1
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Frigault MJ, Yao N, Berger TR, Wehrli M, Gallagher KME, Horick N, Graham CE, Jacobson CA, Chen YB, Leick MB, DeFilipp Z, El-Jawahri AR, Johnson PC, Dolaher M, Katsis K, Kim AI, Crombie J, Merryman RW, Cook D, Trailor M, Cho H, Jeffrey R, Shen R, Filosto S, Nater J, Getz G, Haradhvala NJ, Maus MV. Single-cell dynamics of breakthrough toxicities after anakinra prophylaxis for axicabtagene ciloleucel in lymphoma. Blood Adv 2025; 9:2122-2135. [PMID: 39928957 PMCID: PMC12051123 DOI: 10.1182/bloodadvances.2024015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/12/2025] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T-cell (CAR-T) therapy is limited by cytokine release syndrome (CRS) and neurotoxicity (NT). We sought to use once-daily prophylactic anakinra, an interleukin-1 (IL-1) receptor antagonist, to prevent CRS/NT that would require hospitalization (grade ≥2) in patients receiving axicabtagene ciloleucel for large-cell lymphoma, with the goal of facilitating outpatient therapy and management. Our study, in line with others, demonstrates that once-daily prophylactic anakinra is insufficient to prevent the development of toxicities that would require hospitalization in most patients. As part of the initial study design, we prospectively incorporated single-cell RNA sequencing to gain insight into the molecular immune signaling associated with breakthrough CRS and NT despite anakinra prophylaxis. In patients who developed breakthrough CRS or NT, we found that interferon gamma (IFN-γ) pathways and ligand-receptor activities were significantly enriched, as were cytokine levels of IFN-γ and CXCL10 in CD14+ monocytes. This correlated with increased IFN-γ and other cytokines in the peripheral blood. In infused CAR-T products, IL-4 and IL-10 anti-inflammatory pathways were negatively associated with grade ≥2 toxicities, regardless of anakinra treatment. These data identify IFN-γ as a potential key mechanism in CAR-T-associated toxicities, which is not inhibited by anakinra but may be otherwise targetable. This trial was registered at www.ClinicalTrials.gov as #NCT04150913.
Collapse
Affiliation(s)
- Matthew J. Frigault
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Ning Yao
- Harvard Medical School, Boston, MA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Marc Wehrli
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Kathleen M. E. Gallagher
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Nora Horick
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Charlotte E. Graham
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Caron A. Jacobson
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Department of Hematology/Oncology, Boston, MA
| | - Yi-Bin Chen
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Zachariah DeFilipp
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Areej R. El-Jawahri
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - P. Connor Johnson
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Maria Dolaher
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Katelin Katsis
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Austin I. Kim
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Department of Hematology/Oncology, Boston, MA
| | - Jennifer Crombie
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Department of Hematology/Oncology, Boston, MA
| | - Reid W. Merryman
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Department of Hematology/Oncology, Boston, MA
| | - Daniella Cook
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Michael Trailor
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Hana Cho
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Richard Jeffrey
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
| | - Rhine Shen
- Kite, a Gilead Company, Santa Monica, CA
| | | | | | - Gad Getz
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | | | - Marcela V. Maus
- Cellular Immunotherapy Program, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA
- Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Abraham D, Gupta A, Duraisamy AK, Mrinalini M. The influence of chronic periodontitis and type 2 diabetes mellitus on resistin levels of gingival crevicular fluid- a systematic review and meta-analysis. J Oral Biol Craniofac Res 2025; 15:612-623. [PMID: 40248519 PMCID: PMC12005886 DOI: 10.1016/j.jobcr.2025.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Aim Chronic periodontitis (CP), a prevalent inflammatory dental disease, has been linked to systemic conditions like Type 2 Diabetes Mellitus (T2DM). This systematic review and meta-analysis aimed to evaluate resistin levels in the Gingival Crevicular Fluid (GCF) of CP individuals with T2DM. The objective was to determine if resistin could be a potential biomarker for periodontal disease in T2DM individuals. Methods The review included data from seventeen clinical studies that investigated resistin levels in GCF of individuals diagnosed with CP and T2DM. Data were sourced from PubMed, Scopus, and EBSCOhost, selected for their extensive coverage of medical and dental research, ensuring thorough retrieval of relevant studies. From the initial seventeen studies, five complied with the strict inclusion criteria for meta-analysis. Results Using a comprehensive meta-analysis, the significance of GCF Resistin levels in individuals with CP and T2DM relative to the healthy groups was examined. In addition, a meta-analysis was carried out to look into the relationship between periodontal probing depth (PPD) and CP and T2DM. The results indicated that individuals with T2DM and CP had significantly higher GCF resistin levels than the other groups. Furthermore, the PPD in T2DM with CP was significantly greater than in the other groups. Conclusion The present review highlights the potential role of resistin as a biomarker to diagnose individuals with chronic periodontitis and T2DM. Clinical significance The significantly elevated levels of resistin suggest that resistin could serve as a potential biomarker for T2DM in individuals with CP. This could lead to improved methods of early diagnosis and treatment, which could enhance individual outcomes and quality of life. Prospero registration The registration number CRD42023467186.
Collapse
Affiliation(s)
- Dax Abraham
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, School of Dental Sciences, Faridabad, Haryana, 121001, India
| | - Alpa Gupta
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, School of Dental Sciences, Faridabad, Haryana, 121001, India
| | - Arun Kumar Duraisamy
- Department of Conservative Dentistry and Endodontics, All India Institute of Medical Sciences- CAPFIMS Center, New Delhi, 110068, India
| | - Mrinalini Mrinalini
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, School of Dental Sciences, Faridabad, Haryana, 121001, India
| |
Collapse
|
4
|
Fryk E, Tompa A, Lind A, Bennet R, Faresjö M. Inflammatory Immune Markers Associated With Thyroid Peroxidase Autoantibodies in Children Diagnosed With Both Type 1 Diabetes and Celiac Disease. Scand J Immunol 2025; 101:e70015. [PMID: 40170218 PMCID: PMC11961787 DOI: 10.1111/sji.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 04/03/2025]
Abstract
Autoimmune thyroid disease (AITD) is associated with other autoimmune endocrine diseases such as type 1 diabetes (T1D) and celiac disease (CeD). Thyroid peroxidase autoantibodies (TPOA) are biomarkers of AITD but may also occur in patients with other autoimmune diseases. We examined cross-sectional correlations between TPOA and an array of immune markers in a cohort of 90 children with exclusively T1D (n = 27), CeD (n = 16) or a combination of these two diseases (n = 18), compared to a reference group of children without these diagnoses (n = 29). Children with exclusively T1D or T1D in combination with CeD had higher levels of TPOA with an overrepresentation among girls. The correlations between immune markers and TPOA were distinctly different between all study groups. In children with T1D, TPOA correlated mainly with the T helper 1 associated IFN-γ and pro-inflammatory IL-1β. In contrast, in children with combined diagnoses, TPOA was correlated with pro-inflammatory MCP-1, the acute phase proteins ferritin, fibrinogen, and serum albumin A, and adipocytokines resistin and visfatin. Children with exclusively CeD did not show the same strong association between immune markers and TPOA. In conclusion, TPOA positivity was mainly detected in patients with T1D and female sex. Several inflammatory markers correlated with TPOA, indicating a relation to autoimmune parameters in children with T1D, CeD or both, but preceding symptoms AITD.
