1
|
Zhang X, Xu Z, Chen Q, Zhou Z. Notch signaling regulates pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1450038. [PMID: 39450276 PMCID: PMC11499121 DOI: 10.3389/fcell.2024.1450038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease associated with aging. The pathogenesis of pulmonary fibrosis remains unclear, however, alveolar epithelial cell injury, myofibroblast activation, and extracellular matrix (ECM) accumulation are recognized as key contributors. Moreover, recent studies have implicated cellular senescence, endothelial-mesenchymal transition (EndMT), and epigenetic modifications in the pathogenesis of fibrotic diseases. Various signaling pathways regulate pulmonary fibrosis, including the TGF-β, Notch, Wnt, Hedgehog, and mTOR pathways. Among these, the TGF-β pathway is extensively studied, while the Notch pathway has emerged as a recent research focus. The Notch pathway influences the fibrotic process by modulating immune cell differentiation (e.g., macrophages, lymphocytes), inhibiting autophagy, and promoting interstitial transformation. Consequently, inhibiting Notch signaling represents a promising approach to mitigating pulmonary fibrosis. In this review, we discuss the role of Notch signaling pathway in pulmonary fibrosis, aiming to offer insights for future therapeutic investigations.
Collapse
Affiliation(s)
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | | |
Collapse
|
2
|
Pažur K, Francuzik W, El-Mahmoud H, Kraft M, Worm M. Proteomic, miRNA and bacterial biomarker patterns in atopic dermatitis patients and their course upon anti-IL-4Rα therapy. J Eur Acad Dermatol Venereol 2024; 38:1749-1759. [PMID: 38379385 DOI: 10.1111/jdv.19911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Identification of biomarkers is required for a systems medicine approach and personalized treatment in atopic dermatitis (AD). These biomarkers may not only aid in diagnosing but also might be suitable to predict the effectiveness of targeted treatment. OBJECTIVE We aimed to identify proteomic, microbial and miRNA biomarkers in AD patients and investigated their course in relation to the clinical response upon anti-IL-4Rα therapy. METHODS Proteomic and miRNA screening was performed in AD patients in comparison to healthy controls. Differentially regulated serum proteins, miRNA and selected skin microbiota were measured consecutively in 50 AD patients before and upon systemic dupilumab treatment. A random forest classifier was used to predict the outcome of dupilumab therapy based on the initial biomarker patterns. RESULTS We identified 27 proteomic candidates, miRNA and three microbial strains to be dysregulated in AD. CCL17, CCL13, CCL22, E-selectin and BDNF were differently regulated and significantly associated with treatment response. In contrast, neither the microbial composition nor the miRNA pattern was associated with treatment response upon dupilumab treatment. CONCLUSION AD patients display defined dysregulations regarding their systemic proteomic serum profile, miRNA patterns and their skin microbiome. The proteomic profile and selected skin bacteria changed profoundly upon anti-IL-4Rα therapy which was associated with an overall clinical response. This was not seen in miRNA-related biomarkers. Our findings support the hypothesis that biomarker profiles reflect treatment responses and may in the future be used to develop a personalized medicine approach for the treatment of AD patients.
Collapse
Affiliation(s)
- K Pažur
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - W Francuzik
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - H El-Mahmoud
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - M Kraft
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Worm
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Li W, Jin D, Takai S, Inoue N, Yamanishi K, Tanaka Y, Okamura H. IL-18 primes T cells with an antigen-inexperienced memory phenotype for proliferation and differentiation into effector cells through Notch signaling. J Leukoc Biol 2024:qiae172. [PMID: 39213165 DOI: 10.1093/jleuko/qiae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent studies have revealed that a subset of CD8+ T cells exhibit innate features and can be activated by cytokines. However, the precise mechanisms underlying the proliferation and differentiation of these cells remain unclear. Here, we demonstrated that CD44highCD8+ T cells in the mouse spleen express functional interleukin-18 (IL-18) receptors, whereas CD44lowCD8+ T cells do not. In response to IL-18 stimulation, these cells activated various metabolic pathways, upregulated the expression of surface molecules, such as c-Kit (CD117), CD25, and PD-1, and induced progression through the G1/S phase in the cell cycle. IL-18-primed cells, expressing a high-affinity receptor for IL-2, exhibited robust proliferation in response to IL-2 and underwent differentiation into effector cells. The splenic CD44highCD8+ T cells exhibited high expression levels of CD122, CD62L, CCR7, and CXCR3, along with CD5, indicating their potential for migration to the lymph nodes, where they could undergo expansion and terminal differentiation into effector cells. Additionally, in a tumor model, administration of IL-18 increased the accumulation of CD8+ T cells in both the lymph nodes and tumors. It is noteworthy that stimulation of CD44highCD8+ T cells with IL-18 upregulated the Notch-1 receptor and c-Myc. Moreover, inclusion of γ-secretase inhibitors attenuated the effect of IL-18 on both proliferation and interferon-γ production in the cells. These results demonstrate that IL-18 primes CD44highCD122highCXCR3highCD62LhighCD8+ T cells for expansion and differentiation into effector cells in a Notch signaling-dependent manner.
Collapse
Affiliation(s)
- Wen Li
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Denan Jin
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Takai
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Natsuko Inoue
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
4
|
Lin Y, Liu J, Chong SY, Ting HJ, Tang X, Yang L, Zhang S, Qi X, Pei P, Yi Z, Huang C, Hou X, Gao L, Torta F, Liu X, Liu B, Kah JCY, Wang JW. Dual-Function Nanoscale Coordination Polymer Nanoparticles for Targeted Diagnosis and Therapeutic Delivery in Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401659. [PMID: 39185808 DOI: 10.1002/smll.202401659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular events such as heart attacks and strokes. However, current medical practice lacks non-invasive, reliable approaches for both imaging atherosclerotic plaques and delivering therapeutic agents directly therein. Here, a biocompatible and biodegradable pH-responsive nanoscale coordination polymers (NCPs) based theranostic system is reported for managing atherosclerosis. NCPs are synthesized with a pH-responsive benzoic-imine (BI) linker and Gd3+. Simvastatin (ST), a statin not used for lowering blood cholesterol but known for its anti-inflammatory and antioxidant effects in mice, is chosen as the model drug. By incorporating ST into the hydrophobic domain of a lipid bilayer shell on NCPs surfaces, ST/NCP-PEG nanoparticles are created that are designed for dual purposes: they diagnose and treat atherosclerosis. When administered intravenously, they target atherosclerotic plaques, breaking down in the mild acidic microenvironment of the plaque to release ST, which reduces inflammation and oxidative stress, and Gd-complexes for MR imaging of the plaques. ST/NCP-PEG nanoparticles show efficacy in slowing the progression of atherosclerosis in live models and allow for simultaneous in vivo monitoring without observed toxicity in major organs. This positions ST/NCP-PEG nanoparticles as a promising strategy for the spontaneous diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yuanzhe Lin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, Singapore, 117583, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore (NUHCS), 14 Medical Drive, Singapore, 117599, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Xichuan Tang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Liqiang Yang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Xinyi Qi
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Peng Pei
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Xiao Hou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
| | - Liang Gao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, Singapore, 117583, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd, Singapore, 119228, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore (NUHCS), 14 Medical Drive, Singapore, 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore
| |
Collapse
|
5
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T-ALL. Leukemia 2024; 38:491-501. [PMID: 38155245 DOI: 10.1038/s41375-023-02123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Hegermiller
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Rosemary E Morman
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Cameron Frank
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Caner Saygin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60657, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Spolski R, Li P, Chandra V, Shin B, Goel S, Sakamoto K, Liu C, Oh J, Ren M, Enomoto Y, West EE, Christensen SM, Wan ECK, Ge M, Lin JX, Yan B, Kazemian M, Yu ZX, Nagao K, Vijayanand P, Rothenberg EV, Leonard WJ. Distinct use of super-enhancer elements controls cell type-specific CD25 transcription and function. Sci Immunol 2023; 8:eadi8217. [PMID: 37922339 PMCID: PMC10832512 DOI: 10.1126/sciimmunol.adi8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
The IL-2 receptor α chain (IL-2Rα/CD25) is constitutively expressed on double-negative (DN2/DN3 thymocytes and regulatory T cells (Tregs) but induced by IL-2 on T and natural killer (NK) cells, with Il2ra expression regulated by a STAT5-dependent super-enhancer. We investigated CD25 regulation and function using a series of mice with deletions spanning STAT5-binding elements. Deleting the upstream super-enhancer region mainly affected constitutive CD25 expression on DN2/DN3 thymocytes and Tregs, with these mice developing autoimmune alopecia, whereas deleting an intronic region decreased IL-2-induced CD25 on peripheral T and NK cells. Thus, distinct super-enhancer elements preferentially control constitutive versus inducible expression in a cell type-specific manner. The mediator-1 coactivator colocalized with specific STAT5-binding sites. Moreover, both upstream and intronic regions had extensive chromatin interactions, and deletion of either region altered the super-enhancer structure in mature T cells. These results demonstrate differential functions for distinct super-enhancer elements, thereby indicating previously unknown ways to manipulate CD25 expression in a cell type-specific fashion.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Li
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Chandra
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shubham Goel
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keiko Sakamoto
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Hamamatsu University School of Medicine, Department of Dermatology, Hamamatsu, Japan
| | - Chengyu Liu
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Min Ren
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yutaka Enomoto
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin E West
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Christensen
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edwin C K Wan
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meili Ge
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Teichman S, Wang H, Lee CR, Mohtashami M, Foerster E, Han J, Trotman-Grant AC, Winer S, Tsui H, Philpott DJ, Zúñiga-Pflücker JC. Recent Thymic Emigrants Require RBPJ-Dependent Notch Signaling to Transition into Functionally Mature Naive T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:81-90. [PMID: 37154711 PMCID: PMC10330261 DOI: 10.4049/jimmunol.2300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Recent thymic emigrant (RTE) cells are nascent T cells that continue their post-thymic maturation in the periphery and dominate T cell immune responses in early life and in adults having undergone lymphodepletion regimens. However, the events that govern their maturation and their functionality as they transition to mature naive T cells have not been clearly defined. Using RBPJind mice, we were able to identify different stages of RTE maturation and interrogate their immune function using a T cell transfer model of colitis. As CD45RBlo RTE cells mature, they transition through a CD45RBint immature naive T (INT) cell population that is more immunocompetent but shows a bias toward IL-17 production at the expense of IFN-γ. Additionally, the levels of IFN-γ and IL-17 produced in INT cells are highly dependent on whether Notch signals are received during INT cell maturation or during their effector function. IL-17 production by INT cells showed a total requirement for Notch signaling. Loss of Notch signaling at any stage of INT cells resulted in an impaired colitogenic effect of INT cells. RNA sequencing of INT cells that had matured in the absence of Notch signals showed a reduced inflammatory profile compared with Notch-responsive INT cells. Overall, we have elucidated a previously unknown INT cell stage, revealed its intrinsic bias toward IL-17 production, and demonstrated a role for Notch signaling in INT cell peripheral maturation and effector function in the context of a T cell transfer model of colitis.
