1
|
Choi SY, Ahn SY, Jo D, Kim OY, Song J. Oligonol enhances brain cognitive function in high-fat diet-fed mice. Biomed Pharmacother 2024; 179:117322. [PMID: 39191029 DOI: 10.1016/j.biopha.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, is well recognized for its antioxidant properties, blood glucose regulation, and fat mass reduction capability. However, its effect on the central nervous system remains unclear. Here, we investigated the effects of oligonol on brain in a high-fat diet (HFD) fed mouse model, and SH-SY5Y neuronal cells and primary cultured cortical neuron under insulin resistance conditions. HFD mice were orally administered oligonol (20 mg/kg) daily, and SH-SY5Y cells and primary cortical neurons were pretreated with 500 ng/mL oligonol under in vitro insulin resistance conditions. Our findings revealed that oligonol administration reduced blood glucose levels and improved spatial memory function in HFD mice. In vitro data demonstrated that oligonol protected neuronal cells and enhanced neural structure against insulin resistance. We confirmed RNA sequencing in the oligonol-pretreated insulin-resistant SH-SY5Y neuronal cells. Our RNA-sequencing data indicated that oligonol contributes to metabolic signaling and neurite outgrowth. In conclusion, our study provides insights into therapeutic potential of oligonol with respect to preventing neuronal cell damage and improving neural structure and cognitive function in HFD mice.
Collapse
Affiliation(s)
- Seo Yoon Choi
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Seo Yeon Ahn
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
Magdy A, Kim HJ, Go H, Lee JM, Sohn HA, Haam K, Jung HJ, Park JL, Yoo T, Kwon ES, Lee DH, Choi M, Kang KW, Kim W, Kim M. DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2024; 30:824-844. [PMID: 39048522 DOI: 10.3350/cmh.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND/AIMS Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD. METHODS Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction-associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing. RESULTS Methylome and transcriptome analyses of liver biopsies revealed significant (P<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA, and SERPING1, as well as hypomethylation (P<0.0005) and upregulation (P<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data. CONCLUSION Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
Collapse
Affiliation(s)
- Amal Magdy
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hee-Jin Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hanyong Go
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jun Min Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Hyun Ahm Sohn
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Hyo-Jung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jong-Lyul Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Soo Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Mirang Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
3
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Antonucci L, Karin M. The Past and Future of Inflammation as a Target to Cancer Prevention. Cancer Prev Res (Phila) 2024; 17:141-155. [PMID: 38271694 PMCID: PMC10987280 DOI: 10.1158/1940-6207.capr-23-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Inflammation is an essential defense mechanism in which innate immune cells are coordinately activated on encounter of harmful stimuli, including pathogens, tissue injury, and toxic compounds and metabolites to neutralize and eliminate the instigator and initiate healing and regeneration. Properly terminated inflammation is vital to health, but uncontrolled runaway inflammation that becomes chronic begets a variety of inflammatory and metabolic diseases and increases cancer risk. Making damaged tissues behave as "wounds that do not heal" and sustaining the production of growth factors whose physiologic function is tissue healing, chronic inflammation accelerates cancer emergence from premalignant lesions. In 1863, Rudolf Virchow, a leading German pathologist, suggested a possible association between inflammation and tumor formation, but it took another 140 years to fully elucidate and appreciate the tumorigenic role of inflammation. Key findings outlined molecular events in the inflammatory cascade that promote cancer onset and progression and enabled a better appreciation of when and where inflammation should be inhibited. These efforts triggered ongoing research work to discover and develop inflammation-reducing chemopreventive strategies for decreasing cancer risk and incidence.
Collapse
Affiliation(s)
- Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Nguyen VD, Hughes TR, Zhou Y. From complement to complosome in non-alcoholic fatty liver disease: When location matters. Liver Int 2024; 44:316-329. [PMID: 38010880 DOI: 10.1111/liv.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing public health threat and becoming the leading cause of liver transplantation. Nevertheless, no approved specific treatment is currently available for NAFLD. The pathogenesis of NAFLD is multifaceted and not yet fully understood. Accumulating evidence suggests a significant role of the complement system in the development and progression of NAFLD. Here, we provide an overview of the complement system, incorporating the novel concept of complosome, and summarise the up-to-date evidence elucidating the association between complement dysregulation and the pathogenesis of NAFLD. In this process, the extracellular complement system is activated through various pathways, thereby directly contributing to, or working together with other immune cells in the disease development and progression. We also introduce the complosome and assess the evidence that implicates its potential influence in NAFLD through its direct impact on hepatocytes or non-parenchymal liver cells. Additionally, we expound upon how complement system and the complosome may exert their effects in relation with hepatic zonation in NAFLD. Furthermore, we discuss the potential therapeutic implications of targeting the complement system, extracellularly and intracellularly, for NAFLD treatment. Finally, we present future perspectives towards a better understanding of the complement system's contribution to NAFLD.
Collapse
Affiliation(s)
- Van-Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Shah DS, McNeilly AD, McCrimmon RJ, Hundal HS. The C5aR1 complement receptor: A novel immunomodulator of insulin action in skeletal muscle. Cell Signal 2024; 113:110944. [PMID: 37890688 DOI: 10.1016/j.cellsig.2023.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The complement system constitutes an integral component of the innate immune system and plays a critical role in adaptive immunity. Activation of this system engenders the production of complement peptide fragments, including C5a, which engage G-protein coupled receptors predominantly expressed in immune-associated cells, such as neutrophils, initiating pro-inflammatory responses. Intriguingly, our investigation has unveiled the presence of C5a receptor 1 (C5aR1) expression within skeletal muscle, a key metabolic tissue and primary target of insulin. Herein, we demonstrate that C5aR1 activation by C5a in differentiated human skeletal muscle cells elicits acute suppression of insulin signalling. This suppression manifests as impaired insulin-dependent association between IRS1 and the p85 subunit of PI3-kinase, a 50% reduction in Akt phosphorylation, and a 60% decline in insulin-stimulated glucose uptake. This impairment in insulin signalling is associated with a three-fold elevation in intramyocellular diacylglycerol (DAG) levels and a two-fold increase in cytosolic calcium content, which promote PKC-mediated IRS1 inhibition via enhanced phosphorylation at IRS1 Ser1101. Significantly, our findings demonstrate that structurally diverse C5aR1 antagonists, along with genetic deletion or stable silencing of C5aR1 by 80% using short-hairpin RNA, effectively attenuate repression of insulin signalling by C5a in LHCN-M2 human skeletal myotubes. These results underscore the potential of heightened C5aR1 activation, characteristic of obesity and chronic inflammatory conditions, to detrimentally impact insulin function within skeletal muscle cells. Additionally, the study suggests that agents targeting the C5a-C5aR axis, originally devised for mitigating complement-dependent inflammatory conditions, may offer therapeutic avenues to ameliorate immune-driven insulin resistance in key peripheral metabolic tissues, including skeletal muscle.
Collapse
Affiliation(s)
- Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alison D McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
7
|
Gao M, Li J, Zhang R, Li N, Li W, Zhang S, Wang P, Wang H, Fang Z, Yu Z, Hu G, Leng J, Yang X. Serum mannan-binding lectin-associated serine proteases in early pregnancy for gestational diabetes in Chinese pregnant women. Front Endocrinol (Lausanne) 2023; 14:1230244. [PMID: 37941903 PMCID: PMC10628726 DOI: 10.3389/fendo.2023.1230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Aims This study aimed to explore associations of mannan-binding lectin-associated serine protease (MASP) levels in early pregnancy with gestational diabetes mellitus (GDM). We also examined interactions of MASPs and deoxycholic acid (DCA)/glycoursodeoxycholic acid (GUDCA) for the GDM risk and whether the interactive effects if any on the GDM risk were mediated via lysophosphatidylcholine (LPC) 18:0. Materials and methods A 1:1 case-control study (n = 414) nested in a prospective cohort of pregnant women was conducted in Tianjin, China. Binary conditional logistic regressions were performed to examine associations of MASPs with the GDM risk. Additive interaction measures were used to examine interactions between MASPs and DCA/GUDCA for the GDM risk. Mediation analyses and Sobel tests were used to examine mediation effects of LPC18:0 between the copresence of MASPs and DCA/GUDCA on the GDM risk. Results High MASP-2 was independently associated with GDM [odds ratio (OR): 2.62, 95% confidence interval (CI): 1.44-4.77], while the effect of high MASP-1 on GDM was attributable to high MASP-2 (P for Sobel test: 0.003). Low DCA markedly increased the OR of high MASP-2 alone from 2.53 (1.10-5.85) up to 10.6 (4.22-26.4), with a significant additive interaction. In addition, high LPC18:0 played a significant mediating role in the links from low DCA to GDM and from the copresence of high MASP-2 and low DCA to GDM (P for Sobel test <0.001) but not in the link from high MASP-2 to GDM. Conclusions High MASP-1 and MASP-2 in early pregnancy were associated with GDM in Chinese pregnant women. MASP-2 amplifies the risk of low DCA for GDM, which is mediated via LPC18:0.
Collapse
Affiliation(s)
- Ming Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| | - Rui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ninghua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Shuang Zhang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Peng Wang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| |
Collapse
|
8
|
Liao J, Liu Y, Yao Y, Zhang J, Wang H, Zhao J, Chen W, Lu W. Clostridium butyricum Strain CCFM1299 Reduces Obesity via Increasing Energy Expenditure and Modulating Host Bile Acid Metabolism. Nutrients 2023; 15:4339. [PMID: 37892414 PMCID: PMC10609426 DOI: 10.3390/nu15204339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridium butyricum is a butyrate-producing microorganism which has beneficial effects on various diseases, including obesity. In our previous study, the anti-obesity Clostridium butyricum strain CCFM1299 (C20_1_1) was selected, but its anti-obesity mechanism was not clarified. Herein, CCFM1299 was orally administrated to high-fat-diet-treated C57BL/6J mice for 12 weeks to uncover the way the strain alleviates obesity. The results indicated that CCFM1299 alleviated obesity through increasing the energy expenditure and increasing the expression of genes related to thermogenesis in brown adipose tissue (BAT). Moreover, strain CCFM1299 could also affect the expression of immune-related genes in epididymal white adipose tissue (eWAT). This immunomodulatory effect might be achieved through its influence on the complement system, as the expression of the complement factor D (CFD) gene decreased significantly. From the view of metabolites, CCFM1299 administration increased the levels of ursodeoxycholic acid (UDCA) in feces and taurohyodeoxycholic acid (THDCA) in serum. Together, the anti-obesity potential of CCFM1299 might be attributed to the increase in energy consumption, the regulation of immune-related gene expression in eWAT, and the alteration of bile acid metabolism in the host. These provided new insights into the potential application of anti-obesity microbial preparations and postbiotics.