Collapse
Affiliation(s)
- Emanuel Fryk
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Andrea Tompa
- Department of Clinical Diagnostics, School of Health and WelfareJönköping UniversityJönköpingSweden
- Division of Medical Diagnostics, Department of Laboratory MedicineRegion Jönköping CountyJonkopingSweden
| | - Alexander Lind
- Department of Clinical Sciences Malmö, Lund University CRCSkåne University HospitalMalmöSweden
| | - Rasmus Bennet
- Department of Clinical Sciences Malmö, Lund University CRCSkåne University HospitalMalmöSweden
| | - Maria Faresjö
- Division of Systems and Synthetic Biology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
5
|
Habobe HA, Pieters RHH, Bikker FJ. Investigating the Salivary Biomarker Profile in Obesity: A Systematic Review. Curr Obes Rep 2025; 14:25. [PMID: 40153192 PMCID: PMC11953185 DOI: 10.1007/s13679-025-00618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/30/2025]
Abstract
PURPOSE OF REVIEW This systematic review aims to map the existing literature on salivary biomarkers in adults with metabolically unhealthy obesity (MUO), identify key biomarkers associated with this high-risk group, and highlight areas requiring further research to advance this emerging field. RECENT FINDINGS Obesity is characterized by an abnormal accumulation of body fat and chronic inflammation. However, not all individuals with obesity experience metabolic dysfunction. This review focuses on MUO, which is strongly linked to metabolic disorders such as insulin resistance, cardiovascular disease, type 2 diabetes, and systemic inflammation. Linking MUO and salivary biomarkers may enhance our understanding of how systemic health influences salivary composition and could enable the early identification of high-risk individuals through non-invasive saliva testing. This review synthesized findings from recent studies and identified key salivary biomarkers consistently elevated in individuals with MUO, including 8-OHdG, IL-6, IL-8, resistin, TNFR1, PTX-3, AEA, OEA, TNF-α, and sICAM-1. These biomarkers are associated with inflammation, oxidative stress, and metabolic dysregulation. The majority of studies utilized cross-sectional designs and used various saliva collection methods. Salivary biomarkers hold promise as non-invasive indicators of obesity-related metabolic dysfunction, particularly in MUO. However, their clinical diagnostic utility remains uncertain due to heterogeneity in study designs, a lack of biomarker validation, and limited longitudinal studies. Further research is needed to establish their bona fide diagnostic potential.
Collapse
Affiliation(s)
- H Al Habobe
- Research Group Innovative Testing in Life Sciences and Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands.
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.
| | - R H H Pieters
- Research Group Innovative Testing in Life Sciences and Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - F J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Benbaibeche H, Bounihi A, Saidi H, Koceir EA, Khan NA. Cardiometabolic Markers in Algerian Obese Subjects with and Without Type 2 Diabetes: Adipocytokine Imbalance as a Risk Factor. J Clin Med 2025; 14:1770. [PMID: 40095937 PMCID: PMC11900369 DOI: 10.3390/jcm14051770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: An increase in body fat is linked to abnormalities in energy metabolism. We aimed at determining cardiometabolic risk in Algerian participants with obesity alone and with or without type 2 diabetes. The study measured the concentrations of circulating adipocytokines (leptin, adiponectin, resistin), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) to identify and examine how imbalances in adipocytokines may affect the parameters of cardiometabolic health. Methods: Algerian participants (n = 300) were recruited and divided into three groups: control, obese, and type 2 diabetics (with two sub-groups: with and without obesity). Insulin resistance was evaluated using HOMA-IR, while ELISA was used to measure adipocytokines. Atherogenic index in plasma (AIP), adiponectin-leptin ratio (ALR), and visceral adiposity index (VAI) were also assessed. One-way ANOVA was used to compare obesity and diabetes groups to the control one (p < 0.05). Logistic regression analysis was conducted to strengthen the robustness of statistical correlations. Results: Participants with reduced adiponectin-leptin ratio (ALR) and elevated levels of resistin, TNF-α, and IL-6 are found to be at higher risk of cardiovascular diseases. An imbalance in adipocytokine levels is caused by a decrease in adiponectin concentrations, and an increase in pro-inflammatory adipocytokines that maintain and exacerbate energy imbalance and induces hyperinsulinemia, exposing individuals to a high risk of cardiovascular diseases. Conclusions: Given that ALR is a functional biomarker of inflammation, insulin resistance, and adipose tissue dysfunction, targeting ALR could potentially be a therapeutic approach to coping with obesity-related cardiometabolic risks. Mediterranean diet, weight loss, and increased physical activity can be key components to promote healthy adipose tissue through the increase in ALR.
Collapse
Affiliation(s)
- Hassiba Benbaibeche
- Natural and Life Sciences Department, Biological Sciences Faculty, Algiers-1 University, Algiers 16000, Algeria;
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organisms Physiology, University of Sciences and Technology Houari Boumediene, Algiers 16111, Algeria; (A.B.); (H.S.); (E.A.K.)
| | - Abdenour Bounihi
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organisms Physiology, University of Sciences and Technology Houari Boumediene, Algiers 16111, Algeria; (A.B.); (H.S.); (E.A.K.)
| | - Hamza Saidi
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organisms Physiology, University of Sciences and Technology Houari Boumediene, Algiers 16111, Algeria; (A.B.); (H.S.); (E.A.K.)
| | - Elhadj Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organisms Physiology, University of Sciences and Technology Houari Boumediene, Algiers 16111, Algeria; (A.B.); (H.S.); (E.A.K.)
