of Cherries. Nutrients 2018; 10:nu10030368. [PMID: 29562604 PMCID: PMC5872786 DOI: 10.3390/nu10030368] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 01/11/2023] Open
Abstract
Increased oxidative stress contributes to development and progression of several human chronic inflammatory diseases. Cherries are a rich source of polyphenols and vitamin C which have anti-oxidant and anti-inflammatory properties. Our aim is to summarize results from human studies regarding health benefits of both sweet and tart cherries, including products made from them (juice, powder, concentrate, capsules); all referred to as cherries here. We found 29 (tart 20, sweet 7, unspecified 2) published human studies which examined health benefits of consuming cherries. Most of these studies were less than 2 weeks of duration (range 5 h to 3 months) and served the equivalent of 45 to 270 cherries/day (anthocyanins 55–720 mg/day) in single or split doses. Two-thirds of these studies were randomized and placebo controlled. Consumption of cherries decreased markers for oxidative stress in 8/10 studies; inflammation in 11/16; exercise-induced muscle soreness and loss of strength in 8/9; blood pressure in 5/7; arthritis in 5/5, and improved sleep in 4/4. Cherries also decreased hemoglobin A1C (HbA1C), Very-low-density lipoprotein (VLDL) and triglycerides/high-density lipoprotein (TG/HDL) in diabetic women, and VLDL and TG/HDL in obese participants. These results suggest that consumption of sweet or tart cherries can promote health by preventing or decreasing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Darshan S Kelley
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA.
- Department of Nutrition, University of California, Davis, CV 95616, USA.
| | - Yuriko Adkins
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA.
- Department of Nutrition, University of California, Davis, CV 95616, USA.
| | - Kevin D Laugero
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA.
- Department of Nutrition, University of California, Davis, CV 95616, USA.
| |
Collapse
|
39
|
Red raspberries suppress NLRP3 inflammasome and attenuate metabolic abnormalities in diet-induced obese mice. J Nutr Biochem 2018; 53:96-103. [DOI: 10.1016/j.jnutbio.2017.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 12/26/2022]
|
40
|
Alba C MA, Daya M, Franck C. Tart Cherries and health: Current knowledge and need for a better understanding of the fate of phytochemicals in the human gastrointestinal tract. Crit Rev Food Sci Nutr 2017; 59:626-638. [PMID: 28956621 DOI: 10.1080/10408398.2017.1384918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tart cherries are increasingly popular due to purported health benefits. This Prunus cesarus species is cultivated worldwide, and its market has increased significantly in the last two decades due to improvements in agricultural practices and food processing technology. Tart cherries are rich in polyphenols, with a very specific profile combining anthocyanins and flavonols (berries-like) and chlorogenic acid (coffee-like). Tart cherries have been suggested to exert several potentially beneficial health effects including: lowering blood pressure, modulating blood glucose, enhancing cognitive function, protecting against oxidative stress and reducing inflammation. Studies focusing on tart cherry consumption have demonstrated particular benefits in recovery from exercise-induced muscle damage and diabetes associated parameters. However, the bioconversion of tart cherry polyphenols by resident colonic microbiota has never been considered, considerably reducing the impact of in vitro studies that have relied on fruit polyphenol extracts. In vitro and in vivo gut microbiota and metabolome studies are necessary to reinforce health claims linked to tart cherries consumption.