Collapse
Affiliation(s)
- Sintia Teichman
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Helen Wang
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Christina R. Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Jianxun Han
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ashton C. Trotman-Grant
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hubert Tsui
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Parriott G, Hegermiller E, Morman RE, Frank C, Saygin C, Stock W, Bartom ET, Kee BL. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T lymphocyte acute lymphoblastic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537993. [PMID: 37163059 PMCID: PMC10168235 DOI: 10.1101/2023.04.23.537993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of Tal1 or Lyl1 in T cell progenitors or inactivation of E2a, is sufficient to predispose mice to develop T-ALL. How E2a suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a , prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2a suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymus cellularity is a determinant of leukemogenesis.
Collapse
|
9
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
10
|
Transcriptional regulation of Notch1 by nuclear factor-κB during T cell activation. Sci Rep 2023; 13:43. [PMID: 36593298 PMCID: PMC9807580 DOI: 10.1038/s41598-022-26674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Notch1 plays important roles in T cell development and is highly expressed in activated CD4+ T cells. However, the underlying mechanism of Notch1 transcription in T cells has not been fully characterized. Therefore, we aimed to determine how Notch1 expression is regulated during the activation of CD4+ T cells. Both the surface expression and mRNA transcription of Notch1 were significantly higher in activated CD4+ T cells, but the inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 or deletion of the Pdk1 gene impaired this upregulation of Notch1. Interrogation of the Notch1 promoter region using serially deleted Notch1 promoter reporters revealed that the - 300 to - 270 region is crucial for its transcription in activated T cells. In addition, we found that nuclear factor (NF)-κB subunits containing RelA bind directly to this promoter region, thereby upregulating transcription. In addition, inhibition of NF-κB by SN50 impaired upregulation of Notch1 surface protein and mRNA in activated CD4+ T cells. Thus, we provide evidence that Notch1 transcription in activated CD4+ T cells is upregulated via the PI3K-PDK1-NF-κB signaling pathway.
Collapse
|
11
|
Schutt SD, Wu Y, Kharel A, Bastian D, Choi HJ, Hanief Sofi M, Mealer C, McDaniel Mims B, Nguyen H, Liu C, Helke K, Cui W, Zhang X, Ben-David Y, Yu XZ. The druggable transcription factor Fli-1 regulates T cell immunity and tolerance in graft-versus-host disease. J Clin Invest 2022; 132:143950. [PMID: 36074578 PMCID: PMC9621143 DOI: 10.1172/jci143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Graft-versus-host disease (GVHD), manifesting as either acute (aGVHD) or chronic (cGVHD), presents significant life-threatening complications following allogeneic hematopoietic cell transplantation. Here, we investigated Friend virus leukemia integration 1 (Fli-1) in GVHD pathogenesis and validated Fli-1 as a therapeutic target. Using genetic approaches, we found that Fli-1 dynamically regulated different T cell subsets in allogeneic responses and pathogenicity in the development of aGVHD and cGVHD. Compared with homozygous Fli1-deficient or WT T cells, heterozygous Fli1-deficient T cells induced the mildest GVHD, as evidenced by the lowest Th1 and Th17 cell differentiation. Single-cell RNA-Seq analysis revealed that Fli-1 differentially regulated CD4+ and CD8+ T cell responses. Fli-1 promoted the transcription of Th1/Th17 pathways and T cell receptor-inducible (TCR-inducible) transcription factors in CD4+ T cells, while suppressing activation- and function-related gene pathways in CD8+ T cells. Importantly, a low dose of camptothecin, topotecan, or etoposide acted as a potent Fli-1 inhibitor and significantly attenuated GVHD severity, while preserving the graft-versus-leukemia (GVL) effect. This observation was extended to a xenograft model, in which GVHD was induced by human T cells. In conclusion, we provide evidence that Fli-1 plays a crucial role in alloreactive CD4+ T cell activation and differentiation and that targeting Fli-1 may be an attractive strategy for treating GVHD without compromising the GVL effect.
Collapse
Affiliation(s)
- Steven D. Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - Arjun Kharel
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Hee-Jin Choi
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - Mohammed Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Corey Mealer
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Brianyell McDaniel Mims
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - Xian Zhang
- Department of Medicine at MUSC, Charleston, South Carolina, USA
| | - Yaacov Ben-David
- Guizhou Medical University and the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,The Cancer Center in MCW, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Edelmann J. NOTCH1 Signalling: A key pathway for the development of high-risk chronic lymphocytic leukaemia. Front Oncol 2022; 12:1019730. [DOI: 10.3389/fonc.2022.1019730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
NOTCH1 is a cell surface receptor that releases its intracellular domain as transcription factor upon activation. With the advent of next-generation sequencing, the NOTCH1 gene was found recurrently mutated in chronic lymphocytic leukaemia (CLL). Here, virtually all NOTCH1 mutations affect the protein’s PEST-domain and impair inactivation and degradation of the released transcription factor, thus increasing NOTCH1 signalling strength. Besides sequence alterations directly affecting the NOTCH1 gene, multiple other genomic and non-genomic alterations have by now been identified in CLL cells that could promote an abnormally strong NOTCH1 signalling strength. This renders NOTCH1 one of the key signalling pathways in CLL pathophysiology. The frequency of genomic alterations affecting NOTCH1 signalling is rising over the CLL disease course culminating in the observation that besides TP53 loss, 8q gain and CDKN2A/B loss, NOTCH1 mutation is a hallmark genomic alteration associated with transformation of CLL into an aggressive lymphoma (Richter transformation). Both findings associate de-regulated NOTCH1 signalling with the development of high-risk CLL. This narrative review provides data on the role of NOTCH1 mutation for CLL development and progression, discusses the impact of NOTCH1 mutation on treatment response, gives insight into potential modes of NOTCH1 pathway activation and regulation, summarises alterations that have been discussed to contribute to a de-regulation of NOTCH1 signalling in CLL cells and provides a perspective on how to assess NOTCH1 signalling in CLL samples.