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM, Université Bourgogne Europe, 21000 Dijon, France
| |
Collapse
|
7
|
Casillas-Ramírez A, Maroto-Serrat C, Sanus F, Micó-Carnero M, Rojano-Alfonso C, Cabrer M, Peralta C. Regulation of Adiponectin and Resistin in Liver Transplantation Protects Grafts from Extended-Criteria Donors. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:494-527. [PMID: 39566822 DOI: 10.1016/j.ajpath.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
The donor shortage increases liver transplantation (LT) waiting lists, making it crucial to consider extended-criteria donors, such as steatotic donors after brain death (DBDs) or cardiocirculatory death (DCDs). Nevertheless, steatosis, brain death, and cardiocirculatory death are key risk factors for poor LT outcomes. Herein, the role and therapeutic usefulness of several adipocytokines was investigated to protect such grafts from extended-criteria donors. Sprague rats with nutritionally induced steatosis were used in an experimental LT model with grafts from DBDs or DCDs. Adiponectin, resistin, and visfatin were measured and pharmacologically modulated, and effects on liver injury were assessed. Visfatin played no role under conditions of either DBD or DCD LT. Brain death increased adiponectin and reduced resistin. Adiponectin harmed steatotic and nonsteatotic DBD grafts, via a resistin-dependent mechanism; restraining adiponectin increased resistin, reducing damage. Resistin treatment protected both types of DBD grafts, whereas suppressing it increased damage. This adiponectin-resistin pathway was dependent on protein kinase C. In DCD LT, adiponectin and resistin were not modified in nonsteatotic grafts, but reduced in steatotic ones. Adiponectin or resistin treatments protected steatotic grafts: hepatic adiponectin activated AMP-activated protein kinase ; hepatic resistin increased phosphatidylinositol 3-kinase-Akt. Concomitant administration of both adipocytokines increased both signaling pathways, intensifying protection. These data suggest that pharmacologic modulation of adiponectin and resistin as therapies might potentially be translated to clinical studies to improve surgical outcomes for LT from extended-criteria donors.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar, Ciudad Victoria, Mexico; Faculty of Medicine of Matamoros, Autonomous University of Tamaulipas, Matamoros, Mexico
| | - Cristina Maroto-Serrat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Francisco Sanus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Micó-Carnero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Carlos Rojano-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Margalida Cabrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
8
|
Jamal N, Hollabaugh W, Scott L, Takkouche S. Unravelling the ties that bind: The intersection of obesity, osteoarthritis, and inflammatory pathways with emphasis on glucagon-like peptide-1 agonists. Clin Obes 2025; 15:e12700. [PMID: 39152660 PMCID: PMC11706737 DOI: 10.1111/cob.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
This narrative review article explores the complex interplay between obesity, osteoarthritis, and their associated inflammatory cascades, offering a deeper understanding of the underlying of mechanisms of inflammation and potential therapeutic interventions targeting both diseases. Through examination of the shared inflammatory pathway of obesity and osteoarthritis, our objective is to directly elucidate the relationship between these two conditions, highlighting the promising role of glucagon-like peptide-1 agonists in modulating inflammation and its therapeutic implications for patients with obesity and osteoarthritis.
Collapse
Affiliation(s)
- Naadir Jamal
- Vanderbilt University School of MedicineNashvilleTennesseeUSA
| | - William Hollabaugh
- Department of Orthopaedic Surgery, Division of Sports MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Leon Scott
- Department of Orthopaedic Surgery, Division of Sports MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sahar Takkouche
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
9
|
Couto M, Vasconcelos DP, Pereira CL, Neto E, Sarmento B, Lamghari M. Neuro-Immunomodulatory Potential of Nanoenabled 4D Bioprinted Microtissue for Cartilage Tissue Engineering. Adv Healthc Mater 2025; 14:e2400496. [PMID: 38850170 PMCID: PMC11834377 DOI: 10.1002/adhm.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cartilage defects trigger post-traumatic inflammation, leading to a catabolic metabolism in chondrocytes and exacerbating cartilage degradation. Current treatments aim to relieve pain but fail to target the inflammatory process underlying osteoarthritis (OA) progression. Here, a human cartilage microtissue (HCM) nanoenabled with ibuprofen-loaded poly(lactic-co-glycolic acid) nanoparticles (ibu-PLGA NPs) is 4D-bioprinted to locally mitigate inflammation and impair nerve sprouting. Under an in vitro inflamed environment, the nanoenabled HCM exhibits chondroprotective potential by decreasing the interleukin (IL)1β and IL6 release, while sustaining extracellular matrix (ECM) production. In vivo, assessments utilizing the air pouch mouse model affirm the nanoenabled HCM non-immunogenicity. Nanoenabled HCM-derived secretomes do not elicit a systemic immune response and decrease locally the recruitment of mature dendritic cells and the secretion of multiple inflammatory mediators and matrix metalloproteinases when compared to inflamed HCM condition. Notably, the nanoenabled HCM secretome has no impact on the innervation profile of the skin above the pouch cavity, suggesting a potential to impede nerve growth. Overall, HCM nanoenabled with ibu-PLGA NPs emerges as a potent strategy to mitigate inflammation and protect ECM without triggering nerve growth, introducing an innovative and promising approach in the cartilage tissue engineering field.
