1
|
Pogorelyy MV, Kirk AM, Adhikari S, Minervina AA, Sundararaman B, Vegesana K, Brice DC, Scott ZB, Thomas PG. TIRTL-seq: Deep, quantitative, and affordable paired TCR repertoire sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613345. [PMID: 39345544 PMCID: PMC11430070 DOI: 10.1101/2024.09.16.613345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
ɑ/β T cells are key players in adaptive immunity. The specificity of T cells is determined by the sequences of the hypervariable T cell receptor (TCR) ɑ and β chains. Although bulk TCR sequencing offers a cost-effective approach for in-depth TCR repertoire profiling, it does not provide chain pairings, which are essential for determining T cell specificity. In contrast, single-cell TCR sequencing technologies produce paired chain data, but are limited in throughput to thousands of cells and are cost-prohibitive for cohort-scale studies. Here, we present TIRTL-seq (Throughput-Intensive Rapid TCR Library sequencing), a novel approach that generates ready-to-sequence TCR libraries from live cells in less than 7 hours. The protocol is optimized for use with non-contact liquid handlers in an automation-friendly 384-well plate format. Reaction volume miniaturization reduces library preparation costs to <$0.50 per well. The core principle of TIRTL-seq is the parallel generation of hundreds of libraries providing multiple biological replicates from a single sample that allows precise inference of both frequencies of individual clones and TCR chain pairings from well-occurrence patterns. We demonstrate scalability of our approach up to 1 million unique paired αβTCR clonotypes corresponding to over 30 million T cells per sample at a cost of less than $2000. For a sample of 10 million cells the cost is ~$200. We benchmarked TIRTL-seq against state-of-the-art 5'RACE bulk TCR-seq and 10x Genomics Chromium technologies on longitudinal samples. We show that TIRTL-seq is able to quantitatively identify expanding and contracting clonotypes between timepoints while providing accurate TCR chain pairings, including distinct temporal dynamics of SARS-CoV-2-specific and EBV-specific CD8+ T cell responses after infection. While clonal expansion was followed by sharp contraction for SARS-CoV-2 specific TCRs, EBV-specific TCRs remained stable once established. The sequences of both ɑ and β TCR chains are essential for determining T cell specificity. As the field moves towards greater applications in diagnostics and immunotherapy that rely on TCR specificity, we anticipate that our scalable paired TCR sequencing methodology will be instrumental for collecting large paired-chain datasets and ultimately extracting therapeutically relevant information from the TCR repertoire.
Collapse
Affiliation(s)
| | | | | | | | | | - Kasi Vegesana
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Brice
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Paul G Thomas
- St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024:10.1038/s41573-024-01041-z. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Zhu F, Sun MX, Zhao SQ, Qin CF, Wang JH, Deng YQ. Immunogenicity and Protective Efficacy of Aerosolized Live-Attenuated Yellow Fever 17D Vaccine in Mice. Vaccines (Basel) 2024; 12:856. [PMID: 39203982 PMCID: PMC11360090 DOI: 10.3390/vaccines12080856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Yellow fever (YF), caused by the yellow fever virus (YFV), continually spreads and causes epidemics worldwide, posing a great threat to human health. The live-attenuated YF 17D vaccine (YF-17D) has been licensed for preventing YFV infection and administrated via the intramuscular (i.m.) route. In this study, we sought to determine the immunogenicity and protective efficacy of aerosolized YF-17D via the intratracheal (i.t.) route in mice. YF-17D stocks in liquids were successfully aerosolized into particles of 6 μm. Further in vitro phenotype results showed the aerosolization process did not abolish the infectivity of YF-17D. Meanwhile, a single i.t. immunization with aerosolized YF-17D induced robust humoral and cellular immune responses in A129 mice, which is comparable to that received i.p. immunization. Notably, the aerosolized YF-17D also triggered specific secretory IgA (SIgA) production in bronchoalveolar lavage. Additionally, all immunized animals survived a lethal dose of YFV challenge in mice. In conclusion, our results support further development of aerosolized YF-17D in the future.
Collapse
Affiliation(s)
- Feng Zhu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China;
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Suo-Qun Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| | - Jin-Hua Wang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China;
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (M.-X.S.); (S.-Q.Z.); (C.-F.Q.)
| |
Collapse
|
4
|
Sturmlechner I, Jain A, Hu B, Jadhav RR, Cao W, Okuyama H, Tian L, Weyand CM, Goronzy JJ. Aging trajectories of memory CD8 + T cells differ by their antigen specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605197. [PMID: 39211225 PMCID: PMC11360919 DOI: 10.1101/2024.07.26.605197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Memory T cells are a highly dynamic and heterogeneous population that is maintained by cytokine-driven homeostatic proliferation interspersed with episodes of antigen-mediated expansion and contraction which affect their functional state and their durability. This heterogeneity complicates studies on the impact of aging on global human memory cells, specifically, it is unclear how aging drives memory T cell dysfunction. Here, we used chronic infection with Epstein-Barr virus (EBV) to assess the influence of age on memory states at the level of antigen-specific CD8 + T cells. We find that in young adults (<40 years), EBV-specific CD8 + T cells assume preferred differentiation states depending on their peptide specificity. By age >65-years, different T cell specificities had undergone largely distinct aging trajectories, which had in common a loss in adaptive and a gain in innate immunity signatures. No evidence was seen for cellular senescence or exhaustion. While naïve/stem-like EBV-specific T cells disappeared with age, T cell diversity of EBV-specific memory cells did not change or even increased. In summary, by controlling for antigen specificity we uncover age-associated shifts in gene expression and TCR diversity that have implications for optimizing vaccination strategies and adoptive T cell therapy.
Collapse
|
5
|
Amanna IJ, Thomas A, Engelmann F, Hammarlund E, Raué HP, Bailey AL, Poore EA, Quintel BK, Lewis AD, Axthelm MK, Johnson AL, Colgin LMA, Diamond MS, Messaoudi I, Slifka MK. Development of a hydrogen peroxide-inactivated vaccine that protects against viscerotropic yellow fever in a non-human primate model. Cell Rep Med 2024; 5:101655. [PMID: 39019010 PMCID: PMC11293362 DOI: 10.1016/j.xcrm.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Yellow fever virus (YFV) is endemic in >40 countries and causes viscerotropic disease with up to 20%-60% mortality. Successful live-attenuated yellow fever (YF) vaccines were developed in the mid-1930s, but their use is restricted or formally contraindicated in vulnerable populations including infants, the elderly, and people with compromised immune systems. In these studies, we describe the development of a next-generation hydrogen peroxide-inactivated YF vaccine and determine immune correlates of protection based on log neutralizing index (LNI) and neutralizing titer-50% (NT50) studies. In addition, we compare neutralizing antibody responses and protective efficacy of hydrogen peroxide-inactivated YF vaccine candidates to live-attenuated YFV-17D (YF-VAX) in a rhesus macaque model of viscerotropic YF. Our results indicate that an optimized, inactivated YF vaccine elicits protective antibody responses that prevent viral dissemination and lethal infection in rhesus macaques and may be a suitable alternative for vaccinating vulnerable populations who are not eligible to receive replicating live-attenuated YF vaccines.
Collapse
Affiliation(s)
- Ian J Amanna
- Najít Technologies, Inc., Beaverton, OR 97006, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Flora Engelmann
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Adam L Bailey
- Department of Pathology & Laboratory Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | | | - Anne D Lewis
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, and The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amanda L Johnson
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Lois M A Colgin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
6
|
Correa-Medero LO, Jankowski SE, Hong HS, Armas ND, Vijendra AI, Reynolds MB, Fogo GM, Awad D, Dils AT, Inoki KA, Williams RG, Ye AM, Svezhova N, Gomez-Rivera F, Collins KL, O'Riordan MX, Sanderson TH, Lyssiotis CA, Carty SA. ER-associated degradation adapter Sel1L is required for CD8 + T cell function and memory formation following acute viral infection. Cell Rep 2024; 43:114156. [PMID: 38687642 PMCID: PMC11194752 DOI: 10.1016/j.celrep.2024.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
The maintenance of antigen-specific CD8+ T cells underlies the efficacy of vaccines and immunotherapies. Pathways contributing to CD8+ T cell loss are not completely understood. Uncovering the pathways underlying the limited persistence of CD8+ T cells would be of significant benefit for developing novel strategies of promoting T cell persistence. Here, we demonstrate that murine CD8+ T cells experience endoplasmic reticulum (ER) stress following activation and that the ER-associated degradation (ERAD) adapter Sel1L is induced in activated CD8+ T cells. Sel1L loss limits CD8+ T cell function and memory formation following acute viral infection. Mechanistically, Sel1L is required for optimal bioenergetics and c-Myc expression. Finally, we demonstrate that human CD8+ T cells experience ER stress upon activation and that ER stress is negatively associated with improved T cell functionality in T cell-redirecting therapies. Together, these results demonstrate that ER stress and ERAD are important regulators of T cell function and persistence.
Collapse
Affiliation(s)
- Luis O Correa-Medero
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas D Armas
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mack B Reynolds
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Garrett M Fogo
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander T Dils
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Reid G Williams
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nadezhda Svezhova
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Kathleen L Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H Sanderson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shannon A Carty
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Mouwenda YD, Jochems SP, Van Unen V, Betouke Ongwe ME, de Steenhuijsen Piters WA, Stam KA, Massinga Loembe M, Sim BKL, Esen M, Hoffman SL, Kremsner PG, Fendel R, Mordmüller B, Yazdanbakhsh M. Immune responses associated with protection induced by chemoattenuated PfSPZ vaccine in malaria-naive Europeans. JCI Insight 2024; 9:e170210. [PMID: 38716733 PMCID: PMC11141902 DOI: 10.1172/jci.insight.170210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/14/2024] [Indexed: 06/02/2024] Open
Abstract
Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.