Collapse
|
13
|
Baindara P, Sarker MB, Earhart AP, Mandal SM, Schrum AG. NOTCH signaling in COVID-19: a central hub controlling genes, proteins, and cells that mediate SARS-CoV-2 entry, the inflammatory response, and lung regeneration. Front Cell Infect Microbiol 2022; 12:928704. [PMID: 35992174 PMCID: PMC9386183 DOI: 10.3389/fcimb.2022.928704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 01/19/2023] Open
Abstract
In the lungs of infected individuals, the downstream molecular signaling pathways induced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are incompletely understood. Here, we describe and examine predictions of a model in which NOTCH may represent a central signaling axis in lung infection in Coronavirus Disease 2019 (COVID-19). A pathway involving NOTCH signaling, furin, ADAM17, and ACE2 may be capable of increasing SARS-CoV-2 viral entry and infection. NOTCH signaling can also upregulate IL-6 and pro-inflammatory mediators induced to hyperactivation in COVID-19. Furthermore, if NOTCH signaling fails to turn down properly and stays elevated, airway regeneration during lung healing can be inhibited—a process that may be at play in COVID-19. With specific NOTCH inhibitor drugs in development and clinical trials for other diseases being conducted, the roles of NOTCH in all of these processes central to both infection and healing merit contemplation if such drugs might be applied to COVID-19 patients.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- *Correspondence: Piyush Baindara, ; Santi M. Mandal, ; Adam G. Schrum,
| | - Md Bodruzzaman Sarker
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia MO, United States
| | - Alexander P. Earhart
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
- *Correspondence: Piyush Baindara, ; Santi M. Mandal, ; Adam G. Schrum,
| | - Adam G. Schrum
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical, Biological, & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
- *Correspondence: Piyush Baindara, ; Santi M. Mandal, ; Adam G. Schrum,
| |
Collapse
|
14
|
Friedrich T, Ferrante F, Pioger L, Nist A, Stiewe T, Andrau JC, Bartkuhn M, Giaimo BD, Borggrefe T. Notch-dependent and -independent functions of transcription factor RBPJ. Nucleic Acids Res 2022; 50:7925-7937. [PMID: 35848919 PMCID: PMC9371899 DOI: 10.1093/nar/gkac601] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Signal transduction pathways often involve transcription factors that promote activation of defined target gene sets. The transcription factor RBPJ is the central player in Notch signaling and either forms an activator complex with the Notch intracellular domain (NICD) or a repressor complex with corepressors like KYOT2/FHL1. The balance between these two antagonizing RBPJ-complexes depends on the activation state of the Notch receptor regulated by cell-to-cell interaction, ligand binding and proteolytic cleavage events. Here, we depleted RBPJ in mature T-cells lacking active Notch signaling and performed RNA-Seq, ChIP-Seq and ATAC-seq analyses. RBPJ depletion leads to upregulation of many Notch target genes. Ectopic expression of NICD1 activates several Notch target genes and enhances RBPJ occupancy. Based on gene expression changes and RBPJ occupancy we define four different clusters, either RBPJ- and/or Notch-regulated genes. Importantly, we identify early (Hes1 and Hey1) and late Notch-responsive genes (IL2ra). Similarly, to RBPJ depletion, interfering with transcriptional repression by squelching with cofactor KYOT2/FHL1, leads to upregulation of Notch target genes. Taken together, RBPJ is not only an essential part of the Notch co-activator complex but also functions as a repressor in a Notch-independent manner.
Collapse
Affiliation(s)
- Tobias Friedrich
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.,Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Léo Pioger
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293 cedex 5, Montpellier, France
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, 34293 cedex 5, Montpellier, France
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Aulweg 128, 35392 Giessen, Germany.,Institute for Lung Health, Aulweg 132, 35392 Giessen, Germany
| | - Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
15
|
DEMİRDÖĞEN F, AKDAĞ T, GÜNDÜZ ZB, ODABAŞ FÖ. INVESTIGATION OF SERUM ADROPIN LEVELS AND ITS RELATIONSHIP WITH HYPOTHALAMIC ATROPHY IN PATIENTS WITH MULTIPLE SCLEROSIS. Mult Scler Relat Disord 2022; 67:103999. [DOI: 10.1016/j.msard.2022.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
16
|
DEMİRDÖĞEN F, AKDAĞ T, GÜNDÜZ ZB, ODABAŞ FÖ. INVESTIGATION OF SERUM ADROPIN LEVELS AND ITS RELATIONSHIP WITH HYPOTHALAMIC ATROPHY IN PATIENTS WITH MULTIPLE SCLEROSIS. Mult Scler Relat Disord 2022; 66:103948. [DOI: 10.1016/j.msard.2022.103948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
|
17
|
The role of A Disintegrin and Metalloproteinase (ADAM)-10 in T helper cell biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119192. [PMID: 34982961 DOI: 10.1016/j.bbamcr.2021.119192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
A Disintegrin and Metalloproteinases (ADAM)-10 is a member of a family of membrane-anchored proteinases that regulate a broad range of cellular functions with central roles within the immune system. This has spurred the interest to modulate ADAM activity therapeutically in immunological diseases. CD4 T helper (Th) cells are the key regulators of adaptive immune responses. Their development and function is strongly dependent on Notch, a key ADAM-10 substrate. However, Th cells rely on a variety of additional ADAM-10 substrates regulating their functional activity at multiple levels. The complexity of both, the ADAM substrate expression as well as the functional consequences of ADAM-mediated cleavage of the various substrates complicates the analysis of cell type specific effects. Here we provide an overview on the major ADAM-10 substrates relevant for CD4 T cell biology and discuss the potential effects of ADAM-mediated cleavage exemplified for a selection of important substrates.
Collapse
|
18
|
Láinez-González D, Serrano-López J, Alonso-Dominguez JM. Understanding the Notch Signaling Pathway in Acute Myeloid Leukemia Stem Cells: From Hematopoiesis to Neoplasia. Cancers (Basel) 2022; 14:cancers14061459. [PMID: 35326610 PMCID: PMC8946707 DOI: 10.3390/cancers14061459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The Notch signaling pathway is fundamental to early fetal development, but its role in acute myeloid leukemia is still unclear. It is important to elucidate the function that contains Notch, not only in acute myeloid leukemia, but in leukemic stem cells (LSCs). LSCs seem to be the principal cause of patient relapse. This population is in a quiescent state. Signaling pathways that govern this process must be understood to increase the chemosensitivity of this compartment. In this review, we focus on the conserved Notch signaling pathway, and its repercussions in hematopoiesis and hematological neoplasia. We found in the literature both visions regarding Notch activity in acute myeloid leukemia. On one hand, the activation of Notch leads to cell proliferation, on the other hand, the activation of Notch leads to cell cycle arrest. This dilemma requires further experiments to be answered, in order to understand the role of Notch not only in acute myeloid leukemia, but especially in LSCs.
Collapse
Affiliation(s)
- Daniel Láinez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juana Serrano-López
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juan Manuel Alonso-Dominguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-918488100-2673
| |
Collapse
|
19
|
Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast cancer immunotherapy. Chem Sci 2021; 13:105-110. [PMID: 35059157 PMCID: PMC8694320 DOI: 10.1039/d1sc03525h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapy has remarkably improved the therapeutic effect of melanoma and non-small cell lung cancer in the clinic. Nevertheless, it showed disappointing clinical outcomes for treating immunosuppressive tumors, wherein aggressive T cells are rather limited in tumor sites. Therefore, regulating the behavior of T cells in tumor sites to increase their attack ability for suppressing the immunosuppressive tumor is highly desirable. Inspiringly, we designed a dendritic cell-like biomimetic nanoparticle (DMSNs3@HA) to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors. In this work, anti-CD3 and anti-CD28 were responsible for mimicking dendritic cells to activate T cells, and anti-PD-1 for blocking the pathway of PD-1/PD-L1 to break the immune “brake”, which synergistically regulated the behavior of T cells to attack cancer cells. Experimental results indicated that DMSNs3@HA can effectively activate T cells and improve their immune response to significantly inhibit the growth of breast cancer. Moreover, it also proved that T cell activation combining immune checkpoint blocking induced the “1 + 1 >2” immunotherapy effect against immunosuppressive tumors. We expect that this strategy will provide new insights into tumor immunotherapy by modulating T cell behavior. A dendritic cell-like biomimetic nanoparticle has been designed to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors.![]()
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
20
|
Perry DJ, Peters LD, Lakshmi PS, Zhang L, Han Z, Wasserfall CH, Mathews CE, Atkinson MA, Brusko TM. Overexpression of the PTPN22 Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4 + T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:849-859. [PMID: 34301848 PMCID: PMC8323970 DOI: 10.4049/jimmunol.2000708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
A missense mutation (R620W) of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), which encodes lymphoid-tyrosine phosphatase (LYP), confers genetic risk for multiple autoimmune diseases including type 1 diabetes. LYP has been putatively demonstrated to attenuate proximal T and BCR signaling. However, limited data exist regarding PTPN22 expression within primary T cell subsets and the impact of the type 1 diabetes risk variant on human T cell activity. In this study, we demonstrate endogenous PTPN22 is differentially expressed and dynamically controlled following activation. From control subjects homozygous for the nonrisk allele, we observed 2.1- (p < 0.05) and 3.6-fold (p < 0.001) more PTPN22 transcripts in resting CD4+ memory and regulatory T cells (Tregs), respectively, over naive CD4+ T cells, with expression peaking 24 h postactivation. When LYP was overexpressed in conventional CD4+ T cells, TCR signaling and activation were blunted by LYP-620R (p < 0.001) but only modestly affected by the LYP-620W risk variant versus mock-transfected control, with similar results observed in Tregs. LYP overexpression only impacted proliferation following activation by APCs but not anti-CD3- and anti-CD28-coated microbeads, suggesting LYP modulation of pathways other than TCR. Notably, proliferation was significantly lower with LYP-620R than with LYP-620W overexpression in conventional CD4+ T cells but was similar in Treg. These data indicate that the LYP-620W variant is hypomorphic in the context of human CD4+ T cell activation and may have important implications for therapies seeking to restore immunological tolerance in autoimmune disorders.