Collapse
Affiliation(s)
- Jingyi Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yaoliang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (J.L.); (Y.L.); (Y.Y.); (J.Z.); (H.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
9
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Winn NC, Patel VS, Blair JA, Rodriguez A, Garcia JN, Yang TS, Hasty AH. Deletion of complement factor 5 amplifies glucose intolerance in obese male but not female mice. Am J Physiol Endocrinol Metab 2023; 325:E325-E335. [PMID: 37610411 PMCID: PMC10642989 DOI: 10.1152/ajpendo.00140.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Complement factor 5 of the innate immune system generates C5a and C5b ligands, which initiate inflammatory and cell lysis events, respectively. C5 activation has been linked with obesity-associated metabolic disorders; however, whether it has a causative role is unclear. We generated a C5 null (C5-/-) mouse using CRISPR-Cas9 gene editing to determine whether loss of C5 improves obesity-linked metabolic dysfunction. Generation of a new mouse model was prompted in part by the observation of off-target gene mutations in commercially available C5-/- lines. Male and female wild-type (WT), heterozygous (Het), and C5-/- mice were fed low-fat diet (LFD) or high-fat diet (HFD) for 22 wk. Body weight gain did not differ between genotypes on LFD or HFD. In lean animals, male C5-/- mice had similar glucose tolerance compared with WT controls; however, in obese conditions, glucose tolerance was worsened in C5-/- compared with controls. In contrast, female mice did not exhibit differences in glucose tolerance between genotypes under either dietary paradigm. Fasting insulin was not different between genotypes, whereas diet-induced obese male C5-/- mice had lower fed insulin concentrations compared with WT controls. No differences in adipose tissue inflammation or adipocyte size were identified between groups. Similarly, susceptibility to fatty liver and hepatic inflammation was similar between WT and C5-/- mice. However, the systemic cytokine response to acute endotoxin exposure was decreased in C5-/- mice. Together, these data suggest that loss of C5 worsens glucose tolerance in obese male but not female mice. Additional work is required to pinpoint the mechanisms by which loss of C5 amplifies glucose intolerance in obesity.NEW & NOTEWORTHY We generated a new mouse model of complement factor 5 deficiency. This work was prompted by a need for improved transgenic mouse lines of C5, due to off-target gene mutations. We find that loss of C5 worsens glucose tolerance in a sex-dependent manner. Though the mechanisms evoking glucose intolerance are not clear, we are confident this model will be useful in interrogating complement activation in obesity-associated diseases.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Vitrag S Patel
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Joslin A Blair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Alec Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Tzushan S Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Kiernan K, Nichols AG, Alwarawrah Y, MacIver NJ. Effects of T cell leptin signaling on systemic glucose tolerance and T cell responses in obesity. PLoS One 2023; 18:e0286470. [PMID: 37276236 PMCID: PMC10241364 DOI: 10.1371/journal.pone.0286470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Leptin is an adipokine secreted in proportion to adipocyte mass and is therefore increased in obesity. Leptin signaling has been shown to directly promote inflammatory T helper 1 (Th1) and T helper 17 (Th17) cell number and function. Since T cells have a critical role in driving inflammation and systemic glucose intolerance in obesity, we sought to determine the role of leptin signaling in this context. METHODS Male and female T cell-specific leptin receptor knockout mice and littermate controls were placed on low-fat diet or high-fat diet to induce obesity for 18 weeks. Weight gain, serum glucose levels, systemic glucose tolerance, T cell metabolism, and T cell differentiation and cytokine production were examined. RESULTS In both male and female mice, T cell-specific leptin receptor deficiency did not reverse impaired glucose tolerance in obesity, although it did prevent impaired fasting glucose levels in obese mice compared to littermate controls, in a sex dependent manner. Despite these minimal effects on systemic metabolism, T cell-specific leptin signaling was required for changes in T cell metabolism, differentiation, and cytokine production observed in mice fed high-fat diet compared to low-fat diet. Specifically, we observed increased T cell oxidative metabolism, increased CD4+ T cell IFN-γ expression, and increased proportion of T regulatory (Treg) cells in control mice fed high-fat diet compared to low-fat diet, which were not observed in the leptin receptor conditional knockout mice, suggesting that leptin receptor signaling is required for some of the inflammatory changes observed in T cells in obesity. CONCLUSIONS T cell-specific deficiency of leptin signaling alters T cell metabolism and function in obesity but has minimal effects on obesity-associated systemic metabolism. These results suggest a redundancy in cytokine receptor signaling pathways in response to inflammatory signals in obesity.
Collapse
Affiliation(s)
- Kaitlin Kiernan
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Amanda G. Nichols
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yazan Alwarawrah
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nancie J. MacIver
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Nutrition, University of North Carolina School of Medicine and Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Trambas IA, Coughlan MT, Tan SM. Therapeutic Potential of Targeting Complement C5a Receptors in Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24108758. [PMID: 37240105 DOI: 10.3390/ijms24108758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) affects 30-40% of patients with diabetes and is currently the leading cause of end-stage renal disease (ESRD). The activation of the complement cascade, a highly conserved element of the innate immune system, has been implicated in the pathogenesis of diabetes and its complications. The potent anaphylatoxin C5a is a critical effector of complement-mediated inflammation. Excessive activation of the C5a-signalling axis promotes a potent inflammatory environment and is associated with mitochondrial dysfunction, inflammasome activation, and the production of reactive oxygen species. Conventional renoprotective agents used in the treatment of diabetes do not target the complement system. Mounting preclinical evidence indicates that inhibition of the complement system may prove protective in DKD by reducing inflammation and fibrosis. Targeting the C5a-receptor signaling axis is of particular interest, as inhibition at this level attenuates inflammation while preserving the critical immunological defense functions of the complement system. In this review, the important role of the C5a/C5a-receptor axis in the pathogenesis of diabetes and kidney injuries will be discussed, and an overview of the status and mechanisms of action of current complement therapeutics in development will be provided.
Collapse
Affiliation(s)
- Inez A Trambas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
13
|
Holers VM, Frank RM, Clauw A, Seifert J, Zuscik M, Asokan S, Striebich C, Clay MR, Moreland LW, Banda NK. Potential causal role of synovial complement system activation in the development of post-traumatic osteoarthritis after anterior cruciate ligament injury or meniscus tear. Front Immunol 2023; 14:1146563. [PMID: 37207197 PMCID: PMC10189880 DOI: 10.3389/fimmu.2023.1146563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
Anterior cruciate ligament (ACL) injury and meniscal tear (MT) are major causal factors for developing post-traumatic osteoarthritis (PTOA), but the biological mechanism(s) are uncertain. After these structural damages, the synovium could be affected by complement activation that normally occurs in response to tissue injury. We explored the presence of complement proteins, activation products, and immune cells, in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy and from patients with OA. Multiplexed immunohistochemistry (MIHC) was used to determine the presence of complement proteins, receptors and immune cells from ACL, MT, OA synovial tissue vs. uninjured controls. Examination of synovium from uninjured control tissues did not reveal the presence of complement or immune cells. However, DSST from patients undergoing ACL and MT repair demonstrated increases in both features. In ACL DSST, a significantly higher percentage of C4d+, CFH+, CFHR4+ and C5b-9+ synovial cells were present compared with MT DSST, but no major differences were seen between ACL and OA DSST. Increased cells expressing C3aR1 and C5aR1, and a significant increase in mast cells and macrophages, were found in ACL as compared to MT synovium. Conversely, the percentage of monocytes was increased in the MT synovium. Our data demonstrate that complement is activated in the synovium and is associated with immune cell infiltration, with a more pronounced effect following ACL as compared to MT injury. Complement activation, associated with an increase in mast cells and macrophages after ACL injury and/or MT, may contribute to the development of PTOA.
Collapse
Affiliation(s)
- V. Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel M. Frank
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew Clauw
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer Seifert
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael Zuscik
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sakthi Asokan
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher Striebich
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael R. Clay
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Larry W. Moreland
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nirmal K. Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
14
|
Kong LR, Chen XH, Sun Q, Zhang KY, Xu L, Ding L, Zhou YP, Zhang ZB, Lin JR, Gao PJ. Loss of C3a and C5a receptors promotes adipocyte browning and attenuates diet-induced obesity via activating inosine/A2aR pathway. Cell Rep 2023; 42:112078. [PMID: 36735535 DOI: 10.1016/j.celrep.2023.112078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Complement activation is thought to underline the pathologic progression of obesity-related metabolic disorders; however, its role in adaptive thermogenesis has scarcely been explored. Here, we identify complement C3a receptor (C3aR) and C5a receptor (C5aR) as critical switches to control adipocyte browning and energy balance in male mice. Loss of C3aR and C5aR in combination, more than individually, increases cold-induced adipocyte browning and attenuates diet-induced obesity in male mice. Mechanistically, loss of C3aR and C5aR increases regulatory T cell (Treg) accumulation in the subcutaneous white adipose tissue during cold exposure or high-fat diet. Activated Tregs produce adenosine, which is converted to inosine by adipocyte-derived adenosine deaminases. Inosine promotes adipocyte browning in a manner dependent on activating adenosine A2a receptor. These data reveal a regulatory mechanism of complement in controlling adaptive thermogenesis and suggest that targeting the C3aR/C5aR pathways may represent a therapeutic strategy in treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Ling-Ran Kong
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Sun
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai-Yuan Zhang
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Xu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liliqiang Ding
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Ping Zhou
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Bei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Rong Lin
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Supplementing Diets with Agriophyllum squarrosum Reduced Blood Lipids, Enhanced Immunity and Anti-Inflammatory Capacities, and Mediated Lipid Metabolism in Tan Lambs. Animals (Basel) 2022; 12:ani12243486. [PMID: 36552407 PMCID: PMC9774518 DOI: 10.3390/ani12243486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Agriophyllum squarrosum (sand rice), a widespread desert plant, possesses anti-hyperglycemic and anti-inflammatory properties, and has been used in traditional Chinese medicine for many years. However, its effects on ruminants are unknown. To fill this gap, we examined the effects of A. squarrosum on the immune and anti-inflammatory responses of lambs. A total of 23, 6-month-old Tan ewe-lambs (27.6 ± 0.47 kg) were divided into four groups and offered a basic diet (C—control), or a diet that contained 10%, 20%, or 30% A. squarrosum, on a dry matter basis, for 128 days. Serum concentrations of total cholesterol were lower (p = 0.004) in the 30% supplemented lambs than controls, while concentrations of high-density lipoprotein cholesterol were lower (p = 0.006) in the 10% and 20%, but not in 30% supplemented lambs than controls. Serum-cortisol concentrations were lower (p = 0.012) in the 30% supplemented lambs and free fatty acid concentrations were higher in the 10% and 20% supplemented lambs than in control lambs (p < 0.001). Supplementation with A. squarrosum decreased (p < 0.05) the area of adipocytes in subcutaneous adipose tissue, but there was no difference between the 20% and 30% diets. Conversely, the area in visceral adipose tissue (VAT) increased (p < 0.05), especially for the 10% and 20% supplemented diets. Supplementation with A. squarrosum also enriched immune and anti-inflammatory related and lipid and glucose-metabolic pathways and associated differentially expressed gene expressions in adipose tissue. A total of 10 differential triacylglycerol, 34 differential phosphatidylcholines and seven differential phosphatidylethanolamines decreased in the diet with 30% supplementation, when compared to the other diets. Finally, adipocyte-differentiation genes, and immune and inflammatory response-related gene expression levels decreased in lamb adipocytes cultured with an aqueous A. squarrosum extract. In conclusion, supplementing lamb diets with A. squarrosum reduced blood lipids, enhanced immunity and anti-inflammatory capacities, and mediated lipid metabolism in adipose tissue and adipocytes of Tan lambs. A level of approximately 10% is recommended, but further research is required to determine the precise optimal level.