Collapse
Affiliation(s)
- Yoanne D. Mouwenda
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Vincent Van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madeleine Eunice Betouke Ongwe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Centre National de la Recherche Scientifique et Technologique, Institut De Recherche En Écologie Tropical, Libreville, Gabon
| | | | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Betty Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tübingen, Germany
| | | | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Radboud University Medical Center (Radboudumc), Department of Medical Microbiology, Nijmegen, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
8
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
9
|
Reis LR, Costa-Rocha IA, Abdala-Torres T, Campi-Azevedo AC, Peruhype-Magalhães V, Araújo MSS, Spezialli E, do Valle Antonelli LR, da Silva-Pereira RA, Almeida GG, Fernandes EG, Fantinato FFST, Domingues CMAS, Lemos MCF, Chieppe A, Lemos JAC, Coelho-Dos-Reis JG, de Lima SMB, de Souza Azevedo A, Schwarcz WD, Camacho LAB, de Lourdes de Sousa Maia M, de Noronha TG, Duault C, Rosenberg-Hasson Y, Teixeira-Carvalho A, Maecker HT, Martins-Filho OA. Comprehensive landscape of neutralizing antibody and cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF primary vaccination in adults. Sci Rep 2024; 14:7709. [PMID: 38565882 PMCID: PMC10987530 DOI: 10.1038/s41598-024-57645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.
Collapse
Affiliation(s)
- Laise Rodrigues Reis
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Thais Abdala-Torres
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Elaine Spezialli
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | - Alexandre Chieppe
- Superintendência de Vigilância em Saúde, Secretaria Municipal de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Jordana Grazziela Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-Clínico, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos - FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos - FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Waleska Dias Schwarcz
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos - FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | - Tatiana Guimarães de Noronha
- Assessoria Clínica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos - FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Caroline Duault
- Human Immune Monitoring Center, Stanford University, Stanford, CA, USA
| | | | | | - Holden Terry Maecker
- Human Immune Monitoring Center, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, USA.
| | - Olindo Assis Martins-Filho
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Suleman M, Khan TA, Ejaz H, Maroof S, Alshammari A, Albekairi NA, Khan H, Waheed Y, Khan A, Wei DQ, Crovella S. Structural vaccinology, molecular simulation and immune simulation approaches to design multi-epitopes vaccine against John Cunningham virus. Microb Pathog 2024; 189:106572. [PMID: 38354987 DOI: 10.1016/j.micpath.2024.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Tariq Aziz Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Hadiqa Ejaz
- King Edward Medical University, Lahore, Pakistan.
| | - Sabahat Maroof
- Sharif Medical and Dental Colllege, Lahore, Punjab, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Haji Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
van der Heide V, Davenport B, Cubitt B, Roudko V, Choo D, Humblin E, Jhun K, Angeliadis K, Dawson T, Furtado G, Kamphorst A, Ahmed R, de la Torre JC, Homann D. Functional impairment of "helpless" CD8 + memory T cells is transient and driven by prolonged but finite cognate antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576725. [PMID: 38328184 PMCID: PMC10849538 DOI: 10.1101/2024.01.22.576725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.
Collapse
|
12
|
Singh P, Bajpai P, Maheshwari D, Chawla YM, Saini K, Reddy ES, Gottimukkala K, Nayak K, Gunisetty S, Aggarwal C, Jain S, Verma C, Singla P, Soneja M, Wig N, Murali-Krishna K, Chandele A. Functional and transcriptional heterogeneity within the massively expanding HLADR +CD38 + CD8 T cell population in acute febrile dengue patients. J Virol 2023; 97:e0074623. [PMID: 37855600 PMCID: PMC10688317 DOI: 10.1128/jvi.00746-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE CD8 T cells play a crucial role in protecting against intracellular pathogens such as viruses by eliminating infected cells and releasing anti-viral cytokines such as interferon gamma (IFNγ). Consequently, there is significant interest in comprehensively characterizing CD8 T cell responses in acute dengue febrile patients. Previous studies, including our own, have demonstrated that a discrete population of CD8 T cells with HLADR+ CD38+ phenotype undergoes massive expansion during the acute febrile phase of natural dengue virus infection. Although about a third of these massively expanding HLADR+ CD38+ CD8 T cells were also CD69high when examined ex vivo, only a small fraction of them produced IFNγ upon in vitro peptide stimulation. Therefore, to better understand such functional diversity of CD8 T cells responding to dengue virus infection, it is important to know the cytokines/chemokines expressed by these peptide-stimulated HLADR+CD38+ CD8 T cells and the transcriptional profiles that distinguish the CD69+IFNγ+, CD69+IFNγ-, and CD69-IFNγ- subsets.
Collapse
Affiliation(s)
- Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chaitanya Verma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Paras Singla
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
13
|
Kingstad-Bakke B, Cleven T, Bussan H, Yount BL, Uraki R, Iwatsuki-Horimoto K, Koga M, Yamamoto S, Yotsuyanagi H, Park H, Mishra JS, Kumar S, Baric RS, Halfmann PJ, Kawaoka Y, Suresh M. Airway surveillance and lung viral control by memory T cells induced by COVID-19 mRNA vaccine. JCI Insight 2023; 8:e172510. [PMID: 37796612 PMCID: PMC10721330 DOI: 10.1172/jci.insight.172510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
Although SARS-CoV-2 evolution seeds a continuous stream of antibody-evasive viral variants, COVID-19 mRNA vaccines provide robust protection against severe disease and hospitalization. Here, we asked whether mRNA vaccine-induced memory T cells limit lung SARS-CoV-2 replication and severe disease. We show that mice and humans receiving booster BioNTech mRNA vaccine developed potent CD8 T cell responses and showed similar kinetics of expansion and contraction of granzyme B/perforin-expressing effector CD8 T cells. Both monovalent and bivalent mRNA vaccines elicited strong expansion of a heterogeneous pool of terminal effectors and memory precursor effector CD8 T cells in spleen, inguinal and mediastinal lymph nodes, pulmonary vasculature, and most surprisingly in the airways, suggestive of systemic and regional surveillance. Furthermore, we document that: (a) CD8 T cell memory persists in multiple tissues for > 200 days; (b) following challenge with pathogenic SARS-CoV-2, circulating memory CD8 T cells rapidly extravasate to the lungs and promote expeditious viral clearance, by mechanisms that require CD4 T cell help; and (c) adoptively transferred splenic memory CD8 T cells traffic to the airways and promote lung SARS-CoV-2 clearance. These findings provide insights into the critical role of memory T cells in preventing severe lung disease following breakthrough infections with antibody-evasive SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hailey Bussan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Boyd L. Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | | | - Michiko Koga
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, and
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shinya Yamamoto
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, and
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay S. Mishra
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - M. Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
15
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
16
|
Konrad CV, Iversen EF, Gunst JD, Monrad I, Holleufer A, Hartmann R, Østergaard LJ, Søgaard OS, Schleimann MH, Tolstrup M. Redirector of Vaccine-induced Effector Responses (RoVER) for specific killing of cellular targets. EBioMedicine 2023; 96:104785. [PMID: 37672868 PMCID: PMC10485592 DOI: 10.1016/j.ebiom.2023.104785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND In individuals with malignancy or HIV-1 infection, antigen-specific cytotoxic T lymphocytes (CTLs) often display an exhausted phenotype with impaired capacity to eliminate the disease. Existing cell-based immunotherapy strategies are often limited by the requirement for adoptive transfer of CTLs. We have developed an immunotherapy technology in which potent CTL responses are generated in vivo by vaccination and redirected to eliminate target cells using a bispecific Redirector of Vaccine-induced Effector Responses (RoVER). METHODS Following Yellow fever (YF) 17D vaccination of 51 healthy volunteers (NCT04083430), single-epitope YF-specific CTL responses were quantified by tetramer staining and multi-parameter flow cytometry. RoVER-mediated redirection of YF-specific CTLs to kill antigen-expressing Raji-Env cells, autologous CD19+ B cells or CD4+ T cells infected in vitro with a full-length HIV-1-eGFP was assessed in cell killing assays. Moreover, secreted IFN-γ, granzyme B, and TNF-α were analyzed by mesoscale multiplex assays. FINDINGS YF-17D vaccination induced strong epitope-specific CTL responses in the study participants. In cell killing assays, RoVER-mediated redirection of YF-specific CTLs to autologous CD19+ B cells or HIV-1-infected CD4+ cells resulted in 58% and 53% killing at effector to target ratio 1:1, respectively. INTERPRETATION We have developed an immunotherapy technology in which epitope-specific CTLs induced by vaccination can be redirected to kill antigen-expressing target cells by RoVER linking. The RoVER technology is highly specific and can be adapted to recognize various cell surface antigens. Importantly, this technology obviates the need for adoptive transfer of CTLs. FUNDING This work was funded by the Novo Nordisk Foundation (Hallas Møller NNF10OC0054577).