Collapse
Affiliation(s)
- Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Leeana D Peters
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Priya Saikumar Lakshmi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Lin Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Zhao Han
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL; and
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL
| |
Collapse
|
21
|
Ho CH, Silva AA, Tomita B, Weng HY, Ho IC. Differential impacts of TNFα inhibitors on the transcriptome of Th cells. Arthritis Res Ther 2021; 23:199. [PMID: 34301319 PMCID: PMC8299604 DOI: 10.1186/s13075-021-02558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting TNFα is beneficial in many autoimmune and inflammatory diseases, including rheumatoid arthritis. However, the response to each of the existing TNFα inhibitors (TNFis) can be patient- and/or disease-dependent. In addition, TNFis can induce the production of type 1 interferons (IFNs), which contribute to their non-infection side effects, such as pustular psoriasis. Thus far, the molecular mechanisms mediating the drug-specific effects of TNFis and their induction of type 1 IFNs are not fully understood. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from healthy donors and stimulated in vitro with anti-CD3 and anti-CD28 in the absence or presence of adalimumab, etanercept, or certolizumab. Th cells were isolated from the stimulated PBMCs, and their RNA was subjected to RNA-seq and quantitative polymerase chain reaction. RESULTS Adalimumab and etanercept, which contain Fc, but not certolizumab, which does not contain Fc, inhibited the expression of several effector cytokines by Th cells within anti-CD3/anti-CD28-stimulated PBMCs. Transcriptomic analyses further showed that adalimumab, but not certolizumab, reciprocally induced type 1 IFN signals and the expression of CD96 and SIRPG in Th cells. The unique effects of adalimumab were not due to preferential neutralization of soluble TNFα but instead were mediated by several distinct mechanisms independent or dependent of Fc-facilitated physical interaction between Th cells and CD14+ monocytes. CONCLUSIONS TNFis can have drug-specific effects on the transcriptional profile of Th cells.
Collapse
Affiliation(s)
- Ching-Huang Ho
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
- Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Andrea A Silva
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
- Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Beverly Tomita
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
- Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Hui-Ying Weng
- Biomedical Industry PhD Program, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - I-Cheng Ho
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.
- Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021; 12:668207. [PMID: 33912195 PMCID: PMC8071949 DOI: 10.3389/fimmu.2021.668207] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway regulates developmental cell-fate decisions and has recently also been linked to inflammatory diseases. Although therapies targeting Notch signaling in inflammation in theory are attractive, their design and implementation have proven difficult, at least partly due to the broad involvement of Notch signaling in regenerative and homeostatic processes. In this review, we summarize the supporting role of Notch signaling in various inflammation-driven diseases, and highlight efforts to intervene with this pathway by targeting Notch ligands and/or receptors with distinct therapeutic strategies, including antibody designs. We discuss this in light of lessons learned from Notch targeting in cancer treatment. Finally, we elaborate on the impact of individual Notch members in inflammation, which may lay the foundation for development of therapeutic strategies in chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Torleif T. Gjølberg
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Eye Research and Department of Ophthalmology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eirik Sundlisæter
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Huang H, Zhou P, Wei J, Long L, Shi H, Dhungana Y, Chapman NM, Fu G, Saravia J, Raynor JL, Liu S, Palacios G, Wang YD, Qian C, Yu J, Chi H. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8 + T cell fate decisions. Cell 2021; 184:1245-1261.e21. [PMID: 33636132 DOI: 10.1016/j.cell.2021.02.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/27/2020] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
How early events in effector T cell (TEFF) subsets tune memory T cell (TMEM) responses remains incompletely understood. Here, we systematically investigated metabolic factors in fate determination of TEFF and TMEM cells using in vivo pooled CRISPR screening, focusing on negative regulators of TMEM responses. We found that amino acid transporters Slc7a1 and Slc38a2 dampened the magnitude of TMEM differentiation, in part through modulating mTORC1 signaling. By integrating genetic and systems approaches, we identified cellular and metabolic heterogeneity among TEFF cells, with terminal effector differentiation associated with establishment of metabolic quiescence and exit from the cell cycle. Importantly, Pofut1 (protein-O-fucosyltransferase-1) linked GDP-fucose availability to downstream Notch-Rbpj signaling, and perturbation of this nutrient signaling axis blocked terminal effector differentiation but drove context-dependent TEFF proliferation and TMEM development. Our study establishes that nutrient uptake and signaling are key determinants of T cell fate and shape the quantity and quality of TMEM responses.
Collapse
Affiliation(s)
- Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun Wei
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guotong Fu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shaofeng Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chenxi Qian
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
NOTCH1 and DLL4 are involved in the human tuberculosis progression and immune response activation. Tuberculosis (Edinb) 2020; 124:101980. [PMID: 32801053 DOI: 10.1016/j.tube.2020.101980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/21/2020] [Accepted: 07/19/2020] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) is the leading cause of mortality among infectious diseases worldwide. The study of molecular targets for therapy and diagnosis suggested that Notch signaling is an important pathway for the maintenance of the immune response during Mycobacterium tuberculosis (Mtb) infection. We evaluated the participation of the Notch pathway in the modulation of immune response during Mtb infection, and observed that patients with active TB had increased DLL4 expression in intermediate and non-classic monocytes. Further, patients with moderate and advanced lung injury have higher Notch1 expression in CD4+ T cells when compared to patients with a minimal lung injury. When we considered the severity of disease in active TB patients, the expression of the DLL4 in intermediate monocytes and the expression of Notch1 in CD4+ T cells are positively correlated with the degree of lung injury. In vitro, PBMCs treated with the Notch pharmacological inhibitor reduced the production of IL-17A and IL-2, whereas anti-hDLL4 treatment promoted a significant increase in TNF-α and phagocytosis. We suggest that Notch1 and DLL4 are associated with immune response activation in human tuberculosis, and can be a novel target to be exploited in the future in the searching of biomarkers.
Collapse
|
25
|
Yu L, Su X, Li S, Zhao F, Mu D, Qu Y. Microglia and Their Promising Role in Ischemic Brain Injuries: An Update. Front Cell Neurosci 2020; 14:211. [PMID: 32754016 PMCID: PMC7365911 DOI: 10.3389/fncel.2020.00211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic brain injuries are common diseases with high morbidity, disability, and mortality rates, which have significant impacts on human health and life. Microglia are resident cells of the central nervous system (CNS). The inflammatory responses mediated by microglia play an important role in the occurrence and development of ischemic brain injuries. This article summarizes the activation, polarization, depletion, and repopulation of microglia after ischemic brain injuries, proposing new treatment strategies for such injuries through the modulation of microglial function.
Collapse
Affiliation(s)
- Luting Yu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shiping Li
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fengyan Zhao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
26
|
Mitra A, Shanthalingam S, Sherman HL, Singh K, Canakci M, Torres JA, Lawlor R, Ran Y, Golde TE, Miele L, Thayumanavan S, Minter LM, Osborne BA. CD28 Signaling Drives Notch Ligand Expression on CD4 T Cells. Front Immunol 2020; 11:735. [PMID: 32457739 PMCID: PMC7221189 DOI: 10.3389/fimmu.2020.00735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
Notch signaling provides an important cue in the mammalian developmental process. It is a key player in T cell development and function. Notch ligands such as Delta-like ligands (DLL) 1, 3, 4, and JAG1, 2 can impact Notch signaling positively or negatively, by trans-activation or cis-inhibition. Trans and cis interactions are receptor-ligand interaction on two adjacent cells and interaction on the same cell, respectively. The former sends an activation signal and the later, a signal for inhibition of Notch. However, earlier reports suggested that Notch is activated in the absence of Notch ligand-expressing APCs in a purified population of CD4 T cells. Thus, the role of ligands in Notch activation, in a purified population of CD4 T cells, remains obscure. In this study, we demonstrate that mature CD4 T cells are capable of expressing Notch ligands on their surface very early upon activation with soluble antibodies against CD3 and CD28. Moreover, signaling solely through CD28 induces Notch ligand expression and CD3 signaling inhibits ligand expression, in contrast to Notch which is induced by CD3 signaling. Additionally, by using decoys, mimicking the Notch extracellular domain, we demonstrated that DLL1, DLL4, and JAG1, expressed on the T cells, can cis-interact with the Notch receptor and inhibit activation of Notch. Thus, our data indicate a novel mechanism of the regulation of Notch ligand expression on CD4 T cells and its impact on activated Notch.
