1
|
Nguyen NDNT, Subratheepam S, Guleed S, Melchiors KM, Olsen AW, Wørzner K, Follmann F, Dietrich J. Post-exposure vaccine protection of CTH522/CAF ®01 against reinfection with Chlamydia trachomatis requires Th1/Th17 but not Th2-immunity. NPJ Vaccines 2025; 10:65. [PMID: 40175404 PMCID: PMC11965518 DOI: 10.1038/s41541-025-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
Chlamydia trachomatis (C.t.) is globally the most common sexually transmitted bacterium with an estimated 131 million new cases occurring every year. There is no licenced vaccine against C.t. Repeated infections are often observed in women, suggesting that natural immunity is only partially protective. It is therefore important to investigate if a vaccine given post exposure, on top of a partially protective natural immunity, can increase protection against reinfection. In mice, an infection leads to robust immunity to subsequent challenges that precludes an investigation of increased protection elicited by a post-exposure vaccine. Therefore, we developed a new animal model where the first infection only provided partial protection against reinfection. Using this model, we show that UV-SvD/CAF®01 and CTH522/CAF®01 as post-exposure parenteral vaccines, but not CTH522/AlOH, protected against reinfection. As CTH522/CAF®01 also reduced the gross pathology score post reinfection, this suggests that CTH522/CAF®01 is both protective and safe as a post-exposure vaccine.
Collapse
Affiliation(s)
| | - Sharmila Subratheepam
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
| | - Safia Guleed
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
| | | | - Anja Weinreich Olsen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
| | - Katharina Wørzner
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
| | - Frank Follmann
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark
| | - Jes Dietrich
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| |
Collapse
|
2
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
3
|
Huang S, Li X, Cao Y, Mou M, Li J, Zhuo K, Wang L, Zeng Z, Wei X, Tang C, Zhong M. TLR5 activation in respiratory epithelial cells orchestrate mucosal Th17 response through both indirect and direct pathways. Respir Res 2025; 26:104. [PMID: 40098159 PMCID: PMC11916947 DOI: 10.1186/s12931-025-03186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Flagellin, a potent mucosal adjuvant administered via the intranasal route, has been widely recognized for its capacity to enhance immune responses against diverse pathogens. However, the effects and the underlying mechanisms by which flagellin modulates CD4+ T cell differentiation remain incompletely understood. METHODS Recombinant flagellin proteins, including full-length flagellin (SF) and a TLR5-binding deficient variant (SFΔ90-97), were produced and purified. An OT-II derived CD4+ T cell adoptive transfer model, a classical intranasal immunization model and dendritic cell (DC)-CD4+ T co-culturing system were used. The proliferation and differentiation of CD4+ T cells were analyzed using flow cytometry analysis. RNA sequencing and neutralizing antibody blocking experiments were performed to determine the essential cytokines involved in flagellin modulated Th17 differentiation. RESULTS Flagellin preferentially promotes Th17 cells differentiation. Respiratory epithelial cells (RECs), acting as sentinel cells, are the first to encounter exogenous stimuli during intranasal immunization. Flagellin stimulates the secretion of various soluble cytokines by binding to TLR5 on the surface of RECs, with GM-CSF facilitating the functional activation of airway DCs. GM-CSF-conditioned DCs exhibit upregulated IL-6 expression which in turn drives the polarization of naïve CD4+ T cells toward the Th17 phenotype. Furthermore, TLR5-regulated REC-derived IL-6 synergizes with TLR5-modulated DCs to amplify Th17 polarization signals, thereby enhancing the Th17 induction. CONCLUSION Flagellin preferentially induced a Th17-enhanced immune response and RECs were highlighted its essential roles during this process through both indirect and direct pathways. For indirect pathway, RECs modulate DC function through GM-CSF. Moreover, RECs directly contribute to Th17 differentiation by secreting IL-6.
Collapse
Affiliation(s)
- Sijian Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xu Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Clinical Laboratory, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Yuan Cao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Analytical & Testing Center, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, China
| | - Man Mou
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
- Department of Blood Transfusion, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430056, China
| | - Jianlun Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Kexing Zhuo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Lijuan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Zihang Zeng
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Xianghong Wei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China
| | - Chunlian Tang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, 430063, China.
| | - Maohua Zhong
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, # 2 Huangjiahu West Road, Wuhan, Hubei, 430065, China.
| |
Collapse
|
4
|
Artola-Borán M, Kirsche L, Fallegger A, Leary P, Tanriover M, Goodwin T, Geiger G, Hapfelmeier S, Yousefi S, Simon HU, Arnold IC, Müller A. IgA facilitates the persistence of the mucosal pathogen Helicobacter pylori. Mucosal Immunol 2025; 18:232-247. [PMID: 39581230 DOI: 10.1016/j.mucimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
IgA antibodies have an important role in clearing mucosal pathogens. In this study, we have examined the contribution of IgA to the immune control of the gastrointestinal bacterial pathogens Helicobacter pylori and Citrobacter rodentium. Both bacteria trigger a strong local IgA response that results in bacterial IgA coating in mice and in gastritis patients. Class switching to IgA depends on Peyer's patches, T-cells, eosinophils, and eosinophil-derived TGF-β in both models. In the case of H. pylori, IgA secretion and bacterial coating also depend on a functional bacterial type IV secretion system, which drives the generation of Th17 cells and the IL-17-dependent expression of the polymeric immunoglobulin receptor PIGR. IgA-/- mice are hypercolonized with C. rodentium in all examined tissues, suffer from more severe weight loss and develop more colitis. In contrast, H. pylori is controlled more efficiently in IgA-/- mice than their WT counterparts. The effects of IgA deficiency of the offspring can be compensated by maternal IgA delivered by WT foster mothers. We attribute the improved immune control observed in IgA-/- mice to IgA-mediated protection from complement killing, as H. pylori colonization is restored to wild type levels in a composite strain lacking both IgA and the central complement component C3. IgA antibodies can thus have protective or detrimental activities depending on the infectious agent.
Collapse
Affiliation(s)
- Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Angela Fallegger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - Mine Tanriover
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Tanja Goodwin
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Gavin Geiger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Pollard MD, Meyer WK, Puckett EE. Convergent relaxation of molecular constraint in herbivores reveals the changing role of liver and kidney functions across mammalian diets. Genome Res 2024; 34:2176-2189. [PMID: 39578099 PMCID: PMC11694762 DOI: 10.1101/gr.278930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Mammalia comprises a great diversity of diet types and associated adaptations. An understanding of the genomic mechanisms underlying these adaptations may offer insights for improving human health. Comparative genomic studies of diet that employ taxonomically restricted analyses or simplified diet classifications may suffer reduced power to detect molecular convergence associated with diet evolution. Here, we use a quantitative carnivory score-indicative of the amount of animal protein in the diet-for 80 mammalian species to detect significant correlations between the relative evolutionary rates of genes and changes in diet. We have identified six genes-ACADSB, CLDN16, CPB1, PNLIP, SLC13A2, and SLC14A2-that experienced significant changes in evolutionary constraint alongside changes in carnivory score, becoming less constrained in lineages evolving more herbivorous diets. We further consider the biological functions associated with diet evolution and observe that pathways related to amino acid and lipid metabolism, biological oxidation, and small molecule transport experienced reduced purifying selection as lineages became more herbivorous. Liver and kidney functions show similar patterns of constraint with dietary change. Our results indicate that these functions are important for the consumption of animal matter and become less important with the evolution of increasing herbivory. So, genes expressed in these tissues experience a relaxation of evolutionary constraint in more herbivorous lineages.
Collapse
Affiliation(s)
- Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA;
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152, USA
- Center for Biodiversity Research, University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
6
|
Cao EY, Burrows K, Chiaranunt P, Popovic A, Zhou X, Xie C, Thakur A, Britton G, Spindler M, Ngai L, Tai SL, Dasoveanu DC, Nguyen A, Faith JJ, Parkinson J, Gommerman JL, Mortha A. The protozoan commensal Tritrichomonas musculis is a natural adjuvant for mucosal IgA. J Exp Med 2024; 221:e20221727. [PMID: 39535524 PMCID: PMC11561467 DOI: 10.1084/jem.20221727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Immunoglobulin (Ig) A supports mucosal immune homeostasis and host-microbiota interactions. While commensal bacteria are known for their ability to promote IgA, the role of non-bacterial commensal microbes in the induction of IgA remains elusive. Here, we demonstrate that permanent colonization with the protozoan commensal Tritrichomonas musculis (T.mu) promotes T cell-dependent, IgA class-switch recombination, and intestinal accumulation of IgA-secreting plasma cells (PC). T.mu colonization specifically drives the expansion of T follicular helper cells and a unique ICOS+ non-Tfh cell population, accompanied by an increase in germinal center B cells. Blockade of ICOS:ICOSL co-stimulation or MHCII-expression on B cells is central for the induction of IgA following colonization by T.mu, implicating a previously underappreciated mode of IgA induction following protozoan commensal colonization. Finally, T.mu further improves the induction of IgA-secreting PC specific to orally ingested antigens and their peripheral dissemination, identifying T.mu as a "natural adjuvant" for IgA. Collectively, these findings propose a protozoa-driven mode of IgA induction to support intestinal immune homeostasis.
Collapse
Affiliation(s)
- Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Xueyang Zhou
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Cong Xie
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Ayushi Thakur
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Graham Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Spindler
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Albert Nguyen
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Heidari M, Maleki Vareki S, Yaghobi R, Karimi MH. Microbiota activation and regulation of adaptive immunity. Front Immunol 2024; 15:1429436. [PMID: 39445008 PMCID: PMC11496076 DOI: 10.3389/fimmu.2024.1429436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024] Open
Abstract
In the mucosa, T cells and B cells of the immune system are essential for maintaining immune homeostasis by suppressing reactions to harmless antigens and upholding the integrity of intestinal mucosal barrier functions. Host immunity and homeostasis are regulated by metabolites produced by the gut microbiota, which has developed through the long-term coevolution of the host and the gut biome. This is achieved by the immunological system's tolerance for symbiote microbiota, and its ability to generate a proinflammatory response against invasive organisms. The imbalance of the intestinal immune system with commensal organisms is causing a disturbance in the homeostasis of the gut microbiome. The lack of balance results in microbiota dysbiosis, the weakened integrity of the gut barrier, and the development of inflammatory immune reactions toward symbiotic organisms. Researchers may uncover potential therapeutic targets for preventing or regulating inflammatory diseases by understanding the interactions between adaptive immunity and the microbiota. This discussion will explore the connection between adaptive immunity and microbiota.