Collapse
Affiliation(s)
- Christina V Konrad
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Emma F Iversen
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark
| | - Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Ida Monrad
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Andreas Holleufer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Lars J Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Mariane H Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus C, 8000, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, 8200, Denmark.
| |
Collapse
|
17
|
Jain A, Sturmlechner I, Weyand CM, Goronzy JJ. Heterogeneity of memory T cells in aging. Front Immunol 2023; 14:1250916. [PMID: 37662959 PMCID: PMC10471982 DOI: 10.3389/fimmu.2023.1250916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Immune memory is a requisite and remarkable property of the immune system and is the biological foundation of the success of vaccinations in reducing morbidity from infectious diseases. Some vaccines and infections induce long-lasting protection, but immunity to other vaccines and particularly in older adults rarely persists over long time periods. Failed induction of an immune response and accelerated waning of immune memory both contribute to the immuno-compromised state of the older population. Here we review how T cell memory is influenced by age. T cell memory is maintained by a dynamic population of T cells that are heterogeneous in their kinetic parameters under homeostatic condition and their function. Durability of T cell memory can be influenced not only by the loss of a clonal progeny, but also by broader changes in the composition of functional states and transition of T cells to a dysfunctional state. Genome-wide single cell studies on total T cells have started to provide insights on the influence of age on cell heterogeneity over time. The most striking findings were a trend to progressive effector differentiation and the activation of pro-inflammatory pathways, including the emergence of CD4+ and CD8+ cytotoxic subsets. Genome-wide data on antigen-specific memory T cells are currently limited but can be expected to provide insights on how changes in T cell subset heterogeneity and transcriptome relate to durability of immune protection.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Cornelia M. Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Jörg J. Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
18
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
19
|
Aleksova M, Todorova Y, Emilova R, Baymakova M, Yancheva N, Andonova R, Zasheva A, Grifoni A, Weiskopf D, Sette A, Nikolova M. Virus-Specific Stem Cell Memory CD8+ T Cells May Indicate a Long-Term Protection against Evolving SARS-CoV-2. Diagnostics (Basel) 2023; 13:diagnostics13071280. [PMID: 37046496 PMCID: PMC10093371 DOI: 10.3390/diagnostics13071280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Immune memory to SARS-CoV-2 is key for establishing herd immunity and limiting the spread of the virus. The duration and qualities of T-cell-mediated protection in the settings of constantly evolving pathogens remain an open question. We conducted a cross-sectional study of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at several time points over 18 months (30–750 days) post mild/moderate infection with the aim to identify suitable methods and biomarkers for evaluation of long-term T-cell memory in peripheral blood. Included were 107 samples from 95 donors infected during the periods 03/2020–07/2021 and 09/2021–03/2022, coinciding with the prevalence of B.1.1.7 (alpha) and B.1.617.2 (delta) variants in Bulgaria. SARS-CoV-2-specific IFNγ+ T cells were measured in ELISpot in parallel with flow cytometry detection of AIM+ total and stem cell-like memory (TSCM) CD4+ and CD8+ T cells after in vitro stimulation with peptide pools corresponding to the original and delta variants. We show that, unlike IFNγ+ T cells, AIM+ virus-specific CD4+ and CD8+ TSCM are more adequate markers of T cell memory, even beyond 18 months post-infection. In the settings of circulating and evolving viruses, CD8+ TSCM is remarkably stable, back-differentiated into effectors, and delivers immediate protection, regardless of the initial priming strain.
Collapse
|
20
|
Characterization of Live-Attenuated Powassan Virus Vaccine Candidates Identifies an Efficacious Prime-Boost Strategy for Mitigating Powassan Virus Disease in a Murine Model. Vaccines (Basel) 2023; 11:vaccines11030612. [PMID: 36992196 PMCID: PMC10058527 DOI: 10.3390/vaccines11030612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne virus and cause of lethal encephalitis in humans. The lack of treatment or prevention strategies for POWV disease underscores the need for an effective POWV vaccine. Here, we took two independent approaches to develop vaccine candidates. First, we recoded the POWV genome to increase the dinucleotide frequencies of CpG and UpA to potentially attenuate the virus by raising its susceptibility to host innate immune factors, such as the zinc-finger antiviral protein (ZAP). Secondly, we took advantage of the live-attenuated yellow fever virus vaccine 17D strain (YFV-17D) as a vector to express the structural genes pre-membrane (prM) and envelope (E) of POWV. The chimeric YFV-17D-POWV vaccine candidate was further attenuated for in vivo application by removing an N-linked glycosylation site within the nonstructural protein (NS)1 of YFV-17D. This live-attenuated chimeric vaccine candidate significantly protected mice from POWV disease, conferring a 70% survival rate after lethal challenge when administered in a homologous two-dose regimen. Importantly, when given in a heterologous prime-boost vaccination scheme, in which vaccination with the initial chimeric virus was followed by a protein boost with the envelope protein domain III (EDIII), 100% of the mice were protected without showing any signs of morbidity. Combinations of this live-attenuated chimeric YFV-17D-POWV vaccine candidate with an EDIII protein boost warrant further studies for the development of an effective vaccine strategy for the prevention of POWV disease.
Collapse
|
21
|
Monge C, Xie C, Myojin Y, Coffman K, Hrones DM, Wang S, Hernandez JM, Wood BJ, Levy EB, Juburi I, Hewitt SM, Kleiner DE, Steinberg SM, Figg WD, Redd B, Homan P, Cam M, Ruf B, Duffy AG, Greten TF. Phase I/II study of PexaVec in combination with immune checkpoint inhibition in refractory metastatic colorectal cancer. J Immunother Cancer 2023; 11:jitc-2022-005640. [PMID: 36754451 PMCID: PMC9923269 DOI: 10.1136/jitc-2022-005640] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Oncolytic immunotherapy represents a unique therapeutic platform for the treatment of cancer. Here, we evaluated the safety and efficacy of the combination of pexastimogene devacirepvec (PexaVec) plus durvalumab (anti-programmed death ligand 1) with and without tremelimumab (anti-cytotoxic T-lymphocyte associated protein 4) in patients with standard chemotherapy refractory mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) in a phase I/II trial. METHODS Adult patients with histologically confirmed advanced pMMR mCRC, who had progressed on at least two prior lines of systemic chemotherapy were studied in four cohorts. Patients received four doses of PexaVec IV at a dose of 3×108 plaque forming units (pfu) (dose level 1) or 1×109 pfu (dose level 2) every 2 weeks. Twelve days after the first PexaVec administration, patients received either 1500 mg of durvalumab every 28 days alone or an additional single dose of 300 mg tremelimumab on day 1. Responses were assessed every 8 weeks by CT or MRI. AEs were recorded. The primary endpoints were safety and feasibility. Secondary endpoints included progression-free survival (PFS) and overall survival. Paired tumor samples and peripheral blood were collected to perform immune monitoring. RESULTS Thirty-four patients with mCRC enrolled on to the study: 16 patients in the PexaVec/durvalumab cohorts and 18 patients in the PexaVec/durvalumab/tremelimumab cohorts. Overall, the combination of PexaVec plus immune checkpoint inhibitors did not result in any unexpected toxicities. Most common toxicities observed were fever and chills after PexaVec infusion. Two cases of grade 3 colitis, one case of a grade 2 myositis and one case of grade 3 hypotension resulted in discontinuation of immune checkpoint inhibitor and PexaVec treatment, respectively. The median PFS in the PexaVec/durvalumab/tremelimumab cohorts was 2.3 months (95% CI: 2.2 to 3.2 months) vs 2.1 months (95% CI: 1.7 to 2.8 months; p=0.57) in the PexaVec/durvalumab cohorts. Flow cytometry analysis of peripheral blood mononuclear cells revealed an increase in Ki67+CD8+ T cells on treatment. CONCLUSION PexaVec in combination with durvalumab and tremelimumab is safe and tolerable. No unexpected toxicities were observed. The combination of PexaVec/durvalumab/tremelimumab demonstrated potential clinical activity in patients with pMMR mCRC, but further studies are needed to identify the predictive biomarkers. TRIAL REGISTRATION NUMBER NCT03206073.
Collapse
Affiliation(s)
- Cecilia Monge
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Changqing Xie
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuta Myojin
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelley Coffman
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donna Mabry Hrones
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophie Wang
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan M Hernandez
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot B Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center & Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Israa Juburi
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Bernadette Redd
- Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip Homan
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Maggie Cam
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Austin G Duffy
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Tim F Greten
- Gastrointestinal Malignancies Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Longitudinal Analysis of the Phenotype, Transcriptional Profile, and Anatomic Location of Memory CD8 T Cell Subsets after Acute Viral Infection. J Virol 2023; 97:e0155622. [PMID: 36541799 PMCID: PMC9888238 DOI: 10.1128/jvi.01556-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased demand for novel, highly effective vaccination strategies necessitates a better understanding of long-lived memory CD8 T cell differentiation. To achieve this understanding, we used the mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. We reexamined classical memory CD8 T cell subsets and performed in-depth, longitudinal analysis of their phenotype, transcriptional programming, and anatomic location within the spleen. All analyses were performed at multiple time points from 8 days to 1 year postinfection. Memory subsets are conventionally defined by their expression of KLRG1 and IL-7Rα, as follows: KLRG1+IL-7Rα- terminal effectors (TEs) and KLRG1-IL-7Rα+ memory precursors (MPs). But we also characterized a third KLRG1+IL-7Rα+ subset which we refer to as KLRG1+ MPs. In these analyses, we defined a comprehensive memory phenotype that is associated with higher levels of CD28 expression. We also demonstrated that MPs, KLRG1+ MPs, and TEs have distinct localization programs within the spleen. We found that MPs became preferentially enriched in the white pulp as early as 1 to 2 weeks postinfection, and their predominance in the white pulp was maintained throughout the course of a year. On the other hand, KLRG1+ MPs and TEs localized to the red pulp just as early, and they consistently localized to the red pulp thereafter. These findings indicate that location may be crucial for memory formation and that white pulp-derived signals may contribute to long-term memory survival. Achieving robust memory responses following vaccination may require more deliberate consideration of which memory phenotypes are induced, as well as where they traffic, as these factors could impact their longevity. IMPORTANCE CD8 T cells play a critical role in viral immunity and it is important to understand how memory cells are formed and what processes lead to their long-term maintenance. Here, we use a mouse model of acute infection to perform an in-depth, longitudinal analysis of memory CD8 T cell differentiation, examining the phenotype and location of memory cells out to 1 year postinfection.