Collapse
Affiliation(s)
- Ankita Mitra
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Heather L Sherman
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Khushboo Singh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Mine Canakci
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joe A Torres
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca Lawlor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yong Ran
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Lucio Miele
- School of Medicine, Department of Genetics, LSU Health Sciences Center, New Orleans, LA, United States
| | - Sankaran Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
27
|
Perkey E, Maurice De Sousa D, Carrington L, Chung J, Dils A, Granadier D, Koch U, Radtke F, Ludewig B, Blazar BR, Siebel CW, Brennan TV, Nolz J, Labrecque N, Maillard I. GCNT1-Mediated O-Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1674-1688. [PMID: 32060138 DOI: 10.4049/jimmunol.1901194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Notch signaling is emerging as a critical regulator of T cell activation and function. However, there is no reliable cell surface indicator of Notch signaling across activated T cell subsets. In this study, we show that Notch signals induce upregulated expression of the Gcnt1 glycosyltransferase gene in T cells mediating graft-versus-host disease after allogeneic bone marrow transplantation in mice. To determine if Gcnt1-mediated O-glycosylation could be used as a Notch signaling reporter, we quantified the core-2 O-glycoform of CD43 in multiple T cell subsets during graft-versus-host disease. Pharmacological blockade of Delta-like Notch ligands abrogated core-2 O-glycosylation in a dose-dependent manner after allogeneic bone marrow transplantation, both in donor-derived CD4+ and CD8+ effector T cells and in Foxp3+ regulatory T cells. CD43 core-2 O-glycosylation depended on cell-intrinsic canonical Notch signals and identified CD4+ and CD8+ T cells with high cytokine-producing ability. Gcnt1-deficient T cells still drove lethal alloreactivity, showing that core-2 O-glycosylation predicted, but did not cause, Notch-dependent T cell pathogenicity. Using core-2 O-glycosylation as a marker of Notch signaling, we identified Ccl19-Cre+ fibroblastic stromal cells as critical sources of Delta-like ligands in graft-versus-host responses irrespective of conditioning intensity. Core-2 O-glycosylation also reported Notch signaling in CD8+ T cell responses to dendritic cell immunization, Listeria infection, and viral infection. Thus, we uncovered a role for Notch in controlling core-2 O-glycosylation and identified a cell surface marker to quantify Notch signals in multiple immunological contexts. Our findings will help refine our understanding of the regulation, cellular source, and timing of Notch signals in T cell immunity.
Collapse
Affiliation(s)
- Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Dave Maurice De Sousa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Léolène Carrington
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Jooho Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alexander Dils
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - David Granadier
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | | | - Jeffrey Nolz
- Oregon Health and Sciences University, Portland, OR 97239; and
| | - Nathalie Labrecque
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
28
|
Abstract
The evolutionarily conserved Notch signalling pathway regulates the differentiation and function of mature T lymphocytes with major context-dependent consequences in host defence, autoimmunity and alloimmunity. The emerging effects of Notch signalling in T cell responses build upon a more established role for Notch in T cell development. Here, we provide a critical review of this burgeoning literature to make sense of what has been learned so far and highlight the experimental strategies that have been most useful in gleaning physiologically relevant information. We outline the functional consequences of Notch signalling in mature T cells in addition to key specific Notch ligand–receptor interactions and downstream molecular signalling pathways. Our goal is to help clarify future directions for this expanding body of work and the best approaches to answer important open questions.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Chung J, Radojcic V, Perkey E, Parnell TJ, Niknafs Y, Jin X, Friedman A, Labrecque N, Blazar BR, Brennan TV, Siebel CW, Maillard I. Early Notch Signals Induce a Pathogenic Molecular Signature during Priming of Alloantigen-Specific Conventional CD4 + T Cells in Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:557-568. [PMID: 31182480 DOI: 10.4049/jimmunol.1900192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) is the most serious complication of allogeneic hematopoietic cell transplantation. Notch signals delivered during the first 48 h after transplantation drive proinflammatory cytokine production in conventional T cells (Tconv) and inhibit the expansion of regulatory T cells (Tregs). Short-term Notch inhibition induces long-term GVHD protection. However, it remains unknown whether Notch blockade blunts GVHD through its effects on Tconv, Tregs, or both and what early Notch-regulated molecular events occur in alloantigen-specific T cells. To address these questions, we engineered T cell grafts to achieve selective Notch blockade in Tconv versus Tregs and evaluated their capacity to trigger GVHD in mice. Notch blockade in Tconv was essential for GVHD protection as GVHD severity was similar in the recipients of wild-type Tconv combined with Notch-deprived versus wild-type Tregs. To identify the impact of Notch signaling on the earliest steps of T cell activation in vivo, we established a new acute GVHD model mediated by clonal alloantigen-specific 4C CD4+ Tconv. Notch-deprived 4C T cells had preserved early steps of activation, IL-2 production, proliferation, and Th cell polarization. In contrast, Notch inhibition dampened IFN-γ and IL-17 production, diminished mTORC1 and ERK1/2 activation, and impaired transcription of a subset of Myc-regulated genes. The distinct Notch-regulated signature had minimal overlap with known Notch targets in T cell leukemia and developing T cells, highlighting the specific impact of Notch signaling in mature T cells. Our findings uncover a unique molecular program associated with the pathogenic effects of Notch in T cells at the earliest stages of GVHD.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Vedran Radojcic
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT 84112
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Timothy J Parnell
- Huntsman Cancer Institute Bioinformatic Analysis Shared Resource, University of Utah, Salt Lake City, UT 84112
| | - Yashar Niknafs
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Xi Jin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Nathalie Labrecque
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T IJ4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T IJ4, Canada
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Todd V Brennan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | | | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; .,Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109.,Division of Hematology-Oncology, Department of Internal Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
30
|
Sorrentino C, Hossain F, Rodriguez PC, Sierra RA, Pannuti A, Osborne BA, Minter LM, Miele L, Morello S. Adenosine A2A Receptor Stimulation Inhibits TCR-Induced Notch1 Activation in CD8+T-Cells. Front Immunol 2019; 10:162. [PMID: 30792717 PMCID: PMC6374329 DOI: 10.3389/fimmu.2019.00162] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/18/2019] [Indexed: 12/23/2022] Open
Abstract
Notch receptors signaling is required for optimal T-cell activation and function. T-cell receptor (TCR) engagement can activate Notch receptors in T-cells in a ligand-independent fashion. In this study, we examined the role of adenosine A2A receptor (A2AR) signaling pathway in regulating the activity of Notch1 induced by TCR stimulation in CD8+T-cells. A selective A2AR agonist decreased Notch1 protein expression and Notch1 cleavage, and reduced transcripts of Notch1-target genes Hes1 and Myc in activated CD8+T-cells. Inhibition of TCR-induced Notch1 expression by an A2AR agonist was accompanied by increased cAMP concentration and mimicked by forskolin. This effect was associated with reduced IFN-γ and granzyme B production. The effect of an A2AR agonist was abrogated by a selective A2AR antagonist and absent in CD8+T-cells harvested from A2AR-/- mice. Stimulation of A2AR reduced Notch1 receptor levels by inhibiting upstream TCR signals, including ZAP70 phosphorylation, in turn impairing the generation of the active Notch1 intracellular domain (N1ICD). Direct activation of PKC with PMA and ionomycin bypassed A2AR-induced Notch1 inhibition. Overexpression of N1ICD in CD8+T-cells prevented the suppressive effects of an A2AR agonist on proliferation and cytokine release during activation. Our results identify the A2AR signaling pathway as an important regulator of TCR-induced Notch1 receptor activation in CD8+T-cells, and Notch as an important target of the immune suppressive effects of A2AR. We propose a mechanism whereby A2AR impairs CD8 T-cells function through inhibition of Notch1 receptor activation.
