1
|
Zhu J, Gilbert RG. Starch molecular structure and diabetes. Carbohydr Polym 2024; 344:122525. [PMID: 39218548 DOI: 10.1016/j.carbpol.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Starch is a primary source of food energy for human beings. Its chain-length distribution (CLD) is a major structural feature influencing physiologically-important properties, such as digestibility and palatability, of starch-containing foods. Diabetes, which is of epidemic proportions in many countries, is related to the rate of starch digestion in foods. Isoforms of three biosynthesis enzymes, starch synthase, starch branching enzymes and debranching enzymes, control the CLDs of starch, which can be measured by methods such as size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis. Fitting observed CLDs to biosynthesis-based models based on the ratios of the activities of those isoforms yields biosynthesis-related parameters describing CLD features. This review examines CLD measurement, fitting CLDs to models, relations between CLDs, the occurrence and management of diabetes, and how plant breeders can develop varieties to optimize digestibility and palatability together, to develop starch-based foods with both a lower risk of diabetes and acceptable taste.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Basuray N, Deehan EC, Vieira FT, Avedzi HM, Duke RL, Colín-Ramírez E, Tun HM, Zhang Z, Wine E, Madsen KL, Field CJ, Haqq AM. Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber. Eur J Clin Nutr 2024; 78:557-568. [PMID: 38480843 DOI: 10.1038/s41430-024-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., "fiber gap") might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.
Collapse
Affiliation(s)
- Nandini Basuray
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Flávio T Vieira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hayford M Avedzi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reena L Duke
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Hein M Tun
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Saaty AH, Aljadani HM. Comparison of food intake pattern of diabetic patients and healthy individuals in a sample of Saudi population: a case-control study. BMC Public Health 2024; 24:1590. [PMID: 38872144 DOI: 10.1186/s12889-024-19064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND There has been a significant rise in the number of individuals diagnosed with type 2 diabetes mellitus (T2DM), with the condition reaching epidemic proportions globally. This study examined the dietary pattern of a sample of Saudi Arabian adults with T2DM compared to control non-diabetics. METHODS Data from 414 participants, 207 control and 207 T2DM was analyzed. Anthropometric measurements, foods intake such as vegetables, fruits, whole grains, fried foods, sweetened juice, sweets, and pastries consumption as well as physical activity were obtained by an interview-survey. RESULTS The consumption of vegetables, green and leafy vegetables, starchy vegetables, fruits, proteins, and milk was significantly higher in the diabetics (p< 0.0001 for all and p<0.01 for starchy vegetables). Of the case group, 79.7% of them consumed whole-wheat bread while 54.6% of them consumed low fat milk (p<0.0001). There was a significant decrease in the percentage of cases who consumed discretionary foods and sweetened juices and soft drinks (24.1%), avoided sweets (75.8%) and pastries (37.1%), (p<0.0001). There were also significant increases in the percentages of participants who use healthy fat (as olive oil) in the case group (78.7%) (p<0.001). There was a significant increase in the percentage of diabetics who followed a diet to lose weight (15%) (p<0.05). The majority of the two study groups were physically inactive (control 95.2% & case 94.2%). CONCLUSIONS The results of this study provide insight on that diabetics generally follow a healthy diet, yet their engagement in physical activity may not be optimal.
Collapse
Affiliation(s)
- Afnan H Saaty
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, 21551, Saudi Arabia.
| | - Haya Ma Aljadani
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, 21551, Saudi Arabia
| |
Collapse
|
4
|
Yılmaz B, Sırbu A, Altıntaş Başar HB, Goksen G, Chabı IB, Kumagaı H, Ozogul F. Potential roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes: A review of the current knowledge. Crit Rev Food Sci Nutr 2023:1-18. [PMID: 38148641 DOI: 10.1080/10408398.2023.2292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Diabetes is one of the most common non-communicable diseases in both developed and underdeveloped countries with a 9.3% prevalence. Unhealthy diets and sedentary lifestyles are among the most common reasons for type 2 diabetes mellitus (T2DM). Diet plays a crucial role in both the etiology and treatment of T2DM. There are several recommendations regarding the carbohydrate intake of patients with T2DM. One of them is about reducing the total carbohydrate intake and/or changing the type of carbohydrate to reduce the glycaemic index. Cereals are good sources of carbohydrates in the diet with a significant amount of soluble and non-soluble fiber content. Apart from fiber, it has been shown that the bioactive compounds present in cereals such as proteins, phenolic compounds, carotenoids, and tocols have beneficial impacts in the prevention and treatment of T2DM. Moreover, cereal by-products especially the by-products of milling processes, which are bran and germ, have been reported to have anti-diabetic activities mainly because of their fiber and polyphenols content. Considering the potential functions of cereals in patients with T2DM, this review focuses on the roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | - Alexandrina Sırbu
- FMMAE Ramnicu Valcea, Constantin Brancoveanu University of Pitesti, Valcea, Romania
| | | | - Gülden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Ifagbémi Bienvenue Chabı
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Jericho Cotonou, Benin
| | - Hitomi Kumagaı
- Nihon University College of Bioresource Sciences Graduate School of Bioresource Sciences, Fujisawa, Japan
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
5
|
Barouei J, Martinic A, Bendiks Z, Mishchuk D, Heeney D, Slupsky CM, Marco ML. Type 2-resistant starch and Lactiplantibacillus plantarum NCIMB 8826 result in additive and interactive effects in diet-induced obese mice. Nutr Res 2023; 118:12-28. [PMID: 37536013 DOI: 10.1016/j.nutres.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.
Collapse
Affiliation(s)
- Javad Barouei
- Integrated Food Security Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX; Department of Food Science & Technology, University of California, Davis, CA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, CA; Department of Nutrition, University of California, Davis, CA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA.
| |
Collapse
|
6
|
Maiya M, Adorno A, Toulabi SB, Tucker WJ, Patterson MA. Resistant starch improves cardiometabolic disease outcomes: A narrative review of randomized trials. Nutr Res 2023; 114:20-40. [PMID: 37149926 DOI: 10.1016/j.nutres.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/09/2023]
Abstract
Healthy dietary patterns with adequate fiber improve cardiometabolic (CM) outcomes and attenuate disease progression. Resistant starch (RS) is a fermentable fiber that affects CM outcomes; however, studies are heterogeneous and inconsistent. Thus, the purpose of this narrative review is to assess the impact of RS intake by type and amount on CM outcomes while considering subject characteristics and trial duration. Randomized crossover or parallel studies (n = 31) were selected and compared according to acute (1 day; n = 12), medium (>1-30 days; n = 8), or long (>30 days; n = 11) duration. Most acute trials in healthy adults showed improvements in postprandial glycemic outcomes irrespective of RS type or amount. However, a more pronounced reduction occurred when test meals did not match for available carbohydrate. Daily RS intake had a minimal effect on CM outcomes in medium duration trials, but insulin resistant adults had better glycemic control at 4 weeks. Several longer duration trials (8-12 weeks) showed favorable CM outcomes with daily RS intake in adults with type 2 diabetes (T2D), but not in those at risk for T2D. Furthermore, some studies reported improved lipids, inflammatory biomarkers, and heart rate. Future studies should consider matching for available carbohydrates between the RS and control groups to understand the gut microbiome's role. Furthermore, energy and fiber should be considered. Overall, the acute intake of RS improves glycemic outcomes, and consuming RS at for least 4 and up to 8 to 12 weeks in adults with prediabetes and T2D, respectively, appears to improve CM outcomes.
Collapse
Affiliation(s)
- Madhura Maiya
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Andrew Adorno
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA
| | - Sahar B Toulabi
- College of Agriculture Science, Colorado State University, Fort Collins, Colorado, USA
| | - Wesley J Tucker
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA; Institute for Women's Health, Texas Woman's University, Houston, Texas USA
| | - Mindy A Patterson
- Department of Nutrition and Food Sciences, Texas Woman's University Institute of Health Sciences, Houston, Texas, USA; Institute for Women's Health, Texas Woman's University, Houston, Texas USA.