Collapse
|
23
|
Hudson WH, Wieland A. Technology meets TILs: Deciphering T cell function in the -omics era. Cancer Cell 2023; 41:41-57. [PMID: 36206755 PMCID: PMC9839604 DOI: 10.1016/j.ccell.2022.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
T cells are at the center of cancer immunology because of their ability to recognize mutations in tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate exhausted T cell responses have transformed the clinical management of several malignancies. In parallel, the development of novel multidimensional analysis platforms, such as single-cell RNA sequencing and high-dimensional flow cytometry, has yielded unprecedented insights into immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating immune cells in single tumors, across tumor types, and among individuals with cancer. Here we discuss the opportunities and challenges of studying the complex tumor microenvironment with -omics technologies that generate vast amounts of data, highlighting the opportunities and limitations of these technologies with a particular focus on interpreting high-dimensional studies of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- William H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Zhang Z, Yao Y, Yang J, Jiang H, Meng Y, Cao W, Zhou F, Wang K, Yang Z, Yang C, Sun J, Yang Y. Assessment of adaptive immune responses of dairy cows with Burkholderia contaminans-induced mastitis. Front Microbiol 2023; 14:1099623. [PMID: 36960295 PMCID: PMC10028201 DOI: 10.3389/fmicb.2023.1099623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Burkholderia contaminans, an emerging pathogen related to cystic fibrosis, is known to cause potentially fatal infections in humans and ruminants, especially in immunocompromised individuals. However, the immune responses in cows following its infection have not been fully elucidated. In this study, T- and B-lymphocytes-mediated immune responses were evaluated in 15 B. contaminans-induced mastitis cows and 15 healthy cows with multi-parameter flow cytometry. The results showed that infection with B. contaminans was associated with a significant decrease in the number and percentage of B lymphocytes but with a significant increase in the proportion of IgG+CD27+ B lymphocytes. This indicated that humoral immune response may not be adequate to fight intracellular infection, which could contribute to the persistent bacterial infection. In addition, B. contaminans infection induced significant increase of γδ T cells and double positive (DP) CD4+CD8+ T cells but not CD4+ or CD8+ (single positive) T cells in blood. Phenotypic analysis showed that the percentages of activated WC1+ γδ T cells in peripheral blood were increased in the B. contaminans infected cows. Interestingly, intracellular cytokine staining showed that cattle naturally infected with B. contaminans exhibited multifunctional TNF-α+IFN-γ+IL-2+ B. contaminans-specific DP T cells. Our results, for the first time, revealed a potential role of IgG+CD27+ B cells, CD4+CD8+ T cells and WC1+ γδ T cells in the defense of B. contaminans-induced mastitis in cows.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yiyang Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiayu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hui Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ye Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenqiang Cao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fuzhen Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- *Correspondence: Chunhua Yang,
| | - Jie Sun
- Shenzhen Academy of Inspection and Quarantine Sciences, Shenzhen, China
- Jie Sun,
| | - Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- Yi Yang,
| |
Collapse
|
25
|
Cajaraville ACDRA, Gomes MPDB, Azamor T, Pereira RC, Neves PCDC, De Luca PM, de Lima SMB, Gaspar LP, Caride E, Freire MDS, Medeiros MA. Evaluation of Two Adjuvant Formulations for an Inactivated Yellow Fever 17DD Vaccine Candidate in Mice. Vaccines (Basel) 2022; 11:73. [PMID: 36679918 PMCID: PMC9865672 DOI: 10.3390/vaccines11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The attenuated yellow fever (YF) vaccine is one of the most successful vaccines ever developed. After a single dose administration YF vaccine can induce balanced Th1/Th2 immune responses and long-lasting neutralizing antibodies. These attributes endorsed it as a model of how to properly stimulate the innate response to target protective immune responses. Despite their longstanding success, attenuated YF vaccines can cause rare fatal adverse events and are contraindicated for persons with immunosuppression, egg allergy and age < 6 months and >60 years. These drawbacks have encouraged the development of a non-live vaccine. The aim of the present study is to characterize and compare the immunological profile of two adjuvant formulations of an inactivated YF 17DD vaccine candidate. Inactivated YF vaccine formulations based on alum (Al(OH)3) or squalene (AddaVax®) were investigated by immunization of C57BL/6 mice in 3-dose or 2-dose schedules, respectively, and compared with a single dose of attenuated YF virus 17DD. Sera were analyzed by ELISA and Plaque Reduction Neutralization Test (PRNT) for detection of total IgG and neutralizing antibodies against YF virus. In addition, splenocytes were collected to evaluate cellular responses by ELISpot. Both inactivated formulations were able to induce high titers of IgG against YF, although neutralizing antibodies levels were borderline on pre-challenge samples. Analysis of IgG subtypes revealed a predominance of IgG2a associated with improved neutralizing capacity in animals immunized with the attenuated YF vaccine, and a predominance of IgG1 in groups immunized with experimental non-live formulations (alum and AddaVax®). After intracerebral (IC) challenge, attenuated and inactivated vaccine formulations showed an increase in neutralizing antibodies. The AddaVax®-based inactivated vaccine and the attenuated vaccine achieved 100% protection, and alum-based equivalent formulation achieved 70% protection.
Collapse
Affiliation(s)
| | - Mariana Pierre de Barros Gomes
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Tamiris Azamor
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Renata Carvalho Pereira
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Patrícia Cristina da Costa Neves
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Paula Mello De Luca
- Instituto Oswaldo Cruz (IOC), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Sheila Maria Barbosa de Lima
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Luciane Pinto Gaspar
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Elena Caride
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Marcos da Silva Freire
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| | - Marco Alberto Medeiros
- Vice Diretoria de Desenvolvimento Tecnológico (VDTEC), Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
26
|
Lopes-Ribeiro Á, Araujo FP, Oliveira PDM, Teixeira LDA, Ferreira GM, Lourenço AA, Dias LCC, Teixeira CW, Retes HM, Lopes ÉN, Versiani AF, Barbosa-Stancioli EF, da Fonseca FG, Martins-Filho OA, Tsuji M, Peruhype-Magalhães V, Coelho-dos-Reis JGA. In silico and in vitro arboviral MHC class I-restricted-epitope signatures reveal immunodominance and poor overlapping patterns. Front Immunol 2022; 13:1035515. [PMID: 36466864 PMCID: PMC9713826 DOI: 10.3389/fimmu.2022.1035515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The present work sought to identify MHC-I-restricted peptide signatures for arbovirus using in silico and in vitro peptide microarray tools. METHODS First, an in-silico analysis of immunogenic epitopes restricted to four of the most prevalent human MHC class-I was performed by identification of MHC affinity score. For that, more than 10,000 peptide sequences from 5 Arbovirus and 8 different viral serotypes, namely Zika (ZIKV), Dengue (DENV serotypes 1-4), Chikungunya (CHIKV), Mayaro (MAYV) and Oropouche (OROV) viruses, in addition to YFV were analyzed. Haplotype HLA-A*02.01 was the dominant human MHC for all arboviruses. Over one thousand HLA-A2 immunogenic peptides were employed to build a comprehensive identity matrix. Intending to assess HLAA*02:01 reactivity of peptides in vitro, a peptide microarray was designed and generated using a dimeric protein containing HLA-A*02:01. RESULTS The comprehensive identity matrix allowed the identification of only three overlapping peptides between two or more flavivirus sequences, suggesting poor overlapping of virus-specific immunogenic peptides amongst arborviruses. Global analysis of the fluorescence intensity for peptide-HLA-A*02:01 binding indicated a dose-dependent effect in the array. Considering all assessed arboviruses, the number of DENV-derived peptides with HLA-A*02:01 reactivity was the highest. Furthermore, a lower number of YFV-17DD overlapping peptides presented reactivity when compared to non-overlapping peptides. In addition, the assessment of HLA-A*02:01-reactive peptides across virus polyproteins highlighted non-structural proteins as "hot-spots". Data analysis supported these findings showing the presence of major hydrophobic sites in the final segment of non-structural protein 1 throughout 2a (Ns2a) and in nonstructural proteins 2b (Ns2b), 4a (Ns4a) and 4b (Ns4b). DISCUSSION To our knowledge, these results provide the most comprehensive and detailed snapshot of the immunodominant peptide signature for arbovirus with MHC-class I restriction, which may bring insight into the design of future virus-specific vaccines to arboviruses and for vaccination protocols in highly endemic areas.