Collapse
Affiliation(s)
- Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Maleki Vareki
- Department of Oncology, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
8
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Siniscalco ER, Williams A, Eisenbarth SC. All roads lead to IgA: Mapping the many pathways of IgA induction in the gut. Immunol Rev 2024; 326:66-82. [PMID: 39046160 DOI: 10.1111/imr.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.
Collapse
Affiliation(s)
- Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Williams
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Kinashi Y, Tanaka K, Kimura S, Hirota M, Komiyama S, Shindo T, Hashiguchi A, Takahashi D, Shibata S, Karaki SI, Ohno H, Hase K. Intestinal epithelium dysfunctions cause IgA deposition in the kidney glomeruli of intestine-specific Ap1m2-deficient mice. EBioMedicine 2024; 106:105256. [PMID: 39059316 PMCID: PMC11338063 DOI: 10.1016/j.ebiom.2024.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Intestinal epithelial cells (IECs) serve as robust barriers against potentially hostile luminal antigens and commensal microbiota. Epithelial barrier dysfunction enhances intestinal permeability, leading to leaky gut syndrome (LGS) associated with autoimmune and chronic inflammatory disorders. However, a causal relationship between LGS and systemic disorders remains unclear. Ap1m2 encodes clathrin adaptor protein complex 1 subunit mu 2, which facilitates polarized protein trafficking toward the basolateral membrane and contributes to the establishment of epithelial barrier functions. METHODS We generated IEC-specific Ap1m2-deficient (Ap1m2ΔIEC) mice with low intestinal barrier integrity as an LSG model and examined the systemic impact. FINDINGS Ap1m2ΔIEC mice spontaneously developed IgA nephropathy (IgAN)-like features characterized by the deposition of IgA-IgG immune complexes and complement factors in the kidney glomeruli. Ap1m2 deficiency markedly enhanced aberrantly glycosylated IgA in the serum owing to downregulation and mis-sorting of polymeric immunoglobulin receptors in IECs. Furthermore, Ap1m2 deficiency caused intestinal dysbiosis by attenuating IL-22-STAT3 signaling. Intestinal dysbiosis contributed to the pathogenesis of IgAN because antibiotic treatment reduced aberrantly glycosylated IgA production and renal IgA deposition in Ap1m2ΔIEC mice. INTERPRETATION IEC barrier dysfunction and subsequent dysbiosis by AP-1B deficiency provoke IgA deposition in the mouse kidney. Our findings provide experimental evidence of a pathological link between LGS and IgAN. FUNDING AMED, AMED-CREST, JSPS Grants-in-Aid for Scientific Research, JST CREST, Fuji Foundation for Protein Research, and Keio University Program for the Advancement of Next Generation Research Projects.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Keisuke Tanaka
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.
| | - Masato Hirota
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Seiga Komiyama
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Akinori Hashiguchi
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan; Depatment of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shin-Ichiro Karaki
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
11
|
Zhang B, Chen S, Yin X, McBride CD, Gertie JA, Yurieva M, Bielecka AA, Hoffmann B, Travis Hinson J, Grassmann J, Xu L, Siniscalco ER, Soldatenko A, Hoyt L, Joseph J, Norton EB, Uthaman G, Palm NW, Liu E, Eisenbarth SC, Williams A. Metabolic fitness of IgA + plasma cells in the gut requires DOCK8. Mucosal Immunol 2024; 17:431-449. [PMID: 38159726 PMCID: PMC11571232 DOI: 10.1016/j.mucimm.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caleb D McBride
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Immunoregulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Brian Hoffmann
- Mass Spectrometry and Protein Chemistry, The Jackson Laboratory for Genomic Medicine, Bar Harbor, ME 04609, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Cardiology center, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Lan Xu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily R Siniscalco
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arielle Soldatenko
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Hoyt
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gowthaman Uthaman
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Adam Williams
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
13
|
Brackman LC, Jung MS, Ogaga EI, Joshi N, Wroblewski LE, Piazuelo MB, Peek RM, Choksi YA, Algood HMS. IL-17RA-Mediated Epithelial Cell Activity Prevents Severe Inflammatory Response to Helicobacter pylori Infection. Immunohorizons 2024; 8:339-353. [PMID: 38639570 PMCID: PMC11066722 DOI: 10.4049/immunohorizons.2300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Helicobacter pylori is a Gram-negative pathogen that colonizes the stomach, induces inflammation, and drives pathological changes in the stomach tissue, including gastric cancer. As the principal cytokine produced by Th17 cells, IL-17 mediates protective immunity against pathogens by inducing the activation and mobilization of neutrophils. Whereas IL-17A is largely produced by lymphocytes, the IL-17 receptor is expressed in epithelial cells, fibroblasts, and hematopoietic cells. Loss of the IL-17RA in mice results in impaired antimicrobial responses to extracellular bacteria. In the context of H. pylori infection, this is compounded by extensive inflammation in Il17ra-/- mice. In this study, Foxa3creIl17rafl/fl (Il17raΔGI-Epi) and Il17rafl/fl (control) mice were used to test the hypothesis that IL-17RA signaling, specifically in epithelial cells, protects against severe inflammation after H. pylori infection. The data indicate that Il17raΔGI-Epi mice develop increased inflammation compared with controls. Despite reduced Pigr expression, levels of IgA increased in the gastric wash, suggesting significant increase in Ag-specific activation of the T follicular helper/B cell axis. Gene expression analysis of stomach tissues indicate that both acute and chronic responses are significantly increased in Il17raΔGI-Epi mice compared with controls. These data suggest that a deficiency of IL-17RA in epithelial cells is sufficient to drive chronic inflammation and hyperactivation of the Th17/T follicular helper/B cell axis but is not required for recruitment of polymorphonuclear neutrophils. Furthermore, the data suggest that fibroblasts can produce chemokines in response to IL-17 and may contribute to H. pylori-induced inflammation through this pathway.
Collapse
Affiliation(s)
- Lee C. Brackman
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew S. Jung
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Eseoghene I. Ogaga
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
| | - Nikhita Joshi
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
- Vanderbilt University, School of Biological Sciences, Nashville, TN
| | - Lydia E. Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yash A. Choksi
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Holly M. Scott Algood
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute of Infection, Immunity, and Inflammation, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
14
|
Dang HT, Tran DM, Phung TTB, Bui ATP, Vu YH, Luong MT, Nguyen HM, Trinh HT, Nguyen TT, Nguyen AH, Van Nguyen AT. Promising clinical and immunological efficacy of Bacillus clausii spore probiotics for supportive treatment of persistent diarrhea in children. Sci Rep 2024; 14:6422. [PMID: 38494525 PMCID: PMC10944834 DOI: 10.1038/s41598-024-56627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Persistent diarrhea is a severe gastroenteric disease with relatively high risk of pediatric mortality in developing countries. We conducted a randomized, double-blind, controlled clinical trial to evaluate the efficacy of liquid-form Bacillus clausii spore probiotics (LiveSpo CLAUSY; 2 billion CFU/5 mL ampoule) at high dosages of 4-6 ampoules a day in supporting treatment of children with persistent diarrhea. Our findings showed that B. clausii spores significantly improved treatment outcomes, resulting in a 2-day shorter recovery period (p < 0.05) and a 1.5-1.6 folds greater efficacy in reducing diarrhea symptoms, such as high frequency of bowel movement of ≥ 3 stools a day, presence of fecal mucus, and diapered infant stool scale types 4-5B. LiveSpo CLAUSY supportive treatment achieved 3 days (p < 0.0001) faster recovery from diarrhea disease, with 1.6-fold improved treatment efficacy. At day 5 of treatment, a significant decrease in blood levels of pro-inflammatory cytokines TNF-α, IL-17, and IL-23 by 3.24% (p = 0.0409), 29.76% (p = 0.0001), and 10.87% (p = 0.0036), respectively, was observed in the Clausy group. Simultaneously, there was a significant 37.97% decrease (p = 0.0326) in the excreted IgA in stool at day 5 in the Clausy group. Overall, the clinical study demonstrates the efficacy of B. clausii spores (LiveSpo CLAUSY) as an effective symptomatic treatment and immunomodulatory agent for persistent diarrhea in children.Trial registration: NCT05812820.
Collapse
Affiliation(s)
- Ha Thuy Dang
- Department of Gastroenterology, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Dien Minh Tran
- Department of Surgical Intensive Care Unit, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Thuy Thi Bich Phung
- Department of Molecular Biology for Infectious Diseases, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Anh Thi Phuong Bui
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7,8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam
| | - Yen Hai Vu
- Department of Gastroenterology, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Minh Thi Luong
- Department of Gastroenterology, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Hang Minh Nguyen
- Department of Molecular Biology for Infectious Diseases, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Huong Thi Trinh
- Department of Molecular Biology for Infectious Diseases, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Tham Thi Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7,8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam
| | - Anh Hoa Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7,8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
- LiveSpo Pharma Ltd. Company, N03T5, Ngoai Giao Doan Urban, Bac Tu Liem, Hanoi, Vietnam.
| | - Anh Thi Van Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7,8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
| |
Collapse
|
15
|
Chakraborty S, Dutta P, Pal A, Chakraborty S, Banik G, Halder P, Gope A, Miyoshi SI, Das S. Intranasal immunization of mice with chimera of Salmonella Typhi protein elicits protective intestinal immunity. NPJ Vaccines 2024; 9:24. [PMID: 38321067 PMCID: PMC10847434 DOI: 10.1038/s41541-024-00812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Development of safe, highly effective and affordable enteric fever vaccines is a global health priority. Live, oral typhoid vaccines induce strong mucosal immunity and long-term protection, but safety remains a concern. In contrast, efficacy wears off rapidly for injectable, polysaccharide-based vaccines, which elicit poor mucosal response. We previously reported Salmonella Typhi outer membrane protein, T2544 as a potential candidate for bivalent (S. Typhi and S. Paratyphi A) vaccine development. Here, we show that intranasal immunization with a subunit vaccine (chimera of T2544 and cholera toxin B subunit) induced strong systemic and intestinal mucosal immunity and protection from S. Typhi challenge in a mouse model. CTB-T2544 augmented gut-homing receptor expression on lymphocytes that produced Th1 and Th17 cytokines, secretory IgA in stool that inhibited bacterial motility and epithelial attachment, antibody recall response and affinity maturation with increased number of follicular helper T cells and CD4+ central and effector memory cells.