| |
Collapse
|
7
|
Pugh JE, Cai M, Altieri N, Frost G. A comparison of the effects of resistant starch types on glycemic response in individuals with type 2 diabetes or prediabetes: A systematic review and meta-analysis. Front Nutr 2023; 10:1118229. [PMID: 37051127 PMCID: PMC10085630 DOI: 10.3389/fnut.2023.1118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Background Type 2 diabetes (T2D) diagnoses are predicted to reach 643 million by 2030, increasing incidences of cardiovascular disease and other comorbidities. Rapidly digestible starch elevates postprandial glycemia and impinges glycemic homeostasis, elevating the risk of developing T2D. Starch can escape digestion by endogenous enzymes in the small intestine when protected by intact plant cell walls (resistant starch type 1), when there is a high concentration of amylose (resistant starch type 2) and when the molecule undergoes retrogradation (resistant starch type 3) or chemical modification (resistant starch type 4). Dietary interventions using resistant starch may improve glucose metabolism and insulin sensitivity. However, few studies have explored the differential effects of resistant starch type. This systematic review and meta-analysis aims to compare the effects of the resistant starch from intact plant cell structures (resistant starch type 1) and resistant starch from modified starch molecules (resistant starch types 2-5) on fasting and postprandial glycemia in subjects with T2D and prediabetes. Methods Databases (PubMed, SCOPUS, Ovid MEDLINE, Cochrane, and Web of Science) were systematically searched for randomized controlled trials. Standard mean difference (SMD) with 95% confidence intervals (CI) were determined using random-effects models. Sub-group analyses were conducted between subjects with T2D versus prediabetes and types of resistant starch. Results The search identified 36 randomized controlled trials (n = 982), 31 of which could be included in the meta-analysis. Resistant starch type 1 and type 2 lowered acute postprandial blood glucose [SMD (95% CI) = -0.54 (-1.0, -0.07)] and [-0.96 (-1.61, -0.31)]. Resistant starch type 2 improved acute postprandial insulin response [-0.71 (-1.31, -0.11)]. In chronic studies, resistant starch type 1 and 2 lowered postprandial glucose [-0.38 (-0.73, -0.02), -0.29 (-0.53, -0.04), respectively] and resistant starch type 2 intake improved fasting glucose [-0.39 (-0.66, -0.13)] and insulin [-0.40 (-0.60, -0.21)]. Conclusion Resistant starch types 1 and 2 may influence glucose homeostasis via discrete mechanisms, as they appear to influence glycemia differently. Further research into resistant starch types 3, 4, and 5 is required to elucidate their effect on glucose metabolism. The addition of resistant starch as a dietary intervention for those with T2D or prediabetes may prevent further deterioration of glycemic control.
Collapse
Affiliation(s)
| | | | | | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
8
|
Bush JR, Baisley J, Harding SV, Alfa MJ. Consumption of Solnul ™ Resistant Potato Starch Produces a Prebiotic Effect in a Randomized, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:nu15071582. [PMID: 37049425 PMCID: PMC10097138 DOI: 10.3390/nu15071582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The effects of resistant starch at high doses have been well-characterized, but the potential prebiotic effects of resistant starch at doses comparable to oligosaccharide prebiotics have not been evaluated. A three-arm randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the effect of 3.5 g and 7 g daily doses of Solnul™ resistant potato starch (RPS) on beneficial populations of gut bacteria and stool consistency after a 4-week period. The relative abundance of Bifidobacterium and Akkermansia was determined by employing 16Sv4 sequencing of stool samples. To assess the effect of RPS on laxation and bowel movements, stools were recorded and scored using the Bristol Stool Form Scale. Participants consuming 3.5 g/day of RPS experienced significantly greater changes in Bifidobacterium and Akkermansia compared to the placebo after 4 weeks. The number of diarrhea- and constipation-associated bowel movements were both significantly lower in the 3.5 g RPS arm compared to the placebo group. Participants consuming 7 g of RPS responded similarly to those in the 3.5 g arm. Our analyses demonstrate that Solnul™ RPS has a prebiotic effect when consumed for 4 weeks at the 3.5 g per day dose, stimulating increases in beneficial health-associated bacteria and reducing diarrhea- and constipation-associated bowel movements when compared to the placebo group.
Collapse
Affiliation(s)
- Jason R Bush
- MSP Starch Products Inc., Carberry, MB R0K 0H0, Canada
| | - Joshua Baisley
- Nutrasource Pharmaceutical and Nutraceutical Services, Guelph, ON N1G 0B4, Canada
| | - Scott V Harding
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | | |
Collapse
|
9
|
Unlocking the Potential of High-Amylose Starch for Gut Health: Not All Function the Same. FERMENTATION 2023. [DOI: 10.3390/fermentation9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
High-amylose starch has unique functional properties and nutritional values in food applications. This type of starch is generally resistant to enzymatic digestion in the gastrointestinal tract, and contains an increased fraction of resistant starch (RS), which is a type of dietary fiber. The digestion and fermentation of high-amylose starch in the gut are of current research interest, as the processes are related to its nutritional functionality. This review summarizes recent in vitro and in vivo studies on the digestion and fermentation of high-amylose starches from different botanical sources and those that have been obtained by modifications. The RS content and fermentation properties are compared among high-amylose starches. This review aims to provide a current understanding of the relationship between high-amylose starch structures and fermentation-related nutritional properties. The results of these studies suggest that both modifications and food processing of high-amylose starch result in distinct fermentation products and nutritional properties. The review provides insight into the potential future applications of diverse high-amylose starches as bioactive compounds to modulate colonic fermentation.
Collapse
|
10
|
Schadow AM, Revheim I, Spielau U, Dierkes J, Schwingshackl L, Frank J, Hodgson JM, Moreira-Rosário A, Seal CJ, Buyken AE, Rosendahl-Riise H. The Effect of Regular Consumption of Reformulated Breads on Glycemic Control: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv Nutr 2023; 14:30-43. [PMID: 36811592 PMCID: PMC10102991 DOI: 10.1016/j.advnut.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Bread is a major source of grain-derived carbohydrates worldwide. High intakes of refined grains, low in dietary fiber and high in glycemic index, are linked with increased risk for type 2 diabetes mellitus (T2DM) and other chronic diseases. Hence, improvements in the composition of bread could influence population health. This systematic review evaluated the effect of regular consumption of reformulated breads on glycemic control among healthy adults, adults at cardiometabolic risk or with manifest T2DM. A literature search was performed using MEDLINE, Embase, Web of Science and the Cochrane Central Register of Controlled Trials. Eligible studies employed a bread intervention (≥2 wk) in adults (healthy, at cardiometabolic risk or manifest T2DM) and reported glycemic outcomes (fasting blood glucose, fasting insulin, HOMA-IR, HbA1c, and postprandial glucose responses). Data were pooled using generic inverse variance with random-effects model and presented as mean difference (MD) or standardized MD between treatments with 95% CIs. Twenty-two studies met the inclusion criteria (n = 1037 participants). Compared with "regular" or comparator bread, consumption of reformulated intervention breads yielded lower fasting blood glucose concentrations (MD: -0.21 mmol/L; 95% CI: -0.38, -0.03; I2 = 88%, moderate certainty of evidence), yet no differences in fasting insulin (MD: -1.59 pmol/L; 95% CI: -5.78, 2.59; I2 = 38%, moderate certainty of evidence), HOMA-IR (MD: -0.09; 95% CI: -0.35, 0.23; I2 = 60%, moderate certainty of evidence), HbA1c (MD: -0.14; 95% CI: -0.39, 0.10; I2 = 56%, very low certainty of evidence), or postprandial glucose response (SMD: -0.46; 95% CI: -1.28, 0.36; I2 = 74%, low certainty of evidence). Subgroup analyses revealed a beneficial effect for fasting blood glucose only among people with T2DM (low certainty of evidence). Our findings suggest a beneficial effect of reformulated breads high in dietary fiber, whole grains, and/or functional ingredients on fasting blood glucose concentrations in adults, primarily among those with T2DM. This trial was registered at PROSPERO as CRD42020205458.
Collapse
Affiliation(s)
- Alena M Schadow
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Ingrid Revheim
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ulrike Spielau
- Center of Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany; Mohn Nutrition Research Laboratory, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, Hohenheim University, Stuttgart, Germany
| | - Jonathan M Hodgson
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - André Moreira-Rosário
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; CINTESIS - Center for Health Technology and Services Research, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Chris J Seal
- Human Nutrition Research Center, Public Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anette E Buyken
- Institute of Nutrition, Consumption and Health, Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Hanne Rosendahl-Riise
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
11
|
Costabile G, Vetrani C, Calabrese I, Vitale M, Cipriano P, Salamone D, Testa R, Paparo L, Russo R, Rivellese AA, Giacco R, Riccardi G. High Amylose Wheat Bread at Breakfast Increases Plasma Propionate Concentrations and Reduces the Postprandial Insulin Response to the Following Meal in Overweight Adults. J Nutr 2023; 153:131-137. [PMID: 36913446 DOI: 10.1016/j.tjnut.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High amylose starchy foods modulate the postprandial metabolic response in humans. However, the mechanisms of their metabolic benefits and their impact on the subsequent meal have not been fully elucidated. OBJECTIVE We aimed to evaluate whether glucose and insulin responses to a standard lunch are influenced by the consumption of amylose-rich bread at breakfast in overweight adults and whether changes in plasma short chain fatty acids (SCFAs) concentrations contribute to their metabolic effects. METHODS Using a randomized crossover design, 11 men and 9 women, BMI 30 ± 3 kg/m2, 48 ± 19 y, consumed at breakfast 2 breads made with high amylose flour (HAF): 85%-HAF (180 g) and 75%-HAF (170 g), and control bread (120 g) containing 100% conventional flour. Plasma samples were collected at fasting, 4 h after breakfast, and 2 h after a standard lunch to measure glucose, insulin, and SCFA concentrations. ANOVA posthoc analyses were used for comparisons. RESULTS Postprandial plasma glucose responses were 27% and 39% lower after breakfasts with 85%- and 70%-HAF breads than control bread (P = 0.026 and P = 0.003, respectively), with no difference after lunch. Insulin responses were not different between the 3 breakfasts, whereas there was a 28% lower response after the lunch following breakfast with 85%-HAF bread than the control (P = 0.049). Propionate concentrations increased from fasting by 9% and 12% 6 h after breakfasts with 85%- and 70%-HAF breads and decreased by 11% with control bread (P < 0.05). At 6 h after breakfast with 70%-HAF bread, plasma propionate and insulin were inversely correlated (r = -0.566; P = 0.044). CONCLUSIONS Amylose-rich bread reduces the postprandial glucose response after breakfast and insulin concentrations after the subsequent lunch in overweight adults. This second meal effect may be mediated by the elevation of plasma propionate due to intestinal fermentation of resistant starch. High amylose products could be a promising tool in a dietary prevention strategy for type 2 diabetes. THIS TRIAL WAS REGISTERED AT CLINICAL TRIAL REGISTRY AS NCT03899974 (https://www. CLINICALTRIALS gov/ct2/show/NCT03899974).