Collapse
Affiliation(s)
- Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franklin Pereira Araujo
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Patrícia de Melo Oliveira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena de Almeida Teixeira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovane Marques Ferreira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Aparecida Lourenço
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura Cardoso Corrêa Dias
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio Wilker Teixeira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henrique Morais Retes
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Élisson Nogueira Lopes
- Laboratorio de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Genética, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Freitas Versiani
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Pathology da University of Texas Medical Branch, Galveston, TX, United States
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Irving Medical School, Columbia University, New York City, NY, United States
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
27
|
ZIKV-envelope proteins induce specific humoral and cellular immunity in distinct mice strains. Sci Rep 2022; 12:15733. [PMID: 36131132 PMCID: PMC9492693 DOI: 10.1038/s41598-022-20183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Recent outbreaks of Zika virus (ZIKV) infection have highlighted the need for a better understanding of ZIKV-specific immune responses. The ZIKV envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface and it is the main target of the protective immune response. EZIKV protein contains the central domain (EDI), a dimerization domain containing the fusion peptide (EDII), and a domain that binds to the cell surface receptor (EDIII). In this study, we performed a systematic comparison of the specific immune response induced by different EZIKV recombinant proteins (EZIKV, EDI/IIZIKV or EDIIIZIKV) in two mice strains. Immunization induced high titers of E-specific antibodies which recognized ZIKV-infected cells and neutralized the virus. Furthermore, immunization with EZIKV, EDI/IIZIKV and EDIIIZIKV proteins induced specific IFNγ-producing cells and polyfunctional CD4+ and CD8+ T cells. Finally, we identified 4 peptides present in the envelope protein (E1-20, E51-70, E351-370 and E361-380), capable of inducing a cellular immune response to the H-2Kd and H-2Kb haplotypes. In summary, our work provides a detailed assessment of the immune responses induced after immunization with different regions of the ZIKV envelope protein.
Collapse
|
28
|
Chen C, Chen A, Yang Y. A diversified role for γδT cells in vector-borne diseases. Front Immunol 2022; 13:965503. [PMID: 36052077 PMCID: PMC9424759 DOI: 10.3389/fimmu.2022.965503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vector-borne diseases have high morbidity and mortality and are major health threats worldwide. γδT cells represent a small but essential subpopulation of T cells. They reside in most human tissues and exert important functions in both natural and adaptive immune responses. Emerging evidence have shown that the activation and expansion of γδT cells invoked by pathogens play a diversified role in the regulation of host-pathogen interactions and disease progression. A better understanding of such a role for γδT cells may contribute significantly to developing novel preventative and therapeutic strategies. Herein, we summarize recent exciting findings in the field, with a focus on the role of γδT cells in the infection of vector-borne pathogens.
Collapse
Affiliation(s)
- Chen Chen
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Chen Chen, ; Yanan Yang,
| | - Aibao Chen
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Chen Chen, ; Yanan Yang,
| |
Collapse
|
29
|
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol 2022; 13:904686. [PMID: 35833134 PMCID: PMC9271749 DOI: 10.3389/fimmu.2022.904686] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Esther Moga,
| | - Elionor Lynton-Pons
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Unidad de enfermedades infecciosas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
30
|
Perera DJ, Hassan AS, Liu SS, Elahi SM, Gadoury C, Weeratna RD, Gilbert R, Ndao M. A low dose adenovirus vectored vaccine expressing Schistosoma mansoni Cathepsin B protects from intestinal schistosomiasis in mice. EBioMedicine 2022; 80:104036. [PMID: 35500538 PMCID: PMC9065910 DOI: 10.1016/j.ebiom.2022.104036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Schistosomiasis is an underestimated neglected tropical disease which affects over 236.6 million people worldwide. According to the CDC, the impact of this disease is second to only malaria as the most devastating parasitic infection. Affected individuals manifest chronic pathology due to egg granuloma formation, destroying the liver over time. The only FDA approved drug, praziquantel, does not protect individuals from reinfection, highlighting the need for a prophylactic vaccine. Schistosoma mansoni Cathepsin B (SmCB) is a parasitic gut peptidase necessary for helminth growth and maturation and confers protection as a vaccine target for intestinal schistosomiasis. METHODS An SmCB expressing human adenovirus serotype 5 (AdSmCB) was constructed and delivered intramuscularly to female C57BL/6 mice in a heterologous prime and boost vaccine with recombinant protein. Vaccine induced immunity was described and subsequent protection from parasite infection was assessed by analysing parasite burden and liver pathology. FINDINGS Substantially higher humoral and cell-mediated immune responses, consisting of IgG2c, Th1 effectors, and polyfunctional CD4+ T cells, were induced by the heterologous administration of AdSmCB when compared to the other regimens. Though immune responses favoured Th1 immunity, Th2 responses provided by SmCB protein boosts were maintained. This mixed Th1/Th2 immune response resulted in significant protection from S. mansoni infection comparable to other vaccine formulations which are in clinical trials. Schistosomiasis associated liver pathology was also prevented in a murine model. INTERPRETATION Our study provides missing preclinical data supporting the use of adenoviral vectoring in vaccines for S. mansoni infection. Our vaccination method significantly reduces parasite burden and its associated liver pathology - both of which are critical considerations for this helminth vaccine. FUNDING This work was supported by the Canadian Institutes of Health Research, R. Howard Webster Foundation, and the Foundation of the McGill University Health Centre.
Collapse
Affiliation(s)
- Dilhan J Perera
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Room: EM3.3244, 1001 Decarie Blvd, Montréal, Québec H4A 3J1, Canada
| | - Adam S Hassan
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Room: EM3.3244, 1001 Decarie Blvd, Montréal, Québec H4A 3J1, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Sunny S Liu
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | | | | | - Rénald Gilbert
- National Research Council Canada, Montréal, Québec, Canada
| | - Momar Ndao
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Room: EM3.3244, 1001 Decarie Blvd, Montréal, Québec H4A 3J1, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
31
|
Li S, Xu H, Kirk AD. Modulation of Xenogeneic T-cell Proliferation by B7 and mTOR Blockade of T Cells and Porcine Endothelial Cells. Transplantation 2022; 106:950-962. [PMID: 34387242 PMCID: PMC8850983 DOI: 10.1097/tp.0000000000003920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Activation of porcine endothelial cells (PECs) is the mechanistic centerpiece of xenograft rejection. This study sought to characterize the immuno-phenotype of human T cells in response to PECs and to explore the immuno-modulation of B7 and mammalian target of rapamycin blockade of T cells and/or PECs during xeno-responses. METHODS Rapid memory T-cell (TM) responses to PECs were assessed by an intracellular cytokine staining. T-cell proliferation to PEC with or without belatacept or rapamycin was evaluated by a mixed lymphocyte-endothelial cell reaction (MLER). Additionally, rapamycin-pretreated PECs were used in MLER. Cell phenotypes were analyzed by flow cytometry. RESULTS Tumor necrosis factor-α/interferon-γ producers were detected in CD8+ cells stimulated by human endothelium but not PECs. MLER showed proliferation of CD4+ and CD8+ cells with predominantly memory subsets. Purified memory and naive cells proliferated following PEC stimulation with an increased frequency of TM in PEC-stimulated naive cells. Proliferating cells upregulated programmed cell death-1 (PD-1) and CD2 expression. Belatacept partially inhibited T-cell proliferation with reduced CD2 expression and frequency of the CD8+CD2highCD28- subset. Rapamycin dramatically inhibited PEC-induced T-cell proliferation, and rapamycin-preconditioned PECs failed to induce T-cell proliferation. PD-1 blockade did not restore T-cell proliferation to rapamycin-preconditioned PECs. CONCLUSIONS Humans lack rapid TM-mediated responses to PECs but induce T-cell proliferative responses characterized largely as TM with increasing CD2 and PD-1 expression. B7-CD28 and mammalian target of rapamycin blockade of T cells exhibit dramatic inhibitory effects in altering xeno-proliferating cells. Rapamycin alters PEC xeno-immunogenicity leading to inhibition of xeno-specific T-cell proliferation independent of PD-1-PD ligand interaction.
Collapse
Affiliation(s)
- Shu Li
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - He Xu
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D. Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
32
|
Zebley CC, Akondy RS, Youngblood BA, Kissick HT. Defining the Molecular Hallmarks of T-Cell Memory. Cold Spring Harb Perspect Biol 2022; 14:a037804. [PMID: 34127444 PMCID: PMC8886980 DOI: 10.1101/cshperspect.a037804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pool of memory CD8 T cells is comprised of highly specialized subpopulations of cells with both shared and distinct functions. The ongoing study of T-cell memory is focused on how these different subpopulations arise, how the cells are maintained over the life of the host, and how the cells protect a host against reinfection. As a field we have used the convenience of a narrow range of surface markers to define and study these memory T-cell subsets. However, as we learn more about these cells, it is becoming clear that these broad definitions are insufficient to capture the complexity of the CD8 memory T-cell pool, and an updated definition of these cellular states are needed. Here, we discuss data that have recently arisen that highlight the difficulty in using surface markers to functionally characterize CD8 T-cell populations, and the possibility of using the epigenetic state of cells to more clearly define the functional capacity of CD8 memory T-cell subsets.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Rama S Akondy
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Benjamin A Youngblood
- Immunology Department, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Haydn T Kissick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
33
|
Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of Zika Immunity and Vaccine Development: Lessons from Dengue and the Contribution from Controlled Human Infection Model. Pathogens 2022; 11:pathogens11030294. [PMID: 35335618 PMCID: PMC8951202 DOI: 10.3390/pathogens11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.