Collapse
Affiliation(s)
- Suparna Chakraborty
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Pujarini Dutta
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tuscon, AZ, USA
| | - Ananda Pal
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Swarnali Chakraborty
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - George Banik
- BD Biosciences, INDIA, Smart works Business Center, Victoria Park, 37/2 GN Block, Sector 5, Saltlake City, Kolkata, 700091, India
| | - Prolay Halder
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Center of Okayama University for Infectious Diseases at Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR- National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, 700 010, India.
- ICMR-National Institute of Occupational Health, Meghaninagar, Ahmedabad, 3800016, Gujarat, India.
| |
Collapse
|
16
|
Kaveh-Samani A, Dalali S, Kaviani F, Piri-Gharaghie T, Doosti A. Oral administration of DNA alginate nanovaccine induced immune-protection against Helicobacter pylori in Balb/C mice. BMC Immunol 2024; 25:11. [PMID: 38310250 PMCID: PMC10838413 DOI: 10.1186/s12865-024-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. Pylori), is an established causative factor for the development of gastric cancer and the induction of persistent stomach infections that may lead to peptic ulcers. In recent decades, several endeavours have been undertaken to develop a vaccine for H. pylori, although none have advanced to the clinical phase. The development of a successful H. pylori vaccine is hindered by particular challenges, such as the absence of secure mucosal vaccines to enhance local immune responses, the absence of identified antigens that are effective in vaccinations, and the absence of recognized indicators of protection. METHODS The DNA vaccine was chemically cloned, and the cloning was verified using PCR and restriction enzyme digestion. The efficacy of the vaccination was investigated. The immunogenicity and immune-protective efficacy of the vaccination were assessed in BALB/c mice. This study demonstrated that administering a preventive Alginate/pCI-neo-UreH Nanovaccine directly into the stomach effectively triggered a robust immune response to protect against H. pylori infection in mice. RESULTS The level of immune protection achieved with this nano vaccine was similar to that observed when using the widely accepted formalin-killed H. pylori Hel 305 as a positive control. The Alginate/pCI-neo-UreH Nanovaccine composition elicited significant mucosal and systemic antigen-specific antibody responses and strong intestinal and systemic Th1 responses. Moreover, the activation of IL-17R signaling is necessary for the defensive Th1 immune responses in the intestines triggered by Alginate/pCI-neo-UreH. CONCLUSION Alginate/pCI-neo-UreH is a potential Nanovaccine for use in an oral vaccine versus H. pylori infection, according to our findings.
Collapse
Affiliation(s)
- Arezo Kaveh-Samani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Dalali
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Kaviani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tohid Piri-Gharaghie
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Biotechnology Research Center, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
17
|
Wang H, Chi X, Zhang D. Potential Regulatory Gene Network Associated with the Ameliorative Effect of Oat Antibacterial Peptides on Rat Colitis. Foods 2024; 13:236. [PMID: 38254536 PMCID: PMC10814071 DOI: 10.3390/foods13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Oat protein is unstable in intestinal fluid digestion, and it is easily degraded by trypsin and chymotrypsin, producing low molecular weight peptides. Endopeptidase hydrolysis can improve the bioavailability of active peptides and avoid further digestion in the gastrointestinal tract. Antimicrobial peptides (AMPs) can effectively improve host immunity, but most related studies focus on physiology and ecology, and there are few reports on their molecular level. Therefore, in this article, oat peptides were prepared via the simulated digestion method in vitro, and the main metabolites and action factors affecting colitis were screened by using the multi-omics methods in a high-throughput mode to analyze the effect and mechanism of colitis. Firstly, oat antimicrobial peptides were prepared from cationic resin combined with HPLC, and the anti-inflammatory effects of antimicrobial peptides were analyzed in vitro through the use of human colon epithelial (HCoEpiC) anti-inflammatory cells. In vivo experiments using rats have verified that AMPs can effectively prevent colitis caused by dextran sodium sulfate (DSS), reduce intestinal inflammatory cell infiltration and glandular disappearance in the colon, and reduce the apoptosis rate of colon cells. Secondly, metabolomics and transcriptomics were combined to analyze the mechanism of preventing enteritis, and it was found that oat antimicrobial peptides can promote DAG diglycerol production and inhibit the activation of T helper cells (TH), resulting in the down-regulation of key factors in the main downstream pathways of TH1, TH2 and TH17, and inhibit the production of inflammatory cells. At the same time, AMP can activate the wnt pathway, improve the expression of key genes of wnt and frizzled, promote the generation of intestinal stem cells, facilitate the differentiation and repair of intestinal epithelial cells, and prevent the generation of enteritis. Finally, the underlying genetic regulatory network of the important pathway was constructed from the effect of AMP on rat colitis.
Collapse
Affiliation(s)
- Helin Wang
- College of Food Science, Hei Long Jiang Bayi Agricultrue University, Daqing 163319, China; (H.W.); (D.Z.)
| | - Xiaoxing Chi
- College of Food Science, Hei Long Jiang Bayi Agricultrue University, Daqing 163319, China; (H.W.); (D.Z.)
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
- Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Dongjie Zhang
- College of Food Science, Hei Long Jiang Bayi Agricultrue University, Daqing 163319, China; (H.W.); (D.Z.)
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
- Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
18
|
Galván-Peña S, Zhu Y, Hanna BS, Mathis D, Benoist C. A dynamic atlas of immunocyte migration from the gut. Sci Immunol 2024; 9:eadi0672. [PMID: 38181094 PMCID: PMC10964343 DOI: 10.1126/sciimmunol.adi0672] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Dysbiosis in the gut microbiota affects several systemic diseases, possibly by driving the migration of perturbed intestinal immunocytes to extraintestinal tissues. Combining Kaede photoconvertible mice and single-cell genomics, we generated a detailed map of migratory trajectories from the colon, at baseline, and in several models of intestinal and extraintestinal inflammation. All lineages emigrated from the colon in an S1P-dependent manner. B lymphocytes represented the largest contingent, with the unexpected circulation of nonexperienced follicular B cells, which carried a gut-imprinted transcriptomic signature. T cell emigration included distinct groups of RORγ+ and IEL-like CD160+ subsets. Gut inflammation curtailed emigration, except for dendritic cells disseminating to lymph nodes. Colon-emigrating cells distributed differentially to distinct sites of extraintestinal models of inflammation (psoriasis-like skin, arthritic synovium, and tumors). Thus, specific cellular trails originating in the gut and influenced by microbiota may shape peripheral immunity in varied ways.