Collapse
Affiliation(s)
- Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy; Task Force on Microbiome Studies, Federico II University, Naples, Italy.
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilaria Calabrese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paola Cipriano
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Dominic Salamone
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Lorella Paparo
- Task Force on Microbiome Studies, Federico II University, Naples, Italy; Department of Translational Medical Science, Federico II University, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, Federico II University, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, Federico II University, Naples, Italy
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy; Task Force on Microbiome Studies, Federico II University, Naples, Italy
| | - Rosalba Giacco
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy; Task Force on Microbiome Studies, Federico II University, Naples, Italy
| |
Collapse
|
12
|
Tan LL, Duan WQ, Chen MX, Mei Y, Qi XY, Zhang Y. Naturally cultured high resistant starch rice improved postprandial glucose levels in patients with type 2 diabetes: A randomized, double-blinded, controlled trial. Front Nutr 2022; 9:1019868. [PMID: 36643977 PMCID: PMC9833119 DOI: 10.3389/fnut.2022.1019868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To assess the effect of a novel naturally cultured rice with high resistant starch (RS) on postprandial glycemia in patients with type 2 diabetes compared to ordinary rice. Design This study is a randomized, double-blinded controlled trial. Methods Patients with type 2 diabetes were recruited, and postprandial glucose levels were measured at 5-time points after the ingestion of one of two types of cooked rice in random order. Paired t-tests were used to compare postprandial blood glucose changes and increment areas under the blood glucose curve between high-RS rice and ordinary rice. Results The increments of the postprandial blood glucose levels for high-RS rice were significantly lower than that for ordinary rice, i.e., 2.80 ± 1.38 mmol/L vs. 3.04 ± 1.50 mmol/L (P = 0.043) and 3.94 ± 2.25 mmol/L vs. 4.25 ± 2.29 mmol/L (P = 0.036) at 30 min and 60 min, respectively. The incremental areas under the blood glucose curve for high-RS rice were also significantly lower than that for ordinary rice, i.e., 42.04 ± 20.65 [mmol/(L·min)] vs. 45.53 ± 22.45 [mmol/(L·min)] (P = 0.043), 143.54 ±69.63 [mmol/(L·min)] vs. 155.15 ± 73.53 [mmol/(L·min)] (P = 0.026), and 354.61 ± 191.96 [mmol/(L·min)] vs. 379.78 ± 195.30 [mmol/(L·min)] (P = 0.042) at 30, 60, and 120 min, respectively. Repeated-measures ANOVA showed that postprandial glucose levels were not affected by the test order. Conclusion The novel high-RS rice as a staple food when substituting for widely consumed ordinary rice may provide potential health benefits by lowering blood glucose in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ling-li Tan
- School of Public Health and Health Management, Chongqing Medical University, Chongqing, China
| | - Wei-qian Duan
- School of Public Health and Health Management, Chongqing Medical University, Chongqing, China
| | - Meng-xue Chen
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Ying Mei
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Xiao-ya Qi
- Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Yong Zhang
- School of Public Health and Health Management, Chongqing Medical University, Chongqing, China,Department of Health Management, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, China,*Correspondence: Yong Zhang ✉
| |
Collapse
|
13
|
Drake AM, Coughlan MT, Christophersen CT, Snelson M. Resistant Starch as a Dietary Intervention to Limit the Progression of Diabetic Kidney Disease. Nutrients 2022; 14:4547. [PMID: 36364808 PMCID: PMC9656781 DOI: 10.3390/nu14214547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
Diabetes is the leading cause of kidney disease, and as the number of individuals with diabetes increases there is a concomitant increase in the prevalence of diabetic kidney disease (DKD). Diabetes contributes to the development of DKD through a number of pathways, including inflammation, oxidative stress, and the gut-kidney axis, which may be amenable to dietary therapy. Resistant starch (RS) is a dietary fibre that alters the gut microbial consortium, leading to an increase in the microbial production of short chain fatty acids. Evidence from animal and human studies indicate that short chain fatty acids are able to attenuate inflammatory and oxidative stress pathways, which may mitigate the progression of DKD. In this review, we evaluate and summarise the evidence from both preclinical models of DKD and clinical trials that have utilised RS as a dietary therapy to limit the progression of DKD.
Collapse
Affiliation(s)
- Anna M. Drake
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Melinda T. Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
- Baker Heart & Diabetes Institute, Melbourne 3004, Australia
| | - Claus T. Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular Life Sciences, Curtin University, Bentley 6102, Australia
| | - Matthew Snelson
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| |
Collapse
|
14
|
Research Progress on Hypoglycemic Mechanisms of Resistant Starch: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207111. [PMID: 36296704 PMCID: PMC9610089 DOI: 10.3390/molecules27207111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
In recent years, the prevalence of diabetes is on the rise, globally. Resistant starch (RS) has been known as a kind of promising dietary fiber for the prevention or treatment of diabetes. Therefore, it has become a hot topic to explore the hypoglycemic mechanisms of RS. In this review, the mechanisms have been summarized, according to the relevant studies in the recent 15 years. In general, the blood glucose could be regulated by RS by regulating the intestinal microbiota disorder, resisting digestion, reducing inflammation, regulating the hypoglycemic related enzymes and some other mechanisms. Although the exact mechanisms of the beneficial effects of RS have not been fully verified, it is indicated that RS can be used as a daily dietary intervention to reduce the risk of diabetes in different ways. In addition, further research on hypoglycemic mechanisms of RS impacted by the RS categories, the different experimental animals and various dietary habits of human subjects, have also been discussed in this review.
Collapse
|
15
|
Hanes D, Nowinski B, Lamb JJ, Larson IA, McDonald D, Knight R, Song SJ, Patno N. The gastrointestinal and microbiome impact of a resistant starch blend from potato, banana, and apple fibers: A randomized clinical trial using smart caps. Front Nutr 2022; 9:987216. [PMID: 36245486 PMCID: PMC9559413 DOI: 10.3389/fnut.2022.987216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The gastrointestinal (GI) impact of fibers including resistant starch (RS) consumption depends on various types and amounts of fibers, the initial microbiome states, and accurate intake measurements. A randomized clinical trial evaluated the GI impact of varying doses of a novel resistant starch blend (RSB) with smart cap monitoring. RSB contained at least 50% RS and was a proprietary mixture of a potato starch, green banana flour, and apple fiber powder (a source of apple pectin, not resistant starch). The study design randomized participants to one of four arms: 10 g/day of potato starch (0 RSB), 10 g/day of RSB, 10 to 20 to 20 g/day of RSB or 10 to 20 to 30 g/day RSB for two-week intervals over 6 weeks. Results confirmed that while resistant starch of approximately 5 g per day improves GI symptoms at 2, 4, and 6 weeks, it did not demonstrate a detectable effect on short chain fatty acids. Increasing doses of the blend (RSB) led to a decrease in the diarrhea score. Using an estimate of total consumption of RSB based on smart cap recordings of container openings and protocol-specified doses of RSB, a reduction in the sleep disturbance score was associated with higher RSB dose. The exploratory microbiome evaluation demonstrated that among the 16S rRNA gene sequences most associated with the consumption of the novel blend RSB, two belong to taxa of notable interest to human health: Faecalibacterium and Akkermansia.