Collapse
Affiliation(s)
- Mayta-Apaza Alba C
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| | - Marasini Daya
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| | - Carbonero Franck
- a Department of Food Science and Center for Human Nutrition , University of Arkansas , Fayetteville , AR , United States
| |
Collapse
|
41
|
Bjørklund G, Dadar M, Chirumbolo S, Lysiuk R. Flavonoids as detoxifying and pro-survival agents: What's new? Food Chem Toxicol 2017; 110:240-250. [PMID: 29079495 DOI: 10.1016/j.fct.2017.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 02/06/2023]
Abstract
The role of flavonoids in the survival machinery of cells has come in the spotlight due to the recent evidence of their effect on the relationship mitochondria-ER stress-proteasome, including the intracellular mechanisms of autophagy and apoptosis. Numerous experimental animal investigations and even human clinical studies have highlighted the major role of these natural compounds in the economy of life and their deep relationship with autotrophic organisms in the evolutionary space. Their role as anti-oxidant and oxidative stress preventive molecules has to date been investigated extensively in the literature. Despite this great amount of promising evidence, many concerns, however, remain, most of which dealing with biochemistry, bioavailability, pharmacokinetics, and interaction of flavonoids with gut microbiome, issues that make difficult any good attempt to introduce these molecules in the human healthcare systems as possible, encouraging therapeutic substances. This review tries to address and elucidate these items.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
42
|
Rasouli H, Hosseini-Ghazvini SMB, Adibi H, Khodarahmi R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct 2017; 8:1942-1954. [PMID: 28470323 DOI: 10.1039/c7fo00220c] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, due to their biological properties, polyphenol-rich functional foods have been proposed to be unique supplementary and nutraceutical treatments for diabetes mellitus. Inhibition of α-amylase and α-glucosidase enzymes using natural products (especially polyphenols) is a novel oral policy to regulate carbohydrate metabolism and hyperglycemia. The present study aims to evaluate the α-amylase and α-glucosidase inhibitory activity of 26 polyphenols using molecular docking and virtual screening studies. The results speculate that among selected compounds caffeic acid, curcumin, cyanidin, daidzein, epicatechin, eridyctiol, ferulic acid, hesperetin, narenginin, pinoresinol, quercetin, resveratrol and syringic acid can significantly inhibit the α-glucosidase enzyme. In addition, catechin, hesperetin, kaempferol, silibinin and pelargonidin are potent α-amylase inhibitors. Therefore the primary structure of polyphenols can change the inhibitory effect versus the α-amylase and α-glucosidase enzymes. Finally, we speculate that consumption of polyphenol-rich functional foods (by considering the best dose of each compound and assessing their possible side effects) in diabetic patients may be useful for regulating carbohydrate metabolism and related disorders. The findings of the current study may also shed light on a way of generating a new class of amylase/glucosidase inhibitors that will discriminately inhibit the on-target enzymes with negligible undesired off-target side effects.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | | | | |
Collapse
|
43
|
Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1354017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Cialdella-Kam L, Ghosh S, Meaney MP, Knab AM, Shanely RA, Nieman DC. Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice. Nutrients 2017; 9:nu9070773. [PMID: 28753942 PMCID: PMC5537887 DOI: 10.3390/nu9070773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Quercetin (Q) and green tea extract (E) are reported to counter insulin resistance and inflammation and favorably alter fat metabolism. We investigated whether a mixture of E + Q (EQ) could synergistically influence metabolic and inflammation endpoints in a high-fat diet (HFD) fed to mice. Male C57BL/6 mice (n = 40) were put on HFD (fat = 60%kcal) for 12 weeks and randomly assigned to Q (25 mg/kg of body weight (BW)/day), E (3 mg of epigallocatechin gallate/kg BW/day), EQ, or control groups for four weeks. At 16 weeks, insulin sensitivity was measured via the glucose tolerance test (GTT), followed by area-under-the-curve (AUC) estimations. Plasma cytokines and quercetin were also measured, along with whole genome transcriptome analysis and real-time polymerase chain reaction (qPCR) on adipose, liver, and skeletal muscle tissues. Univariate analyses were conducted via analysis of variance (ANOVA), and whole-genome expression profiles were examined via gene set enrichment. At 16 weeks, plasma quercetin levels were higher in Q and EQ groups vs. the control and E groups (p < 0.05). Plasma cytokines were similar among groups (p > 0.05). AUC estimations for GTT was 14% lower for Q vs. E (p = 0.0311), but non-significant from control (p = 0.0809). Genes for cholesterol metabolism and immune and inflammatory response were downregulated in Q and EQ groups vs. control in adipose tissue and soleus muscle tissue. These data support an anti-inflammatory role for Q and EQ, a result best captured when measured with tissue gene downregulation in comparison to changes in plasma cytokine levels.