Collapse
Affiliation(s)
- Marina Couto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Ciências Biomédicas Abel SalazarUniversidade do Porto – ICBASRua Jorge de Viterbo Ferreira 228Porto4050–313Portugal
| | - Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Escola Superior de SaúdeInstituto Politécnico do PortoRua Dr. António Bernardino de Almeida 400Porto4200‐072Portugal
| | - Bruno Sarmento
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
- Instituto Universitário de Ciências da Saúde – IUCS‐CESPURua Central de Gandra, 1317Gandra4585‐116Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Investigação e Inovação em Saúde, Universidade do Porto, PortugalRua Alfredo Allen, 208Porto4200‐125Portugal
- INEB ‐ Instituto Nacional de Engenharia Biomédica, Universidade do PortoRua Alfredo Allen, 208Porto4200‐125Portugal
| |
Collapse
|
10
|
Fu X, Zhao Y, Wu Y, Wen L, Huo W, Zhang D, Zhang Y, Li J, Lu X, Hu F, Zhang M, Hu D. Relationship between trajectory of Chinese visceral adiposity index and risk of type 2 diabetes mellitus: Evidence from the China-PAR project. Diabetes Obes Metab 2025; 27:785-794. [PMID: 39562295 DOI: 10.1111/dom.16074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
AIMS This study aimed to identify the distinct change trajectories of the Chinese visceral adiposity index (CVAI) over time and to investigate their associations with risk of type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS This study included 52 394 participants from the prospective project, the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR). The CVAI was calculated using measures of age, body mass index, waist circumference, triglycerides and high-density lipoprotein cholesterol. Latent mixture modelling was conducted to fit distinct trajectory patterns. The logistic regression model was applied to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of T2DM with various CVAI trajectory patterns. RESULTS Four distinct CVAI trajectory patterns were identified: low-increasing, moderate-increasing, moderate high-increasing and high-increasing. Compared with low-increasing CVAI, participants with moderate-increasing (OR 1.73, 95% CI 1.49-2.00), moderate high-increasing (3.48, 3.01-4.03) and high-increasing CVAI (5.50, 4.67-6.47) had a significantly increased risk of T2DM. Similar trajectory patterns were identified in both men and women. The ORs (95% CI) for moderate-increasing, moderate high-increasing and high-increasing groups were 3.28 (2.56-4.19), 7.85 (6.09-10.13) and 13.21 (9.98-17.49) in women respectively, and 1.20 (0.99-1.45), 2.18 (1.82-2.62) and 3.60 (2.93-4.43) in men respectively, when compared to the low-increasing CVAI group. Further, significant effect modifications for age, smoking and physical activity (all Pinteraction <0.05) were observed in the relationship between CVAI trajectory patterns and T2DM. CONCLUSIONS Initially high and persistently elevated CVAI is significantly associated with an increased risk of T2DM, with a particular focus on women, younger people, nonsmokers and physically inactive individuals. Continuous monitoring of CVAI levels will benefit effective identification, early intervention and management of individuals at high risk of T2DM.
Collapse
Affiliation(s)
- Xueru Fu
- Department of Cardiovascular Medicine, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
- Henan Provincial Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou, China
| | - Yang Zhao
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, China
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuying Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuding Wen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dongdong Zhang
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University Medical School, Shenzhen, China
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing, China
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Dongsheng Hu
- Department of Cardiovascular Medicine, The Seventh People's Hospital of Zhengzhou, Zhengzhou, China
- Henan Provincial Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou, China
| |
Collapse
|
11
|
Qiao T, Wen XH. Exploring gut microbiota as a novel therapeutic target in Crohn's disease: Insights and emerging strategies. World J Gastroenterol 2025; 31:100827. [PMID: 39811502 PMCID: PMC11684203 DOI: 10.3748/wjg.v31.i2.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Extensive research has investigated the etiology of Crohn's disease (CD), encompassing genetic predisposition, lifestyle factors, and environmental triggers. Recently, the gut microbiome, recognized as the human body's second-largest gene pool, has garnered significant attention for its crucial role in the pathogenesis of CD. This paper investigates the mechanisms underlying CD, focusing on the role of 'creeping fat' in disease progression and exploring emerging therapeutic strategies, including fecal microbiota transplantation, enteral nutrition, and therapeutic diets. Creeping fat has been identified as a unique pathological feature of CD and has recently been found to be associated with dysbiosis of the gut microbiome. We characterize this dysbiotic state by identifying key microbiome-bacteria, fungi, viruses, and archaea, and their contributions to CD pathogenesis. Additionally, this paper reviews contemporary therapies, emphasizing the potential of biological therapies like fecal microbiota transplantation and dietary interventions. By elucidating the complex interactions between host-microbiome dynamics and CD pathology, this article aims to advance our understanding of the disease and guide the development of more effective therapeutic strategies for managing CD.
Collapse
Affiliation(s)
- Tong Qiao
- Department of Clinical Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xian-Hui Wen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
12
|
Vijayan S, Margesan T. Hormonal Imbalance in Obesity and Arthritis: Points of Contact. Curr Rheumatol Rev 2025; 21:182-193. [PMID: 38623986 DOI: 10.2174/0115733971293288240313090945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/17/2024]
Abstract
Obesity is a growing global health crisis intricately connected to various chronic conditions, including arthritis. This paper explores the intricate web of hormonal changes in the context of obesity and their profound influence on the development and progression of arthritis. Hormones, such as leptin, insulin, cortisol, and estrogen, all altered in obesity, play pivotal roles in inflammation, cartilage degradation, mechanical stress, and pain associated with obesity-related arthritis. Additionally, the mechanical stress placed on weight-bearing joints by excess body weight accelerates joint wear and tear, contributing to arthritis. Genetic factors, shared biomarkers, and pathways further link these conditions. Recognizing these connections is vital for healthcare professionals and individuals facing the challenges of obesity and arthritis, offering insights into strategies for prevention, management, and intervention. This comprehensive understanding of the complex interplay between hormonal changes, obesity, and arthritis sheds light on multifaceted mechanisms underlying this intricate relationship.
Collapse
Affiliation(s)
- Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Thirumal Margesan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
13
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
14
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen M. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024; 79:3310-3325. [PMID: 39206504 PMCID: PMC11657049 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Ganesh N. Pandian
- Institute for Integrated Cell‐Material Science (WPI‐iCeMS)Kyoto UniversityKyotoJapan
| | - Jürg Hafner
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Georg Stingl
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Marie‐Charlotte Brüggen
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
| |
Collapse
|
16
|
Liberale L, Torino C, Pizzini P, Mezzatesta S, D'Arrigo G, Gori M, Carbone F, Schiavetta E, Cugno V, Cabri M, Sgura C, Maioli E, Mbarga D, Rubini G, Tirandi A, Ramoni D, Mallamaci F, Tripepi G, Zoccali C, Montecucco F. Plasma levels of myeloperoxidase and resistin independently predict mortality in dialysis patients. Eur J Intern Med 2024; 129:87-92. [PMID: 39019736 DOI: 10.1016/j.ejim.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND In patients with kidney failure (KF) undergoing dialysis, neutrophils are dysfunctionally activated. Such chronic activation does not correspond to increased protection against infections and is thought to cause direct vascular damage accounting for the higher incidence of cardiovascular (CV) events. We hypothesized that circulating levels of neutrophil degranulation products (i.e. myeloperoxidase (MPO) and resistin) can predict overall and CV-specific mortality in dialysis patients. METHODS MPO and resistin levels were assessed in plasma samples from n = 1182 dialysis patients who were followed-up for median 2.9 years (IQR: 1.7-4.2). RESULTS Patients were 65 ± 14 (SD) years old and 36 % women. Median value of MPO and resistin were 78 ng/mL (IQR: 54 - 123) and 72 ng/mL (IQR: 46 - 110), respectively. MPO and resistin levels correlated with biomarkers of organ damage, nutritional status and inflammation. Both MPO and resistin levels predicted all-cause mortality even after adjustment for traditional risk factors and inflammation, nutritional and KF-related indexes (MPO, HRfor 1 ln unit increase: 1.26, 95 %CI 1.11 - 1.42, P < 0.001; Resistin, HRfor 1 ln unit increase: 1.25, 95 %CI 1.09 - 1.44, P = 0.001). Similarly, their predictive ability held true also for CV death (MPO, HRfor 1 ln unit increase: 1.19, 95 %CI 1.01 - 1.41, P = 0.04; Resistin, HRfor 1 ln unit increase: 1.29, 95 %CI 1.07 - 1.56, P = 0.007). CONCLUSION Plasma levels of MPO and resistin correlate with prospective overall and CV-specific mortality risk in KF patients undergoing dialysis and might be useful prognostic tools. Mediators of inflammation may be potential target to improve survival of those patients.