Collapse
Affiliation(s)
| | - Yangyang Zhu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Bola S. Hanna
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
19
|
Brackman LC, Jung MS, Green EH, Joshi N, Revetta FL, McClain MS, Markham NO, Piazuelo MB, Scott Algood HM. IL-17 signaling protects against Helicobacter pylori-induced gastric cancer. Gut Microbes 2024; 16:2430421. [PMID: 39588838 PMCID: PMC11639209 DOI: 10.1080/19490976.2024.2430421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Helicobacter pylori infection is the predominant risk factor for the development of gastric cancer. Risk is enhanced by specific H. pylori virulence factors, diet, and the inflammatory response. Chronic activation of T helper (Th) 1 and Th17 pathways contributes to prolonged inflammation; yet, higher expression of IL-17 receptor (IL-17RA) is a favorable prognostic marker for survival after gastric cancer diagnosis. The protective impact of IL-17RA signaling is not understood. To investigate if IL-17RA signaling protects during H. pylori-induced carcinogenesis, the transgenic InsGAStg/tg mouse, which is prone to H. pylori-induced gastric cancer, was utilized. InsGAStg/tg mice and InsGAStg/tgIl17ra-/- mice were infected with a cag type 4 secretion system (T4SS) positive H. pylori strain for up to 6 months. Six weeks post-infection, IL-17RA deficiency led to increased bacterial burden, increased gastritis, and development of lymphoid follicles. Increased inflammation was associated with heightened cellular proliferation and earlier loss of parietal and chief cells in InsGAStg/tgIl17ra-/- mice. Gastric cancers developed more frequently by 3- and 6-months post-infection in H. pylori-infected InsGAStg/tgIl17ra-/- mice compared to InsGAStg/tg mice. Chronic inflammation was exacerbated with IL-17RA deficiency, characterized by elevated Th1/Th17 cytokines, increased B cell infiltration, and enhanced IgA production, despite reduced expression of the polymeric immunoglobulin receptor. Further, paragastric lymph nodes of InsGAStg/tgIl17ra-/- mice were enlarged relative to controls and displayed altered gene expression profiles. Increased inflammation was accompanied by a significant increase in Cybb expression, which encodes NADPH oxidase 2, suggesting that increased oxidative damage may occur in the absence of IL-17RA. Further, there is increased phosphorylation of histone 2AX in IL-17RA deficient mice, indicating that the DNA damage response is highly activated. These data suggest that IL-17RA signaling activates a protective pathway to prevent excessive inflammation which otherwise can lead to increased oxidative stress, DNA damage, and drive gastric carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Lee C. Brackman
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew S. Jung
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily H. Green
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikhita Joshi
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- School of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Frank L. Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O. Markham
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holly M. Scott Algood
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
| |
Collapse
|
20
|
Akhtar M, Basher SR, Nizam NN, Hossain L, Bhuiyan TR, Qadri F, Lundgren A. T helper cell responses in adult diarrheal patients following natural infection with enterotoxigenic Escherichia coli are primarily of the Th17 type. Front Immunol 2023; 14:1220130. [PMID: 37809062 PMCID: PMC10552643 DOI: 10.3389/fimmu.2023.1220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Background Infection with enterotoxigenic Escherichia coli (ETEC) gives rise to IgA antibodies against both the heat labile toxin (LT) and colonization factors (CFs), which are considered to synergistically protect against ETEC diarrhea. Since the development of ETEC-specific long lived plasma cells and memory B cells is likely to be dependent on T helper (Th) cells, we investigated if natural ETEC diarrhea elicits ETEC-specific Th cells and their relation to IgA responses. Methods Th cell subsets were analyzed in adult Bangladeshi patients hospitalized due to ETEC diarrhea by flow cytometric analysis of peripheral blood mononuclear cells (PBMCs) isolated from blood collected day 2, 7, 30 and 90 after hospitalization as well as in healthy controls. The LT- and CF-specific Th responses were determined by analysis of IL-17A and IFN-γ in antigen stimulated PBMC cultures using ELISA. ETEC-specific IgA secreted by circulating antibody secreting cells (plasmablasts) were analyzed by using the antibodies in lymphocyte supernatants (ALS) ELISA-based method and plasma IgA was also measured by ELISA. Results ETEC patients mounted significant ALS and plasma IgA responses against LTB and CFs on day 7 after hospitalization. ETEC patients had significantly elevated proportions of memory Th cells with a Th17 phenotype (CCR6+CXCR3-) in blood compared to controls, while frequencies of Th1 (CCR6-CXCR3+) or Th2 (CCR6-CXCR3-) cells were not increased. Antigen stimulation of PBMCs revealed IL-17A responses to LT, most clearly observed after stimulation with double mutant heat labile toxin (dmLT), but also with LT B subunit (LTB), and to CS6 in samples from patients with LT+ or CS6+ ETEC bacteria. Some individuals also mounted IFN-γ responses to dmLT and LTB. Levels of LTB specific IgA antibodies in ALS, but not plasma samples correlated with both IL-17A (r=0.5, p=0.02) and IFN-γ (r=0.6, p=0.01) responses to dmLT. Conclusions Our results show that ETEC diarrhea induces T cell responses, which are predominantly of the Th17 type. The correlations between IL-17A and IFN-g and intestine-derived plasmablast responses support that Th responses may contribute to the development of protective IgA responses against ETEC infection. These observations provide important insights into T cell responses that need to be considered in the evaluation of advanced ETEC vaccine candidates.
Collapse
Affiliation(s)
- Marjahan Akhtar
- Infectious Diseases Divison, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Salima Raiyan Basher
- Infectious Diseases Divison, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Nuder Nower Nizam
- Infectious Diseases Divison, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Lazina Hossain
- Infectious Diseases Divison, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Divison, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Divison, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anna Lundgren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
21
|
Richter H, Gover O, Schwartz B. Anti-Inflammatory Activity of Black Soldier Fly Oil Associated with Modulation of TLR Signaling: A Metabolomic Approach. Int J Mol Sci 2023; 24:10634. [PMID: 37445812 DOI: 10.3390/ijms241310634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary intervention in the treatment of ulcerative colitis involves, among other things, modifications in fatty acid content and/or profile. For example, replacing saturated long chain fatty acids with medium chain fatty acids (MCFAs) has been reported to ameliorate inflammation. The Black Soldier Fly Larvae's (BSFL) oil is considered a sustainable dietary ingredient rich in the MCFA C12:0; however, its effect on inflammatory-related conditions has not been studied until now. Thus, the present study aimed to investigate the anti-inflammatory activity of BSFL oil in comparison to C12:0 using TLR4- or TLR2-activated THP-1 and J774A.1 cell lines and to assess its putative protective effect against dextran sulfate sodium (DSS)-induced acute colitis in mice. BSFL oil and C12:0 suppressed proinflammatory cytokines release in LPS-stimulated macrophages; however, only BSFL oil exerted anti-inflammatory activity in Pam3CSK4-stimulated macrophages. Transcriptome analysis provided insight into the possible role of BSFL oil in immunometabolism switch, involving mTOR signaling and an increase in PPAR target genes promoting fatty acid oxidation, exhibiting a discrepant mode of action compared to C12:0 treatment, which mainly affected cholesterol biosynthesis pathways. Additionally, we identified anti-inflammatory eicosanoids, oxylipins, and isoprenoids in the BSFL oil that may contribute to an orchestrated anti-inflammatory response. In vivo, a BSFL oil-enriched diet (20%) ameliorated the clinical signs of colitis, as indicated by improved body weight recovery, reduced colon shortening, reduced splenomegaly, and an earlier phase of secretory IgA response. These results indicate the novel beneficial use of BSFL oil as a modulator of inflammation.
Collapse
Affiliation(s)
- Hadas Richter
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Ofer Gover
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
| |
Collapse
|
22
|
Nandiwada SL. Overview of human B-cell development and antibody deficiencies. J Immunol Methods 2023:113485. [PMID: 37150477 DOI: 10.1016/j.jim.2023.113485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
B cells are a key component of the humoral (antibody-mediated) immune response which is responsible for defense against a variety of pathogens. Here we provide an overview of the current understanding of B cell development and function and briefly describe inborn errors of immunity associated with B cell development defects which can manifest as immune deficiency, malignancy, autoimmunity, or allergy. The knowledge and application of B cell biology are essential for laboratory evaluation and clinical assessment of these B cell disorders.
Collapse
Affiliation(s)
- Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
23
|
Yi EJ, Kim YI, Song JH, Ko HJ, Chang SY. Intranasal immunization with curdlan induce Th17 responses and enhance protection against enterovirus 71. Vaccine 2023; 41:2243-2252. [PMID: 36863926 DOI: 10.1016/j.vaccine.2023.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023]
Abstract
Mucosal surfaces are in contact with the external environment and protect the body from infection by various microbes. To prevent infectious diseases at the first line of defense, the establishment of pathogen-specific mucosal immunity by mucosal vaccine delivery is needed. Curdlan, a 1,3-β-glucan has a strong immunostimulatory effect when delivered as a vaccine adjuvant. Here, we investigated whether intranasal administration of curdlan and antigen (Ag) could induce sufficient mucosal immune responses and protect against viral infections. Intranasal co-administration of curdlan and OVA increased OVA-specific IgG and IgA Abs in both serum and mucosal secretions. In addition, intranasal co-administration of curdlan and OVA induced the differentiation of OVA-specific Th1/Th17 cells in the draining lymph nodes. To investigate the protective immunity of curdlan against viral infection, intranasal co-administration of curdlan with recombinant VP1 of EV71 C4a was administered and showed enhanced protection against enterovirus 71 in a passive serum transfer model using neonatal hSCARB2 mice, although intranasal administration of VP1 plus curdlan increased VP1-specific helper T cells responses but not mucosal IgA. Next, Mongolian gerbils were intranasally immunized with curdlan plus VP1, and they had effective protection against EV71 C4a infection, while decreasing viral infection and tissue damage by inducing Th17 responses. These results indicated that intranasal curdlan with Ag improved Ag-specific protective immunity by enhancing mucosal IgA and Th17 against viral infection. Our results suggest that curdlan is an advantageous candidate as a mucosal adjuvant and delivery vehicle for the development of mucosal vaccines.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Young-In Kim
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea; AI-Superconvergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea.
| |
Collapse
|
24
|
Loh JT, Lam KP. Fungal infections: Immune defense, immunotherapies and vaccines. Adv Drug Deliv Rev 2023; 196:114775. [PMID: 36924530 DOI: 10.1016/j.addr.2023.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Invasive fungal infection is an under recognized and emerging global health threat. Recently, the World Health Organization (WHO) released the first ever list of health-threatening fungi to guide research and public health interventions to strengthen global response to fungi infections and antifungal resistance. Currently, antifungal drugs only demonstrate partial success in improving prognosis of infected patients, and this is compounded by the rapid evolution of drug resistance among fungi species. The increased prevalence of fungal infections in individuals with underlying immunological deficiencies reflects the importance of an intact host immune system in controlling mycoses, and further highlights immunomodulation as a potential new avenue for the treatment of disseminated fungal diseases. In this review, we will summarize how host innate immune cells sense invading fungi through their pattern recognition receptors, and subsequently initiate a series of effector mechanisms and adaptive immune responses to mediate fungal clearance. In addition, we will discuss emerging preclinical and clinical data on antifungal immunotherapies and fungal vaccines which can potentially expand our antifungal armamentarium in future.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, S138648, Republic of Singapore.