Collapse
Affiliation(s)
- Lynn Cialdella-Kam
- Department of Nutrition, School of Medicine-WG 48, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Diseases and Center for Computational Biology, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Mary Pat Meaney
- Department of Exercise Physiology, School of Health Sciences, Winston-Salem State University, 601 S. Martin Luther King Jr. Drive, Winston-Salem, NC 27110, USA.
| | - Amy M Knab
- Levine Center for Health and Wellness, Queens University of Charlotte, 1900 Selwyn Avenue, Charlotte, NC 28274, USA.
| | - R Andrew Shanely
- Department of Health & Exercise Science, Appalachian State University, ASU Box 32071, 111 Rivers Street, 050 Convocation Center, Boone, NC 28608, USA.
| | - David C Nieman
- Human Performance Laboratory, North Carolina Research Campus, Appalachian State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
45
|
Schloesser A, Esatbeyoglu T, Schultheiß G, Vollert H, Lüersen K, Fischer A, Rimbach G. Antidiabetic Properties of an Apple/Kale Extract In Vitro, In Situ, and in Mice Fed a Western-Type Diet. J Med Food 2017. [PMID: 28622482 DOI: 10.1089/jmf.2017.0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common and increasingly prevalent metabolic disorder, and effective preventive strategies against this disease are needed. The aim of the present study was to evaluate the potential antidiabetic properties of a dietary apple/kale extract (AKE), which was rich in phlorizin and flavonoids, in laboratory mice. Mice were fed a control diet, a Western-type high-sugar, high-fat diet (WTD), or a WTD plus AKE for 10 weeks. Body weight, food and energy intake, body composition, and blood glucose level were recorded in addition to the postprandial rise in blood glucose concentration after a single administration of glucose (oral glucose tolerance test, OGTT). Furthermore, changes in glucose-induced short-circuit current (ISC) in response to AKE and phlorizin administration were evaluated in situ in intestinal tissues with Ussing chambers. In addition, the in vitro inhibition of α-glucosidase by AKE was determined. The present data suggest that supplementation of an AKE to a WTD significantly improved both blood glucose levels and OGTT in mice. Furthermore, in situ uptake of glucose was significantly inhibited by AKE. Finally, we showed that AKE significantly inhibits α-glucosidase activity in vitro. We conclude that AKE exhibits antidiabetic properties by a dual mechanism, including the inhibition of α-glucosidase and sodium-dependent glucose transporter 1 (SGLT1). Thus, AKE has the potential to serve as a natural plant bioactive compound for dietary prevention strategies against T2DM.
Collapse
Affiliation(s)
- Anke Schloesser
- 1 Institute of Human Nutrition and Food Science, University of Kiel , Kiel, Germany
| | - Tuba Esatbeyoglu
- 1 Institute of Human Nutrition and Food Science, University of Kiel , Kiel, Germany
| | | | | | - Kai Lüersen
- 1 Institute of Human Nutrition and Food Science, University of Kiel , Kiel, Germany
| | - Alexandra Fischer
- 1 Institute of Human Nutrition and Food Science, University of Kiel , Kiel, Germany
| | - Gerald Rimbach
- 1 Institute of Human Nutrition and Food Science, University of Kiel , Kiel, Germany
| |
Collapse
|
46
|
McKay TB, Karamichos D. Quercetin and the ocular surface: What we know and where we are going. Exp Biol Med (Maywood) 2017; 242:565-572. [PMID: 28056553 PMCID: PMC5685256 DOI: 10.1177/1535370216685187] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Flavonoids are a class of plant and fungus secondary metabolites that serve functional roles in protecting against UV-induced oxidative stress, mediating auxin signaling, and promoting microbial defense. Flavonoids are extremely abundant in nature where their potent antioxidant capacity and very low toxicity makes them highly attractive as potential therapeutic agents. In terms of clinical applications, neither the Food and Drug Administration (FDA) nor the European Food Safety Authority (EFSA) has approved any health claims or drugs related to the use of flavonoids for therapeutic purposes. Quercetin is a common flavonol that has been shown to have potent antioxidant, anti-inflammatory, and anti-fibrotic activities both in vitro and in vivo in various tissues. Recently, the application of quercetin as a therapeutic has been gaining attention in the ocular surface scientific community in the study of dry eye, keratoconus, inflammation, and neovascularization of the cornea. This review will discuss the latest findings and the use of quercetin for the treatment of dystrophies of the ocular surface. Impact