Collapse
Affiliation(s)
- Luca Liberale
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Claudia Torino
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Patrizia Pizzini
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Sabrina Mezzatesta
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Graziella D'Arrigo
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | | | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Elisa Schiavetta
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Valeria Cugno
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Mara Cabri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Cosimo Sgura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Elia Maioli
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Danielle Mbarga
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Gianluca Rubini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Davide Ramoni
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Francesca Mallamaci
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy; Nephrology, Hypertension and Renal Transplantation Unit, Grande Ospedale Metropolitano, Reggio Cal. Italy
| | - Giovanni Tripepi
- Clinical Epidemiology of Renal Disease and Hypertension Unit. Reggio Cal CNR Unit of the Pisa CNR Institute of Clinical Physiology, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, USA; IPNET, c/o Nefrologia del Grande Ospedale Metropolitano, Reggio Cal. Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Rosanna Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
17
|
Bârsan IC, Iluţ S, Tohănean N, Pop RM, Vesa ŞC, Perju-Dumbravă L. Development and Validation of a Predictive Score for Three-Year Mortality in Acute Ischemic Stroke Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1413. [PMID: 39336454 PMCID: PMC11434564 DOI: 10.3390/medicina60091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Acute ischemic stroke (AIS) is a leading cause of death and disability with poor long-term outcomes. Creating a predictive score for long-term mortality in AIS might be important for optimizing treatment strategies. The aim of this study is to develop and validate a predictive score for three-year mortality in patients with AIS using several demographic, clinical, laboratory and imaging parameters. Materials and Methods: This study included 244 AIS patients admitted to a tertiary center and followed up for three years. The patients' data included demographics, clinical features, laboratory tests (including resistin and leptin levels) and imaging parameters. The patients were randomly divided into a predictive group (n = 164) and a validation group (n = 80). Results: Advanced age, a high NIHSS score, low levels of hemoglobin, elevated resistin levels and the presence of carotid plaques were independently associated with three-year mortality. The predictive model incorporated these variables, and it was validated in a separate cohort. Leptin levels did not significantly predict mortality. Conclusions: This study developed and validated a promising predictive score for three-year mortality in patients with AIS. Advanced age, high NIHSS scores, low hemoglobin levels, elevated resistin levels and the presence of carotid plaques were the independent predictors of long-term mortality.
Collapse
Affiliation(s)
- Ioana Cristina Bârsan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Silvina Iluţ
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicoleta Tohănean
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ştefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Lăcrămioara Perju-Dumbravă
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Simantiris S, Pappa A, Papastamos C, Korkonikitas P, Antoniades C, Tsioufis C, Tousoulis D. Perivascular Fat: A Novel Risk Factor for Coronary Artery Disease. Diagnostics (Basel) 2024; 14:1830. [PMID: 39202318 PMCID: PMC11353828 DOI: 10.3390/diagnostics14161830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Perivascular adipose tissue (PVAT) interacts with the vascular wall and secretes bioactive factors which regulate vascular wall physiology. Vice versa, vascular wall inflammation affects the adjacent PVAT via paracrine signals, which induce cachexia-type morphological changes in perivascular fat. These changes can be quantified in pericoronary adipose tissue (PCAT), as an increase in PCAT attenuation in coronary computed tomography angiography images. Fat attenuation index (FAI), a novel imaging biomarker, measures PCAT attenuation around coronary artery segments and is associated with coronary artery disease presence, progression, and plaque instability. Beyond its diagnostic capacity, PCAT attenuation can also ameliorate cardiac risk stratification, thus representing an innovative prognostic biomarker of cardiovascular disease (CVD). However, technical, biological, and anatomical factors are weakly related to PCAT attenuation and cause variation in its measurement. Thus, to integrate FAI, a research tool, into clinical practice, a medical device has been designed to provide FAI values standardized for these factors. In this review, we discuss the interplay of PVAT with the vascular wall, the diagnostic and prognostic value of PCAT attenuation, and its integration as a CVD risk marker in clinical practice.
Collapse
Affiliation(s)
- Spyridon Simantiris
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Aikaterini Pappa
- Cardiology Department, Konstantopouleio General Hospital, 14233 Nea Ionia, Greece
| | - Charalampos Papastamos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | | | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 3QT, UK
| | - Constantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.S.)