Collapse
|
16
|
Guo Z, Fan X, Yao J, Tomlinson S, Yuan G, He S. The role of complement in nonalcoholic fatty liver disease. Front Immunol 2022; 13:1017467. [PMID: 36248852 PMCID: PMC9562907 DOI: 10.3389/fimmu.2022.1017467] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver diseases globally. NAFLD includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis, cirrhosis or even hepatocellular carcinoma. Although the pathogenesis of NAFLD is incompletely understood, insulin resistance and lipid metabolism disorder are implicated. The complement system is an essential part of the immune system, but it is also involved in lipid metabolism. In particular, activation of the alternative complement pathway and the production of complement activation products such as C3a, C3adesArg (acylation stimulating protein or ASP) and C5a, are strongly associated with insulin resistance, lipid metabolism disorder, and hepatic inflammation. In this review, we briefly summarize research on the role of the complement system in NAFLD, aiming to provide a basis for the development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Xu Y, Sun Y, Yin R, Dong T, Song K, Fang Y, Liu G, Shen B, Li H. Differential expression of plasma exosomal microRNA in severe acute pancreatitis. Front Pharmacol 2022; 13:980930. [PMID: 36249739 PMCID: PMC9554001 DOI: 10.3389/fphar.2022.980930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022] Open
Abstract
The incidence rate of acute pancreatitis is increasing, and severe acute pancreatitis (SAP) is associated with a high mortality rate, which may be reduced by a deeper understanding of its pathogenesis. In addition, an early determination of the severity of acute pancreatitis remains challenging. The aim of this study was to match potential biomarkers for early identification and monitoring of acute pancreatitis and to shed light on the underlying pathogenic mechanisms of SAP. The expression levels of plasma exosomal microRNA (miRNA) in patients with pancreatitis have been associated with the disease. Thus, this study compared the expression levels of exosomal miRNA in plasma collected from four patients with SAP and from four healthy participants. Analyses of the miRNA expression profiles indicated that three previously unreported miRNAs were differentially expressed in the patient group: Novel1, which was downregulated, and Novel2 and Novel3, which were upregulated. The miRNA target genes for those novel miRNAs were predicted using Metascape. Of these miRNA target genes, those that were also differentially expressed at different time points after disease induction in a mouse model of acute pancreatitis were determined. The gene for complement component 3 (C3), a target gene of Novel3, was the only gene matched in both the patient group and the mouse model. C3 appeared at most of the time points assessed after induction of acute pancreatitis in mice. These findings are foundational evidence that C3 warrants further study as an early biomarker of SAP, for investigating underlying pathogenic mechanisms of SAP, and as a therapeutic target for ameliorating the occurrence or development of SAP.
Collapse
Affiliation(s)
- Yansong Xu
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuansong Sun
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ran Yin
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kai Song
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
- *Correspondence: Guodong Liu, ; Bing Shen, ; He Li,
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
- *Correspondence: Guodong Liu, ; Bing Shen, ; He Li,
| | - He Li
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Guodong Liu, ; Bing Shen, ; He Li,
| |
Collapse
|
18
|
Brasil BB, Masaji S, Martins BT, Jiang H, Song N, Athena A S, Lucas B, François M, Wei-Jun Q, Rohit KN, Ronald KC. Apolipoprotein C3 and circulating mediators of preadipocyte proliferation in states of lipodystrophy. Mol Metab 2022; 64:101572. [PMID: 35964946 PMCID: PMC9418991 DOI: 10.1016/j.molmet.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023] Open
Abstract
Adipogenesis is a complex process controlled by intrinsic and extrinsic factors that regulate preadipocyte proliferation, adipogenic capacity and maturation of metabolic function. Here we show that insulin and IGF-1 receptors are essential for mature adipocyte survival and that deletion of both IR and IGF1R specifically in fat using a tamoxifen inducible-AdipoQ-Cre (Ai-DKO) leads to rapid and severe loss of adipocytes in all depots, associated with a metabolic syndrome characterized by hypertriglyceridemia, hyperglycemia, hyperinsulinemia, fatty liver, and pancreatic beta cell proliferation. In this model, this pathological phenotype reverses over a few weeks, in large part, due to preadipocyte proliferation and adipose tissue regeneration. Incubation of preadipocytes with serum from the Ai-DKO mice in vitro stimulates cell proliferation, and this effect can be mimicked by conditioned media from liver slices of Ai-DKO mice, but not by media of cultured Ai-DKO adipocytes, indicating a hepatic origin of the growth factor. Proteomic analysis of serum reveals apolipoprotein C3 (APOC3), a protein secreted by liver, as one of the most upregulated proteins in the Ai-DKO mice. In vitro, purified and delipidated APOC3 stimulates preadipocyte proliferation, however, knockdown of hepatic APOC3 in vivo in Ai-DKO mice is not sufficient to block adipose regeneration. Thus, lipodystrophy is associated with presence of increased preadipocyte-stimulating growth factors in serum. Our study indicates that APOC3 is one contributing factor to preadipocyte proliferation, however, other still-unidentified circulating growth factors are also likely present in Ai-DKO mice. Identification of these factors may provide a new approach to regulation of adipose mass in health and disease.
Collapse
Affiliation(s)
- Brandao Bruna Brasil
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sakaguchi Masaji
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA,Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Batista, Thiago Martins
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hu Jiang
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Dept. of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nie Song
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Schepmoes Athena A
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Moreau François
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Qian Wei-Jun
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kulkarni N. Rohit
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Dept. of Medicine, BIDMC, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Kahn, C. Ronald
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA,Corresponding author. Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
20
|
Xu Z, Tao L, Su H. The Complement System in Metabolic-Associated Kidney Diseases. Front Immunol 2022; 13:902063. [PMID: 35924242 PMCID: PMC9339597 DOI: 10.3389/fimmu.2022.902063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome (MS) is a group of clinical abnormalities characterized by central or abdominal obesity, hypertension, hyperuricemia, and metabolic disorders of glucose or lipid. Currently, the prevalence of MS is estimated about 25% in general population and is progressively increasing, which has become a challenging public health burden. Long-term metabolic disorders can activate the immune system and trigger a low-grade chronic inflammation named “metaflammation.” As an important organ involved in metabolism, the kidney is inevitably attacked by immunity disequilibrium and “metaflammation.” Recently, accumulating studies have suggested that the complement system, the most important and fundamental component of innate immune responses, is actively involved in the development of metabolic kidney diseases. In this review, we updated and summarized the different pathways through which the complement system is activated in a series of metabolic disturbances and the mechanisms on how complement mediate immune cell activation and infiltration, renal parenchymal cell damage, and the deterioration of renal function provide potential new biomarkers and therapeutic options for metabolic kidney diseases.
Collapse
|
21
|
Almengló C, Fu X, Flores-Arias MT, Fernández ÁL, Viñuela JE, Martínez-Cereijo JM, Durán D, Rodríguez-Mañero M, González-Juanatey JR, Eiras S. Synergism between obesity and HFpEF on neutrophils phenotype and its regulation by adipose tissue-molecules and SGLT2i dapagliflozin. J Cell Mol Med 2022; 26:4416-4427. [PMID: 35818731 PMCID: PMC9357605 DOI: 10.1111/jcmm.17466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
The adiposity invokes innate immune activity, coronary microvascular dysfunction and consequently heart failure preserved ejection fraction (HFpEF). Our aim was to study the neutrophils profile on obesity and cardiovascular disease and its regulation by adipose tissue-secretome and dapagliflozin. We have isolated neutrophils from patients undergoing open heart surgery (19 women and 51 men). Its migration activity was performed with culture-transwell, transcriptional studies of proteolytic enzymes, adhesion molecules or receptors were analysed by real-time PCR and proteomics (from 20 patients) analysis by TripleTOF mass spectrometer. Differentiated HL-60 (dHL-60) was used as a preclinical model on microfluidic for endothelial cells attaching assays and genes regulation with epicardial and subcutaneous fat secretomes from patients (3 women and 9 men) or dapagliflozin 1-10 μM treatments. The transcriptional and proteomics studies have determined higher levels of adhesion molecules in neutrophils from patients with obesity. The adhesion molecule CD11b levels were higher in those patients with the combined obesity and HFpEF factors (1.70 ± 0.06 a.u. without obesity, 1.72 ± 0.04 a.u. obesity or HFpEF without obesity and 1.79 ± 0.08 a.u. obesity and HFpEF; p < .01). While fat-secretome induces its upregulation, dapagliflozin can modulated it. Because CD11b upregulation is associated with higher neutrophils migration and adhesion into endothelial cells, dapagliflozin might modulate this mechanism on patients with obesity and HFpEF.