Collapse
Affiliation(s)
- Helton C. Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
- Correspondence: ; Tel.: +55-31-3409-2664
| | - Tertuliano A. Pereira-Neto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Marcela H. Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Ana C. B. Terzian
- Laboratory of Cellular Immunology, Rene Rachou Institute, Fiocruz, Belo Horizonte 30190-002, MG, Brazil;
| | - Anna P. Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
34
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
35
|
Cencioni MT, Genchi A, Brittain G, de Silva TI, Sharrack B, Snowden JA, Alexander T, Greco R, Muraro PA. Immune Reconstitution Following Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis: A Review on Behalf of the EBMT Autoimmune Diseases Working Party. Front Immunol 2022; 12:813957. [PMID: 35178046 PMCID: PMC8846289 DOI: 10.3389/fimmu.2021.813957] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disorder, which is mediated by an abnormal immune response coordinated by T and B cells resulting in areas of inflammation, demyelination, and axonal loss. Disease-modifying treatments (DMTs) are available to dampen the inflammatory aggression but are ineffective in many patients. Autologous hematopoietic stem cell transplantation (HSCT) has been used as treatment in patients with a highly active disease, achieving a long-term clinical remission in most. The rationale of the intervention is to eradicate inflammatory autoreactive cells with lympho-ablative regimens and restore immune tolerance. Immunological studies have demonstrated that autologous HSCT induces a renewal of TCR repertoires, resurgence of immune regulatory cells, and depletion of proinflammatory T cell subsets, suggesting a "resetting" of immunological memory. Although our understanding of the clinical and immunological effects of autologous HSCT has progressed, further work is required to characterize the mechanisms that underlie treatment efficacy. Considering that memory B cells are disease-promoting and stem-like T cells are multipotent progenitors involved in self-regeneration of central and effector memory cells, investigating the reconstitution of B cell compartment and stem and effector subsets of immunological memory following autologous HSCT could elucidate those mechanisms. Since all subjects need to be optimally protected from vaccine-preventable diseases (including COVID-19), there is a need to ensure that vaccination in subjects undergoing HSCT is effective and safe. Additionally, the study of vaccination in HSCT-treated subjects as a means of evaluating immune responses could further distinguish broad immunosuppression from immune resetting.
Collapse
Affiliation(s)
- Maria Teresa Cencioni
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Angela Genchi
- Department of Neurology, Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Gavin Brittain
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Institute for Translational Neuroscience and Sheffield Neuroscience Biomedical Research Centre (BRC), Sheffield, United Kingdom
| | - Thushan I de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Basil Sharrack
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Institute for Translational Neuroscience and Sheffield Neuroscience Biomedical Research Centre (BRC), Sheffield, United Kingdom
| | - John Andrew Snowden
- Department of Haematology, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, ein Leibniz Institut, Berlin, Germany
| | - Raffaella Greco
- Unit of Haematology and Bone Marrow Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo A Muraro
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Park JJ, Chen S. Metaviromic identification of discriminative genomic features in SARS-CoV-2 using machine learning. PATTERNS 2022; 3:100407. [PMID: 34812427 PMCID: PMC8598947 DOI: 10.1016/j.patter.2021.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has become a major threat across the globe. Here, we developed machine learning approaches to identify key pathogenic regions in coronavirus genomes. We trained and evaluated 7,562,625 models on 3,665 genomes including SARS-CoV-2, MERS-CoV, SARS-CoV, and other coronaviruses of human and animal origins to return quantitative and biologically interpretable signatures at nucleotide and amino acid resolutions. We identified hotspots across the SARS-CoV-2 genome, including previously unappreciated features in spike, RdRp, and other proteins. Finally, we integrated pathogenicity genomic profiles with B cell and T cell epitope predictions for enrichment of sequence targets to help guide vaccine development. These results provide a systematic map of predicted pathogenicity in SARS-CoV-2 that incorporates sequence, structural, and immunologic features, providing an unbiased collection of genetic elements for functional studies. This metavirome-based framework can also be applied for rapid characterization of new coronavirus strains or emerging pathogenic viruses. Machine learning identifies discriminative signatures in coronavirus genomes Hotspots in key viral proteins have evolutionary and structural significance Integration of hotspots with B cell and T cell epitopes identify joint features Hotspots correlate with emerging variants of concern for mutation prioritization
Identifying which genomic regions of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus are pathogenic remains a major challenge in COVID-19 research. However, there is currently a lack of systematic and unbiased methods for such functional characterization. In this study, we set up a machine learning-based approach to identify which genomic regions distinguish SARS-CoV-2 and other high case fatality rate coronaviruses from other coronaviruses. Discriminative scores were obtained for every nucleotide in the SARS-CoV-2 genome. We then performed a series of evolutionary and structural analyses of candidate hotspots, as well as integrative analyses with predicted B cell and T cell epitopes and emerging variants of concern. Our approach can be extended to other viral genomes or microbial pathogens to gain insights on which sequence features are pathogenic or immunogenic.
Collapse
|
37
|
Lee A, Scott MKD, Wimmers F, Arunachalam PS, Luo W, Fox CB, Tomai M, Khatri P, Pulendran B. A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nat Commun 2022; 13:549. [PMID: 35087093 PMCID: PMC8795432 DOI: 10.1038/s41467-022-28197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mark Tomai
- 3M Corporate Research and Materials Lab, St. Paul, MN, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Fuertes Marraco SA, Alpern D, Lofek S, Lourenco J, Bovay A, Maby-El Hajjami H, Delorenzi M, Deplancke B, Speiser DE. Shared acute phase traits in effector and memory human CD8 T cells. CURRENT RESEARCH IN IMMUNOLOGY 2021; 3:1-12. [PMID: 35496820 PMCID: PMC9040096 DOI: 10.1016/j.crimmu.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
CD8 T cells have multiple functional properties that mediate acute phase and long-term immune protection. Several effector and memory CD8 T cell subsets have been described with diverse functionalities and marker profiles. In contrast to the many comprehensive mouse studies, most human studies lack samples from the acute infection phase, a major reason why current knowledge of human T cell subsets and differentiation remains incomplete, particularly with regard to the T cell heterogeneity early during the immune response. Here we analysed the human CD8 T cell response to yellow fever vaccination as the best-known model to study the human immune response to acute viral infection. We performed flow cytometry on 21 markers conventionally used in mice and in humans to describe differentiation, activation, cycling, and so-called effector functions. We found clearly distinct 'acute traits' at the peak of the response that are shared amongst all non-naïve antigen-specific subsets, including memory-differentiated cells. These acute traits were low BCL-2 and high KI67, CD38, HLA-DR, as well as increased Granzyme B and Perforin, previously attributed only to effector cells at the peak of the response. Furthermore, analysis of chromatin accessibility at the single cell level revealed that memory- and effector-differentiated cells clustered together specifically in the acute phase. Altogether, we demonstrate 'acute traits' across differentiation subsets, and point out the need to discriminate the differentiation states when studying human CD8 T cells that undergo an acute response.
Collapse
Affiliation(s)
- Silvia A. Fuertes Marraco
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Daniel Alpern
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sébastien Lofek
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Amandine Bovay
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Hélène Maby-El Hajjami
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mauro Delorenzi
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniel E. Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
39
|
Ribeiro SP, De Moura Mattaraia VG, Almeida RR, Valentine EJG, Sales NS, Ferreira LCS, Sa-Rocha LC, Jacintho LC, Santana VC, Sidney J, Sette A, Rosa DS, Kalil J, Cunha-Neto E. A promiscuous T cell epitope-based HIV vaccine providing redundant population coverage of the HLA class II elicits broad, polyfunctional T cell responses in nonhuman primates. Vaccine 2021; 40:239-246. [PMID: 34961636 DOI: 10.1016/j.vaccine.2021.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Over the last few decades, several emerging or reemerging viral diseases with no readily available vaccines have ravaged the world. A platform to fastly generate vaccines inducing potent and durable neutralizing antibody and T cell responses is sorely needed. Bioinformatically identified epitope-based vaccines can focus on immunodominant T cell epitopes and induce more potent immune responses than a whole antigen vaccine and may be deployed more rapidly and less costly than whole-gene vaccines. Increasing evidence has shown the importance of the CD4+ T cell response in protection against HIV and other viral infections. The previously described DNA vaccine HIVBr18 encodes 18 conserved, promiscuous epitopes binding to multiple HLA-DR-binding HIV epitopes amply recognized by HIV-1-infected patients. HIVBr18 elicited broad, polyfunctional, and durable CD4+and CD8+ T cell responses in BALB/c and mice transgenic to HLA class II alleles, showing cross-species promiscuity. To fully delineate the promiscuity of the HLA class II vaccine epitopes, we assessed their binding to 34 human class II (HLA-DR, DQ, and -DP) molecules, and immunized nonhuman primates. Results ascertained redundant 100% coverage of the human population for multiple peptides. We then immunized Rhesus macaques with HIVBr18 under in vivo electroporation. The immunization induced strong, predominantly polyfunctional CD4+ T cell responses in all animals to 13 out of the 18 epitopes; T cells from each animal recognized 7-11 epitopes. Our results provide a preliminary proof of concept that immunization with a vaccine encoding epitopes with high and redundant coverage of the human population can elicit potent T cell responses to multiple epitopes, across species and MHC barriers. This approach may facilitate the rapid deployment of immunogens eliciting cellular immunity against emerging infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Susan Pereira Ribeiro
- Emory University, Atlanta, USA; Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luís Carlos S Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Lucas Cauê Jacintho
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil
| | - Vinicius Canato Santana
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - John Sidney
- La Jolla Institute for Immunology (LJI), LA Jolla, CA, USA
| | | | - Daniela Santoro Rosa
- Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60/University of Sao Paulo School of Medicine, São Paulo, Brazil; Institute for Investigation in Immunology - iii-INCT, São Paulo, Brazil; Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
40
|
Oreshkova N, Myeni SK, Mishra N, Albulescu IC, Dalebout TJ, Snijder EJ, Bredenbeek PJ, Dallmeier K, Kikkert M. A Yellow Fever 17D Virus Replicon-Based Vaccine Platform for Emerging Coronaviruses. Vaccines (Basel) 2021; 9:1492. [PMID: 34960238 PMCID: PMC8704410 DOI: 10.3390/vaccines9121492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
The tremendous global impact of the current SARS-CoV-2 pandemic, as well as other current and recent outbreaks of (re)emerging viruses, emphasize the need for fast-track development of effective vaccines. Yellow fever virus 17D (YF17D) is a live-attenuated virus vaccine with an impressive efficacy record in humans, and therefore, it is a very attractive platform for the development of novel chimeric vaccines against various pathogens. In the present study, we generated a YF17D-based replicon vaccine platform by replacing the prM and E surface proteins of YF17D with antigenic subdomains from the spike (S) proteins of three different betacoronaviruses: MERS-CoV, SARS-CoV and MHV. The prM and E proteins were provided in trans for the packaging of these RNA replicons into single-round infectious particles capable of expressing coronavirus antigens in infected cells. YF17D replicon particles expressing the S1 regions of the MERS-CoV and SARS-CoV spike proteins were immunogenic in mice and elicited (neutralizing) antibody responses against both the YF17D vector and the coronavirus inserts. Thus, YF17D replicon-based vaccines, and their potential DNA- or mRNA-based derivatives, may constitute a promising and particularly safe vaccine platform for current and future emerging coronaviruses.