| |
Collapse
|
19
|
Wang G, Zhu Z, Wang Y, Zhang Q, Sun Y, Pang G, Ge W, Ma Z, Ma H, Gong L, Ma H, Shao F, Zhu M. The association between METS-IR, an indirect index for insulin resistance, and lung cancer risk. Eur J Public Health 2024; 34:800-805. [PMID: 38300233 PMCID: PMC11293818 DOI: 10.1093/eurpub/ckad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Insulin resistance has been reported to increase the risk of breast, prostate and colorectal cancer. However, the role of insulin resistance and its interaction with genetic risk in the development of lung cancer remains controversial. Therefore, we aimed to explore the association between a novel metabolic score for insulin resistance (METS-IR) and lung cancer risk. METHODS A total of 395 304 participants without previous cancer at baseline were included. The Cox proportional hazards regression model was performed to investigate the association between METS-IR and lung cancer risk. In addition, a Mendelian randomization analysis was also performed to explore the causal relationship. The joint effects and additive interactions between METS-IR and polygenetic risk score (PRS) of lung cancer were also investigated. RESULTS During a median follow-up of 11.03 years (Inter-quartile range (IQR): 10.30-11.73), a total of 3161 incident lung cancer cases were diagnosed in 395 304 participants. There was a significant association between METS-IR and lung cancer risk, with an HR of 1.28 (95% CI: 1.17-1.41). Based on the Mendelian randomization analysis, however, no causal associations were observed. We observed a joint effect but no interaction between METS-IR and genetic risk. The lung cancer incidence was estimated to be 100.42 (95% CI: 91.45-109.38) per 100 000 person-year for participants with a high METS-IR and PRS, while only 42.76 (95% CI: 36.94-48.59) with low METS-IR and PRS. CONCLUSIONS High METS-IR was significantly associated with an increased risk of lung cancer. Keeping a low level of METS-IR might help reduce the long-term incident risk of lung cancer.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaopeng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Respiratory Disease, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Yungang Sun
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Guanlian Pang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenjing Ge
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Shao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Savulescu-Fiedler I, Mihalcea R, Dragosloveanu S, Scheau C, Baz RO, Caruntu A, Scheau AE, Caruntu C, Benea SN. The Interplay between Obesity and Inflammation. Life (Basel) 2024; 14:856. [PMID: 39063610 PMCID: PMC11277997 DOI: 10.3390/life14070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is an important condition affecting the quality of life of numerous patients and increasing their associated risk for multiple diseases, including tumors and immune-mediated disorders. Inflammation appears to play a major role in the development of obesity and represents a central point for the activity of cellular and humoral components in the adipose tissue. Macrophages play a key role as the main cellular component of the adipose tissue regulating the chronic inflammation and modulating the secretion and differentiation of various pro- and anti-inflammatory cytokines. Inflammation also involves a series of signaling pathways that might represent the focus for new therapies and interventions. Weight loss is essential in decreasing cardiometabolic risks and the degree of associated inflammation; however, the latter can persist for long after the excess weight is lost, and can involve changes in macrophage phenotypes that can ensure the metabolic adjustment. A clear understanding of the pathophysiological processes in the adipose tissue and the interplay between obesity and chronic inflammation can lead to a better understanding of the development of comorbidities and may ensure future targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Razvan Mihalcea
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Radu Octavian Baz
- Clinical Laboratory of Radiology and Medical Imaging, “Sf. Apostol Andrei” County Emergency Hospital, 900591 Constanta, Romania
- Department of Radiology and Medical Imaging, Faculty of Medicine, “Ovidius” University, 900527 Constanta, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania (C.C.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- “Prof. Dr. Matei Balș” National Institute for Infectious Diseases, 021105 Bucharest, Romania
| |
Collapse
|
21
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
22
|
Zhu A, Luo N, Sun L, Zhou X, Chen S, Huang Z, Mao X, Li K. Mulberry and Hippophae-based solid beverage attenuate hyperlipidemia and hepatic steatosis via adipose tissue-liver axis. Food Sci Nutr 2024; 12:5052-5064. [PMID: 39055214 PMCID: PMC11266884 DOI: 10.1002/fsn3.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 07/27/2024] Open
Abstract
Dyslipidemia and hepatic steatosis are the characteristics of the initial stage of nonalcohol fatty liver disease (NAFLD), which can be reversed by lifestyle intervention, including dietary supplementation. However, such commercial dietary supplements with solid scientific evidence and in particular clear mechanistic elucidation are scarce. Here, the health benefits of MHP, a commercial mulberry and Hippophae-based solid beverage, were evaluated in NAFLD rat model and the underlying molecular mechanisms were investigated. Histopathologic examination of liver and white adipose tissue found that MHP supplementation reduced hepatic lipid accumulation and adipocyte hypertrophy. Serum biochemical results confirmed that MHP effectively ameliorated dyslipidemia and decreased circulation-free fatty acid level. RNA-Seq-based transcriptomic analysis showed that MHP-regulated genes are involved in the inhibition of lipolysis of adipose tissue and thus may contribute to the reduction of hepatic ectopic lipid deposition. Furthermore, MHP upregulated ACSL1-CPT1a-CPT2 pathway, a canonical pathway that regulated mitochondrial fatty acid metabolism, and promoted liver and adipose tissue fatty acid β-oxidation. These results suggest that adipose tissue-liver crosstalk may play a key role in maintaining glucose and lipid metabolic hemostasis. In addition, MHP can also ameliorate chronic inflammation through regulating the secretion of adipokines. Our study demonstrates that MHP is able to improve dyslipidemia and hepatic steatosis through crosstalk between adipose tissue and liver and also presents transcriptomic evidence to support the underlying mechanisms of action, providing solid evidence for its health claims.
Collapse
Affiliation(s)
- An‐Qi Zhu
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Nin Luo
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Ling‐Yue Sun
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Xiao‐Ting Zhou
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Shi‐Sheng Chen
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Zebo Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xin‐Liang Mao
- Perfect Life & Health InstituteZhongshanGuangdongChina
- Perfect (Guangdong) Co., Ltd.ZhongshanChina
| | - Kun‐Ping Li
- Institute of Chinese Medicinal SciencesGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
23
|
Centner AM, Shiel EA, Farra W, Cannon EN, Landim-Vieira M, Salazar G, Chelko SP. High-Fat Diet Augments Myocardial Inflammation and Cardiac Dysfunction in Arrhythmogenic Cardiomyopathy. Nutrients 2024; 16:2087. [PMID: 38999835 PMCID: PMC11243382 DOI: 10.3390/nu16132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial heart disease characterized by cardiac dysfunction, arrhythmias, and myocardial inflammation. Exercise and stress can influence the disease's progression. Thus, an investigation of whether a high-fat diet (HFD) contributes to ACM pathogenesis is warranted. In a robust ACM mouse model, 8-week-old Desmoglein-2 mutant (Dsg2mut/mut) mice were fed either an HFD or rodent chow for 8 weeks. Chow-fed wildtype (WT) mice served as controls. Echo- and electrocardiography images pre- and post-dietary intervention were obtained, and the lipid burden, inflammatory markers, and myocardial fibrosis were assessed at the study endpoint. HFD-fed Dsg2mut/mut mice showed numerous P-wave perturbations, reduced R-amplitude, left ventricle (LV) remodeling, and reduced ejection fraction (%LVEF). Notable elevations in plasma high-density lipoprotein (HDL) were observed, which correlated with the %LVEF. The myocardial inflammatory adipokines, adiponectin (AdipoQ) and fibroblast growth factor-1, were substantially elevated in HFD-fed Dsg2mut/mut mice, albeit no compounding effect was observed in cardiac fibrosis. The HFD not only potentiated cardiac dysfunction but additionally promoted adverse cardiac remodeling. Further investigation is warranted, particularly given elevated AdipoQ levels and the positive correlation of HDL with the %LVEF, which may suggest a protective effect. Altogether, the HFD worsened some, but not all, disease phenotypes in Dsg2mut/mut mice. Notwithstanding, diet may be a modifiable environmental factor in ACM disease progression.