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, S138648, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5, Science Drive 2, S117545, Republic of Singapore; School of Biological Sciences, College of Science, Nanyang Technological University, 60, Nanyang Drive, S637551, Republic of Singapore.
| |
Collapse
|
25
|
Kimoto T, Sakai S, Kameda K, Morita R, Takahashi E, Shinohara Y, Kido H. Induction of systemic, mucosal, and cellular immunity against SARS-CoV-2 in mice vaccinated by trans-airway with a S1 protein combined with a pulmonary surfactant-derived adjuvant SF-10. Influenza Other Respir Viruses 2023; 17:e13119. [PMID: 36909295 PMCID: PMC9996429 DOI: 10.1111/irv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Background There is a need for vaccines that can induce effective systemic, respiratory mucosal, and cellular immunity to control the COVID-19 pandemic. We reported previously that a synthetic mucosal adjuvant SF-10 derived from human pulmonary surfactant works as an efficient antigen delivery vehicle to antigen presenting cells in the respiratory and gastrointestinal tracts and promotes induction of influenza virus antigen-specific serum IgG, mucosal IgA, and cellular immunity. Methods The aim of the present study was to determine the effectiveness of a new administration route of trans-airway (TA) vaccine comprising recombinant SARS-CoV-2 spike protein 1 (S1) combined with SF-10 (S1-SF-10 vaccine) on systemic, local, and cellular immunity in mice, compared with intramuscular injection (IM) of S1 with a potent adjuvant AddaS03™ (S1-AddaS03™ vaccine). Results S1-SF-10-TA vaccine induced S1-specific IgG and IgA in serum and lung mucosae. These IgG and IgA induced by S1-SF-10-TA showed significant protective immunity in a receptor binding inhibition test of S1 and angiotensin converting enzyme 2, a receptor of SARS-CoV-2, which were more potent and faster achievement than S1-AddaS03™-IM. Enzyme-linked immunospot assay showed high numbers of S1-specific IgA and IgG secreting cells (ASCs) and S1-responsive IFN-γ, IL-4, IL-17A cytokine secreting cells (CSCs) in the spleen and lungs. S1-AddaS03™-IM induced IgG ASCs and IL-4 CSCs in spleen higher than S1-SF-10-TA, but the numbers of ASCs and CSCs in lungs were low and hardly detected. Conclusions Based on the need for effective systemic, respiratory, and cellular immunity, the S1-SF-10-TA vaccine seems promising mucosal vaccine against respiratory infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme ResearchTokushima UniversityTokushimaJapan
| | - Satoko Sakai
- Division of Enzyme Chemistry, Institute for Enzyme ResearchTokushima UniversityTokushimaJapan
- Faculty of Pharmaceutical SciencesTokushima UniversityTokushimaJapan
- Institute for Genome ResearchTokushima UniversityTokushimaJapan
| | - Keiko Kameda
- Division of Enzyme Chemistry, Institute for Enzyme ResearchTokushima UniversityTokushimaJapan
| | - Ryoko Morita
- Division of Enzyme Chemistry, Institute for Enzyme ResearchTokushima UniversityTokushimaJapan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme ResearchTokushima UniversityTokushimaJapan
| | - Yasuo Shinohara
- Faculty of Pharmaceutical SciencesTokushima UniversityTokushimaJapan
- Institute for Genome ResearchTokushima UniversityTokushimaJapan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme ResearchTokushima UniversityTokushimaJapan
| |
Collapse
|
26
|
Strohmeier V, Andrieux G, Unger S, Pascual-Reguant A, Klocperk A, Seidl M, Marques OC, Eckert M, Gräwe K, Shabani M, von Spee-Mayer C, Friedmann D, Harder I, Gutenberger S, Keller B, Proietti M, Bulashevska A, Grimbacher B, Provaznik J, Benes V, Goldacker S, Schell C, Hauser AE, Boerries M, Hasselblatt P, Warnatz K. Interferon-Driven Immune Dysregulation in Common Variable Immunodeficiency-Associated Villous Atrophy and Norovirus Infection. J Clin Immunol 2023; 43:371-390. [PMID: 36282455 PMCID: PMC9892141 DOI: 10.1007/s10875-022-01379-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE About 15% of patients with common variable immunodeficiency (CVID) develop a small intestinal enteropathy, which resembles celiac disease with regard to histopathology but evolves from a distinct, poorly defined pathogenesis that has been linked in some cases to chronic norovirus (NV) infection. Interferon-driven inflammation is a prominent feature of CVID enteropathy, but it remains unknown how NV infection may contribute. METHODS Duodenal biopsies of CVID patients, stratified according to the presence of villous atrophy (VA), IgA plasma cells (PCs), and chronic NV infection, were investigated by flow cytometry, multi-epitope-ligand cartography, bulk RNA-sequencing, and RT-qPCR of genes of interest. RESULTS VA development was connected to the lack of intestinal (IgA+) PC, a T helper 1/T helper 17 cell imbalance, and increased recruitment of granzyme+CD8+ T cells and pro-inflammatory macrophages to the affected site. A mixed interferon type I/III and II signature occurred already in the absence of histopathological changes and increased with the severity of the disease and in the absence of (IgA+) PCs. Chronic NV infection exacerbated this signature when compared to stage-matched NV-negative samples. CONCLUSIONS Our study suggests that increased IFN signaling and T-cell cytotoxicity are present already in mild and are aggravated in severe stages (VA) of CVID enteropathy. NV infection preempts local high IFN-driven inflammation, usually only seen in VA, at milder disease stages. Thus, revealing the impact of different drivers of the pathological mixed IFN type I/III and II signature may allow for more targeted treatment strategies in CVID enteropathy and supports the goal of viral elimination.
Collapse
Affiliation(s)
- Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Pascual-Reguant
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Adam Klocperk
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, 2Nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Maximilian Seidl
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich Heine University and University Hospital of Dusseldorf, Dusseldorf, Germany
| | - Otavio Cabral Marques
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Marleen Eckert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katja Gräwe
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Michelle Shabani
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Caroline von Spee-Mayer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Friedmann
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvia Gutenberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Jan Provaznik
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Wu C, Jiang ML, Jiang R, Pang T, Zhang CJ. The roles of fungus in CNS autoimmune and neurodegeneration disorders. Front Immunol 2023; 13:1077335. [PMID: 36776399 PMCID: PMC9910218 DOI: 10.3389/fimmu.2022.1077335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Fungal infection or proliferation in our body is capable of initiation of strong inflammation and immune responses that result in different consequences, including infection-trigged organ injury and inflammation-related remote organ dysfunction. Fungi associated infectious diseases have been well recognized in the clinic. However, whether fungi play an important role in non-infectious central nervous system disease is still to be elucidated. Recently, a growing amount of evidence point to a non-negligible role of peripheral fungus in triggering unique inflammation, immune response, and exacerbation of a range of non-infectious CNS disorders, including Multiple sclerosis, Neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and Amyotrophic lateral sclerosis et al. In this review, we summarized the recent advances in recognizing patterns and inflammatory signaling of fungi in different subsets of immune cells, with a specific focus on its function in CNS autoimmune and neurodegeneration diseases. In conclusion, the fungus is capable of triggering unique inflammation by multiple mechanisms in the progression of a body of CNS non-infectious diseases, suggesting it serves as a key factor and critical novel target for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Chuyu Wu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Runqui Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Cun-Jin Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University of Chinese Medicine, Nanjing University, Nanjing, Jiangsu, China,Institute of Brain Sciences, Institute of Brain Disorder Translational Medicine, Nanjing University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| |
Collapse
|
28
|
Glaubitz J, Wilden A, Frost F, Ameling S, Homuth G, Mazloum H, Rühlemann MC, Bang C, Aghdassi AA, Budde C, Pickartz T, Franke A, Bröker BM, Voelker U, Mayerle J, Lerch MM, Weiss FU, Sendler M. Activated regulatory T-cells promote duodenal bacterial translocation into necrotic areas in severe acute pancreatitis. Gut 2023:gutjnl-2022-327448. [PMID: 36631247 DOI: 10.1136/gutjnl-2022-327448] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVE In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.
Collapse
Affiliation(s)
- Juliane Glaubitz
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Fabian Frost
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hala Mazloum
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Malte Christoph Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ali A Aghdassi
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Christoph Budde
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Tilmann Pickartz
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Barbara M Bröker
- Department of Immunology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Uwe Voelker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Medizinische Klinik und Poliklinik 2, Klinikum der Universitat Munchen, Munchen, Germany
| | - Markus M Lerch
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Frank-Ulrich Weiss
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, university medicine Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Lee C, Song JH, Cha YE, Chang DK, Kim YH, Hong SN. Intestinal Epithelial Responses to IL-17 in Adult Stem Cell-derived Human Intestinal Organoids. J Crohns Colitis 2022; 16:1911-1923. [PMID: 35927216 DOI: 10.1093/ecco-jcc/jjac101] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Th17 cells and their signature cytokine, interleukin-17A [IL-17], are considered as the main pathogenic factors in inflammatory bowel diseases [IBDs]. However, IL-17 neutralising antibodies, a theoretically curative medication for IBDs, paradoxically aggravated intestinal inflammation. The mechanisms by which IL-17 mediates the protective and pathological effects of IL-17 remain unclear in the intestinal epithelium. METHODS The intestinal epithelial responses induced by IL-17 were evaluated using the human small intestinal organoid [enteroid] model. RESULTS Organoid-forming efficiency, cell viability, and proliferation of enteroids were decreased in proportion to IL-17 concentration. The IL-17 induced cytotoxicity was predominantly mediated by pyroptosis with activation of CASP1 and cleavage of GSDMD. Bulk RNA-sequencing revealed the enrichment of secretion signalling in IL-17 treated enteroids, leading to mucin exocytosis. Among its components, PIGR was up-regulated significantly as the concentration of IL-17 increased, resulting in IgA transcytosis. Mucin exocytosis and IgA transcytosis have a protective role against enteric pathogens. Single-cell RNA sequencing identified that CASP1-mediated pyroptosis occurred actively in intestinal stem cells [ISCs] and enterocytes. IL-17 neutralising antibody completely restored IL-17 induced cytotoxicity, but suppressed mucin secretion and IgA transcytosis. Pyroptosis inhibition using CASP1 inhibitors significantly improved IL-17 induced cytotoxicity without diminishing its beneficial effects. CONCLUSIONS IL-17 induces the pyroptosis of ISCs and enterocytes, as well as mucin secretion of goblet cells and IgA transcytosis of epithelial cells. Paradoxical gastrointestinal effects of IL-17 neutralising antibodies may be associated with inhibition of mucin secretion and IgA transcytosis. The inhibition of pyroptosis using CASP1 inhibitors prevents IL-17 induced cytotoxicity without compromising its beneficial effects.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Joo Hye Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeo-Eun Cha
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Dong Kyung Chang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
30
|
Porcine Interleukin-17 and 22 Co-Expressed by Yarrowia lipolytica Enhance Immunity and Increase Protection against Bacterial Challenge in Mice and Piglets. BIOLOGY 2022; 11:biology11121747. [PMID: 36552257 PMCID: PMC9774966 DOI: 10.3390/biology11121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Drug resistance in economic animals to pathogens is a matter of widespread concern due to abuse of antibiotics. In order to develop a safe and economical immunopotentiator to raise the immunity and antibacterial response as a replacement for antibiotics, a recombinant yeast co-expressing pig interleukin-17 (IL-17) and IL-22 was constructed and designated as Po1h-pINA1297-IL-17/22. To evaluate the immunoregulator activities of Po1h-pINA1297-IL-17/22, two experiment groups (oral inoculation with Po1h-pINA1297 or Po1h-pINA1297-IL-17/22) and a negative control group (PBS) were set up using 4-week-old female BALB/c mice (10/group). The level of cytokines, including IL-2, IL-4, IL-10, and IFN-γ, were detected by ELISA, and the circulating CD4+ and CD8+ lymphocytes were quantified by flow cytometry. The IgG and secretory IgA (SIgA) levels in both small intestine and fecal matter were also measured by ELISA. The results indicated that the IgG antibody titer and SIgA concentration increased significantly in the Po1h-pINA1297-IL17/22 group in comparison with the controls (p < 0.05) and so did the cytokine levels in the serum (IL-2, IL-4, IL-10, and IFN-γ). In addition, CD4+ and CD8+ T cells were also obviously elevated in the Po1h-pINA1297-IL17/22 group on 35th day (p < 0.05). After challenge with pathogenic Salmonella typhimurium, the Po1h-pINA1297-IL17/22 group showed a relatively higher survival rate without obvious infectious symptoms. On the contrary, the mortality of control group reached 80% due to bacterial infection. As for the piglet experiment, 30 healthy 7-day piglets were similarly attributed into three groups. The oral inoculation of piglets with Po1h-pINA1297-IL17/22 also markedly improved the growth performance and systemic immunity (up-regulations of IL-4, IL-6, IL-15, IL-17, IL-22, and IL-23). Overall, the results indicated that Po1h-pINA1297-IL17/22 effectively promoted the humoral and cellular immunity against bacterial infection. These proved the promising potential of Po1h-pINA1297-IL-17/22 to be a potent immunopotentiator for the prevention of microbial pathogen infections.