Collapse
Affiliation(s)
- Nadia Oreshkova
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Sebenzile K. Myeni
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Niraj Mishra
- Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1043, 3000 Leuven, Belgium; (N.M.); (K.D.)
| | - Irina C. Albulescu
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Tim J. Dalebout
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Eric J. Snijder
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Peter J. Bredenbeek
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| | - Kai Dallmeier
- Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1043, 3000 Leuven, Belgium; (N.M.); (K.D.)
| | - Marjolein Kikkert
- Center of Infectious Diseases LU-CID, Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.O.); (S.K.M.); (I.C.A.); (T.J.D.); (E.J.S.); (P.J.B.)
| |
Collapse
|
41
|
Signature of long-lived memory CD8 + T cells in acute SARS-CoV-2 infection. Nature 2021; 602:148-155. [PMID: 34875673 PMCID: PMC8810382 DOI: 10.1038/s41586-021-04280-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2. Since the outbreak of the ongoing coronavirus disease 19 (COVID-19) pandemic, a key question has focused on which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells stimulated during acute infection give rise to long-lived memory T cells3. Using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor (TCR) sequencing we longitudinally characterize individual SARS-CoV-2-specific CD8+ T cells of COVID-19 patients from acute infection to one year into recovery and find a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting one year after acute infection express CD45RA, interleukin-7 receptor α (CD127), and T cell factor-1 (TCF1), but they maintain low CCR7, thus resembling CD45RA+ effector-memory T (TEMRA) cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones giving rise to long-lived cells, whereas prolonged proliferation and mammalian target of rapamycin (mTOR) signaling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+ T cells following an acute virus infection.
Collapse
|
42
|
Ma J, Boudewijns R, Sanchez-Felipe L, Mishra N, Vercruysse T, Buh Kum D, Thibaut HJ, Neyts J, Dallmeier K. Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice. Emerg Microbes Infect 2021; 10:2279-2290. [PMID: 34792431 PMCID: PMC8648041 DOI: 10.1080/22221751.2021.2008772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The live-attenuated yellow fever 17D (YF17D) vaccine is one of the most efficacious human vaccines and also employed as a vector for novel vaccines. However, in the lack of appropriate immunocompetent small animal models, mechanistic insight in YF17D-induced protective immunity remains limited. To better understand YF17D vaccination and to identify a suitable mouse model, we evaluated the immunogenicity and protective efficacy of YF17D in five complementary mouse models, i.e. wild-type (WT) BALB/c, C57BL/6, IFN-α/β receptor (IFNAR-/-) deficient mice, and in WT mice in which type I IFN signalling was temporally ablated by an IFNAR blocking (MAR-1) antibody. Alike in IFNAR-/- mice, YF17D induced in either WT mice strong humoral immune responses dominated by IgG2a/c isotype (Th1 type) antibodies, yet only when IFNAR was blocked. Vigorous cellular immunity characterized by CD4+ T-cells producing IFN-γ and TNF-α were mounted in MAR-1 treated C57BL/6 and in IFNAR-/- mice. Surprisingly, vaccine-induced protection was largely mouse model dependent. Full protection against lethal intracranial challenge and a massive reduction of virus loads was conferred already by a minimal dose of 2 PFU YF17D in BALB/c and IFNAR-/- mice, but not in C57BL/6 mice. Correlation analysis of infection outcome with pre-challenge immunological markers indicates that YFV-specific IgG might suffice for protection, even in the absence of detectable levels of neutralizing antibodies. Finally, we propose that, in addition to IFNAR-/- mice, C57BL/6 mice with temporally blocked IFN-α/β receptors represent a promising immunocompetent mouse model for the study of YF17D-induced immunity and evaluation of YF17D-derived vaccines.
Collapse
Affiliation(s)
- Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,Global Virus Network (GVN), Baltimore, MD, USA
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Rega Institute, Leuven, Belgium.,Global Virus Network (GVN), Baltimore, MD, USA
| |
Collapse
|
43
|
Swanson PA, Padilla M, Hoyland W, McGlinchey K, Fields PA, Bibi S, Faust SN, McDermott AB, Lambe T, Pollard AJ, Durham NM, Kelly EJ. AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein-specific T H1 response with a diverse TCR repertoire. Sci Transl Med 2021; 13:eabj7211. [PMID: 34591596 PMCID: PMC9924073 DOI: 10.1126/scitranslmed.abj7211] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
AZD1222 (ChAdOx1 nCoV-19), a replication-deficient simian adenovirus–vectored vaccine, has demonstrated safety, efficacy, and immunogenicity against coronavirus disease 2019 in clinical trials and real-world studies. We characterized CD4+ and CD8+ T cell responses induced by AZD1222 vaccination in peripheral blood mononuclear cells from 296 unique vaccine recipients aged 18 to 85 years who enrolled in the phase 2/3 COV002 trial. Total spike protein–specific CD4+ T cell helper type 1 (TH1) and CD8+ T cell responses were increased in AZD1222-vaccinated adults of all ages after two doses of AZD1222. CD4+ TH2 responses after AZD1222 vaccination were not detected. Furthermore, AZD1222-specific TH1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups. T cell receptor β (TCRβ) sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for both AZD1222-induced CD4+ and CD8+ T cell responses. Overall, AZD1222 vaccination induced a polyfunctional TH1-dominated T cell response, with broad CD4+ and CD8+ T cell coverage across the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Phillip A. Swanson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcelino Padilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wesley Hoyland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly McGlinchey
- Discovery, Research and Early Development, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford OX4 6PG, UK
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, and Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford OX4 6PG, UK
| | - Nicholas M. Durham
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Elizabeth J. Kelly
- Translational Medicine, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | |
Collapse
|
44
|
van Aalderen MC, van Lier RAW, Hombrink P. How to Reliably Define Human CD8 + T-Cell Subsets: Markers Playing Tricks. Cold Spring Harb Perspect Biol 2021; 13:a037747. [PMID: 33782028 PMCID: PMC8559543 DOI: 10.1101/cshperspect.a037747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, our understanding about the functional complexity of CD8+ T-cell populations has increased tremendously. The immunology field is now facing challenges to translate these insights into phenotypic definitions that correlate reliably with distinct functional traits. This is key to adequately monitor and understand compound immune responses including vaccination and immunotherapy regimens. Here we will summarize our understanding of the current state in the human CD8+ T-cell subset characterization field. We will address how reliably the currently used cell surface markers are connected to differentiation status and function of particular subsets. By restricting ourselves to CD8+ αβ T cells, we will focus mostly on major histocompatibility complex (MHC) class I-restricted virus- and tumor-specific T cells. This comes with a major advantage as fluorescently labeled peptide-loaded MHC class I multimers have been widely used to identify and characterize these cells.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre (AUMC), Amsterdam 1105 AZ, The Netherlands
| | - Rene A W van Lier
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| | - Pleun Hombrink
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
45
|
Zarnitsyna VI, Akondy RS, Ahmed H, McGuire DJ, Zarnitsyn VG, Moore M, Johnson PLF, Ahmed R, Li KW, Hellerstein MK, Antia R. Dynamics and turnover of memory CD8 T cell responses following yellow fever vaccination. PLoS Comput Biol 2021; 17:e1009468. [PMID: 34648489 PMCID: PMC8568194 DOI: 10.1371/journal.pcbi.1009468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 11/04/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding how immunological memory lasts a lifetime requires quantifying changes in the number of memory cells as well as how their division and death rates change over time. We address these questions by using a statistically powerful mixed-effects differential equations framework to analyze data from two human studies that follow CD8 T cell responses to the yellow fever vaccine (YFV-17D). Models were first fit to the frequency of YFV-specific memory CD8 T cells and deuterium enrichment in those cells 42 days to 1 year post-vaccination. A different dataset, on the loss of YFV-specific CD8 T cells over three decades, was used to assess out of sample predictions of our models. The commonly used exponential and bi-exponential decline models performed relatively poorly. Models with the cell loss following a power law (exactly or approximately) were most predictive. Notably, using only the first year of data, these models accurately predicted T cell frequencies up to 30 years post-vaccination. Our analyses suggest that division rates of these cells drop and plateau at a low level (0.1% per day, ∼ double the estimated values for naive T cells) within one year following vaccination, whereas death rates continue to decline for much longer. Our results show that power laws can be predictive for T cell memory, a finding that may be useful for vaccine evaluation and epidemiological modeling. Moreover, since power laws asymptotically decline more slowly than any exponential decline, our results help explain the longevity of immune memory phenomenologically. Immunological memory, generated in response to infection or vaccination, may provide complete or partial protection from antigenically similar infections for the lifetime. Memory CD8 T cells are important players in protection from secondary viral infections but quantitative understanding of their dynamics in humans is limited. We analyze data from two studies where immunization with the yellow fever virus vaccine (YFV-17D) generates a mild acute infection and long-term memory. We find that: (i) the division rate of YFV-17D-specific CD8 T cells drops and stabilizes at ∼ 0.1% per day during the first year following vaccination whereas the death rate declines more gradually, and (ii) the number of these cells declines approximately in accordance with a power law (∝ time−0.75) for at least several decades following vaccination.