Collapse
Affiliation(s)
- Ann M Centner
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Emily A Shiel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Waleed Farra
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Elisa N Cannon
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Science, Florida State University, Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Tallahassee, FL 32306, USA
| | - Stephen P Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
24
|
Fedoce AG, Veras FP, Rosa MH, Schneider AH, Paiva IM, Machado MR, Freitas-Filho EG, Silva JF, Machado CC, Alves-Filho JC, Cunha FQ, N Z Ramalho L, Louzada-Junior P, Bonavia AS, Tostes RC. Macrophage-derived human resistin promotes perivascular adipose tissue dysfunction in experimental inflammatory arthritis. Biochem Pharmacol 2024; 224:116245. [PMID: 38685281 DOI: 10.1016/j.bcp.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in rheumatoid arthritis (RA). Resistin is an adipokine that induces adipose tissue inflammation and activation of monocytes/macrophages via adenylate cyclase-associated protein-1 (CAP1). Resistin levels are increased in RA and might cause perivascular adipose tissue (PVAT) dysfunction, leading to vascular damage and CVD. This study aimed to investigate the role of resistin in promoting PVAT dysfunction by increasing local macrophage and inflammatory cytokines content in antigen-induced arthritis (AIA). Resistin pharmacological effects were assessed by using C57Bl/6J wild-type (WT) mice, humanized resistin mice expressing human resistin in monocytes-macrophages (hRTN+/-/-), and resistin knockout mice (RTN-/-) with AIA and respective controls. We investigated AIA disease activity and functional, cellular, and molecular parameters of the PVAT. Resistin did not contribute to AIA disease activity and its concentrations were augmented in the PVAT and plasma of WT AIA and hRTN+/-/- AIA animals. In vitro exposure of murine arteries to resistin impaired vascular function by decreasing the anti-contractile effect of PVAT. WT AIA mice and hRTN+/-/- AIA mice exhibited PVAT dysfunction and knockdown of resistin prevented it. Macrophage-derived cytokines, markers of types 1 and 2 macrophages, and CAP1 expression were increased in the PVAT of resistin humanized mice with AIA, but not in knockout mice for resistin. This study reveals that macrophage-derived resistin promotes PVAT inflammation and dysfunction regardless of AIA disease activity. Resistin might represent a translational target to reduce RA-driven vascular dysfunction and CVD.
Collapse
Affiliation(s)
- Aline G Fedoce
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Flávio P Veras
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Marcos H Rosa
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ayda H Schneider
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Isadora M Paiva
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Mirele R Machado
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Edismauro G Freitas-Filho
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Cellular and Molecular Biology and Biopathogenic Agents, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Josiane F Silva
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Caio C Machado
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pathology and Legal Medicine, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - José C Alves-Filho
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Leandra N Z Ramalho
- Department of Pathology and Legal Medicine, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paulo Louzada-Junior
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Clinical Medicine of the Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Anthony S Bonavia
- Departments of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Rita C Tostes
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
25
|
Daidone M, Casuccio A, Puleo MG, Del Cuore A, Pacinella G, Di Chiara T, Di Raimondo D, Immordino P, Tuttolomondo A. Mediterranean diet effects on vascular health and serum levels of adipokines and ceramides. PLoS One 2024; 19:e0300844. [PMID: 38809909 PMCID: PMC11135776 DOI: 10.1371/journal.pone.0300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND A randomized clinical trial to evaluate the effect of a Mediterranean-style diet on vascular health indices such as endothelial function indices, serum lipid and ceramide plasma and some adipokine serum levels. We recruited all consecutive patients at high risk of cardiovascular diseases admitted to the Internal Medicine and Stroke Care ward at the University Hospital of Palermo between September 2017 and December 2020. MATERIALS AND METHODS The enrolled subjects, after the evaluation of the degree of adherence to a dietary regimen of the Mediterranean-style diet, were randomised to a Mediterranean Diet (group A) assessing the adherence to a Mediterranean-style diet at each follow up visit (every three months) for the entire duration of the study (twelve months) and to a Low-fat diet (group B) with a dietary "counselling" starting every three months for the entire duration of the study (twelve months).The aims of the study were to evaluate: the effects of adherence to Mediterranean Diet on some surrogate markers of vascular damage, such as endothelial function measured by means of the reactive hyperaemia index (RHI) and augmentation index (AIX), at the 6-(T1) and 12-month (T2) follow-ups; the effects of adherence to Mediterranean Diet on the lipidaemic profile and on serum levels of ceramides at T1 and T2 follow-ups; the effects of adherence to Mediterranean Diet on serum levels of visfatin, adiponectin and resistin at the 6- and 12-month follow-ups. RESULTS A total of 101 patients were randomised to a Mediterranean Diet style and 52 control subjects were randomised to a low-fat diet with a dietary "counselling". At the six-month follow-up (T1), subjects in the Mediterranean Diet group showed significantly lower mean serum total cholesterol levels, and significantly higher increase in reactive hyperaemia index (RHI) values compared to the low-fat diet group. Patients in the Mediterranean Diet group also showed lower serum levels of resistin and visfatin at the six-month follow-up compared to the control group, as well as higher values of adiponectin, lower values of C24:0, higher values of C22:0 and higher values of the C24:0/C16:0 ratio. At the twelve-month follow-up (T2), subjects in the Mediterranean Diet group showed lower serum total cholesterol levels and lower serum LDL cholesterol levels than those in the control group. At the twelve-month follow-up, we also observed a further significant increase in the mean RHI in the Mediterranean Diet group, lower serum levels of resistin and visfatin, lower values of C24:0 and of C:18:0,and higher values of the C24:0/C16:0 ratio. DISCUSSION The findings of our current study offer a further possible explanation with regard to the beneficial effects of a higher degree of adherence to a Mediterranean-style diet on multiple cardiovascular risk factors and the underlying mechanisms of atherosclerosis. Moreover, these findings provide an additional plausible interpretation of the results from observational and cohort studies linking high adherence to a Mediterranean-style diet with lower total mortality and a decrease in cardiovascular events and cardiovascular mortality. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04873167. https://classic.clinicaltrials.gov/ct2/show/NCT04873167.