Collapse
Affiliation(s)
- Douglas Hanes
- National University of Natural Medicine, Helfgott Research Institute, Portland, OR, United States
| | - Brent Nowinski
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
| | - Joseph J. Lamb
- Personalized Lifestyle Medicine Center, Gig Harbor, WA, United States
| | | | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Se Jin Song
- Center for Microbiome Innovation, University of California, San Diego, San Diego, CA, United States
| | - Noelle Patno
- Formerly Metagenics, Inc., Aliso Viejo, CA, United States
- *Correspondence: Noelle Patno
| |
Collapse
|
16
|
Wen JJ, Li MZ, Hu JL, Tan HZ, Nie SP. Resistant starches and gut microbiota. Food Chem 2022; 387:132895. [DOI: 10.1016/j.foodchem.2022.132895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023]
|
17
|
Ismail HM, Evans-Molina C. Does the Gut Microbiome Play a Role in Obesity in Type 1 Diabetes? Unanswered Questions and Review of the Literature. Front Cell Infect Microbiol 2022; 12:892291. [PMID: 35873174 PMCID: PMC9304930 DOI: 10.3389/fcimb.2022.892291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Evidence suggests that type 1 diabetes (T1D) risk and progression are associated with gut bacterial imbalances. Children with either T1D or islet antibody positivity exhibit gut dysbiosis (microbial imbalance) characterized by lower gram-positive to gram-negative gut bacterial ratios compared to healthy individuals, leading to a pro-inflammatory milieu. In addition, specific gut microbiome changes, including increased virulence factors, elevated phage, prophage, and motility genes, and higher amplitude stress responses, have been identified in individuals who have or are progressing towards T1D. Additionally, gut microbiome differences are associated with and thought to contribute to obesity, a comorbidity that is increasingly prevalent among persons with T1D. Obesity in T1D is problematic because individuals with obesity progress faster to T1D, have reduced insulin sensitivity compared to their lean counterparts, and have higher risk of complications. Animal and human studies suggest higher relative abundance of bacterial taxa associated with changes in bile acid and short chain fatty acid biosynthesis in obesity. However, it is unknown to what extent the gut microbiome plays a role in obesity in T1D and these worse outcomes. In this review, we aim to evaluate potential gut microbiome changes and associations in individuals with T1D who are obese, highlighting the specific gut microbiome changes associated with obesity and with T1D development. We will identify commonalities and differences in microbiome changes and examine potential microbiota-host interactions and the metabolic pathways involved. Finally, we will explore interventions that may be of benefit to this population, in order to modify disease and improve outcomes.
Collapse
Affiliation(s)
- Heba M. Ismail
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Heba M. Ismail, ; Carmella Evans-Molina,
| | - Carmella Evans-Molina
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs (VA) Medical Center, Indiana University School of Informatics and Computing, Indianapolis, IN, United States
- *Correspondence: Heba M. Ismail, ; Carmella Evans-Molina,
| |
Collapse
|
18
|
Biswas S, Ibarra O, Shaphek M, Molina-Risco M, Faion-Molina M, Bellinatti-Della Gracia M, Thomson MJ, Septiningsih EM. Increasing the level of resistant starch in 'Presidio' rice through multiplex CRISPR-Cas9 gene editing of starch branching enzyme genes. THE PLANT GENOME 2022:e20225. [PMID: 35713092 DOI: 10.1002/tpg2.20225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa L.) is an excellent source of starch, which is composed of amylopectin and amylose. Resistant starch (RS) is a starch product that is not easily digestible and absorbed in the stomach or small intestine and instead is passed on directly to the large intestine. Cereals high in RS may be beneficial to improve human health and reduce the risk of diet-related chronic diseases. It has been reported through chemical mutagenesis and RNA interference studies that starch branching enzymes (SBEs) play a major role in contributing to higher levels of RS in cereal crops. In this study, we used multiplex clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated protein 9 (Cas9) genome editing to simultaneously target all four SBE genes in rice using the endogenous transfer RNA (tRNA)-processing system for expressing the single-guide RNAs (sgRNAs) targeting these genes. The CRISPR-Cas9 vector construct with four SBE gene sgRNAs was transformed into the U.S. rice cultivar Presidio using Agrobacterium-mediated transformation. Knockout mutations were identified at all four SBE genes across eight transgene-positive T0 plants. Transgene-free T1 lines with different combinations of disrupted SBE genes were identified, with several SBE-edited lines showing significantly increased RS content up to 15% higher than the wild-type (WT) cultivar Presidio. Although further efforts are needed to fix all of the mutant alleles as homozygous, our study demonstrated the potential of multiplex genome editing to develop high-RS lines.
Collapse
Affiliation(s)
- Sudip Biswas
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | - Oneida Ibarra
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
- Avance Biosciences Inc., Houston, TX, 77040, USA
| | - Mariam Shaphek
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
- Dep. of Biochemistry and Biophysics, Texas A&M Univ., College Station, TX, 77843, USA
| | - Marco Molina-Risco
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | - Mayra Faion-Molina
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | | | - Michael J Thomson
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | | |
Collapse
|
19
|
Vall Ribeiro NCB, Ramer-Tait AE, Cazarin CBB. RESISTANT STARCH: A PROMISING INGREDIENT AND HEALTH PROMOTER. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
|
21
|
Current Research on the Effects of Non-Digestible Carbohydrates on Metabolic Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metabolic diseases (MDs), including cardiovascular diseases (CVDs) and diabetes, occur when the body’s normal metabolic processes are disrupted. Behavioral risk factors such as obesity, physical inactivity, and dietary habits are strongly associated with a higher risk of MD. However, scientific evidence strongly suggests that balanced, healthy diets containing non-digestible carbohydrates (NDCs), such as dietary fiber and resistant starch, can reduce the risk of developing MD. In particular, major properties of NDCs, such as water retention, fecal bulking, viscosity, and fermentation in the gut, have been found to be important for reducing the risk of MD by decreasing blood glucose and lipid levels, increasing satiety and insulin sensitivity, and modifying the gut microbiome. Short chain fatty acids produced during the fermentation of NDCs in the gut are mainly responsible for improvement in MD. However, the effects of NDCs are dependent on the type, source, dose, and duration of NDC intake, and some of the mechanisms underlying the efficacy of NDCs on MD remain unclear. In this review, we briefly summarize current studies on the effects of NDCs on MD and discuss potential mechanisms that might contribute to further understanding these effects.
Collapse
|
22
|
Lee DPS, Peng A, Taniasuri F, Tan D, Kim JE. Impact of fiber-fortified food consumption on anthropometric measurements and cardiometabolic outcomes: A systematic review, meta-analyses, and meta-regressions of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:8301-8319. [PMID: 35333681 DOI: 10.1080/10408398.2022.2053658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The consumption of processed and refined food lacking in fiber has led to global prevalence of obesity and cardiometabolic diseases. Fiber-fortification into these foods can yield potential health improvements to reduce disease risk. This meta-analyses aimed to evaluate how fiber-fortified food consumption changes body composition, blood pressure, blood lipid-lipoprotein panel, and glycemic-related markers. Searches were performed from 5 databases, with 31 randomized controlled trial eventually analyzed. Hedges' g values (95% confidence interval [CI]) attained from outcome change values were calculated using random-effects model. Fiber-fortified food significantly reduced body weight (-0.31 [-0.59, -0.03]), fat mass (-0.49 [-0.72, -0.26]), total cholesterol (-0.54 [-0.71, -0.36]), low-density lipoprotein cholesterol (-0.49 [-0.65, -0.33]), triglycerides (-0.24 [-0.36, -0.12]), fasting glucose (-0.30 [-0.49, -0.12]), and HbA1c (-0.44 [-0.74, -0.13]). Subgroup analysis differentiated soluble fiber as significantly reducing triglycerides and insulin while insoluble fiber significantly reduced body weight, BMI, and HbA1c. Greater outcome improvements were observed with solid/semi-solid food state than liquid state. Additionally, fiber fortification of <15 g/day induced more health outcome benefits compared to ≥15 g/day, although meta-regression found a dose-dependent improvement to waist circumference (p-value = 0.036). Findings from this study suggest that consuming food fortified with dietary fiber can improve anthropometric and cardiometabolic outcomes.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2053658.
Collapse
Affiliation(s)
- Delia Pei Shan Lee
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Aiwei Peng
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Fransisca Taniasuri
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Denise Tan
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Science and Technology Department, Nestlé R&D Center (Pte) Ltd, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Wang Z, Hu Z, Deng B, Gilbert RG, Sullivan MA. The effect of high-amylose resistant starch on the glycogen structure of diabetic mice. Int J Biol Macromol 2022; 200:124-131. [PMID: 34968551 DOI: 10.1016/j.ijbiomac.2021.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022]
Abstract
Glycogen is a complex branched glucose polymer found in many tissues and acts as a blood-glucose buffer. In the liver, smaller β glycogen particles can bind into larger composite α particles. In mouse models of diabetes, these liver glycogen particles are molecularly fragile, breaking up into smaller particles in the presence of solvents such as dimethyl sulfoxide (DMSO). If this occurs in vivo, such a rapid enzymatic degradation of these smaller particles into glucose could exacerbate the poor blood-glucose control that is characteristic of the disease. High-amylose resistant starch (RS) can escape digestion in the small intestine and ferment in the large intestine, which elicits positive effects on glycemic response and type 2 diabetes. Here we postulate that RS would help attenuate diabetes-related liver glycogen fragility. Normal maize starch and two types of high-amylose starch were fed to diabetic and non-diabetic mice. Molecular size distributions and chain-length distributions of liver glycogen from both groups were characterized to test glycogen fragility before and after DMSO treatment. Consistent with the hypothesis that high blood glucose is associated with glycogen fragility, a high-amylose RS diet prevented the fragility of liver-glycogen α particles. The diets had no significant effect on the glycogen chain-length distributions.