Collapse
Affiliation(s)
- Cristina Almengló
- Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
| | - Xiaoran Fu
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain
| | - María Teresa Flores-Arias
- Photonics4 Life Research Group, Applied Physics Department, Facultade de Física and Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel L Fernández
- Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV Madrid, Madrid, Spain
| | - Juan E Viñuela
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,Immunology Laboratory, Health Research Institute, Santiago de Compostela, Spain
| | - José M Martínez-Cereijo
- Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Darío Durán
- Heart Surgery Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV Madrid, Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV Madrid, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José R González-Juanatey
- Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV Madrid, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sonia Eiras
- Translational Cardiology Group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV Madrid, Madrid, Spain
| |
Collapse
|
22
|
Guo Z, Chen J, Zeng Y, Wang Z, Yao M, Tomlinson S, Chen B, Yuan G, He S. Complement Inhibition Alleviates Cholestatic Liver Injury Through Mediating Macrophage Infiltration and Function in Mice. Front Immunol 2022; 12:785287. [PMID: 35069557 PMCID: PMC8777082 DOI: 10.3389/fimmu.2021.785287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Aims Cholestatic liver injury (CLI), which is associated with inflammatory reactions and oxidative stress, is a serious risk factor for postoperative complications. Complement system is involved in a wide range of liver disorders, including cholestasis. The present study assessed the role of complement in CLI and the therapeutic effect of the site-targeted complement inhibitor CR2-Crry in CLI. Methods Wild-type and complement gene deficient mice underwent common bile duct ligation (BDL) to induce CLI or a sham operation, followed by treatment with CR2-Crry or GdCl3. The roles of complement in CLI and the potential therapeutic effects of CR2-Crry were investigated by biochemical analysis, flow cytometry, immunohistochemistry, ELISA, and quantitative RT-PCR. Results C3 deficiency and CR2-Crry significantly reduced liver injuries in mice with CLI, and also markedly decreasing the numbers of neutrophils and macrophages in the liver. C3 deficiency and CR2-Crry also significantly reduced neutrophil expression of Mac-1 and liver expression of VCAM-1. More importantly, C3 deficiency and CR2-Crry significantly inhibited M1 macrophage polarization in these mice. Intravenous injection of GdCl3 inhibited macrophage infiltration and activation in the liver. However, the liver injury increased significantly. BDL significantly increased the level of lipopolysaccharide (LPS) in portal blood, but not in peripheral blood. GdCl3 significantly increased LPS in peripheral blood, suggesting that macrophages clear portal blood LPS. Oral administration of ampicillin to in GdCl3 treated mice reduced LPS levels in portal blood and alleviated liver damage. In contrast, intraperitoneal injection LPS increased portal blood LPS and reversed the protective effect of ampicillin. Interestingly, C3 deficiency did not affect the clearance of LPS. Conclusions Complement is involved in CLI, perhaps mediating the infiltration and activation of neutrophils and macrophage M1 polarization in the liver. C3 deficiency and CR2-Crry significantly alleviated CLI. Inhibition of complement could preserve the protective function of macrophages in clearing LPS, suggesting that complement inhibition could be useful in treating CLI.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Junze Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yonglian Zeng
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zefeng Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mei Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Bin Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| |
Collapse
|
23
|
Garcia-Martin R, Brandao BB, Thomou T, Altindis E, Kahn CR. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep 2022; 38:110277. [PMID: 35045290 PMCID: PMC8867597 DOI: 10.1016/j.celrep.2021.110277] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes/small extracellular vesicles (sEVs) can serve as multifactorial mediators of cell-to-cell communication through their miRNA and protein cargo. Quantitative proteomic analysis of five cell lines representing metabolically important tissues reveals that each cell type has a unique sEV proteome. While classical sEV markers such as CD9/CD63/CD81 vary markedly in abundance, we identify six sEV markers (ENO1, GPI, HSPA5, YWHAB, CSF1R, and CNTN1) that are similarly abundant in sEVs of all cell types. In addition, each cell type has specific sEV markers. Using fat-specific Dicer-knockout mice with decreased white adipose tissue and increased brown adipose tissue, we show that these cell-type-specific markers can predict the changing origin of the serum sEVs. These results provide a valuable resource for understanding the sEV proteome of the cells and tissues important in metabolic homeostasis, identify unique sEV markers, and demonstrate how these markers can help in predicting the tissue of origin of serum sEVs. By performing comparative proteomics, Garcia-Martin et al. identify markers common to exosomes/sEVs from multiple cell types, as well as markers unique to each cell type. Using a lipodystrophy mouse model, they demonstrate the use of this sEV proteome dataset to predict the tissue of origin of circulating exosomes/sEVs in vivo.
Collapse
Affiliation(s)
- Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Bruna Brasil Brandao
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Thomas Thomou
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Emrah Altindis
- Boston College Biology Department, Higgins Hall, 140 Commonwealth Avenue, Chestnut Hill, MA 02476, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
25
|
Wen Y, Shen F, Wu H. Role of C5a and C5aR in doxorubicin-induced cardiomyocyte senescence. Exp Ther Med 2021; 22:1114. [PMID: 34504568 PMCID: PMC8383765 DOI: 10.3892/etm.2021.10548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is an efficacious antineoplastic drug; however, its use is limited due to its cardiotoxicity. Cardiomyocyte senescence is considered to be a key factor in the development of DOX-related cardiomyopathy. Complement component 5a (C5a) and the C5a receptor (C5aR) have been reported to play a key role in the process of cellular senescence. However, to the best of our knowledge, the exact role of C5a and C5aR in cellular senescence in the heart remains largely unknown. Reverse transcription-quantitative (RT-q)PCR and western blot assays were used to analyze the expression levels of C5a and C5aR in H9c2 embryonic rat cardiomyocytes and AC16 human cardiomyocyte-like cells. The cells were treated with DOX and a C5aR antagonist (C5aRA). The expression of TNF-α and IFN-γ was determined using ELISA and western blotting. The levels of reactive oxygen species (ROS) were also measured using ELISA. Cellular senescence was determined using senescence-associated β-galactosidase (SA-β-gal) staining and by analyzing the protein expression levels of p53, p16, p21 and insulin-like growth factor-binding protein 3 (IGFBP3). The expression levels of C5a and C5aR were found to be upregulated during the DOX-induced senescence of H9c2 and AC16 cardiomyocytes. Treatment with C5aRA downregulated TNF-α and IFN-γ expression, in addition to ROS levels. Furthermore, C5aRA prevented DOX-induced cellular senescence and decreased the levels of positive SA-β-gal staining in H9c2 and AC16 cardiomyocytes, in addition to downregulating the expression levels of p53, p16, p21 and IGFBP3. C5aRA also increased the telomere length and telomerase activity in H9c2 and AC16 cardiomyocytes following DOX stimulation. In conclusion, the findings of the present study indicated that C5a and C5aR may play a key role in cardiomyocyte senescence, and treatment with C5aRA may be an effective method for preventing DOX-induced cardiomyocyte aging.
Collapse
Affiliation(s)
- Yahui Wen
- Medical Care Ward, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Feiyan Shen
- Department of Cardiology, QingPu District Central Hospital, Shanghai 201700, P.R. China
| | - Haibin Wu
- Department of Outpatients, Shenzhen Traditional Chinese Medicine Hospital, Guangdong Shenzhen Health Management Center, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
26
|
King BC, Blom AM. Complement in metabolic disease: metaflammation and a two-edged sword. Semin Immunopathol 2021; 43:829-841. [PMID: 34159399 PMCID: PMC8613079 DOI: 10.1007/s00281-021-00873-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023]
Abstract
We are currently experiencing an enduring global epidemic of obesity and diabetes. It is now understood that chronic low-grade tissue inflammation plays an important role in metabolic disease, brought upon by increased uptake of a so-called Western diet, and a more sedentary lifestyle. Many evolutionarily conserved links exist between metabolism and the immune system, and an imbalance in this system induced by chronic over-nutrition has been termed 'metaflammation'. The complement system is an important and evolutionarily ancient part of innate immunity, but recent work has revealed that complement not only is involved in the recognition of pathogens and induction of inflammation, but also plays important roles in cellular and tissue homeostasis. Complement can therefore contribute both positively and negatively to metabolic control, depending on the nature and anatomical site of its activity. This review will therefore focus on the interactions of complement with mechanisms and tissues relevant for metabolic control, obesity and diabetes.
Collapse
Affiliation(s)
- B C King
- Department of Translational Medicine, Lund University, Lund, Sweden.
| | - A M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Sun B, Zhang R, Liang Z, Fan A, Kang D. Hyperoside attenuates non-alcoholic fatty liver disease through targeting Nr4A1 in macrophages. Int Immunopharmacol 2021; 94:107438. [PMID: 33611063 DOI: 10.1016/j.intimp.2021.107438] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance and a systemic pro-inflammatory response. To date, no medications for NAFLD have been approved by relevant governmental agencies. Emerging evidence indicates that innate immune mechanisms are pivotal drivers of inflammation and other pathological manifestations observed in NAFLD. Hyperoside, a flavonoid compound mainly found in medicinal plants, has many biological effects, but the role of hyperoside in the physiological process of NAFLD is poorly defined. This study demonstrated that hyperoside exerts protective effects against high-fat diet (HFD)-induced NAFLD and regulates macrophage polarization in an Nr4A1-dependent manner. After 16 weeks on a HFD, hepatic steatosis, insulin resistance, and inflammatory responses were significantly ameliorated in hyperoside-treated HFD-fed wild-type mice, and hyperoside facilitated the polarization of macrophages from the pro-inflammatory M1 to the anti-inflammatory M2 subtype. Nr4A1 was found to be upregulated in hyperoside-treated HFD-fed mice, and hyperoside did not improve HFD-induced NAFLD or regulate macrophage polarization in Nr4A1-deficient mice. In conclusion, hyperoside may have therapeutic potential in preventing the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Bing Sun
- Department of Geriatric Medicine, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, China
| | - Ranteng Zhang
- Department of Geriatric Medicine, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, China
| | - Zicong Liang
- Department of Geriatric Medicine, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, China
| | - Aoqiang Fan
- Department of Geriatric Medicine, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, China
| | - Dongmei Kang
- Department of Geriatric Medicine, Anhui Provincial Hospital Affiliated with Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Dutta N, Ingraham NE, Usher MG, Fox C, Tignanelli CJ, Bramante CT. We Should Do More to Offer Evidence-Based Treatment for an Important Modifiable Risk Factor for COVID-19: Obesity. J Prim Care Community Health 2021; 12:2150132721996283. [PMID: 33648370 PMCID: PMC7930643 DOI: 10.1177/2150132721996283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Observational studies, from multiple countries, repeatedly demonstrate an association between obesity and severe COVID-19, which is defined as need for hospitalization, intensive care unit admission, invasive mechanical ventilation (IMV) or death. Meta-analysis of studies from China, USA, and France show odds ratio (OR) of 2.31 (95% CI 1.3-4.1) for obesity and severe COVID-19. Other studies show OR of 12.1 (95% CI 3.25-45.1) for mortality and OR of 7.36 (95% CI 1.63-33.14) for need for IMV for patients with body mass index (BMI) ≥ 35 kg/m2. Obesity is the only modifiable risk factor that is not routinely treated but treatment can lead to improvement in visceral adiposity, insulin sensitivity, and mortality risk. Increasing the awareness of the association between obesity and COVID-19 risk in the general population and medical community may serve as the impetus to make obesity identification and management a higher priority.