Collapse
Affiliation(s)
- Veronika I. Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (VIZ); (RAn)
| | - Rama S. Akondy
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, India
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Donald J. McGuire
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | | | - Mia Moore
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Philip L. F. Johnson
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kelvin W. Li
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, California, United States of America
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (VIZ); (RAn)
| |
Collapse
|
46
|
Khan MA, Khan A. Role of NKT Cells during Viral Infection and the Development of NKT Cell-Based Nanovaccines. Vaccines (Basel) 2021; 9:vaccines9090949. [PMID: 34579186 PMCID: PMC8473043 DOI: 10.3390/vaccines9090949] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Natural killer T (NKT) cells, a small population of T cells, are capable of influencing a wide range of the immune cells, including T cells, B cells, dendritic cells and macrophages. In the present review, the antiviral role of the NKT cells and the strategies of viruses to evade the functioning of NKT cell have been illustrated. The nanoparticle-based formulations have superior immunoadjuvant potential by facilitating the efficient antigen processing and presentation that favorably elicits the antigen-specific immune response. Finally, the immunoadjuvant potential of the NKT cell ligand was explored in the development of antiviral vaccines. The use of an NKT cell-activating nanoparticle-based vaccine delivery system was supported in order to avoid the NKT cell anergy. The results from the animal and preclinical studies demonstrated that nanoparticle-incorporated NKT cell ligands may have potential implications as an immunoadjuvant in the formulation of an effective antiviral vaccine that is capable of eliciting the antigen-specific activation of the cell-mediated and humoral immune responses.
Collapse
|
47
|
Sandberg JT, Ols S, Löfling M, Varnaitė R, Lindgren G, Nilsson O, Rombo L, Kalén M, Loré K, Blom K, Ljunggren HG. Activation and Kinetics of Circulating T Follicular Helper Cells, Specific Plasmablast Response, and Development of Neutralizing Antibodies following Yellow Fever Virus Vaccination. THE JOURNAL OF IMMUNOLOGY 2021; 207:1033-1043. [PMID: 34321231 DOI: 10.4049/jimmunol.2001381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
A single dose of the replication-competent, live-attenuated yellow fever virus (YFV) 17D vaccine provides lifelong immunity against human YFV infection. The magnitude, kinetics, and specificity of B cell responses to YFV 17D are relatively less understood than T cell responses. In this clinical study, we focused on early immune events critical for the development of humoral immunity to YFV 17D vaccination in 24 study subjects. More specifically, we studied the dynamics of several immune cell populations over time and the development of neutralizing Abs. At 7 d following vaccination, YFV RNA in serum as well as several antiviral proteins were detected as a sign of YFV 17D replication. Activation of Th1-polarized circulating T follicular helper cells followed germinal center activity, the latter assessed by the surrogate marker CXCL13 in serum. This coincided with a plasmablast expansion peaking at day 14 before returning to baseline levels at day 28. FluoroSpot-based analysis confirmed that plasmablasts were specific to the YFV-E protein. The frequencies of plasmablasts correlated with the magnitude of neutralizing Ab titers measured at day 90, suggesting that this transient B cell subset could be used as an early marker of induction of protective immunity. Additionally, YFV-specific memory B cells were readily detectable at 28 and 90 d following vaccination, and all study subjects tested developed protective neutralizing Ab titers. Taken together, these studies provide insights into key immune events leading to human B cell immunity following vaccination with the YFV 17D vaccine.
Collapse
Affiliation(s)
- John Tyler Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Marie Löfling
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Lindgren
- Cell Therapy and Allogenic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,School of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| | - Lars Rombo
- Center for Clinical Research, Eskilstuna, Sörmland, Sweden; and.,School of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| | - Markus Kalén
- Department of Infection Medicine, Mälarsjukhuset, Eskilstuna, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden;
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Schouest B, Beddingfield BJ, Gilbert MH, Bohm RP, Schiro F, Aye PP, Panganiban AT, Magnani DM, Maness NJ. Zika virus infection during pregnancy protects against secondary infection in the absence of CD8 + cells. Virology 2021; 559:100-110. [PMID: 33865073 PMCID: PMC8212702 DOI: 10.1016/j.virol.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023]
Abstract
While T cell immunity is an important component of the immune response to Zika virus (ZIKV) infection generally, the efficacy of these responses during pregnancy remains unknown. Here, we tested the capacity of CD8 lymphocytes to protect from secondary challenge in four macaques, two of which were depleted of CD8+ cells prior to rechallenge with a heterologous ZIKV isolate. The initial challenge during pregnancy produced transcriptional signatures suggesting complex patterns of immune modulation as well as neutralizing antibodies that persisted until rechallenge, which all animals efficiently controlled, demonstrating that the primary infection conferred adequate protection. The secondary challenge promoted activation of innate and adaptive immune cells, possibly suggesting a brief period of infection prior to clearance. These data confirm that ZIKV infection during pregnancy induces sufficient immunity to protect from a secondary challenge and suggest that this protection is not dependent on CD8 T cells.
Collapse
Affiliation(s)
- Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Margaret H Gilbert
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Antonito T Panganiban
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Diogo M Magnani
- Department of Medicine, University of Massachusetts, Boston, MA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
49
|
Mokaya J, Kimathi D, Lambe T, Warimwe GM. What Constitutes Protective Immunity Following Yellow Fever Vaccination? Vaccines (Basel) 2021; 9:671. [PMID: 34207358 PMCID: PMC8235545 DOI: 10.3390/vaccines9060671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 06/16/2021] [Indexed: 01/08/2023] Open
Abstract
Yellow fever (YF) remains a threat to global health, with an increasing number of major outbreaks in the tropical areas of the world over the recent past. In light of this, the Eliminate Yellow Fever Epidemics Strategy was established with the aim of protecting one billion people at risk of YF through vaccination by the year 2026. The current YF vaccine gives excellent protection, but its use is limited by shortages in supply due to the difficulties in producing the vaccine. There are good grounds for believing that alternative fractional dosing regimens can produce strong protection and overcome the problem of supply shortages as less vaccine is required per person. However, immune responses to these vaccination approaches are yet to be fully understood. In addition, published data on immune responses following YF vaccination have mostly quantified neutralising antibody titers. However, vaccine-induced antibodies can confer immunity through other antibody effector functions beyond neutralisation, and an effective vaccine is also likely to induce strong and persistent memory T cell responses. This review highlights the gaps in knowledge in the characterisation of YF vaccine-induced protective immunity in the absence or presence of neutralising antibodies. The assessment of biophysical antibody characteristics and cell-mediated immunity following YF vaccination could help provide a comprehensive landscape of YF vaccine-induced immunity and a better understanding of correlates of protective immunity.
Collapse
Affiliation(s)
- Jolynne Mokaya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 3SU, UK; (D.K.); (G.M.W.)
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230-80108, Kilifi 8010, Kenya
| | - Derick Kimathi
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 3SU, UK; (D.K.); (G.M.W.)
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230-80108, Kilifi 8010, Kenya
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK;
| | - George M. Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 3SU, UK; (D.K.); (G.M.W.)
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230-80108, Kilifi 8010, Kenya
| |
Collapse
|
50
|
Pan YG, Aiamkitsumrit B, Bartolo L, Wang Y, Lavery C, Marc A, Holec PV, Rappazzo CG, Eilola T, Gimotty PA, Hensley SE, Antia R, Zarnitsyna VI, Birnbaum ME, Su LF. Vaccination reshapes the virus-specific T cell repertoire in unexposed adults. Immunity 2021; 54:1245-1256.e5. [PMID: 34004140 PMCID: PMC8192456 DOI: 10.1016/j.immuni.2021.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
We examined how baseline CD4+ T cell repertoire and precursor states impact responses to pathogen infection in humans using primary immunization with yellow fever virus (YFV) vaccine. YFV-specific T cells in unexposed individuals were identified by peptide-MHC tetramer staining and tracked pre- and post-vaccination by tetramers and TCR sequencing. A substantial number of YFV-reactive T cells expressed memory phenotype markers and contained expanded clones in the absence of exposure to YFV. After vaccination, pre-existing YFV-specific T cell populations with low clonal diversity underwent limited expansion, but rare populations with a reservoir of unexpanded TCRs generated robust responses. These altered dynamics reorganized the immunodominance hierarchy and resulted in an overall increase in higher avidity T cells. Thus, instead of further increasing the representation of dominant clones, YFV vaccination recruits rare and more responsive T cells. Our findings illustrate the impact of vaccines in prioritizing T cell responses and reveal repertoire reorganization as a key component of effective vaccination.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamas Aiamkitsumrit
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yifeng Wang
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Criswell Lavery
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Adam Marc
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Patrick V Holec
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Garrett Rappazzo
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theresa Eilola
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Michael E Birnbaum
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura F Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|