Collapse
Affiliation(s)
- Ziyi Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhenxia Hu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bin Deng
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Robert G Gilbert
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Mitchell A Sullivan
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia.
| |
Collapse
|
24
|
Zeng Y, Ali MK, Du J, Li X, Yang X, Yang J, Pu X, Yang L, Hong J, Mou B, Li L, Zhou Y. Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yawen Zeng
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Kazim Ali
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Juan Du
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xia Li
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaomeng Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jiazhen Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaoying Pu
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li’E Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jingan Hong
- Clinical Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Bo Mou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yan Zhou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
25
|
Rashed AA, Saparuddin F, Rathi DNG, Nasir NNM, Lokman EF. Effects of Resistant Starch Interventions on Metabolic Biomarkers in Pre-Diabetes and Diabetes Adults. Front Nutr 2022; 8:793414. [PMID: 35096939 PMCID: PMC8790517 DOI: 10.3389/fnut.2021.793414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Simple lifestyle changes can prevent or delay the onset of type 2 diabetes mellitus (T2DM). In addition to maintaining a physically active way of life, the diet has become one of the bases in managing TD2M. Due to many studies linking the ability of resistant starch (RS) to a substantial role in enhancing the nutritional quality of food and disease prevention, the challenge of incorporating RS into the diet and increasing its intake remains. Therefore, we conducted this review to assess the potential benefits of RS on metabolic biomarkers in pre-diabetes and diabetes adults based on available intervention studies over the last decade. Based on the conducted review, we observed that RS intake correlates directly to minimize possible effects through different mechanisms for better control of pre-diabetic and diabetic conditions. In most studies, significant changes were evident in the postprandial glucose and insulin incremental area under the curve (iAUC). Comparative evaluation of RS consumption and control groups also showed differences with inflammatory markers such as TNF-α, IL-1β, MCP-1, and E-selectin. Only RS2 and RS3 were extensively investigated and widely reported among the five reported RS types. However, a proper comparison and conclusion are deemed inappropriate considering the variations observed with the study duration, sample size, subjects and their metabolic conditions, intervention doses, and the intervention base products. In conclusion, this result provides interesting insights into the potential use of RS as part of a sustainable diet in diabetes management and should be further explored in terms of the mechanism involved.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Fatin Saparuddin
- Endocrine and Metabolic Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Devi-Nair Gunasegavan Rathi
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Nur Najihah Mohd Nasir
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Ezarul Faradianna Lokman
- Endocrine and Metabolic Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| |
Collapse
|
26
|
Arp CG, Correa MJ, Ferrero C. Resistant starches: A smart alternative for the development of functional bread and other starch-based foods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Włodarczyk M, Śliżewska K. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients 2021; 13:nu13113808. [PMID: 34836063 PMCID: PMC8621223 DOI: 10.3390/nu13113808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
In well-developed countries, people have started to pay additional attention to preserving healthy dietary habits, as it has become common knowledge that neglecting them may easily lead to severe health impairments, namely obesity, malnutrition, several cardiovascular diseases, type-2 diabetes, cancers, hypertensions, and inflammations. Various types of functional foods were developed that are enriched with vitamins, probiotics, prebiotics, and dietary fibers in order to develop a healthy balanced diet and to improve the general health of consumers. Numerous kinds of fiber are easily found in nature, but they often have a noticeable undesired impact on the sensory features of foods or on the digestive system. This led to development of modified dietary fibers, which have little to no impact on taste of foods they are added to. At the same time, they possess all the benefits similar to those of prebiotics, such as regulating gastrointestinal microbiota composition, increasing satiety, and improving the metabolic parameters of a human. In the following review, the evidence supporting prebiotic properties of modified starches, particularly resistant starches and their derivatives, resistant dextrins, was assessed and deliberated, which allowed drawing an interesting conclusion on the subject.
Collapse
Affiliation(s)
- Michał Włodarczyk
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| | - Katarzyna Śliżewska
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| |
Collapse
|
28
|
Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients 2021; 13:nu13103470. [PMID: 34684471 PMCID: PMC8537956 DOI: 10.3390/nu13103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, β-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.
Collapse
|
29
|
Ching LW, Zulkipli N‘AM, Muhamad II, Marsin AM, Khair Z, Anis SNS. Dietary management for healthier batter formulations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Wan J, Wu Y, Pham Q, Yu L, Chen MH, Boue SM, Yokoyama W, Li B, Wang TTY. Effects of Rice with Different Amounts of Resistant Starch on Mice Fed a High-Fat Diet: Attenuation of Adipose Weight Gain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13046-13055. [PMID: 31642669 DOI: 10.1021/acs.jafc.9b05505] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing the amount of resistant starch (RS) in the diet may confer protective effects against chronic diseases. Rice, a good dietary source of carbohydrates, also contains RS. However, it remains unclear if RS at the amount consumed in cooked rice has a health benefit. To address the question, we examined the effects of cooked rice containing different levels of RS in a diet-induced obesity rodent model. Rice containing RS as low as 1.07% attenuated adipose weight and adipocyte size gain, induced by a moderately high-fat (HF) diet, which correlated with lower leptin levels in plasma and adipose tissue. Rice with 8.61% RS increased fecal short-chain fatty acid levels, modulated HF-diet-induced adipose triacylglycerol metabolism and inflammation-related gene expression, and increased fecal triglyceride excretion. Hence, including rice with RS level at ≥1.07% may attenuate risks associated with the consumption of a moderately HF diet.
Collapse
Affiliation(s)
- Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yanbei Wu
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100084, People's Republic of China
| | - Quynhchi Pham
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Stuttgart, Arkansas 72160, United States
| | - Stephen M Boue
- Southern Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), New Orleans, Louisiana 70124, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, Western Regional Research Center (WRRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Albany, California 94710, United States
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Thomas T Y Wang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
| |
Collapse
|
31
|
Gourineni V, Stewart ML, Wilcox ML, Maki KC. Nutritional Bar with Potato-Based Resistant Starch Attenuated Post-Prandial Glucose and Insulin Response in Healthy Adults. Foods 2020; 9:E1679. [PMID: 33212849 PMCID: PMC7698388 DOI: 10.3390/foods9111679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Resistant starch is a non-digestible starch fraction and is classified as fiber. Beyond naturally occurring fiber sources, starches can be modified to resist digestion, increase their fiber content and provide physiological benefits. The current study examined acute postprandial glycemic responses of VERSAFIBE™ 1490 resistant starch type-4, containing 90% total dietary fiber (TDF, AOAC (Association of Official Analytical Collaboration International) 991.43 method). In a double-blind, randomized, placebo-controlled, cross-over study, healthy adults (n = 38) consumed a nutritional bar containing either control (2 g), medium (21 g) or high (30 g) fiber. The test bars were matched with control for available carbohydrates, fat and protein. Venous glucose, insulin, and capillary glucose were measured. Mean ± SEM capillary glucose incremental area-under-curve (iAUC0)-120 min in min*mmol/L was lower (p < 0.005) for both fiber bars (136.2 ± 9.2 and 137.0 ± 10.4 for the medium and high fiber bars, respectively) compared to the control bar (174.9 ± 13.5). Mean venous insulin iAUC0-120 min in min*pmol/L was also lower for medium (8096.3 ± 894.5) and high fiber (7533.8 ± 932.9) bars, respectively, compared to the control bar (11871.6 ± 1123.9, p < 0.001). Peak capillary glucose and venous insulin concentrations were also significantly reduced (p < 0.001) after consumption of both fiber bars compared to the control bar. The results of this study suggest that nutritional bars containing potato based RS4 fiber reduced post-consumption glycemic and insulinemic responses when consumed by generally healthy adults.
Collapse
Affiliation(s)
| | - Maria L. Stewart
- Global R&D, Ingredion Incorporated, 10 Finderne Ave, Bridgewater, NJ 08807, USA;
| | | | - Kevin C. Maki
- Midwest Biomedical Research, Addison, IL 60101, USA; (M.L.W.); (K.C.M.)
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
32
|
Kong H, Yu L, Gu Z, Li C, Ban X, Cheng L, Hong Y, Li Z. Novel Short-Clustered Maltodextrin as a Dietary Starch Substitute Attenuates Metabolic Dysregulation and Restructures Gut Microbiota in db/ db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12400-12412. [PMID: 33084325 DOI: 10.1021/acs.jafc.0c05798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular structure of starch in daily diet is closely associated with diabetes management. By enzymatically reassembling α-1,4 and α-1,6 glycosidic bonds in starch molecules, we have synthesized an innovative short-clustered maltodextrin (SCMD) which slowly releases glucose during digestion. Here, we investigated the potential benefits of the SCMD-containing diet using diabetic db/db mice. As compared to a diet with normal starch, this dietary style greatly attenuated hyperglycemia and repaired symptoms associated with diabetes. Additionally, in comparison with acarbose (an α-glucosidase inhibitor) administration, the SCMD-containing diet more effectively accelerated brown adipose activation and improved energy metabolism of db/db mice. Furthermore, the SCMD-containing diet was a more suitable approach to improving the intestinal microflora than acarbose administration, especially the proliferation of Mucispirillum, Akkermansia, and Bifidobacterium. These results reveal a novel strategy for diabetes management based on enzymatically rebuilding starch molecules in the daily diet.