Collapse
Affiliation(s)
| | | | | | - Claudia Fox
- University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
29
|
Nürge B, Schulz AL, Kaemmerer D, Sänger J, Evert K, Schulz S, Lupp A. Immunohistochemical identification of complement peptide C5a receptor 1 (C5aR1) in non-neoplastic and neoplastic human tissues. PLoS One 2021; 16:e0246939. [PMID: 33606748 PMCID: PMC7894821 DOI: 10.1371/journal.pone.0246939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 11/18/2022] Open
Abstract
The complement component C5a and its receptor C5aR1 are involved in the development of numerous inflammatory diseases. In addition to immune cells, C5aR1 is expressed in neoplastic cells of multiple tumour entities, where C5aR1 is associated with a higher proliferation rate, advanced tumour stage, and poor patient outcomes. The aim of the present study was to obtain a broad expression profile of C5aR1 in human non-neoplastic and neoplastic tissues, especially in tumour entities not investigated in this respect so far. For this purpose, we generated a novel polyclonal rabbit antibody, {5227}, against the carboxy-terminal tail of C5aR1. The antibody was initially characterised in Western blot analyses and immunocytochemistry using transfected human embryonic kidney (HEK) 293 cells. It was then applied to a large series of formalin-fixed, paraffin-embedded non-neoplastic and neoplastic human tissue samples. C5aR1 was strongly expressed by different types of immune cells in the majority of tissue samples investigated. C5aR1 was also present in alveolar macrophages, bronchial, gut, and bile duct epithelia, Kupffer cells, occasionally in hepatocytes, proximal renal tubule cells, placental syncytiotrophoblasts, and distinct stem cell populations of bone marrow. C5aR1 was also highly expressed in the vast majority of the 32 tumour entities investigated, where a hitherto unappreciated high prevalence of the receptor was detected in thyroid carcinomas, small-cell lung cancer, gastrointestinal stromal tumours, and endometrial carcinomas. In addition to confirming published findings, we found noticeable C5aR1 expression in many tumour entities for the first time. Here, it may serve as an interesting target for future therapies.
Collapse
Affiliation(s)
- Benjamin Nürge
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Alan Lennart Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Katja Evert
- Department of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medicine of Greifswald, Greifswald, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
30
|
Balashova SN, Samodova AV, Dobrodeeva LK, Belisheva NK. Hematological reactions in the inhabitants of the Arctic on a polar night and a polar day. Immun Inflamm Dis 2020; 8:415-422. [PMID: 32558272 PMCID: PMC7416016 DOI: 10.1002/iid3.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The purpose of this study is to identify the features of hematological reactions in the inhabitants of the Arctic territory of the Kola Peninsula on a polar night and a polar day. METHODS The study included determining the hemogram, neutrograms, monocytograms, lymphocytograms, and phagocytic activity neutrophil granulocytes, enzyme immunoassay, flow cytometry. RESULTS It was established that during the polar night, there is an increase in the activity of migration of leukocytes from the marginal pool to the circulating pool, an increase in the intensity of phagocytosis by neutrophils, an increase in the concentrations of noradrenaline, cortisol, as well as an increase in hyperergic reactions involving immunoglobulin E and inhibitory processes due to an increase in interleukin-10. CONCLUSION A prolonged lack of sunlight causes a decrease in the reserve capacity for regulating homeostasis and forces the body to use proliferative reactions, which is reflected in the increase in stab neutrophils, large lymphocytes in the structure of the lymphocytogram and CD10+ lymphocytes. In winters, the frequency of neutropenia registration also increases to 13% of cases, the deficit of phagocytic activity of neutrophils; lymphopenia is recorded in 20% with T-helper deficiency (37%). A part of the population probably has a relatively high degree of vulnerability to the action of natural environmental factors and is not able to completely restore the initial levels of the effectiveness of adaptation reactions in the summer. So at the end of the polar day in 8% of adults born in the north, neutropenia is recorded and in 21%-lymphopenia.
Collapse
Affiliation(s)
| | - Anna V. Samodova
- N. Laverov Federal Center for Integrated Arctic ResearchArkhangelskRussia
| | | | - Natalya K. Belisheva
- Research Centre for Human Adaptation in the ArcticBranch of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences"ApatityRussia
| |
Collapse
|
31
|
Na SW, Park SJ, Hong SJ, Baik M. Transcriptome changes associated with fat deposition in the longissimus thoracis of Korean cattle following castration. J Anim Physiol Anim Nutr (Berl) 2020; 104:1637-1646. [PMID: 32533609 DOI: 10.1111/jpn.13393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/25/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
The castration of bulls increases the intramuscular fat (IMF) content in skeletal muscle. However, the biological processes of IMF accumulation in skeletal muscle after castration are not completely understood at the molecular level. This study examined the global transcriptomic changes in the longissimus thoracis muscle (LT) of bulls following castration using RNA sequencing (RNA-Seq) and identified new genes or pathways associated with beef quality. Ten bulls and 10 steers castrated at 6 months of age were slaughtered at 26 and 32 months of age respectively. For transcriptome analysis, six LT samples from three bulls and three steers were selected based on age, carcass weight, carcass quantity and beef quality grades. Using RNA-Seq, transcriptomic profiles of the LT were compared between bulls and steers. In all, 640 of the 18,027 genes identified through RNA-Seq were differentially expressed genes (DEGs) between bulls and steers. Pathway analysis of these 640 DEGs showed significant (p < .05) changes in seven Kyoto Encyclopedia of Genes and Genomes pathways, and the most significant terms were complement and coagulation cascade pathways. The transcriptomic expression patterns of 10 genes in the complement and coagulation cascades were validated using all animals through quantitative real-time polymerase chain reaction analysis. In conclusion, transcriptome changes associated with the complement and coagulation cascade pathways provide novel insights into understanding molecular mechanisms responsible for IMF accumulation following castration in beef cattle.
Collapse
Affiliation(s)
- Sang Weon Na
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Ju Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soo Jong Hong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institutes of Green Bio Science Technology, Pyeongchang-gun, South Korea
| |
Collapse
|
32
|
Skurski J, Penniman CM, Geesala R, Dixit G, Pulipati P, Bhardwaj G, Meyerholz DK, Issuree PD, O'Neill BT, Maretzky T. Loss of iRhom2 accelerates fat gain and insulin resistance in diet-induced obesity despite reduced adipose tissue inflammation. Metabolism 2020; 106:154194. [PMID: 32135161 DOI: 10.1016/j.metabol.2020.154194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Low-grade inflammation and metabolic dysregulation are common comorbidities of obesity, both of which are associated with alterations in iRhom2-regulated pro-inflammatory cytokine and epidermal growth factor receptor (EGFR) ligand signaling. OBJECTIVE Our objective was to determine the role of iRhom2 in the regulation of low-grade inflammation and metabolic dysregulation in a murine model of diet-induced obesity. METHODS Wild type (WT) and iRhom2-deficient mice were fed normal chow (NC) or a high-fat diet (HFD) starting at 5 weeks of age for up to 33 weeks. Body composition, glucose and insulin tolerance, feeding behavior, and indirect calorimetry were measured at defined time points. Adipose tissue cytokine expression and inflammatory lesions known as crown-like structures (CLS) were analyzed at the end-point of the study. RESULTS iRhom2-deficient mice show accelerated fat gain on a HFD, accompanied by insulin resistance. Indirect calorimetry did not demonstrate changes in energy expenditure or food intake, but locomotor activity was significantly reduced in HFD iRhom2-deficient mice. Interestingly, CLS, macrophage infiltration, and tumor necrosis factor (TNF) production were decreased in adipose tissue from HFD iRhom2-deficient mice, but circulating cytokines were unchanged. In inguinal and perigonadal fat, the EGFR ligand amphiregulin was markedly induced in HFD controls but completely prevented in iRhom2-deficient mice, suggesting a potentially dominant role of EGFR-dependent mechanisms over TNF in the modulation of insulin sensitivity. CONCLUSIONS This study elucidates a novel role for iRhom2 as an immuno-metabolic regulator that affects adipose tissue inflammation independent of insulin resistance.
Collapse
Affiliation(s)
- Joseph Skurski
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Immunology Graduate Program, Iowa City, IA, USA
| | - Christie M Penniman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Garima Dixit
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Priyanjali Pulipati
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Gourav Bhardwaj
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Brian T O'Neill
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA.
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Immunology Graduate Program, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
33
|
McDonald TS, McCombe PA, Woodruff TM, Lee JD. The potential interplay between energy metabolism and innate complement activation in amyotrophic lateral sclerosis. FASEB J 2020; 34:7225-7233. [PMID: 32307753 DOI: 10.1096/fj.201901781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease without effective treatment. Although the precise mechanisms leading to ALS are yet to be determined, there is now increasing evidence implicating the defective energy metabolism and components of the innate immune complement system in the onset and progression of its motor phenotypes. This review will survey the mechanisms by which the energy metabolism and the complement system are altered during the disease progression of ALS and how it can contribute to disease. Furthermore, it will also examine how complement activation can modify the energy metabolism in metabolic disorders, in order to highlight how the complement system and energy metabolism may be linked in ALS.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Pamela A McCombe
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
34
|
Zhang K, Zhang M, Yao Q, Han X, Zhao Y, Zheng L, Li G, Liu Q, Chang Y, Zhang P, Cui H, Shi Z, Chen T, Yao Z, Han T, Hong W. The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition. Theranostics 2019; 9:7566-7582. [PMID: 31695787 PMCID: PMC6831459 DOI: 10.7150/thno.36942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis leading to cirrhosis is one of the major health burdens worldwide with currently limited therapeutic options available. Long noncoding RNAs (lncRNAs) play important roles in various biological and pathological processes in a cell- or tissue-specific manner. However, there is still an important gap in the understanding of the role of hepatocyte-specific lncRNAs in liver fibrosis. Methods: The expressions of lnc-Hser in human and mice fibrotic livers as well as primary hepatocytes (HCs) of mice developing liver fibrosis were determined by real-time RT-PCR. The roles and mechanisms of lnc-Hser in HCs and liver fibrosis were determined in vitro and in vivo. Results: In this study, we have identified a hepatocyte-specifically expressed lnc-Hser, which was reduced in human and mice fibrotic livers as well as primary HCs of mice developing liver fibrosis. We have shown that silencing lnc-Hser aggravated liver fibrosis both in vitro and in vivo through inducing the epithelial-mesenchymal transition (EMT) and the apoptosis of HCs. In addition, knockdown of lnc-Hser promoted hepatic stellate cells (HSCs) activation through the signals derived from injured HCs. Mechanistically, we have revealed that lnc-Hser inhibited HCs apoptosis via the C5AR1-Hippo-YAP pathway and suppressed HCs EMT via the Notch signaling. Conclusions: Our work has identified a hepatocyte-specific lnc-HSER that regulates liver fibrosis, providing a proof that this molecule is a novel biomarker for damaged HCs and a potential target for anti-fibrotic therapy.