statement The eye represents a small portion of the human body, accounting for one decimal fraction of the anterior body surface. The cornea is an avascular, transparent tissue that acts as a primary barrier against mechanical and infectious damaging agents, protecting the internal structures of the eye. Corneal survival and function are affected by a number of factors including but not limited to injury, trauma, infection, genetics, and environment. Corneal injury, or trauma, often leads to loss of corneal transparency and even blindness. The concept of "curing" corneal opacity has been discussed in published form for over 200 years. Currently, full corneal transplant is the only treatment option. There is a strong interest in developing natural therapeutic products that come with minimum side effects. A novel antioxidant flavonoid, quercetin, has been gaining traction as a potential therapeutic to prevent the injured cornea. This review discusses the potential of this antioxidant.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104,USA
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104,USA
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
47
|
Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs. Molecules 2016; 21:molecules21091263. [PMID: 27657035 PMCID: PMC6272860 DOI: 10.3390/molecules21091263] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen the exploration of a puzzling number of compounds found in human diet that could be of interest for prevention or treatment of various pathologies. Although many of these natural products (NPs) have long been used as remedies, their molecular effects still remain elusive. With the advent of biotechnology revolution, NP studies turned from chemistry and biochemistry toward global analysis of gene expression. Hope is to use genetics to identify groups of patient for whom certain NPs or their derivatives may offer new preventive or therapeutic treatments. Recently, microRNAs have gained the statute of global regulators controlling cell homeostasis by regulating gene expression through genetic and epigenetic regulatory loops. Realization that certain plant polyphenols can modify microRNA expression and thus impact gene expression globally, initiated new, mainly in vitro studies, in particular to determine phytochemicals effects on inflammatory response, whose exacerbation has been linked to several disorders including cancer, auto-immune, metabolic, cardiovascular and neuro-inflammatory diseases. However, very few mechanistic insights have been provided, given the complexity of genetic regulatory networks implicated. In this review, we will concentrate on data showing the potential interest of some plant polyphenols in manipulating the expression of pro- and anti-inflammatory microRNAs in pathological conditions.
Collapse
|
48
|
Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases-Promises, Perspectives, and Pitfalls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9346470. [PMID: 27478535 PMCID: PMC4958438 DOI: 10.1155/2016/9346470] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by autoimmune and inflammation-related complications of the large intestine (ulcerative colitis) and additional parts of the digestive tract (Crohn's disease). Complications include pain, diarrhoea, chronic inflammation, and cancer. IBD prevalence has increased during the past decades, especially in Westernized countries, being as high as 1%. As prognosis is poor and medication often ineffective or causing side effects, additional preventive/adjuvant strategies are sought. A possible approach is via diets rich in protective constituents. Polyphenols, the most abundant phytochemicals, have been associated with anti-inflammatory, antioxidant, immunomodulatory, and apoptotic properties. Locally reducing oxidative stress, they can further act on cellular targets, altering gene expression related to inflammation, including NF-κB, Nrf-2, Jak/STAT, and MAPKs, suppressing downstream cytokine formation (e.g., IL-8, IL-1β, and TNF-α), and boosting the bodies' own antioxidant status (HO-1, SOD, and GPx). Moreover, they may promote, as prebiotics, healthy microbiota (e.g., Bifidobacteria, Akkermansia), short-chain fatty acid formation, and reduced gut permeability/improved tight junction stability. However, potential adverse effects such as acting as prooxidants, or perturbations of efflux transporters and phase I/II metabolizing enzymes, with increased uptake of undesired xenobiotics, should also be considered. In this review, we summarize current knowledge around preventive and arbitrary actions of polyphenols targeting IBD.
Collapse
|