Collapse
Affiliation(s)
- Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luxi Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Shang L, Wang Y, Ren Y, Ai T, Zhou P, Hu L, Wang L, Li J, Li B. In vitro gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation. Food Funct 2020; 11:7596-7610. [PMID: 32869813 DOI: 10.1039/d0fo01104e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Konjac glucomannan (KGM) is associated with the satiety-enhancing property by imparting the food matrix with high viscosity. In the present study, rheology tests on KGM sol with different viscosities were conducted to understand its flow behavior as they presented in the mouth and stomach, and the in vitro gastric emptying characteristics of KGM were examined with a human gastric simulator. Then, their effects on subjective appetite, glycemia, and appetite-related hormones (insulin, GLP-1, PYY3-36, CCK-8, ghrelin) response were investigated by conducting a randomized, single-blind, crossover trial in 22 healthy adults (11 female and 11 male, mean age (years): 23.2 ± 2.0, BMI (kg m-2): 20.6 ± 2.1). The blood samples and ratings for subjective appetite were collected at regular time intervals after the subjects were fed with four test breakfasts (one control treatment and three experimental treatments) on four different days. An ad libitum lunch was provided to the subjects once they consumed the breakfasts and their food intake was recorded. As the viscosity increased, the gastric emptying rate was delayed despite a large part of the chyme viscosity lost during digestion. The satiating capacity of the test breakfast was significantly enhanced as its viscosity increased, the and subjects' sensation for hunger, fullness, desire-to-eat, and prospective food consumption differed significantly (p = 0.006, 0.000, 0.002, and 0.001, respectively) between the treatments. The secretion of glycemia and satiety-related hormones were beneficially modulated by the increased viscosity of the test meal but a small decrease in the ad libitum food intake was observed after the intervention of the viscous test breakfasts. Overall, elevating the meal viscosity moderately by using KGM could contribute to combating the challenge of hunger for people in the bodyweight management.
Collapse
Affiliation(s)
- Longchen Shang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Yi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Yanyan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Tingyang Ai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Peiyuan Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Ling Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| |
Collapse
|
34
|
Effects of resistant starch on glycaemic control: a systematic review and meta-analysis. Br J Nutr 2020; 125:1260-1269. [DOI: 10.1017/s0007114520003700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThe effects of resistant starch on glycaemic control are controversial. In this study, a systematic review and meta-analysis of results from nineteen randomised controlled trials (RCT) was performed to illustrate the effects of resistant starch on glycaemic control. A literature search was conducted on PubMed, Scopus and Cochrane electronic databases for related publications from inception to 6 April 2020. Key inclusion criteria were: RCT; resistant starch as intervention substances and reporting glucose- and insulin-related endpoints. Exclusion criteria were: using type I resistant starch or a mixture of resistant starch and other functional food ingredients as intervention; using substances other than digestible starch as controls. The effect of resistant starch on fasting plasma glucose was significant (effect size (ES) –0·09 (95 % CI –0·13, −0·04) mmol/l, P = 0·001) compared with digestible starch. Subgroup analyses revealed that the ES was larger when the dosage of resistant starch was more than 28 g/d (ES –0·16 (95 % CI –0·24, –0·08) mmol/l, P < 0·001) or the intervention period was more than 8 weeks (ES –0·12 (95 % CI –0·18, –0·06) mmol/l, P < 0·001). The effect on homoeostatic model assessment (HOMA)-insulin resistance (IR) was significant (ES –0·33 (95 % CI –0·51, –0·14), P = 0·001). However, the effects on other insulin-related endpoints were not significant, including fasting plasma insulin, four endpoints from the frequently sampled intravenous glucose tolerance test (insulin sensitivity index, acute insulin response, disposition index and glucose effectiveness) and HOMA-β. The current study indicated moderate effects of resistant starch on improving glycaemic control.
Collapse
|
35
|
Wang H, Qiu B, Xu T, Zong A, Liu L, Xiao J. Effects of resistant starch on the indicators of glucose regulation in persons diagnosed with type 2 diabetes and those at risk: A meta‐analysis. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Haiou Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
- Institute of Agro‐Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro‐Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture and Rural Affairs Jinan China
| | - Bin Qiu
- Institute of Agro‐Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro‐Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture and Rural Affairs Jinan China
| | - Tongcheng Xu
- Institute of Agro‐Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro‐Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture and Rural Affairs Jinan China
| | - Aizhen Zong
- Institute of Agro‐Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro‐Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture and Rural Affairs Jinan China
| | - Lina Liu
- Institute of Agro‐Food Science and Technology, Shandong Academy of Agricultural Sciences/Shandong Engineering Research Center of Food for Special Medical Purpose/Key Laboratory of Agro‐Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture and Rural Affairs Jinan China
| | - Junxia Xiao
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
36
|
Resistant Starch Has No Effect on Appetite and Food Intake in Individuals with Prediabetes. J Acad Nutr Diet 2020; 120:1034-1041. [PMID: 32280055 DOI: 10.1016/j.jand.2020.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Type 2 resistant starch (RS2) has been shown to improve metabolic health outcomes and may increase satiety and suppress appetite and food intake in humans. OBJECTIVE This study assessed whether 12 weeks of daily RS2 supplementation could influence appetite perception, food intake, and appetite-related gut hormones in adults with prediabetes, relative to the control (CTL) group. DESIGN The study was a randomized controlled trial and analysis of secondary study end points. PARTICIPANTS/SETTING Sixty-eight adults (body mass index ≥27) aged 35 to 75 years with prediabetes were enrolled in the study at Pennington Biomedical Research Center (2012 to 2016). Fifty-nine subjects were included in the analysis. INTERVENTION Participants were randomized to consume 45 g/day of high-amylose maize (RS2) or an isocaloric amount of the rapidly digestible starch amylopectin (CTL) for 12 weeks. MAIN OUTCOME MEASURES Subjective appetite measures were assessed via visual analogue scale and the Eating Inventory; appetite-related gut hormones (glucagon-like peptide 1, peptide YY, and ghrelin) were measured during a standard mixed-meal test; and energy and macronutrient intake were assessed by a laboratory food intake (buffet) test, the Remote Food Photography Method, and SmartIntake app. STATISTICAL ANALYSES PERFORMED Data were analyzed using linear mixed models, adjusting for treatment group and time as fixed effects, with a significance level of α=.05. RESULTS RS2 had no effect on subjective measures of appetite, as assessed by visual analogue scale (P>0.05) and the Eating Inventory (P≥0.24), relative to the CTL group. There were no effects of RS2 supplementation on appetite-related gut hormones, including glucagon-like peptide 1 (P=0.61), peptide YY (P=0.34), and both total (P=0.26) and active (P=0.47) ghrelin compared with the CTL. RS2 had no effect on total energy (P=0.30), carbohydrate (P=0.11), protein (P=0.64), or fat (P=0.37) consumption in response to a buffet meal test, relative to the CTL. In addition, total energy (P=0.40), carbohydrate (P=0.15), protein (P=0.46), and fat (P=0.53) intake, as quantified by the Remote Food Photography Method, were also unaffected by RS2, relative to the CTL. CONCLUSIONS RS2 supplementation did not increase satiety or reduce appetite and food intake in adults with prediabetes.
Collapse
|
37
|
Armet AM, Deehan EC, Thöne JV, Hewko SJ, Walter J. The Effect of Isolated and Synthetic Dietary Fibers on Markers of Metabolic Diseases in Human Intervention Studies: A Systematic Review. Adv Nutr 2020; 11:420-438. [PMID: 31342059 PMCID: PMC7442353 DOI: 10.1093/advances/nmz074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
Observational studies provide strong evidence for the health benefits of dietary fiber (DF) intake; however, human intervention studies that supplement isolated and synthetic DFs have shown inconsistent results. Therefore, we conducted a systematic review to summarize the effects of DF supplementation on immunometabolic disease markers in intervention studies in healthy adults, and considered the role of DF dose, DF physicochemical properties, intervention duration, and the placebo used. Five databases were searched for studies published from 1990 to 2018 that assessed the effect of DF on immunometabolic markers. Eligible studies were those that supplemented isolated or synthetic DFs for ≥2 wk and reported baseline data to assess the effect of the placebo. In total, 77 publications were included. DF supplementation reduced total cholesterol (TC), LDL cholesterol, HOMA-IR, and insulin AUC in 36-49% of interventions. In contrast, <20% of the interventions reduced C-reactive protein (CRP), IL-6, glucose, glucose AUC, insulin, HDL cholesterol, and triglycerides. A higher proportion of interventions showed an effect if they used higher DF doses for CRP, TC, and LDL cholesterol (40-63%), viscous and mixed plant cell wall DFs for TC and LDL cholesterol (>50%), and longer intervention durations for CRP and glucose (50%). Half of the placebo-controlled studies used digestible carbohydrates as the placebo, which confounded findings for IL-6, glucose AUC, and insulin AUC. In conclusion, interventions with isolated and synthetic DFs resulted mainly in improved cholesterol concentrations and an attenuation of insulin resistance, whereas markers of dysglycemia and inflammation were largely unaffected. Although more research is needed to make reliable recommendations, a more targeted supplementation of DF with specific physicochemical properties at higher doses and for longer durations shows promise in enhancing several of its health effects.