Collapse
|
35
|
Yiu WH, Li RX, Wong DWL, Wu HJ, Chan KW, Chan LYY, Leung JCK, Lai KN, Sacks SH, Zhou W, Tang SCW. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol Dial Transplant 2019; 33:1323-1332. [PMID: 29294056 DOI: 10.1093/ndt/gfx336] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
Background Complement C5 mediates pro-inflammatory responses in many immune-related renal diseases. Given that the C5a level is elevated in diabetes, we investigated whether activation of C5a/C5aR signalling plays a pathogenic role in diabetic nephropathy (DN) and the therapeutic potential of C5a inhibition for renal fibrosis. Methods Human renal biopsies from patients with DN and control subjects were used for immunohistochemical staining of complement C5 components. Renal function and tubulointerstitial injury were compared between db/m mice, vehicle-treated mice and C5a inhibitor-treated db/db mice. A cell culture model of tubule epithelial cells (HK-2) was used to demonstrate the effect of C5a on the renal fibrotic pathway. Results Increased levels of C5a, but not of its receptor C5aR, were detected in renal tubules from patients with DN. The intensity of C5a staining was positively correlated with the progression of the disease. In db/db mice, administration of a novel C5a inhibitor, NOX-D21, reduced the serum triglyceride level and attenuated the upregulation of diacylglycerolacyltransferase-1 and sterol-regulatory element binding protein-1 expression and lipid accumulation in diabetic kidney. NOX-D21-treated diabetic mice also had reduced serum blood urea nitrogen and creatinine levels with less glomerular and tubulointerstitial damage. Renal transforming growth factor beta 1 (TGF-β1), fibronectin and collagen type I expressions were reduced by NOX-D21. In HK-2 cells, C5a stimulated TGF-β production through the activation of the PI3K/Akt signalling pathway. Conclusions Blockade of C5a signalling by NOX-D21 moderates altered lipid metabolism in diabetes and improved tubulointerstitial fibrosis by reduction of lipid accumulation and TGF-β-driven fibrosis in diabetic kidney.
Collapse
Affiliation(s)
- Wai Han Yiu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Rui Xi Li
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Dickson W L Wong
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Hao Jia Wu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kam Wa Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Loretta Y Y Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Joseph C K Leung
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Kar Neng Lai
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| | - Steven H Sacks
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Wuding Zhou
- Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
36
|
Cui J, Wu X, Song Y, Chen Y, Wan J. Complement C3 exacerbates renal interstitial fibrosis by facilitating the M1 macrophage phenotype in a mouse model of unilateral ureteral obstruction. Am J Physiol Renal Physiol 2019; 317:F1171-F1182. [PMID: 31461345 DOI: 10.1152/ajprenal.00165.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The impact of the renal microenvironment on macrophage phenotype determination can contribute to the progression or resolution of renal fibrosis. Although the complement proteins affect macrophage polarization, whether complement component 3 (C3) can induce macrophage polarization and regulate renal interstitial fibrosis remains undetermined. In the present study, we investigated the contribution of C3 on macrophage polarization and renal fibrosis in C3-deficient mice with unilateral ureteral obstruction and bone marrow-derived macrophages. C3-deficient mice exhibited attenuated renal fibrosis and ameliorated peritubular capillary rarefaction. Lack of C3 contributed to M2 macrophage polarization, increased IL-10 and VEGF164, and decreased TNF-α and soluble VEGF receptor 1 expression in the obstructed kidneys at the early stages of unilateral ureteral obstruction. C3a facilitated LPS-induced M1 polarization and inflammatory factor production in bone marrow-derived macrophages in vitro, accompanied by increased ERK, NF-κB, and STAT1 phosphorylation. The ERK-specific inhibitor PD98059 inhibited the phosphorylation of ERK, NF-κB, and STAT1 and attenuated M1 polarization-related inflammatory factor production. Furthermore, the culture supernatant from M1 macrophages and C3a-treated M2 macrophages were more detrimental to angiogenesis compared with M2 macrophage supernatants. Thus, complement C3 exacerbates renal interstitial fibrosis by facilitating macrophage M1 polarization, promoting proinflammatory cytokine expression, and deteriorating peritubular capillary rarefaction in the kidney.
Collapse
Affiliation(s)
- Jiong Cui
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoting Wu
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yankun Song
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yi Chen
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianxin Wan
- Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Compr Physiol 2018; 9:1-58. [PMID: 30549014 DOI: 10.1002/cphy.c170040] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective of this comprehensive review is to summarize and discuss the available evidence of how adipose tissue inflammation affects insulin sensitivity and glucose tolerance. Low-grade, chronic adipose tissue inflammation is characterized by infiltration of macrophages and other immune cell populations into adipose tissue, and a shift toward more proinflammatory subtypes of leukocytes. The infiltration of proinflammatory cells in adipose tissue is associated with an increased production of key chemokines such as C-C motif chemokine ligand 2, proinflammatory cytokines including tumor necrosis factor α and interleukins 1β and 6 as well as reduced expression of the key insulin-sensitizing adipokine, adiponectin. In both rodent models and humans, adipose tissue inflammation is consistently associated with excess fat mass and insulin resistance. In humans, associations with insulin resistance are stronger and more consistent for inflammation in visceral as opposed to subcutaneous fat. Further, genetic alterations in mouse models of obesity that reduce adipose tissue inflammation are-almost without exception-associated with improved insulin sensitivity. However, a dissociation between adipose tissue inflammation and insulin resistance can be observed in very few rodent models of obesity as well as in humans following bariatric surgery- or low-calorie-diet-induced weight loss, illustrating that the etiology of insulin resistance is multifactorial. Taken together, adipose tissue inflammation is a key factor in the development of insulin resistance and type 2 diabetes in obesity, along with other factors that likely include inflammation and fat accumulation in other metabolically active tissues. © 2019 American Physiological Society. Compr Physiol 9:1-58, 2019.
Collapse
Affiliation(s)
- Maggie S Burhans
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Derek K Hagman
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica N Kuzma
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kelsey A Schmidt
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Mario Kratz
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
38
|
Mödinger Y, Rapp A, Pazmandi J, Vikman A, Holzmann K, Haffner-Luntzer M, Huber-Lang M, Ignatius A. C5aR1 interacts with TLR2 in osteoblasts and stimulates the osteoclast-inducing chemokine CXCL10. J Cell Mol Med 2018; 22:6002-6014. [PMID: 30247799 PMCID: PMC6237570 DOI: 10.1111/jcmm.13873] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
The anaphylatoxin C5a is generated upon activation of the complement system, a crucial arm of innate immunity. C5a mediates proinflammatory actions via the C5a receptor C5aR1 and thereby promotes host defence, but also modulates tissue homeostasis. There is evidence that the C5a/C5aR1 axis is critically involved both in physiological bone turnover and in inflammatory conditions affecting bone, including osteoarthritis, periodontitis, and bone fractures. C5a induces the migration and secretion of proinflammatory cytokines of osteoblasts. However, the underlying mechanisms remain elusive. Therefore, in this study we aimed to determine C5a‐mediated downstream signalling in osteoblasts. Using a whole‐genome microarray approach, we demonstrate that C5a activates mitogen‐activated protein kinases (MAPKs) and regulates the expression of genes involved in pathways related to insulin, transforming growth factor‐β and the activator protein‐1 transcription factor. Interestingly, using coimmunoprecipitation, we found an interaction between C5aR1 and Toll‐like receptor 2 (TLR2) in osteoblasts. The C5aR1‐ and TLR2‐signalling pathways converge on the activation of p38 MAPK and the generation of C‐X‐C motif chemokine 10, which functions, among others, as an osteoclastogenic factor. In conclusion, C5a‐stimulated osteoblasts might modulate osteoclast activity and contribute to immunomodulation in inflammatory bone disorders.
Collapse
Affiliation(s)
- Yvonne Mödinger
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Anna Rapp
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anna Vikman
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | | | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
39
|
McCullough RL, McMullen MR, Poulsen KL, Kim A, Medof ME, Nagy LE. Anaphylatoxin Receptors C3aR and C5aR1 Are Important Factors That Influence the Impact of Ethanol on the Adipose Secretome. Front Immunol 2018; 9:2133. [PMID: 30294325 PMCID: PMC6158367 DOI: 10.3389/fimmu.2018.02133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Background and aims: Chronic ethanol exposure results in inflammation in adipose tissue; this response is associated with activation of complement as well as the development of alcohol-related liver disease (ALD). Adipose communicates with other organs, including liver, via the release of soluble mediators, such as adipokines and cytokines, characterized as the "adipose secretome." Here we investigated the role of the anaphaylatoxin receptors C3aR and C5aR1 in the development of adipose tissue inflammation and regulation of the adipose secretome in murine ALD (mALD). Methods: Wild-type C57BL/6 (WT), C3aR -/-, and C5aR1 -/- mice were fed Lieber-DeCarli ethanol diet for 25 days (6% v/v, 32% kcal) or isocaloric control diets; indicators of inflammation and injury were assessed in gonadal adipose tissue. The adipose secretome was characterized in isolated adipocytes and stromal vascular cells. Results: Ethanol feeding increased the expression of adipokines, chemokines and leukocyte markers in gonadal adipose tissue from WT mice; C3aR -/- were partially protected while C5aR1 -/- mice were completely protected. In contrast, induction of CYP2E1 and accumulation of TUNEL-positive cells in adipose in response to ethanol feeding was independent of genotype. Bone marrow chimeras, generated with WT and C5aR1 -/- mice, revealed C5aR1 expression on non-myeloid cells, likely to be adipocytes, contributed to ethanol-induced adipose inflammation. Chronic ethanol feeding regulated both the quantity and distribution of adipokines secreted from adipocytes in a C5aR1-dependent mechanism. In WT mice, chronic ethanol feeding induced a predominant release of pro-inflammatory adipokines from adipocytes, while the adipose secretome from C5aR1 -/- mice was characterized by an anti-inflammatory/protective profile. Further, the cargo of adipocyte-derived extracellular vesicles (EVs) was distinct from the soluble secretome; in WT EVs, ethanol increased the abundance of pro-inflammatory mediators while EV cargo from C5aR1 -/- adipocytes contained a greater diversity and more robust expression of adipokines. Conclusions: C3aR and C5aR1 are potent regulators of ethanol-induced adipose inflammation in mALD. C5aR1 modulated the impact of chronic ethanol on the content of the adipose secretome, as well as influencing the cargo of an extensive array of adipokines from adipocyte-derived EVs. Taken together, our data demonstrate that C5aR1 contributes to ethanol-mediated changes in the adipose secretome, likely contributing to intra-organ injury in ALD.