Collapse
Affiliation(s)
| | - Fokhrul Hossain
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Rosa A Sierra
- H. L. Moffitt Comprehensive Cancer Center, Tampa, FL, United States
| | - Antonio Pannuti
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|
31
|
Ozay EI, Vijayaraghavan J, Gonzalez-Perez G, Shanthalingam S, Sherman HL, Garrigan DT, Chandiran K, Torres JA, Osborne BA, Tew GN, Slukvin II, Macdonald RA, Kelly K, Minter LM. Cymerus™ iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease. Stem Cell Res 2019; 35:101401. [PMID: 30738321 PMCID: PMC6544140 DOI: 10.1016/j.scr.2019.101401] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/25/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
The immune-mediated tissue destruction of graft-vs-host disease (GvHD) remains a major barrier to greater use of hematopoietic stem cell transplantation (HSCT). Mesenchymal stem cells (MSCs) have intrinsic immunosuppressive qualities and are being actively investigated as a therapeutic strategy for treating GvHD. We characterized Cymerus™ MSCs, which are derived from adult, induced pluripotent stem cells (iPSCs), and show they display surface markers and tri-lineage differentiation consistent with MSCs isolated from bone marrow (BM). Administering iPSC-MSCs altered phosphorylation and cellular localization of the T cell-specific kinase, Protein Kinase C theta (PKCθ), attenuated disease severity, and prolonged survival in a humanized mouse model of GvHD. Finally, we evaluated a constellation of pro-inflammatory molecules on circulating PBMCs that correlated closely with disease progression and which may serve as biomarkers to monitor therapeutic response. Altogether, our data suggest Cymerus iPSC-MSCs offer the potential for an off-the-shelf, cell-based therapy to treat GvHD.
Collapse
Affiliation(s)
- E Ilker Ozay
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States; Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Jyothi Vijayaraghavan
- Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Gabriela Gonzalez-Perez
- Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Heather L Sherman
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Daniel T Garrigan
- Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Karthik Chandiran
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Joe A Torres
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Barbara A Osborne
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States
| | - Igor I Slukvin
- Cynata Therapeutics Limited, Carlton, Victoria 3053, Australia; Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Ross A Macdonald
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Kilian Kelly
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Lisa M Minter
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
32
|
Notch signaling induces lymphoproliferation, T helper cell activation and Th1/Th2 differentiation in leprosy. Immunol Lett 2019; 207:6-16. [PMID: 30629982 DOI: 10.1016/j.imlet.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 02/02/2023]
Abstract
The present study evaluates role of Notch1 signaling in the regulation of T cell immunity in leprosy. Peripheral blood mononuclear cells from leprosy patients and healthy controls were activated with Mycobacterium leprae antigens along with activation of Notch1 signaling pathway and then lymphoproliferation was analyzed by lymphocytes transformation test and the expression of Notch1 and its ligands DLL1, Jagged1 and Jagged 2, T cell activation marker and Th1-Th2 cytokines on Th cells in PBMCs of study subjects were analyzed by flow cytometry. Further, these parameters were also analyzed after inhibition of Notch1 signaling pathway. Higher percentage of Notch1expressing Th cells were noted in TT/BT cases and higher percentage of DLL1 expressing Th cells in TT/BT and BL/LL cases. M. leprae antigens were found to induce the expression of Jagged1 on Th cells. Interestingly activation of Notch1 signaling pathway induced lymphoproliferation in BL/LL cases in response of PGL-1. Activation of Notch1 signaling was also found to induce the expression of T cell activation markers CD25, CD69 and Th1 cytokine IFN-γ in response to M. leprae antigens. Immunomodulation through Notch1 signaling seen in our study could be helpful in augmenting Th1 response in leprosy.
Collapse
|
33
|
The multifaceted role of Notch signal in regulating T cell fate. Immunol Lett 2019; 206:59-64. [PMID: 30629981 DOI: 10.1016/j.imlet.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 11/22/2022]
Abstract
Notch signaling pathway facilitates important cellular functions of the host. Notch signal is essential for the development of T cells, and the role of Notch in fine tuning of αβ versus γδ T cell lineage commitment is fundamentally different in mice and human. The Notch family of cell surface receptor likewise plays a critical role in regulating T cell activation, and influences T cell response both intrinsically and through the local environment. In this review, we take an overview of Notch signaling pathway and also emphasize the role of Notch signal in T cell lineage differentiation and activating effector function of peripheral T cells.
Collapse
|
34
|
Sgolastra F, Kuksin CA, Gonzalez-Perez G, Minter LM, Tew GN. Enhanced TAT-Cre Protein Transduction for Efficient Gene Recombination in T cells. ACS APPLIED BIO MATERIALS 2018; 1:444-451. [PMID: 35016365 DOI: 10.1021/acsabm.8b00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic manipulation has increased our understanding of gene function and led to the discovery of new therapeutic targets. Cre/LoxP DNA recombination is widely used for genetic studies in mammalian cells. The direct delivery of Cre recombinase fused to protein transduction domains (PTDs), such as TAT, has been described as a valid alternative to the conditional, site-specific Cre expression in transgenic mice. However, efficiently conveying proteins into live cells, especially primary T cells, remains a major challenge. In this study, we show that one of our recently developed PTDs synthetic mimic greatly enhances the cellular uptake of the TAT-Cre fusion protein, enabling significantly smaller amounts of the protein to be used. We used this technique in primary mouse T cells to successfully delete, ex vivo, two essential genes involved in regulating T cell activation, Notch1 and Rbpjκ. Ex vivo gene deletion resulted in substantial protein reduction, comparable to that obtained in vivo when Cre-expressing Notch1-floxed (MxCre±Notch1fl/fl) mice were treated with polyinosinic-polycytidylic acid (polyl/C), but in considerably less time, and without altering normal cell physiology. These results highlight several key advantages that include the ability to use less expensive protein (TAT-Cre), a major reduction in total experimental time and labor, and fewer side effects on the treated cells. This method should offer new opportunities for immunological studies, especially in the context of identifying novel therapeutic targets.
Collapse
|
35
|
Ozay EI, Sherman HL, Mello V, Trombley G, Lerman A, Tew GN, Yadava N, Minter LM. Rotenone Treatment Reveals a Role for Electron Transport Complex I in the Subcellular Localization of Key Transcriptional Regulators During T Helper Cell Differentiation. Front Immunol 2018; 9:1284. [PMID: 29930555 PMCID: PMC5999735 DOI: 10.3389/fimmu.2018.01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023] Open
Abstract
Recent advances in our understanding of tumor cell mitochondrial metabolism suggest it may be an attractive therapeutic target. Mitochondria are central hubs of metabolism that provide energy during the differentiation and maintenance of immune cell phenotypes. Mitochondrial membranes harbor several enzyme complexes that are involved in the process of oxidative phosphorylation, which takes place during energy production. Data suggest that, among these enzyme complexes, deficiencies in electron transport complex I may differentially affect immune responses and may contribute to the pathophysiology of several immunological conditions. Once activated by T cell receptor signaling, along with co-stimulation through CD28, CD4 T cells utilize mitochondrial energy to differentiate into distinct T helper (Th) subsets. T cell signaling activates Notch1, which is cleaved from the plasma membrane to generate its intracellular form (N1ICD). In the presence of specific cytokines, Notch1 regulates gene transcription related to cell fate to modulate CD4 Th type 1, Th2, Th17, and induced regulatory T cell (iTreg) differentiation. The process of differentiating into any of these subsets requires metabolic energy, provided by the mitochondria. We hypothesized that the requirement for mitochondrial metabolism varies between different Th subsets and may intersect with Notch1 signaling. We used the organic pesticide rotenone, a well-described complex I inhibitor, to assess how compromised mitochondrial integrity impacts CD4 T cell differentiation into Th1, Th2, Th17, and iTreg cells. We also investigated how Notch1 localization and downstream transcriptional capabilities regulation may be altered in each subset following rotenone treatment. Our data suggest that mitochondrial integrity impacts each of these Th subsets differently, through its influence on Notch1 subcellular localization. Our work further supports the notion that altered immune responses can result from complex I inhibition. Therefore, understanding how mitochondrial inhibitors affect immune responses may help to inform therapeutic approaches to cancer treatment.