Collapse
Affiliation(s)
- Anissa M Armet
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Edward C Deehan
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada,Address correspondence to ECD (e-mail: )
| | - Julia V Thöne
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada,Medical Department, Justus-Liebig University Giessen, Giessen, Germany
| | - Sarah J Hewko
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Jens Walter
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada,Address correspondence to JW (e-mail: )
| |
Collapse
|
38
|
Gao C, Rao M, Huang W, Wan Q, Yan P, Long Y, Guo M, Xu Y, Xu Y. Resistant starch ameliorated insulin resistant in patients of type 2 diabetes with obesity: a systematic review and meta-analysis. Lipids Health Dis 2019; 18:205. [PMID: 31760943 PMCID: PMC6875042 DOI: 10.1186/s12944-019-1127-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistant starch (RS) is a starch that can be fermented by the microbial flora within gut lumen. Insulin resistance (IR) is a pathophysiological condition related to diabetes and obesity. RS could reduce blood glucose and ameliorate IR in animals, but its effect in human population is controversial. OBJECTIVE The authors conducted a systematic literature review to evaluate the effect of RS diet supplement on ameliorating IR in patients with T2DM and simple obesity. METHODS Databases that supplemented with RS in ameliorating IR in T2DM and simple obesity were queried for studies on or before August 15, 2018. Parameters including fasting insulin, fasting glucose, body mass index (BMI), homeostatic model assessment (HOMA) etc. were extracted from studies to systemically evaluate effects of RS. RESULTS The database search yielded 14 parallel or crossover studies that met the inclusion criteria. The results indicated that there was no significant difference in the amelioration of BMI, HOMA-%S and HOMA-%B in T2DM patients between RS and the non-RS supplementation. However, the fasting blood glucose, fasting insulin and HOMA-IR in T2DM with obesity who supplemented RS were lower than control group, and the subgroup analysis according to the dose of RS supplementation was inconsistency. There was no significant difference between RS and non-RS supplements in patients with simple obesity. CONCLUSION RS supplementation can ameliorate IR in T2DM, especially for the patients of T2DM with obesity, but not in simple obesity.
Collapse
Affiliation(s)
- Chenlin Gao
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mingyue Rao
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qin Wan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pijun Yan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Long
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Man Guo
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Youhua Xu
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Yong Xu
- State Key of Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
39
|
Harris KF. An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutr Rev 2019; 77:748-764. [PMID: 31343688 PMCID: PMC6786898 DOI: 10.1093/nutrit/nuz040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Refined carbohydrates result from milling techniques that remove the outer layers of a cereal grain and grind the endosperm into a flour ingredient that is devoid of dietary fiber. Technologies have been developed to produce high-amylose cereal grains that have a significantly higher resistant starch type 2 and thus dietary fiber content in the endosperm of the cereal grain, which has positive implications for human health. A review of the literature was conducted to study the effects of resistant starch type 2 derived from high-amylose grains on glucose and insulin response. While thousands of articles have been published on resistant starch, only 30 articles have focused on how resistant starch type 2 from high-amylose grains affects acute and long-term responses of glucose and insulin control. The findings showed that resistant starch has the ability to attenuate acute postprandial responses when replacing rapidly digestible carbohydrate sources, but there is insufficient evidence to conclude that resistant starch can improve insulin resistance and/or sensitivity.
Collapse
Affiliation(s)
- Kathryn F Harris
- Research and Development Department, Bay State Milling Company, Quincy, Massachusetts, USA
| |
Collapse
|
40
|
Halajzadeh J, Milajerdi A, Reiner Ž, Amirani E, Kolahdooz F, Barekat M, Mirzaei H, Mirhashemi SM, Asemi Z. Effects of resistant starch on glycemic control, serum lipoproteins and systemic inflammation in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled clinical trials. Crit Rev Food Sci Nutr 2019; 60:3172-3184. [PMID: 31661295 DOI: 10.1080/10408398.2019.1680950] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this systematic review and meta-analysis was to evaluate the effects of resistant starch (RS) on glycemic status, serum lipoproteins and inflammatory markers in patients with metabolic syndrome (MetS) and related disorders. Two independent authors systematically searched online database including EMBASE, Scopus, PubMed, Cochrane Library, and Web of Science from inception until 30 April 2019. Cochrane Collaboration risk of bias tool was applied to assess the methodological quality of included trials. The heterogeneity among the included studies was assessed using Cochrane's Q test and I-square (I2) statistic. Data were pooled using a random-effects model and weighted mean difference (WMD) was considered as the overall effect size. Nineteen trials were included in this meta-analysis. Administration of RS resulted in significant reduction in fasting plasma glucose (FPG) (14 studies) (WMD: -4.28; 95% CI: -7.01, -1.55), insulin (12 studies) (WMD: -1.95; 95% CI: -3.22, -0.68), and HbA1C (8 studies) (WMD: -0.60; 95% CI: -0.95, -0.24). When pooling data from 13 studies, a significant reduction in total cholesterol levels (WMD: -8.19; 95% CI: -15.38, -1.00) and LDL-cholesterol (WMD: -8.57; 95% CI: -13.48, -3.66) were found as well. Finally, RS administration was associated with a significant decrease in tumor necrosis factor alpha (TNF-α) (WMD: -2.02; 95% CI: -3.14, -0.90). This meta-analysis showed beneficial effects of RS on improving FPG, insulin, HbA1c, total cholesterol, LDL-cholesterol and TNF-α levels in patients with MetS and related disorders, but it did not affect HOMA-IR, triglycerides, HDL-cholesterol, CRP and IL-6 levels.
Collapse
Affiliation(s)
- Jamal Halajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maraghe University of Medical Science, Maraghe, Iran
| | - Alireza Milajerdi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Maryam Barekat
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyyed Mehdi Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
41
|
Snelson M, Jong J, Manolas D, Kok S, Louise A, Stern R, Kellow NJ. Metabolic Effects of Resistant Starch Type 2: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11081833. [PMID: 31398841 PMCID: PMC6723691 DOI: 10.3390/nu11081833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Published evidence exploring the effects of dietary resistant starch (RS) on human cardiometabolic health is inconsistent. This review aimed to investigate the effect of dietary RS type 2 (RS2) supplementation on body weight, satiety ratings, fasting plasma glucose, glycated hemoglobin (HbA1c), insulin resistance and lipid levels in healthy individuals and those with overweight/obesity, the metabolic syndrome (MetS), prediabetes or type 2 diabetes mellitus (T2DM). Five electronic databases were searched for randomized controlled trials (RCTs) published in English between 1982 and 2018, with trials eligible for inclusion if they reported RCTs involving humans where at least one group consumed ≥ 8 g of RS2 per day and measured body weight, satiety, glucose and/or lipid metabolic outcomes. Twenty-two RCTs involving 670 participants were included. Meta-analyses indicated that RS2 supplementation significantly reduced serum triacylglycerol concentrations (mean difference (MD) = -0.10 mmol/L; 95% CI -0.19, -0.01, P = 0.03) in healthy individuals (n = 269) and reduced body weight (MD = -1.29 kg; 95% CI -2.40, -0.17, P = 0.02) in people with T2DM (n = 90). However, these outcomes were heavily influenced by positive results from a small number of individual studies which contradicted the conclusions of the majority of trials. RS2 had no effects on any other metabolic outcomes. All studies ranged from 1-12 weeks in duration and contained small sample sizes (10-60 participants), and most had an unclear risk of bias. Short-term RS2 supplementation in humans is of limited cardiometabolic benefit.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jessica Jong
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Deanna Manolas
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Smonda Kok
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Audrey Louise
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Romi Stern
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
42
|
Belobrajdic DP, Regina A, Klingner B, Zajac I, Chapron S, Berbezy P, Bird AR. High-Amylose Wheat Lowers the Postprandial Glycemic Response to Bread in Healthy Adults: A Randomized Controlled Crossover Trial. J Nutr 2019; 149:1335-1345. [PMID: 31162585 DOI: 10.1093/jn/nxz067] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 03/20/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Conventional wheat-based foods contain high concentrations of readily digestible starch that commonly give these foods a high postprandial glycemic response and may contribute to the development of type 2 diabetes and cardiovascular disease. OBJECTIVES The aim of this study was to determine if bread made from high-amylose wheat (HAW) and enriched in resistant starch dampens postprandial glycemia compared with bread made from conventional low-amylose wheat (LAW). METHODS This single-center, randomized, double-blinded, crossover controlled study involved 7 consecutive weekly visits. On separate mornings, 20 healthy nondiabetic men and women (mean age 30 ± 3 y; body mass index 23 ± 0.7 kg/m2) consumed a glucose beverage or 4 different breads (each 121 g); LAW-R (refined), LAW-W (wholemeal), HAW-R, or HAW-W. The starch contents of the LAW and HAW breads were 24% and 74% amylose, respectively. Venous blood samples were collected at regular intervals before and for 3 h after the breakfast meal to measure plasma glucose, insulin, ghrelin, and incretin hormone concentrations, and the incremental area under the curve (AUC) was calculated (mmol/L × 3 h). Satiety and cravings were also measured at 30-min intervals during the postprandial period. RESULTS HAW breads had a glycemic response (AUC) that was 39% less than that achieved with conventional wheat breads (HAW 39 ± 5 mmol/L × 3 h; LAW 64 ± 5 mmol/L × 3 h; P < 0.0001). Insulinemic and incretin responses were 24-30% less for HAW breads than for LAW breads (P < 0.05). Processing of the flour (wholemeal or refined) did not affect the glycemic, insulinemic, or incretin response. The HAW breads did not influence plasma ghrelin, or subjective measures of satiety or cravings during the postprandial period. CONCLUSIONS Replacing LAW with HAW flour may be an effective strategy for lowering postprandial glycemic and insulinemic responses to bread in healthy men and women, but further research is warranted. This trial was registered at the Australian and New Zealand Clinical Trials Registry as ACTRN12616001289404.