Collapse
Affiliation(s)
- Rebecca L McCullough
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Megan R McMullen
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kyle L Poulsen
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Adam Kim
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Laura E Nagy
- Department of Inflammation and Immunity, Center for Liver Disease Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
40
|
Bao X, Borné Y, Johnson L, Muhammad IF, Persson M, Niu K, Engström G. Comparing the inflammatory profiles for incidence of diabetes mellitus and cardiovascular diseases: a prospective study exploring the 'common soil' hypothesis. Cardiovasc Diabetol 2018; 17:87. [PMID: 29895294 PMCID: PMC5996509 DOI: 10.1186/s12933-018-0733-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Background Chronic low-grade inflammation and associated insulin resistance and metabolic abnormalities have been proposed as ‘common soil’ for diabetes mellitus (DM) and cardiovascular disease (CVD). This paper aimed to investigate the inflammatory profiles of DM and CVD and to distinguish their shared and specific markers. Methods Based on the Malmö Diet and Cancer cohort, total and differential leukocyte counts were measured in 25,969 participants without previous DM or CVD and were studied in relation to incident DM (mean follow-up 17.4 ± 5.58 years) and incident CVD (i.e., coronary events, including fatal and nonfatal myocardial infarction, or stroke); mean follow-up 17.7 ± 5.46 years, using multivariable Cox regression models. Furthermore, plasma concentrations of another seven inflammatory markers were examined in relation to incident DM and incident CVD in a sub-cohort of 4658 participants. The associations of each inflammatory marker with incident DM versus incident CVD were compared using the Lunn–McNeil competing risks approach. In sensitivity analyses, those who developed both DM and CVD during follow-up were excluded. Results After adjustment for conventional risk factors, total and differential leukocyte counts, orosomucoid, and C-reactive protein were associated with an increased risk of both DM and CVD. Neutrophil to lymphocyte ratio, ceruloplasmin, alpha1-antitrypsin and soluble urokinase plasminogen activator receptor predicted increased risk of CVD but not DM, while haptoglobin and complement C3 showed the opposite pattern. In competing risks analyses, lymphocyte count and complement C3 had stronger associations with risk of DM than with risk of CVD (p for equal associations = 0.020 and 0.006). The reverse was true for neutrophil to lymphocyte ratio (p for equal associations = 0.025). Results were consistent in sensitivity analyses. Conclusions The results indicated substantial similarities in the inflammatory profiles associated with DM and CVD. However, there are also significant differences. These findings may help discriminate between individuals at elevated risk of DM and those at elevated risk of CVD, which is a prerequisite for targeted therapies. Electronic supplementary material The online version of this article (10.1186/s12933-018-0733-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Bao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China. .,Department of Clinical Sciences, Lund University, CRC 60:13, Jan Waldenströms gata 35, 20502, Malmö, Sweden.
| | - Yan Borné
- Department of Clinical Sciences, Lund University, CRC 60:13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Linda Johnson
- Department of Clinical Sciences, Lund University, CRC 60:13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Iram Faqir Muhammad
- Department of Clinical Sciences, Lund University, CRC 60:13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Margaretha Persson
- Department of Clinical Sciences, Lund University, CRC 60:13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, CRC 60:13, Jan Waldenströms gata 35, 20502, Malmö, Sweden
| |
Collapse
|
41
|
Xu P, Werner JU, Milerski S, Hamp CM, Kuzenko T, Jähnert M, Gottmann P, de Roy L, Warnecke D, Abaei A, Palmer A, Huber-Lang M, Dürselen L, Rasche V, Schürmann A, Wabitsch M, Knippschild U. Diet-Induced Obesity Affects Muscle Regeneration After Murine Blunt Muscle Trauma-A Broad Spectrum Analysis. Front Physiol 2018; 9:674. [PMID: 29922174 PMCID: PMC5996306 DOI: 10.3389/fphys.2018.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Injury to skeletal muscle affects millions of people worldwide. The underlying regenerative process however, is a very complex mechanism, time-wise highly coordinated, and subdivided in an initial inflammatory, a regenerative and a remodeling phase. Muscle regeneration can be impaired by several factors, among them diet-induced obesity (DIO). In order to evaluate if obesity negatively affects healing processes after trauma, we utilized a blunt injury approach to damage the extensor iliotibialis anticus muscle on the left hind limb of obese and normal weight C57BL/6J without showing any significant differences in force input between normal weight and obese mice. Magnetic resonance imaging (MRI) of the injury and regeneration process revealed edema formation and hemorrhage exudate in muscle tissue of normal weight and obese mice. In addition, morphological analysis of physiological changes revealed tissue necrosis, immune cell infiltration, extracellular matrix (ECM) remodeling, and fibrosis formation in the damaged muscle tissue. Regeneration was delayed in muscles of obese mice, with a higher incidence of fibrosis formation due to hampered expression levels of genes involved in ECM organization. Furthermore, a detailed molecular fingerprint in different stages of muscle regeneration underlined a delay or even lack of a regenerative response to injury in obese mice. A time-lapse heatmap determined 81 differentially expressed genes (DEG) with at least three hits in our model at all-time points, suggesting key candidates with a high impact on muscle regeneration. Pathway analysis of the DEG revealed five pathways with a high confidence level: myeloid leukocyte migration, regulation of tumor necrosis factor production, CD4-positive, alpha-beta T cell differentiation, ECM organization, and toll-like receptor (TLR) signaling. Moreover, changes in complement-, Wnt-, and satellite cell-related genes were found to be impaired in obese animals after trauma. Furthermore, histological satellite cell evaluation showed lower satellite cell numbers in the obese model upon injury. Ankrd1, C3ar1, Ccl8, Mpeg1, and Myog expression levels were also verified by qPCR. In summary, increased fibrosis formation, the reduction of Pax7+ satellite cells as well as specific changes in gene expression and signaling pathways could explain the delay of tissue regeneration in obese mice post trauma.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Jens-Uwe Werner
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Sebastian Milerski
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Carmen M Hamp
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Tatjana Kuzenko
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Luisa de Roy
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Daniela Warnecke
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core facility "Small Animal Imaging", Ulm University, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Ulm, Germany
| | - Lutz Dürselen
- Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research, Ulm University Medical Center, Ulm, Germany
| | - Volker Rasche
- Core facility "Small Animal Imaging", Ulm University, Ulm, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Potsdam, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Hospital for Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
42
|
Al Haj Ahmad RM, Al-Domi HA. Vitamin D Insufficiency Predicts Elevated Levels of Complement 3 Independent of Insulin Resistance and BMI. J Nutr Sci Vitaminol (Tokyo) 2018; 63:155-160. [PMID: 28757528 DOI: 10.3177/jnsv.63.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was to determine serum 25-hydroxyvitamin D (25(OH)D), the complement 3 (C3), and C-reactive protein (CRP) levels, and their association with the risk of insulin resistance (IR). A case-control study was carried out among 134 participants with body mass index (BMI) ≥30 kg/m2 and BMI=18.5-24.99 kg/m2. Anthropometric and body composition indicators were measured. Serum levels of C3, CRP, 25(OH)D, insulin, and glucose were also measured. IR was assessed by the homeostasis model assessment (HOMA-IR). C3, CRP, insulin, and HOMA-IR levels were higher in participants with obesity than that of controls (p<0.001). After adjustment for the potential confounders, anthropometric and body composition indicators were correlated positively with C3 (p<0.001), and negatively with 25(OH)D (p<0.05). C3, and 25(OH)D were correlated with HOMA-IR (r=0.350; r=-0.212; p<0.05). In logistic regression analyses, C3 and CRP were significantly related to increased odds of IR among participants with obesity as compared to controls after progressively adjusting for the potential confounders (p<0.001), whereas 25(OH)D was negatively, but insignificantly, related to decreased odds of IR among participants with obesity (p>0.05). C3 was associated positively with 25(OH)D insufficiency/deficiency independent of HOMA-IR and/or BMI (β=0.183, p<0.05). Obesity is associated with elevated levels of proinflammatory biomarkers and IR. 25(OH)D insufficiency/deficiency was associated with C3 regardless of HOMA-IR or BMI, which could in turn, have a role in the augmentation of IR during obesity.
Collapse
Affiliation(s)
- Reem M Al Haj Ahmad
- Queen Rania Street, Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan
| | - Hayder A Al-Domi
- Queen Rania Street, Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan
| |
Collapse
|
43
|
Zhang XY, Liu Y, He T, Yang TT, Wu J, Cianflone K, Lu HL. Anaphylatoxin C5a induces inflammation and reduces insulin sensitivity by activating TLR4/NF-kB/PI3K signaling pathway in 3T3-L1 adipocytes. Biomed Pharmacother 2018; 103:955-964. [PMID: 29710512 DOI: 10.1016/j.biopha.2018.04.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Obesity closely correlates with metaflammation and characterizes with systemic-chronic-low inflammation. This study aims to evaluate effects of C5a on the inflammatory response and insulin resistance in 3T3-L1 adipocytes. 3T3-L1 pre-adipocytes were induced to the mature 3T3-L1 adipocytes. Then, 3T3-L1 were intervened with anaphylatoxin C5a, lipopolysaccharide (LPS) and C5a + LPS, respectively. Levels of Omentin, Chemerin, Vaspin and Apelin 12 in supernatants of medium were examined using ELISA. C5L2, C5a receptor (C5aR), I kappa B (IkB), IkB kinase (IKK), insulin receptor substrate 1 (IRS-1), IRS-2, PI3 K, p-PI3 K and β-actin were examined using RT-PCR and western blot assay, respectively. C5L2-C5aR colocalization was identified using immunofluorescence double label. NF-kB expression or activity was evaluated using electrophoretic mobility shift assay (EMSA), dual luciferase assay and immunofluorescence assay, respectively. The glucose uptake and insulin sensitivity were also evaluated. Results showed that C5a intervention significantly enhanced inflammatory molecule levels in supernatants of 3T3-L1 adipocytes. IKK inflammatory signaling pathway participated in C5a induced inflammation of 3T3-L1 adipocytes. C5a triggered the colocalization of C5L2 and C5aR and activated the NF-kB inflammatory signaling pathway. C5a intervention in 3T3-L1 adipocytes decreased the glucose uptake and resulted in reduction of insulin sensitivity. Insulin signaling pathway participated in C5a caused insulin sensitivity reduction. C5a intervention triggered the phosphorylation of PI3 K. In conclusion anaphylatoxin C5a induced inflammatory response by activating TLR4/NF-kB signaling pathway and generating C5L2-C5aR dimer, and caused insulin sensitivity reduction by activating PI3 K signaling pathway.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Yang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Katherine Cianflone
- K. Cianflone. Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, QC, G1V4G5, Canada
| | - Hui-Ling Lu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
44
|
Meng G, Li H, Li Y, Zhang Q, Liu L, Wu H, Xia Y, Bao X, Gu Y, Su Q, Fang L, Yang H, Yu F, Shi H, Sun S, Wang X, Zhou M, Jia Q, Song K, Chang H, Wu Y, Niu K. Sex-Specific Associations Between Complement Component 3 and Component 4 Levels and Metabolic Syndrome in an Adult Population. Metab Syndr Relat Disord 2018; 16:143-149. [PMID: 29596043 DOI: 10.1089/met.2017.0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of cardiovascular and metabolic risk factors in the same individual. Inflammation has been reported to be directly involved in the development of metabolic disease. Complement component 3 (C3) and complement component 4 (C4) have been identified as important inflammatory markers relevant to metabolic disease. However, few studies have analyzed the association between C3 and/or C4 and MetS. In this study, our aim is to evaluate sex-specific association between C3 and C4 levels and risk of MetS in an adult population. METHODS A cohort of 4635 adults was followed from 2010 to 2016. Serum C3 and C4 levels were measured using an immunonephelometric technique. MetS was defined by the American Heart Association scientific statements of 2009. Cox proportional hazard regression models were used to assess sex-specific association between C3 and C4 levels and the incidence of MetS. RESULTS During the ∼6 years of follow-up, 1445 new cases of MetS were identified. After being adjusted to confounding factors, the hazard ratios (95% confidence interval) of MetS for gradually increasing quintiles of C3 were 1.00, 1.23 (0.98-1.54), 1.50 (1.21-1.87), 1.64 (1.32-2.04), and 1.75 (1.41-2.18) (P for trend <0.0001) in men and 1.00, 0.96 (0.60-1.53), 1.61 (1.06-2.44), 2.01 (1.34-3.03), and 2.43 (1.63-3.63) (P for trend <0.0001) in women, respectively. Similar results were also obtained for gradually increasing quintiles of C4 in women, but not in men. CONCLUSIONS The levels of C3 were significantly associated with the incidence of MetS in both men and women. The levels of C4 contributed to risk of MetS only in women.