Collapse
Affiliation(s)
- Emrah Ilker Ozay
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Heather L Sherman
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Victoria Mello
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Grace Trombley
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Adam Lerman
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Gregory N Tew
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Nagendra Yadava
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States.,Pioneer Valley Life Sciences Institute, Springfield, MA, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
36
|
Steinbuck MP, Winandy S. A Review of Notch Processing With New Insights Into Ligand-Independent Notch Signaling in T-Cells. Front Immunol 2018; 9:1230. [PMID: 29910816 PMCID: PMC5992298 DOI: 10.3389/fimmu.2018.01230] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein essential to a wide spectrum of cellular systems, and its deregulation has been linked to a vast number of developmental disorders and malignancies. Regulated Notch function is critical for the generation of T-cells, in which abnormal Notch signaling results in leukemia. Notch activation through trans-activation of the receptor by one of its ligands expressed on adjacent cells has been well defined. In this canonical ligand-dependent pathway, Notch receptor undergoes conformational changes upon ligand engagement, stimulated by a pulling-force on the extracellular fragment of Notch that results from endocytosis of the receptor-bound ligand into the ligand-expressing cell. These conformational changes in the receptor allow for two consecutive proteolytic cleavage events to occur, which release the intracellular region of the receptor into the cytoplasm. It can then travel to the nucleus, where it induces gene transcription. However, there is accumulating evidence that other pathways may induce Notch signaling. A ligand-independent mechanism of Notch activation has been described in which receptor processing is initiated via cell-internal signals. These signals result in the internalization of Notch into endosomal compartments, where chemical changes existing in this microenvironment result in the conformational modifications required for receptor processing. This review will present mechanisms underlying both canonical ligand-dependent and non-canonical ligand-independent Notch activation pathways and discuss the latter in the context of Notch signaling in T-cells.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Susan Winandy
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
37
|
Wu F, Luo T, Mei Y, Liu H, Dong J, Fang Y, Peng J, Guo Y. Simvastatin alters M1/M2 polarization of murine BV2 microglia via Notch signaling. J Neuroimmunol 2018; 316:56-64. [DOI: 10.1016/j.jneuroim.2017.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 01/10/2023]
|
38
|
Steinbuck MP, Arakcheeva K, Winandy S. Novel TCR-Mediated Mechanisms of Notch Activation and Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:997-1007. [PMID: 29288204 PMCID: PMC5854196 DOI: 10.4049/jimmunol.1700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023]
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein that is essential to a wide spectrum of cellular systems. Notch signaling is especially important to T cell development, and its deregulation leads to leukemia. Although not well characterized, it continues to play an integral role in peripheral T cells, in which a unique mode of Notch activation can occur. In contrast to canonical Notch activation initiated by adjacent ligand-expressing cells, TCR stimulation is sufficient to induce Notch signaling. However, the interactions between these two pathways have not been defined. In this article, we show that Notch activation occurs in peripheral T cells within a few hours post-TCR stimulation and is required for optimal T cell activation. Using a panel of inhibitors against components of the TCR signaling cascade, we demonstrate that Notch activation is facilitated through initiation of protein kinase C-induced ADAM activity. Moreover, our data suggest that internalization of Notch via endocytosis plays a role in this process. Although ligand-mediated Notch stimulation relies on mechanical pulling forces that disrupt the autoinhibitory domain of Notch, we hypothesized that, in T cells in the absence of ligands, these conformational changes are induced through chemical adjustments in the endosome, causing alleviation of autoinhibition and receptor activation. Thus, T cells may have evolved a unique method of Notch receptor activation, which is described for the first time, to our knowledge, in this article.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Ksenia Arakcheeva
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Susan Winandy
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
39
|
Backer RA, Hombrink P, Helbig C, Amsen D. The Fate Choice Between Effector and Memory T Cell Lineages: Asymmetry, Signal Integration, and Feedback to Create Bistability. Adv Immunol 2018; 137:43-82. [DOI: 10.1016/bs.ai.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Abstract
Notch drives critical decisions in a multitude of developmental decisions in many invertebrate and vertebrate organisms including flies, worms, fish, mice and humans. Therefore, it is not surprising that Notch family members also play a key role in cell fate choices in the vertebrate immune system. This review highlights the critical function of Notch in the development of mature T lymphocytes from hematopoietic precursors and describes the role of Notch in mature T cell activation, proliferation and differentiation.
Collapse
|
41
|
Li Q, Zhang H, Yu L, Wu C, Luo X, Sun H, Ding J. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients. Int Immunopharmacol 2017; 54:24-32. [PMID: 29100034 DOI: 10.1016/j.intimp.2017.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 02/09/2023]
Abstract
Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients.
Collapse
Affiliation(s)
- Qifeng Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China; Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Hui Zhang
- Clinical Medicine Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Liang Yu
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Chao Wu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xinhui Luo
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - He Sun
- Xinjiang Institute of Pediatrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China.
| | - Jianbing Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China; Department of Immunology, School of Preclinical Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.
| |
Collapse
|
42
|
Dar AA, Bhat SA, Gogoi D, Gokhale A, Chiplunkar SV. Inhibition of Notch signalling has ability to alter the proximal and distal TCR signalling events in human CD3 + αβ T-cells. Mol Immunol 2017; 92:116-124. [PMID: 29078088 DOI: 10.1016/j.molimm.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023]
Abstract
The Notch signalling pathway is an important regulator of T cell function and is known to regulate the effector functions of T cells driven by T cell receptor (TCR). However, the mechanism integrating these pathways in human CD3+ αβ T cells is not well understood. The present study was carried out to investigate how Notch and TCR driven signalling are synchronized in human αβ T cells. Differential expression of Notch receptors, ligands, and target genes is observed on human αβ T cells which are upregulated on stimulation with α-CD3/CD28 mAb. Inhibition of Notch signalling by GSI-X inhibited the activation of T cells and affected proximal T cell signalling by regulating CD3-ζ chain expression. Inhibition of Notch signalling decreased the protein expression of CD3-ζ chain and induced expression of E3 ubiquitin ligase (GRAIL) in human αβ T cells. Apart from affecting proximal TCR signalling, Notch signalling also regulated the distal TCR signalling events. In the absence of Notch signalling, α-CD3/CD28 mAb induced activation and IFN-γ production by αβ T cells was down-modulated. The absence of Notch signalling in human αβ T cells inhibited proliferative responses despite strong signalling through TCR and IL-2 receptor. This study shows how Notch signalling cooperates with TCR signalling by regulating CD3-ζ chain expression to support proliferation and activation of human αβ T cells.
Collapse
Affiliation(s)
- Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Dimpu Gogoi
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Abhiram Gokhale
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|
43
|
Tindemans I, Peeters MJW, Hendriks RW. Notch Signaling in T Helper Cell Subsets: Instructor or Unbiased Amplifier? Front Immunol 2017; 8:419. [PMID: 28458667 PMCID: PMC5394483 DOI: 10.3389/fimmu.2017.00419] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022] Open
Abstract
For protection against pathogens, it is essential that naïve CD4+ T cells differentiate into specific effector T helper (Th) cell subsets following activation by antigen presented by dendritic cells (DCs). Next to T cell receptor and cytokine signals, membrane-bound Notch ligands have an important role in orchestrating Th cell differentiation. Several studies provided evidence that DC activation is accompanied by surface expression of Notch ligands. Intriguingly, DCs that express the delta-like or Jagged Notch ligands gain the capacity to instruct Th1 or Th2 cell polarization, respectively. However, in contrast to this model it has also been hypothesized that Notch signaling acts as a general amplifier of Th cell responses rather than an instructive director of specific T cell fates. In this alternative model, Notch enhances proliferation, cytokine production, and anti-apoptotic signals or promotes co-stimulatory signals in T cells. An instructive role for Notch ligand expressing DCs in the induction of Th cell differentiation is further challenged by evidence for the involvement of Notch signaling in differentiation of Th9, Th17, regulatory T cells, and follicular Th cells. In this review, we will discuss the two opposing models, referred to as the “instructive” and the “unbiased amplifier” model. We highlight both the function of different Notch receptors on CD4+ T cells and the impact of Notch ligands on antigen-presenting cells.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
44
|
Chung J, Ebens CL, Perkey E, Radojcic V, Koch U, Scarpellino L, Tong A, Allen F, Wood S, Feng J, Friedman A, Granadier D, Tran IT, Chai Q, Onder L, Yan M, Reddy P, Blazar BR, Huang AY, Brennan TV, Bishop DK, Ludewig B, Siebel CW, Radtke F, Luther SA, Maillard I. Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands. J Clin Invest 2017; 127:1574-1588. [PMID: 28319044 PMCID: PMC5373885 DOI: 10.1172/jci89535] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity.