Collapse
|
31
|
Gribonika I, Strömberg A, Lebrero-Fernandez C, Schön K, Moon J, Bemark M, Lycke N. Peyer's patch T H17 cells are dispensable for gut IgA responses to oral immunization. Sci Immunol 2022; 7:eabc5500. [PMID: 35776804 DOI: 10.1126/sciimmunol.abc5500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T helper 17 (TH17) cells located at the Peyer's patch (PP) inductive site and at the lamina propria effector site of the intestinal immune system are responsive to both pathogenic and commensal bacteria. Their plasticity to convert into follicular helper T (TFH) cells has been proposed to be central to gut immunoglobulin A (IgA) responses. Here, we used an IL-17A fate reporter mouse and an MHC-II tetramer to analyze antigen-specific CD4+ T cell subsets and isolate them for single-cell RNA sequencing after oral immunization with cholera toxin and ovalbumin. We found a TFH-dominated response with only rare antigen-specific TH17 cells (<8%) in the PP. A clonotypic analysis provided little support that clonotypes were shared between TFH and TH17 cells, arguing against TH17 plasticity as a major contributor to TFH differentiation. Two mouse models of TH17 deficiency confirmed that gut IgA responses to oral immunization do not require TH17 cells, with CD4CreRorcfl/fl mice exhibiting normal germinal centers in PP and unperturbed total IgA production in the intestine.
Collapse
Affiliation(s)
- Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - James Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Immunology and Transfusion Medicine, Gothenburg, Sweden
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Huang WQ, Huang HL, Peng W, Liu YD, Zhou YL, Xu HM, Zhang LJ, Zhao C, Nie YQ. Altered Pattern of Immunoglobulin A-Targeted Microbiota in Inflammatory Bowel Disease After Fecal Transplantation. Front Microbiol 2022; 13:873018. [PMID: 35814647 PMCID: PMC9257281 DOI: 10.3389/fmicb.2022.873018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Adaptive immune response to the gut microbiota is one of the main drivers of inflammatory bowel disease (IBD). Under inflammatory conditions, immunoglobulin (Ig)-targeted bacteria are altered. However, changes in Ig-targeted bacteria in Asian patients with IBD with ulcerative colitis (UC) remain unclear. Furthermore, changes in IgA-targeted bacteria in patients with UC treated with fecal microbiota transplantation (FMT) are unclear. Here, we analyzed fecal samples of patients with IBD and patients with UC before and after FMT by flow cytometry. We found that the percentage of IgA/G-coated bacteria can be used to assess the severity of IBD. Besides oral pharyngeal bacteria such as Streptococcus, we hypothesized that Megamonas, Acinetobacter, and, especially, Staphylococcus might play an important role in IBD pathogenesis. Moreover, we evaluated the influence of FMT on IgA-coated bacteria in patients with UC. We found that IgA-bacterial interactions were re-established in human FMT recipients and resembled those in the healthy fecal donors. Additionally, the IgA targeting was not influenced by delivery methods: gastroscopy spraying and colonic transendoscopic enteral tubing (TET). Then, we established an acute dextran sulfate sodium (DSS)-induced mouse model to explore whether FMT intervention would impact IgA/G memory B cell in the intestine. We found that after FMT, both IgA/G memory B cell and the percentage of IgA/G-targeted bacteria were restored to normal levels in DSS mice.
Collapse
Affiliation(s)
- Wen-qi Huang
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hong-Li Huang
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Wu Peng
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yan-Di Liu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou, China
| | - You-Lian Zhou
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hao-Ming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou, China
| | - Liang-jie Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chong Zhao
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yu-Qiang Nie
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Nair VS, Heredia M, Samsom J, Huehn J. Impact of gut microenvironment on epigenetic signatures of intestinal T helper cell subsets. Immunol Lett 2022; 246:27-36. [DOI: 10.1016/j.imlet.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
34
|
Guimarães Sousa S, Kleiton de Sousa A, Maria Carvalho Pereira C, Sofia Miranda Loiola Araújo A, de Aguiar Magalhães D, Vieira de Brito T, Barbosa ALDR. SARS-CoV-2 infection causes intestinal cell damage: Role of interferon’s imbalance. Cytokine 2022; 152:155826. [PMID: 35158258 PMCID: PMC8828414 DOI: 10.1016/j.cyto.2022.155826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the newly emerging lung disease pandemic COVID-19. This viral infection causes a series of respiratory disorders, and although this virus mainly infects respiratory cells, the small intestine can also be an important site of entry or interaction, as enterocytes highly express in angiotensin-2 converting enzyme (ACE) receptors. There are countless reports pointing to the importance of interferons (IFNs) with regard to the mediation of the immune system in viral infection by SARS-CoV-2. Thus, this review will focus on the main cells that make up the large intestine, their specific immunology, as well as the function of IFNs in the intestinal mucosa after the invasion of coronavirus-2.
Collapse
|
35
|
Huang X, Li Z, Shen X, Nie N, Shen Y. IL-17 upregulates MCP-1 expression via Act1 / TRAF6 / TAK1 in experimental autoimmune myocarditis. Cytokine 2022; 152:155823. [DOI: 10.1016/j.cyto.2022.155823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
36
|
Anam K, Endharti AT, Poeranto S, Sujuti H, Hidayati DYN, Prawiro SR. Shigella flexneri vaccine development: Oral administration of peptides derived from the 49.8 kDa pili protein subunit activates the intestinal immune response in mice. Vet World 2022; 15:281-287. [PMID: 35400957 PMCID: PMC8980390 DOI: 10.14202/vetworld.2022.281-287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The morbidity and mortality of Shigella infections remain a global challenge. Epitope-based vaccine development is an emerging strategy to prevent bacterial invasion. This study aimed to identify the ability of the 49.8 kDa pili subunit adhesin protein epitope of Shigella flexneri to induce an intestinal immune response in mice. Materials and Methods: Thirty adult male Balb/c mice were divided into a control group, cholera toxin B subunit (CTB) group, CTB+QSSTGTNSQSDLDS (pep_1) group, CTB+DTTITKAETKTVTKNQVVDTPVTTDAAK (pep_2) group, and CTB+ ATLGATLNRLDFNVNNK (pep_3). We performed immunization by orally administering 50 μg of antigen and 50 μl of adjuvant once a week over 4 weeks. We assessed the cellular immune response by quantifying T helper 2 (Th2) and Th17 using flow cytometry. In addition, we assessed the humoral immune response by quantifying interleukin (IL-4), IL-17, secretory immunoglobulin A (sIgA), and β-defensin using enzyme-linked immunoassay. Statistical analysis was performed using one-way analysis of variance and Kruskal–Wallis test. Results: Peptide oral immunization increases the cellular immune response as reflected by the increase of Th2 (p=0.019) and Th17 (p=0.004) cell counts, particularly in the CTB_pep_1 group. Humoral immune response activation was demonstrated by increased IL-4 levels, especially in the CTB+pep_3 group (p=0.000). The IL-17 level was increased significantly in the CTB+pep_1 group (p=0.042). The mucosal immune response was demonstrated by the sIgA levels increase in the CTB+pep_3 group (p=0.042) and the β-defensin protein levels (p=0.000). Conclusion: All selected peptides activated the cellular and humoral immune responses in the intestine of mice. Further studies are necessary to optimize antigen delivery and evaluate whether the neutralizing properties of these peptides allow them to prevent bacterial infection.