Collapse
Affiliation(s)
| | | | | | - Ian Zajac
- CSIRO Health and Biosecurity, Adelaide, Australia
| | | | | | | |
Collapse
|
43
|
Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Effects of the resistant starch on glucose, insulin, insulin resistance, and lipid parameters in overweight or obese adults: a systematic review and meta-analysis. Nutr Diabetes 2019; 9:19. [PMID: 31168050 PMCID: PMC6551340 DOI: 10.1038/s41387-019-0086-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
Background The role of resistant starch (RS) in glucose, insulin, insulin resistance or sensitivity, and lipid parameters have been reported in several studies and remained controversial. A pooled analysis which assessed these parameters has not been performed. Thus, we conducted a meta-analysis to sum up existing evidence about the issue. Methods We searched in MEDLINE and PUBMED for studies that were published before November 2018. Meta-analysis of diabetics and nondiabetics trials were performed by use of a random-effects model. Results A total of 13 case–control studies that included 428 subjects with body mass index ≥25 were identified. RS supplementation reduced fasting insulin in overall and stratified (diabetics and nondiabetics trials) analysis (SMD = –0.72; 95% CI: –1.13 to –0.31; SMD = –1.26; 95% CI: –1.66 to –0.86 and SMD = –0.64; 95% CI: –1.10 to –0.18, respectively), and reduced fasting glucose in overall and stratified analysis for diabetic trials (SMD = –0.26; 95% CI: –0.5 to –0.02 and SMD = –0.28; 95% CI: –0.54 to –0.01, respectively). RS supplementation increased HOMA-S% (SMD = 1.19; 95% CI: 0.59–1.78) and reduced HOMA-B (SMD =–1.2; 95% CI: –1.64 to –0.77), LDL-c concentration (SMD =–0.35; 95% CI: –0.61 to −0.09), and HbA1c (SMD = –0.43; 95% CI: –0.74 to –0.13) in overall analysis. Conclusions This meta-analysis has provided evidence that RS supplementation can improve fasting glucose, fasting insulin, insulin resistance and sensitivity, especially for diabetic with overweight or obesity. However, owing to potential sophistication, individual difference and composition of intestinal microbiota, this result should be carefully taken into account.
Collapse
|
45
|
Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
46
|
Sajadimajd S, Bahrami G, Daglia M, Nabavi SM, Naseri R, Farzaei MH. Plant-Derived Supplementary Carbohydrates, Polysaccharides and Oligosaccharides in Management of Diabetes Mellitus: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1584818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soraya Sajadimajd
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
47
|
Snelson M, Kellow NJ, Coughlan MT. Modulation of the Gut Microbiota by Resistant Starch as a Treatment of Chronic Kidney Diseases: Evidence of Efficacy and Mechanistic Insights. Adv Nutr 2019; 10:303-320. [PMID: 30668615 PMCID: PMC6416045 DOI: 10.1093/advances/nmy068] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2018] [Accepted: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) has been associated with changes in gut microbial ecology, or "dysbiosis," which may contribute to disease progression. Recent studies have focused on dietary approaches to favorably alter the composition of the gut microbial communities as a treatment method in CKD. Resistant starch (RS), a prebiotic that promotes proliferation of gut bacteria such as Bifidobacteria and Lactobacilli, increases the production of metabolites including short-chain fatty acids, which confer a number of health-promoting benefits. However, there is a lack of mechanistic insight into how these metabolites can positively influence renal health. Emerging evidence shows that microbiota-derived metabolites can regulate the incretin axis and mitigate inflammation via expansion of regulatory T cells. Studies from animal models and patients with CKD show that RS supplementation attenuates the concentrations of uremic retention solutes, including indoxyl sulfate and p-cresyl sulfate. Here, we present the current state of knowledge linking the microbiome to CKD, we explore the efficacy of RS in animal models of CKD and in humans with the condition, and we discuss how RS supplementation could be a promising dietary approach for slowing CKD progression.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicole J Kellow
- Be Active Sleep & Eat (BASE) Facility, Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Heart Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr 2019; 60:1447-1474. [DOI: 10.1080/10408398.2019.1574708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weijing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Ministry of Agriculture, Institute of Food and Nutrition Development, Haidian, Beijing, China
| | - Aili Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
49
|
Li H, Gidley MJ, Dhital S. High-Amylose Starches to Bridge the “Fiber Gap”: Development, Structure, and Nutritional Functionality. Compr Rev Food Sci Food Saf 2019; 18:362-379. [DOI: 10.1111/1541-4337.12416] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Haiteng Li
- Univ. of Queensland, Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
| | - Michael J. Gidley
- Univ. of Queensland, Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
| | - Sushil Dhital
- Univ. of Queensland, Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
| |
Collapse
|
50
|
Peterson CM, Beyl RA, Marlatt KL, Martin CK, Aryana KJ, Marco ML, Martin RJ, Keenan MJ, Ravussin E. Effect of 12 wk of resistant starch supplementation on cardiometabolic risk factors in adults with prediabetes: a randomized controlled trial. Am J Clin Nutr 2018; 108:492-501. [PMID: 30010698 PMCID: PMC6134290 DOI: 10.1093/ajcn/nqy121] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Type 2 resistant starch (RS2) has been shown to improve glycemic control and some cardiovascular endpoints in rodent and human studies. Objective The aim of this study was to perform one of the first randomized clinical trials in adults with prediabetes and one of the longest trials to test whether RS2 can improve cardiometabolic health. Design 68 overweight [body mass index (BMI) ≥27 kg/m2] adults aged 35-75 y with prediabetes were randomized to consume 45 g/d of high-amylose maize (RS2) or an isocaloric amount of the rapidly digestible starch amylopectin (control) for 12 wk. At baseline and postintervention, ectopic fat depots (visceral adipose tissue, intrahepatic lipids, and intramyocellular lipids) were measured by magnetic resonance imaging/spectroscopy, energy metabolism by respiratory chamber, and carbohydrate metabolism by glycated hemoglobin (HbA1c), an intravenous glucose tolerance test, and a meal tolerance test. Cardiovascular risk factors-serum lipids, blood pressure, heart rate, and inflammatory markers (high-sensitivity C-reactive protein [hs-CRP], interleukin-6, and tumor necrosis factor [TNF]-α)-were also measured. The primary endpoints were insulin sensitivity, insulin secretion, ectopic fat, and markers of inflammation. Data were primarily analyzed as treatment effects via a linear mixed model both with and without the addition of covariates. Results Relative to the control group, RS2 lowered HbA1c by a clinically insignificant 0.1 ± 0.2% (Δ = -1 ± 2 mmol/mol; P = 0.05) but did not affect insulin secretion, insulin sensitivity, the disposition index, or glucose or insulin areas under the curve relative to baseline (P ≥ 0.23). RS2 decreased heart rate by 5 ± 9 beats/min (P = 0.02) and TNF-α concentrations by 2.1 ± 2.7 pg/mL (P = 0.004), relative to the control group. Ectopic fat, energy expenditure, substrate oxidation, and all other cardiovascular risk factors were unaffected (P ≥ 0.06). Conclusions 12 wk of supplementation with resistant starch reduced the inflammatory marker TNF-α and heart rate, but it did not significantly improve glycemic control and other cardiovascular disease risk factors, in adults with prediabetes. This trial was registered at clinicaltrials.gov as NCT01708694.
Collapse
Affiliation(s)
- Courtney M Peterson
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Robbie A Beyl
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Kara L Marlatt
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Corby K Martin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Kayanush J Aryana
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Maria L Marco
- Food Science and Technology, University of California-Davis, Davis, CA
| | - Roy J Martin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA
| | - Michael J Keenan
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA
| | - Eric Ravussin
- Division of Clinical Science, Pennington Biomedical Research Center, Baton Rouge, LA,Address correspondence to ER (e-mail: )
| |
Collapse
|