Collapse
Affiliation(s)
- Jooho Chung
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Christen L. Ebens
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology
- Life Sciences Institute, and
| | - Vedran Radojcic
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Alexander Tong
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Frederick Allen
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sherri Wood
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiane Feng
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Qian Chai
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Minhong Yan
- Genentech, South San Francisco, California, USA
| | - Pavan Reddy
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alex Y. Huang
- Medical Scientist Training Program and Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Todd V. Brennan
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - D. Keith Bishop
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ivan Maillard
- Life Sciences Institute, and
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Huang MT, Chen YL, Lien CI, Liu WL, Hsu LC, Yagita H, Chiang BL. Notch Ligand DLL4 Alleviates Allergic Airway Inflammation via Induction of a Homeostatic Regulatory Pathway. Sci Rep 2017; 7:43535. [PMID: 28262821 PMCID: PMC5337933 DOI: 10.1038/srep43535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/27/2017] [Indexed: 02/08/2023] Open
Abstract
Notch is a pleiotropic signaling family that has been implicated in pathogenesis of allergic airway diseases; however, the distinct function of individual Notch ligands remains elusive. We investigated whether Notch ligands, Jagged1 and DLL4, exert differential effects in OVA-induced allergic asthma. We found that whilst Jagged1 inhibition mitigated Th2-dominated airway inflammation, blockage of DLL4 aggravated the Th2-mediated asthma phenotypes. Additionally, Jagged1 signaling blockage enhanced IL-17 production and neutrophilic airway infiltration. In vitro, exogenous Jagged1 induced Th2-skewed responses, whereas augmented DLL4 signaling displayed a dual role by promoting expansion of both Tregs and Th17. In vivo, DLL4 blockage impaired Treg differentiation which plausibly resulted in exaggerated asthma phenotypes. On the contrary, administration of DLL4-expressing antigen-presenting cells promoted endogenous Treg expansion and ameliorated the allergic responses. Therefore, whilst Jagged1 induces Th2-skewed inflammation, DLL4 elicits an essential self-regulatory mechanism via Treg-mediated pathway that counterbalances Jagged1-induced Th2 responses and facilitates resolution of the airway inflammation to restore homeostasis. These findings uncover a disparate function of Jagged1 and DLL4 in allergic airway diseases, hinting feasibility of Notch ligand-specific targeting in therapy of allergic airway diseases.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan.,Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yi-Lien Chen
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chia-I Lien
- Graduate Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Wei-Liang Liu
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Li-Chung Hsu
- Graduate Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan.,Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
46
|
Britton GJ, Ambler R, Clark DJ, Hill EV, Tunbridge HM, McNally KE, Burton BR, Butterweck P, Sabatos-Peyton C, Hampton-O’Neil LA, Verkade P, Wülfing C, Wraith DC. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton. eLife 2017; 6:e20003. [PMID: 28112644 PMCID: PMC5310840 DOI: 10.7554/elife.20003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.
Collapse
Affiliation(s)
- Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Danielle J Clark
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kerrie E McNally
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philomena Butterweck
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Lea A Hampton-O’Neil
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - David Cameron Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
47
|
Tindemans I, Lukkes M, de Bruijn MJW, Li BWS, van Nimwegen M, Amsen D, KleinJan A, Hendriks RW. Notch signaling in T cells is essential for allergic airway inflammation, but expression of the Notch ligands Jagged 1 and Jagged 2 on dendritic cells is dispensable. J Allergy Clin Immunol 2017; 140:1079-1089. [PMID: 28111308 DOI: 10.1016/j.jaci.2016.11.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Allergic asthma is characterized by a TH2 response induced by dendritic cells (DCs) that present inhaled allergen. Although the mechanisms by which they instruct TH2 differentiation are still poorly understood, expression of the Notch ligand Jagged on DCs has been implicated in this process. OBJECTIVE We sought to establish whether Notch signaling induced by DCs is critical for house dust mite (HDM)-driven allergic airway inflammation (AAI) in vivo. METHODS The induction of Notch ligand expression on DC subsets by HDM was quantified by using quantitative real-time PCR. We used an HDM-driven asthma mouse model to compare the capacity of Jagged 1 and Jagged 2 single- and double-deficient DCs to induce AAI. In addition, we studied AAI in mice with a T cell-specific deletion of recombination signal-binding protein for immunoglobulin Jκ region (RBPJκ), a downstream effector of Notch signaling. RESULTS HDM exposure promoted expression of Jagged 1, but not Jagged 2, on DCs. In agreement with published findings, in vitro-differentiated and HDM-pulsed Jagged 1 and Jagged 2 double-deficient DCs lacked the capacity to induce AAI. However, after in vivo intranasal sensitization and challenge with HDM, DC-specific Jagged 1 or Jagged 2 single- or double-deficient mice had eosinophilic airway inflammation and a TH2 cell activation phenotype that was not different from that in control littermates. In contrast, RBPJκ-deficient mice did not experience AAI and airway hyperreactivity. CONCLUSION Our results show that the Notch signaling pathway in T cells is crucial for the induction of TH2-mediated AAI in an HDM-driven asthma model but that expression of Jagged 1 or Jagged 2 on DCs is not required.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bobby W S Li
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Murakami N, Maillard I, Riella LV. Notch Signaling and Immune Regulation in Alloimmunity. CURRENT TRANSPLANTATION REPORTS 2016; 3:294-302. [PMID: 29977738 DOI: 10.1007/s40472-016-0126-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Notch signaling plays a pivotal role in the differentiation and fate determination of T cells, B cells, dendritic cells (DCs) and innate lymphoid cells (ILCs). Recent gene-targeting and antibody approaches advanced our knowledge of the importance of Notch signaling in fine-tuning the peripheral immune response. Here we review current knowledge of the Notch pathway, focusing on solid organ transplant and graft-versus-host disease preclinical models, and discuss the potential of targeting Notch to suppress the immune response and improve transplant outcomes.
Collapse
Affiliation(s)
- Naoka Murakami
- Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Ivan Maillard
- Life Sciences Institute and Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Leonardo V Riella
- Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
49
|
Liu T, He W, Li Y. Helicobacter pylori Infection of Gastric Epithelial Cells Affects NOTCH Pathway In Vitro. Dig Dis Sci 2016; 61:2516-21. [PMID: 27073072 DOI: 10.1007/s10620-016-4161-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/04/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Helicobacter pylori infection is exceptionally prevalent, and it is an important risk factor for gastritis, gastroduodenal ulcers, and gastric cancer. However, the pathogenic mechanisms of H. pylori are not entirely clear. The aim of this study was to assess which signal pathway is initially activated by H. pylori. METHODS Using the Human Signal Transduction Pathway Finder RT(2) Profiler PCR Array, we screened for alterations in the expression of genes encoding members of ten different signal transduction pathways in GES-1 cells co-cultured with H. pylori. qPCR and Western blotting were used to verify the expression of four key genes in NOTCH pathway. RESULTS Of the 84 genes represented in the array, 22 genes demonstrated more than twofold difference (p < 0.05) in GES-1 cells grown in the presence of H. pylori 11637 compared to cells without H. pylori 11637. Ten genes were up-regulated in the co-culture group, whereas 12 appeared to be down-regulated. Further analysis using the SA Biosciences online program revealed that NOTCH pathway was the most significantly affected network. There was a significant reduction in the mRNA expression level of NOTCH1 and NOTCH2, together with a reduced level of active forms of NOTCH1 (NICD1) and NOTCH2 (NICD2). Meanwhile, the expression level of the ligand DLL4 was found to be significantly increased. CONCLUSIONS NOTCH signaling may play an important role in H. pylori-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Tao Liu
- Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China
- Key Laboratory of Digestive System Tumors, Lanzhou, Gansu Province, China
| | - Wenting He
- Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China
- Key Laboratory of Digestive System Tumors, Lanzhou, Gansu Province, China
| | - Yumin Li
- Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China.
- Key Laboratory of Digestive System Tumors, Lanzhou, Gansu Province, China.
| |
Collapse
|
50
|
Abstract
The mineralized structure of bone undergoes constant remodeling by the balanced actions of bone-producing osteoblasts and bone-resorbing osteoclasts (OCLs). Physiologic bone remodeling occurs in response to the body's need to respond to changes in electrolyte levels, or mechanical forces on bone. There are many pathological conditions, however, that cause an imbalance between bone production and resorption due to excessive OCL action that results in net bone loss. Situations involving chronic or acute inflammation are often associated with net bone loss, and research into understanding the mechanisms regulating this bone loss has led to the development of the field of osteoimmunology. It is now evident that the skeletal and immune systems are functionally linked and share common cells and signaling molecules. This review discusses the signaling system of immune cells and cytokines regulating aberrant OCL differentiation and activity. The role of these cells and cytokines in the bone loss occurring in periodontal disease (PD) (chronic inflammation) and orthodontic tooth movement (OTM) (acute inflammation) is then described. The review finishes with an exploration of the emerging role of Notch signaling in the development of the immune cells and OCLs that are involved in osteoimmunological bone loss and the research into Notch signaling in OTM and PD.
Collapse
Affiliation(s)
- Kevin A Tompkins
- a Research Unit of Mineralized Tissue, Faculty of Dentistry , Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|