Collapse
Affiliation(s)
- Khoirul Anam
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; Study Program of Medical Laboratory Technology, Institute of Health and Science Technology Wiyata Husada, Samarinda, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Sri Poeranto
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Hidayat Sujuti
- Department of Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dwi Yuni Nur Hidayati
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Sumarno Reto Prawiro
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
37
|
Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, Bandyopadhyay AS, Wright PF. Mucosal immunity to poliovirus. Mucosal Immunol 2022; 15:1-9. [PMID: 34239028 PMCID: PMC8732262 DOI: 10.1038/s41385-021-00428-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed.
Collapse
Affiliation(s)
- Ruth I Connor
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Peter F Wright
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
38
|
Schnell A, Huang L, Singer M, Singaraju A, Barilla RM, Regan BML, Bollhagen A, Thakore PI, Dionne D, Delorey TM, Pawlak M, Meyer Zu Horste G, Rozenblatt-Rosen O, Irizarry RA, Regev A, Kuchroo VK. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 2021; 184:6281-6298.e23. [PMID: 34875227 PMCID: PMC8900676 DOI: 10.1016/j.cell.2021.11.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.
Collapse
Affiliation(s)
- Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linglin Huang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meromit Singer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anvita Singaraju
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rocky M Barilla
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brianna M L Regan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alina Bollhagen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; German Cancer Research Center, DKFZ, Heidelberg 69120, Germany
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerd Meyer Zu Horste
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rafael A Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Kimoto T. Development of a safe and effective novel synthetic mucosal adjuvant SF-10 derived from physiological metabolic pathways and function of human pulmonary surfactant. Vaccine 2021; 40:544-553. [PMID: 34887132 DOI: 10.1016/j.vaccine.2021.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A safe and effective mucosal adjuvant is required for vaccination against influenza A virus (IAV) infection. Previously, we described that intranasally administration of surfacten®, a medicine derived from bovine pulmonary surfactant (PS), with IAV vaccine can induce IAV-specific IgA in the respiratory tract mucosa and IgG in serum. PS is secreted by alveolar type II cells and Clara cells and serves to reduce lung surface tension. PS finished its rules is incorporated by antigen presenting cells (APCs), such as alveolar macrophages and dendritic cells, and alveolar type II cells and rapidly metabolized. We focused on the metabolic pathways and rapid metabolic turnover of PS and developed a PS-based mucosal adjuvant. First, we determined the essential components of PS adjuvanticity and found that the complex of three PS lipids and surfactant protein-C can enhance to deliver the vaccine antigen and activate APCs. Later, we improved the safety, efficacy and ease of manufacture and finally succeeded in developing SF-10. The use of SF-10 with influenza split vaccine (HAv) (HAv-SF-10) enhances HAv incorporation into APCs both in vitro and in vivo, and intranasal instillation of HAv-SF-10 induced systemic and mucosal HAv-specific immunities in not only mice but also cynomolgus monkeys. The report that PS has physiological effects on the gastrointestinal mucosa prompted us develop a new SF-10-based vaccine that can be administered orally. In this review, We summarize our work on the development of clinically effective PS-based nasal and oral mucosal adjuvants for influenza vaccine.
Collapse
Affiliation(s)
- Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan.
| |
Collapse
|
40
|
Zhou C, Wu D, Jawale C, Li Y, Biswas PS, McGeachy MJ, Gaffen SL. Divergent functions of IL-17-family cytokines in DSS colitis: Insights from a naturally-occurring human mutation in IL-17F. Cytokine 2021; 148:155715. [PMID: 34587561 PMCID: PMC8627693 DOI: 10.1016/j.cyto.2021.155715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/06/2023]
Abstract
The IL-17 family is structurally distinct from other cytokine subclasses. IL-17A and IL-17F, the most closely related of this family, form homodimers and an IL-17AF heterodimer. While IL-17A and IL-17F exhibit similar activities in many settings, in others their functions are divergent. To better understand the function of IL-17F in vivo, we created mice harboring a mutation in Il17f originally described in humans with unexplained chronic mucosal candidiasis (Ser-65-Leu). We evaluated Il17fS65L/S65L mice in DSS-colitis, as this is one of the few settings where IL-17A and IL-17F exhibit opposing activities. Specifically, IL-17A is protective of the gut epithelium, a finding that was revealed when trials of anti-IL-17A biologics in Crohn's disease failed and recapitulated in many mouse models of colitis. In contrast, mice lacking IL-17F are resistant to DSS-colitis, partly attributable to alterations in intestinal microbiota that mobilize Tregs. Here we report that Il17fS65L/S65L mice do not phenocopy Il17f-/- mice in DSS colitis, but rather exhibited a worsening disease phenotype much like Il17a-/- mice. Gut inflammation in Il17fS65L/S65L mice correlated with reduced Treg accumulation and lowered intestinal levels of Clostridium cluster XIV. Unexpectedly, the protective DSS-colitis phenotype in Il17f-/- mice could be reversed upon co-housing with Il17fS65L/S65L mice, also correlating with Clostridium cluster XIV levels in gut. Thus, the Il17fS65L/S65L phenotype resembles an IL-17A deficiency more closely than IL-17F deficiency in the setting of DSS colitis.
Collapse
Affiliation(s)
- Chunsheng Zhou
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongwen Wu
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA; The Xiangya Hospital, Gastrointestinal Department, Central South University, Changsha, Hunan, PR China
| | - Chetan Jawale
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Li
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha S Biswas
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mandy J McGeachy
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah L Gaffen
- Dept of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Shu T, Xing Y, Wang J. Autoimmunity in Pulmonary Arterial Hypertension: Evidence for Local Immunoglobulin Production. Front Cardiovasc Med 2021; 8:680109. [PMID: 34621794 PMCID: PMC8490641 DOI: 10.3389/fcvm.2021.680109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive life-threatening disease. The notion that autoimmunity is associated with PAH is widely recognized by the observations that patients with connective tissue diseases or virus infections are more susceptible to PAH. However, growing evidence supports that the patients with idiopathic PAH (IPAH) with no autoimmune diseases also have auto-antibodies. Anti-inflammatory therapy shows less help in decreasing auto-antibodies, therefore, elucidating the process of immunoglobulin production is in great need. Maladaptive immune response in lung tissues is considered implicating in the local auto-antibodies production in patients with IPAH. In this review, we will discuss the specific cell types involved in the lung in situ immune response, the potential auto-antigens, and the contribution of local immunoglobulin production in PAH development, providing a theoretical basis for drug development and precise treatment in patients with PAH.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Kadry NA, Porsch EA, Shen H, St Geme JW. Immunization with HMW1 and HMW2 adhesins protects against colonization by heterologous strains of nontypeable Haemophilus influenzae. Proc Natl Acad Sci U S A 2021; 118:e2019923118. [PMID: 34344825 PMCID: PMC8364133 DOI: 10.1073/pnas.2019923118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a common cause of localized respiratory tract disease and results in significant morbidity. The pathogenesis of NTHi disease begins with nasopharyngeal colonization, and therefore, the prevention of colonization represents a strategy to prevent disease. The NTHi HMW1 and HMW2 proteins are a family of conserved adhesins that are present in 75 to 80% of strains and have been demonstrated to play a critical role in colonization of the upper respiratory tract in rhesus macaques. In this study, we examined the vaccine potential of HMW1 and HMW2 using a mouse model of nasopharyngeal colonization. Immunization with HMW1 and HMW2 by either the subcutaneous or the intranasal route resulted in a strain-specific antibody response associated with agglutination of bacteria and restriction of bacterial adherence. Despite the specificity of the antibody response, immunization resulted in protection against colonization by both the parent NTHi strain and heterologous strains expressing distinct HMW1 and HMW2 proteins. Pretreatment with antibody against IL-17A eliminated protection against heterologous strains, indicating that heterologous protection is IL-17A dependent. This work demonstrates the vaccine potential of the HMW1 and HMW2 proteins and highlights the importance of IL-17A in protection against diverse NTHi strains.
Collapse
Affiliation(s)
- Nadia A Kadry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eric A Porsch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Joseph W St Geme
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
43
|
Bhattacharjee A, Burr AHP, Overacre-Delgoffe AE, Tometich JT, Yang D, Huckestein BR, Linehan JL, Spencer SP, Hall JA, Harrison OJ, Morais da Fonseca D, Norton EB, Belkaid Y, Hand TW. Environmental enteric dysfunction induces regulatory T cells that inhibit local CD4+ T cell responses and impair oral vaccine efficacy. Immunity 2021; 54:1745-1757.e7. [PMID: 34348118 DOI: 10.1016/j.immuni.2021.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
Environmental enteric dysfunction (EED) is a gastrointestinal inflammatory disease caused by malnutrition and chronic infection. EED is associated with stunting in children and reduced efficacy of oral vaccines. To study the mechanisms of oral vaccine failure during EED, we developed a microbiota- and diet-dependent mouse EED model. Analysis of E. coli-labile toxin vaccine-specific CD4+ T cells in these mice revealed impaired CD4+ T cell responses in the small intestine and but not the lymph nodes. EED mice exhibited increased frequencies of small intestine-resident RORγT+FOXP3+ regulatory T (Treg) cells. Targeted deletion of RORγT from Treg cells restored small intestinal vaccine-specific CD4 T cell responses and vaccine-mediated protection upon challenge. However, ablation of RORγT+FOXP3+ Treg cells made mice more susceptible to EED-induced stunting. Our findings provide insight into the poor efficacy of oral vaccines in EED and highlight how RORγT+FOXP3+ Treg cells can regulate intestinal immunity while leaving systemic responses intact.