Collapse
Affiliation(s)
- Ge Meng
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Huihui Li
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Yajun Li
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Qing Zhang
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Li Liu
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Hongmei Wu
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Yang Xia
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Xue Bao
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Yeqing Gu
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Qian Su
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Liyun Fang
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Huijun Yang
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Fei Yu
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Hongbin Shi
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Shaomei Sun
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Xing Wang
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Ming Zhou
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Qiyu Jia
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Kun Song
- 2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| | - Hong Chang
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Yuntang Wu
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China
| | - Kaijun Niu
- 1 Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University , Tianjin, China .,2 Health Management Centre, Tianjin Medical University General Hospital , Tianjin, China
| |
Collapse
|
45
|
Tang M, Zhang K, Li Y, He QH, Li GQ, Zheng QY, Zhang KQ. Mesenchymal stem cells alleviate acute kidney injury by down-regulating C5a/C5aR pathway activation. Int Urol Nephrol 2018; 50:1545-1553. [PMID: 29594894 DOI: 10.1007/s11255-018-1844-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) leads to serious renal damage, and early inhibition of inflammation is necessary for its treatment. C5a/C5aR signaling activation promotes inflammatory response in tissue injury. Anti-inflammatory activity of mesenchymal stem cells (MSCs) makes it possible to alleviate AKI by controlling the C5a/C5aR signaling activation. METHODS Ischemia reperfusion (I/R)-induced AKI models in wild-type and C5aR KO mice were used. In addition, human bone marrow MSCs (hBM-MSCs) or C5aR antagonist were injected in this model. All animals were killed at 72 h after reperfusion. In vitro, the LPS-activated macrophage line RAW264.7 cells were co-cultured with or without hBM-MSCs in the presence of recombinant C5a or not for indicated time points. After that, C5aR expression, the inflammatory factor production, and NF-κB translocation in RAW264.7 cells were measured. RESULTS hBM-MSC treatment and C5a/C5aR signaling blockade or C5aR-deficiency exhibited similar attenuated effects on I/R-induced AKI, macrophages infiltration, and the pro-inflammatory cytokines TNF-α and IL-1β expression in renal tissues in mice. Moreover, hBM-MSC administration led to a significant reduction in C5a levels in serum and C5aR expression in the kidney tissues in mice after I/R. In vitro, upon co-culture with hBM-MSCs, both C5aR expression and the secretion of pro-inflammatory factors TNF-α, IL-6, and nitric oxide in LPS-activated macrophages were markedly reduced. Accordingly, recombinant complement C5a accelerated LPS-induced NF-κB translocation and pro-inflammatory factors expression in macrophages, but the addition of hBM-MSCs reversed these C5a-induced effects. CONCLUSIONS The present study indicates that hBM-MSCs alleviate AKI via suppressing C5a/C5aR-NF-κB pathway activation.
Collapse
Affiliation(s)
- Ming Tang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kun Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - You Li
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qian-Hui He
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gui-Qing Li
- Department of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Quan-You Zheng
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ke-Qin Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
46
|
Hu W, Wang M, Yin C, Li S, Liu Y, Xiao Y. Serum complement factor 5a levels are associated with nonalcoholic fatty liver disease in obese children. Acta Paediatr 2018; 107:322-327. [PMID: 28981167 DOI: 10.1111/apa.14106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/09/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
AIM Nonalcoholic fatty liver disease (NAFLD) is a leading cause of progressive and chronic liver injury. Complement factor 5a (C5a) may be involved in many inflammation disorders. This study investigated levels of systemic C5a in patients with and without NAFLD and lean controls. METHODS A cross-sectional study was conducted from July 2012 to June 2013 among 96 Chinese children, aged 6-17 years, recruited from the Pediatric Department of the Second Affiliated Hospital of Xi'an Jiao Tong University: 40 obese children with NAFLD, 31 obese children without NAFLD and 25 lean controls. Anthropometric parameters, clinical data and circulating C5a levels were measured. RESULTS Obese children had higher serum concentrations of complement factor C5a compared with lean controls, especially in obese children with NAFLD. C5a was positively correlated with body mass index (BMI), waist circumference, diastolic blood pressure (BP), triglycerides and homoeostasis model of insulin resistance, independent of their body mass index standard deviations score and age. Of the well-known risk factors, C5a was a significant predictor of NAFLD in obese children. CONCLUSION Serum C5a was elevated in obese children, especially in those with NAFLD and it may be proposed as a novel marker to predict advanced disease.
Collapse
Affiliation(s)
- Wei Hu
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Min Wang
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Chunyan Yin
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Shuangshaung Li
- Department of Pediatrics; Shangluo City Central Hospital; Xi'an Shanxi Province China
| | - Yuesheng Liu
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Yanfeng Xiao
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
47
|
Atanes P, Ruz-Maldonado I, Pingitore A, Hawkes R, Liu B, Zhao M, Huang GC, Persaud SJ, Amisten S. C3aR and C5aR1 act as key regulators of human and mouse β-cell function. Cell Mol Life Sci 2018; 75:715-726. [PMID: 28921001 PMCID: PMC5769825 DOI: 10.1007/s00018-017-2655-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
AIMS Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. MATERIALS AND METHODS Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca2+]i), ATP generation and apoptosis were assessed by standard techniques. RESULTS C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca2+]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. CONCLUSIONS Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.
Collapse
Affiliation(s)
- Patricio Atanes
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Inmaculada Ruz-Maldonado
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Attilio Pingitore
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Ross Hawkes
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Bo Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Min Zhao
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Guo Cai Huang
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Stefan Amisten
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
48
|
Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol 2018; 18:5-18. [PMID: 28920587 PMCID: PMC5816344 DOI: 10.1038/nri.2017.97] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In tumour immunology, complement has traditionally been considered as an adjunctive component that enhances the cytolytic effects of antibody-based immunotherapies, such as rituximab. Remarkably, research in the past decade has uncovered novel molecular mechanisms linking imbalanced complement activation in the tumour microenvironment with inflammation and suppression of antitumour immune responses. These findings have prompted new interest in manipulating the complement system for cancer therapy. This Review summarizes our current understanding of complement-mediated effector functions in the tumour microenvironment, focusing on how complement activation can act as a negative or positive regulator of tumorigenesis. It also offers insight into clinical aspects, including the feasibility of using complement biomarkers for cancer diagnosis and the use of complement inhibitors during cancer treatment.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| | | | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Alberto Mantovani
- Humanitas Clinical and Research Center and Humanitas University, Rozzano-Milan 20089, Italy
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Vlaicu SI, Tatomir A, Boodhoo D, Vesa S, Mircea PA, Rus H. The role of complement system in adipose tissue-related inflammation. Immunol Res 2017; 64:653-64. [PMID: 26754764 DOI: 10.1007/s12026-015-8783-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the common factor linking adipose tissue to the metabolic context of obesity, insulin resistance and atherosclerosis are associated with a low-grade chronic inflammatory status, to which the complement system is an important contributor. Adipose tissue synthesizes complement proteins and is a target of complement activation. C3a-desArg/acylation-stimulating protein stimulates lipogenesis and affects lipid metabolism. The C3a receptor and C5aR are involved in the development of adipocytes' insulin resistance through macrophage infiltration and the activation of adipose tissue. The terminal complement pathway has been found to be instrumental in promoting hyperglycemia-associated tissue damage, which is characteristic of the major vascular complications of diabetes mellitus and diabetic ketoacidosis. As a mediator of the effects of the terminal complement complex C5b-9, RGC-32 has an impact on energy expenditure as well as lipid and glucose metabolic homeostasis. All of this evidence, taken together, indicates an important role for complement activation in metabolic diseases.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Stefan Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petru A Mircea
- Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA. .,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA. .,Veterans Administration Multiple Sclerosis Center of Excellence, Baltimore, MD, USA.
| |
Collapse
|
50
|
Longitudinal associations of the alternative and terminal pathways of complement activation with adiposity: The CODAM study. Obes Res Clin Pract 2017; 12:286-292. [PMID: 29174517 DOI: 10.1016/j.orcp.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate longitudinal associations of components of the alternative (C3, C3a, Bb, factor D [FD], factor H [FH], and properdin) and the terminal complement pathway (C5a, sC5b-9) with adiposity. METHODS A prospective human cohort study (n=574 at baseline, n=489 after 7 years follow-up) was analyzed. Generalized estimating equations were used to evaluate the longitudinal associations between complement components (standardized values) and adiposity (main outcome BMI [kg/m2]). Multiple linear regression models were used to investigate the associations between change in complement levels and change in BMI. Analyses were adjusted for age, sex, medication and lifestyle. RESULTS Over the 7-year period, baseline C3 was positively associated with BMI (β=1.72 [95% confidence interval (CI): 1.35; 2.09]). Positive associations were also observed for C3a (β=0.64 [0.31; 0.97]), FD (β=1.00 [0.59; 1.42]), FH (β=1.17 [0.82; 1.53]), and properdin (β=0.60 [0.28; 0.92]), but not for Bb, C5a or sC5b-9. Moreover, changes in C3 (β=0.52 [0.34; 0.71]) and FH (β=0.51 [0.32; 0.70]) were significantly associated with changes in BMI. CONCLUSIONS The complement system, particularly activation of the alternative pathway, may be involved in development of adiposity. Whether individual aspects of alternative pathway activation have a causal role in human obesity, remains to be investigated.
Collapse
|