Collapse
Affiliation(s)
- Amrita Bhattacharjee
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224 USA
| | - Ansen H P Burr
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224 USA; Program in Microbiology and Immunology, Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Abigail E Overacre-Delgoffe
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224 USA
| | - Justin T Tometich
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224 USA
| | - Deyi Yang
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224 USA; Central South University, Xiangya School of Medicine, Changsha, PRC
| | - Brydie R Huckestein
- Program in Microbiology and Immunology, Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan L Linehan
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Sean P Spencer
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Jason A Hall
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Oliver J Harrison
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Denise Morais da Fonseca
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Timothy W Hand
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224 USA; Program in Microbiology and Immunology, Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
44
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Maglione A, Zuccalà M, Tosi M, Clerico M, Rolla S. Host Genetics and Gut Microbiome: Perspectives for Multiple Sclerosis. Genes (Basel) 2021; 12:1181. [PMID: 34440354 PMCID: PMC8394267 DOI: 10.3390/genes12081181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
As a complex disease, Multiple Sclerosis (MS)'s etiology is determined by both genetic and environmental factors. In the last decade, the gut microbiome has emerged as an important environmental factor, but its interaction with host genetics is still unknown. In this review, we focus on these dual aspects of MS pathogenesis: we describe the current knowledge on genetic factors related to MS, based on genome-wide association studies, and then illustrate the interactions between the immune system, gut microbiome and central nervous system in MS, summarizing the evidence available from Experimental Autoimmune Encephalomyelitis mouse models and studies in patients. Finally, as the understanding of influence of host genetics on the gut microbiome composition in MS is in its infancy, we explore this issue based on the evidence currently available from other autoimmune diseases that share with MS the interplay of genetic with environmental factors (Inflammatory Bowel Disease, Rheumatoid Arthritis and Systemic Lupus Erythematosus), and discuss avenues for future research.
Collapse
Affiliation(s)
- Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy; (A.M.); (M.C.)
| | - Miriam Zuccalà
- Department of Health Sciences, Center on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy; (M.Z.); (M.T.)
| | - Martina Tosi
- Department of Health Sciences, Center on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy; (M.Z.); (M.T.)
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy; (A.M.); (M.C.)
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy; (A.M.); (M.C.)
| |
Collapse
|
46
|
Hagihara M, Ariyoshi T, Kuroki Y, Eguchi S, Higashi S, Mori T, Nonogaki T, Iwasaki K, Yamashita M, Asai N, Koizumi Y, Oka K, Takahashi M, Yamagishi Y, Mikamo H. Clostridium butyricum enhances colonization resistance against Clostridioides difficile by metabolic and immune modulation. Sci Rep 2021; 11:15007. [PMID: 34294848 PMCID: PMC8298451 DOI: 10.1038/s41598-021-94572-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents the leading cause of nosocomial diarrhea worldwide and is associated with gut dysbiosis and intestinal damage. Clostridium butyricum MIYAIRI 588 (CBM 588) contributes significantly to reduce epithelial damage. However, the impacts of CBM 588 on antibacterial therapy for CDI are not clear. Here we show that CBM 588 enhanced the antibacterial activity of fidaxomicin against C. difficile and negatively modulated gut succinate levels to prevent C. difficile proliferation and downregulate tumor necrosis factor-α (TNF-α) producing macrophages in the colon lumina propria (cLP), resulting in a significant decrease in colon epithelial damage. Additionally, CBM 588 upregulated T cell-dependent pathogen specific immunoglobulin A (IgA) via interleukin (IL)-17A producing CD4+ cells and plasma B cells in the cLP, and Th17 cells in the cLP enhanced the gut epithelial barrier function. IL-17A and succinic acid modulations with CBM 588 enhance gut colonization resistance to C. difficile and protect the colon tissue from CDI.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, 480-1195, Japan.,Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tadashi Ariyoshi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Yasutoshi Kuroki
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Shuhei Eguchi
- Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Seiya Higashi
- Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tsunemasa Nonogaki
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Kenta Iwasaki
- Departments of Kidney Disease and Transplant Immunology, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Kentaro Oka
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.,Miyarisan Pharmaceutical Co., Ltd., Saitama, 114-0016, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.
| |
Collapse
|
47
|
Uribe-Querol E, Rosales C. Immune Response to the Enteric Parasite Entamoeba histolytica. Physiology (Bethesda) 2021; 35:244-260. [PMID: 32490746 DOI: 10.1152/physiol.00038.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
48
|
Gaitán-Albarracín F, Losada-Barragán M, Pinho N, Azevedo R, Durães J, Arcila-Barrera JS, Menezes RC, Morgado FN, Carvalho VDF, Umaña-Pérez A, Cuervo P. Malnutrition Aggravates Alterations Observed in the Gut Structure and Immune Response of Mice Infected with Leishmania infantum. Microorganisms 2021; 9:microorganisms9061270. [PMID: 34207946 PMCID: PMC8230684 DOI: 10.3390/microorganisms9061270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Malnutrition is a risk factor for developing visceral leishmaniasis and its severe forms. Our group demonstrated that malnourished animals infected with Leishmania infantum had severe atrophies in lymphoid organs and T cell subpopulations as well as altered levels of thymic and splenic chemotactic factors, all of which resulted in dysfunctional lymphoid microenvironments that promoted parasite proliferation. Here, we hypothesize that malnutrition preceding parasite infection leads to structural and immunological changes in the gut mucosae, resulting in a failure in the immune response sensed in the intestine. To evaluate this, we analyzed the immunopathological events resulting from protein malnutrition in the guts of BALB/c mice infected with L. infantum. We observed lymphocytic/lymphoplasmacytic inflammatory infiltrates and lymphoid hyperplasia in the duodenum of well-nourished-infected mice; such alterations were worsened when malnutrition preceded infection. Parasite infection induced a significant increase of duodenal immunoglobulin A (IgA) of well-nourished animals, but those levels were significantly decreased in malnourished-infected mice. In addition, increased levels of Th17-related cytokines in duodenums of malnourished animals supported local inflammation. Together, our results suggest that the gut plays a potential role in responses to L. infantum infection—and that such responses are impaired in malnourished individuals.
Collapse
Affiliation(s)
- Felipe Gaitán-Albarracín
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (F.G.-A.); (N.P.); (R.A.); (J.D.); (F.N.M.)
- Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, 111321 Bogotá, Colombia;
| | - Monica Losada-Barragán
- Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Universidad Antonio Nariño, 111511 Bogotá, Colombia;
| | - Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (F.G.-A.); (N.P.); (R.A.); (J.D.); (F.N.M.)
| | - Renata Azevedo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (F.G.-A.); (N.P.); (R.A.); (J.D.); (F.N.M.)
| | - Jonathan Durães
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (F.G.-A.); (N.P.); (R.A.); (J.D.); (F.N.M.)
| | - Juan Sebastián Arcila-Barrera
- Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, 111321 Bogotá, Colombia;
| | - Rodrigo C. Menezes
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, 21040-360 Rio de Janeiro, Brazil;
| | - Fernanda N. Morgado
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (F.G.-A.); (N.P.); (R.A.); (J.D.); (F.N.M.)
| | | | - Adriana Umaña-Pérez
- Grupo de Investigación en Hormonas, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, 111321 Bogotá, Colombia;
- Correspondence: (A.U.-P.); (P.C.)
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (F.G.-A.); (N.P.); (R.A.); (J.D.); (F.N.M.)
- Correspondence: (A.U.-P.); (P.C.)
| |
Collapse
|
49
|
Type II NKT Cell Agonist, Sulfatide, Is an Effective Adjuvant for Oral Heat-Killed Cholera Vaccines. Vaccines (Basel) 2021; 9:vaccines9060619. [PMID: 34201310 PMCID: PMC8230052 DOI: 10.3390/vaccines9060619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Oral vaccination has the potential to offer a safer and more efficacious approach for protection against enteric pathogens than injection-based approaches, especially in developing countries. One key advantage is the potential to induce intestinal immune responses in addition to systemic immunity. In general, antigen delivery via the oral route triggers weak immune responses or immunological tolerance. The effectiveness of oral vaccination can be improved by co-administering adjuvants. However, a major challenge is the absence of potent and safe oral adjuvants for clinical application. Here, the Type II NKT cell activator sulfatide is shown for the first time to be an effective oral adjuvant for Vibrio cholerae vaccine antigens in a mouse model. Specifically, administration of sulfatide with the oral cholera vaccine Dukoral® resulted in enhancement of intestinal antigen-specific IgA in addition to Th1 and Th17 immune responses. In summary, sulfatide is a promising adjuvant for inclusion in an oral cholera vaccine and our data further support the potential of adjuvants targeting NKT cells in new vaccine strategies.
Collapse
|
50
|
Maertens B, Gagnaire A, Paerewijck O, De Bosscher K, Geldhof P. Regulatory role of the intestinal microbiota in the immune response against Giardia. Sci Rep 2021; 11:10601. [PMID: 34011991 PMCID: PMC8134572 DOI: 10.1038/s41598-021-90261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Giardia duodenalis is one of the most commonly found intestinal parasites in mammalian hosts. Infections can generally be cleared by mounting an adequate protective immune response that is orchestrated through IL-17A. This study was aimed to investigate if and how the intestinal microbiome affects the protective Th17 response against Giardia by analysing and comparing the immune response following a G. muris and G. duodenalis infection in antibiotic treated and untreated mice. Depletion of the intestinal flora by antibiotic treatment had a severe effect on the infection dynamics of both Giardia species. Not only duration of infection was affected, but also the parasite burden increased significantly. Markers associated with a protective immune response, such as IL-17A and mannose binding lectin 2 were still significantly upregulated following infection in the antibiotic-treated mice, despite the lack of protection. On the other hand, the antibiotic treatment significantly decreased the level of IgA in the intestinal lumen by affecting its transporter and by reducing the number of IgA+ B-cells at the Peyer's patches. Furthermore, the depletion of the gut microbiota by antibiotics also significantly lowered the intestinal motility. The combination of these factors likely results in a decreased clearance of the parasite from the intestinal tract.
Collapse
Affiliation(s)
- B Maertens
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - A Gagnaire
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - O Paerewijck
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - K De Bosscher
- VIB Department of Medical Protein Research, Translational Nuclear Receptor Research Lab, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - P Geldhof
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|