Collapse
Affiliation(s)
- Mario Daidone
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Alessandra Casuccio
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Maria Grazia Puleo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Alessandro Del Cuore
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Gaetano Pacinella
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Tiziana Di Chiara
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Domenico Di Raimondo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| | - Palmira Immordino
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
| | - Antonino Tuttolomondo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Palermo, Italy
- U.O. C di Medicina Interna con Stroke Care, Palermo, Italy
| |
Collapse
|
26
|
Pham TT, Nimptsch K, Aleksandrova K, Jenab M, Fedirko V, Wu K, Eriksen AK, Tjønneland A, Severi G, Rothwell J, Kaaks R, Katzke V, Catalano A, Agnoli C, Masala G, De Magistris MS, Tumino R, Vermeulen R, Aizpurua A, Trobajo-Sanmartín C, Chirlaque MD, Sánchez MJ, Lu SSM, Cross AJ, Christakoudi S, Weiderpass E, Pischon T. Pre-diagnostic circulating resistin concentrations and mortality among individuals with colorectal cancer: Results from the European Prospective Investigation into Cancer and Nutrition study. Int J Cancer 2024; 154:1596-1606. [PMID: 38200695 DOI: 10.1002/ijc.34830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Resistin is a protein involved in inflammation and angiogenesis processes and may play a role in the progression of colorectal cancer (CRC). However, it remains unclear whether resistin is associated with increased mortality after CRC diagnosis. We examined pre-diagnostic serum resistin concentrations in relation to CRC-specific and all-cause mortality among 1343 incident CRC cases from the European Prospective Investigation into Cancer and Nutrition cohort. For CRC-specific mortality as the primary outcome, hazard ratios (HRs) and 95% confidence intervals (95% CI) were estimated from competing risk analyses based on cause-specific Cox proportional hazards models and further in sensitivity analyses using Fine-Gray proportional subdistribution hazards models. For all-cause mortality as the secondary outcome, Cox proportional hazards models were used. Subgroup analyses were performed by sex, tumor subsite, tumor stage, body mass index and time to CRC diagnosis. Resistin was measured on a median of 4.8 years before CRC diagnosis. During a median follow-up of 8.2 years, 474 deaths from CRC and 147 deaths from other causes were observed. Resistin concentrations were not associated with CRC-specific mortality (HRQ4vsQ1 = 0.95, 95% CI: 0.73-1.23; Ptrend = .97; and HRper doubling of resistin concentration = 1.00; 95% CI: 0.84-1.19; P = .98) or all-cause mortality. Results from competing risk (sensitivity) analysis were similar. No associations were found in any subgroup analyses. These findings suggest no association between pre-diagnostic circulating resistin concentrations and CRC-specific or all-cause mortality among persons with CRC, and the potential insignificance of resistin in CRC progression.
Collapse
Affiliation(s)
- Thu Thi Pham
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Hum-boldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Krasimira Aleksandrova
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), World Health Organization, Lyon, France
| | - Veronika Fedirko
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm "Exposome and Heredity" Team, Villejuif, France
| | - Joseph Rothwell
- Université Paris-Saclay, UVSQ, Inserm "Exposome and Heredity" Team, Villejuif, France
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alberto Catalano
- Centre for Biostatistics, Epidemiology, and Public Health, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Department of Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | | | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE ONLUS, Ragusa, Italy
| | - Roel Vermeulen
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Amaia Aizpurua
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Camino Trobajo-Sanmartín
- Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarre Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Sai San Moon Lu
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Hum-boldt-Universität zu Berlin, Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Checa-Ros A, Hsueh WC, Merck B, González-Torres H, Bermúdez V, D’Marco L. Obesity and Oral Health: The Link Between Adipokines and Periodontitis. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:25-31. [PMID: 38812668 PMCID: PMC11132655 DOI: 10.17925/ee.2024.20.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/15/2023] [Indexed: 05/31/2024]
Abstract
Periodontitis is a chronic inflammatory disease of the periodontium, or the supportive tissues around the tooth. This disease has been related to different risk factors, such as the presence of plaque and calculus, tobacco smoking, low socioeconomic status, and the immune state of the host. Importantly, the chronic inflammatory environment generated by periodontitis may lead to tooth loss and diverse systemic complications, such as cardiovascular disease, osteoarthritis and metabolic disease. Recent investigations have supported the role of obesity as a risk factor for periodontitis. Furthermore, studies have found obesity to compromise healing after periodontal therapy; however, the mechanisms underlying this association are not well understood. Proteins called 'adipokines' could be the factor linking obesity to periodontitis. Adipokines are bioactive molecules with hormonal properties and a structure similar to cytokines produced by the adipose tissue. Although adipokines have both pro-and anti-inflammatory effects, the shift towards pro-inflammatory actions occurs when the adipose tissue becomes pathological, as observe in the progression of conditions such as obesity or adiposopathy. This article reviews the role of adipokines in the pathophysiology and progression of periodontitis by focusing on their impact on inflammation and the molecular mechanisms through which adipokines contribute to the onset and development of periodontitis.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Wei-Chung Hsueh
- Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Belén Merck
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Henry González-Torres
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
28
|
Behnoush AH, Maroufi SP, Reshadmanesh T, Mohtasham Kia Y, Norouzi M, Mohammadi SM, Klisic A, Khalaji A. Circulatory resistin levels in inflammatory bowel disease: a systematic review and meta-analysis. BMC Gastroenterol 2024; 24:107. [PMID: 38486190 PMCID: PMC10941394 DOI: 10.1186/s12876-024-03199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/11/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic relapsing-remitting systemic disease of the gastrointestinal tract with rising incidence. Studies have shown that adipocytes play a crucial role in patients with IBD by actively participating in systemic immune responses. The present study was designed to investigate the correlation between the circulatory levels of resistin, as an adipokine, and active and remission phases of IBD in comparison with healthy controls. METHODS Relevant articles were retrieved from PubMed, Embase, the Web of Science, and Scopus from inception until June 2023. Estimation of the standardized mean difference (SMD) and 95% confidence interval (CI) for comparison of plasma/serum resistin levels between IBD patients, patients in remission, and healthy controls were conducted through random-effect meta-analysis. RESULTS A total of 19 studies were included, assessing 1836 cases. Meta-analysis indicated that generally, serum/plasma resistin levels were higher in IBD patients in comparison with healthy controls (SMD 1.33, 95% CI 0.58 to 2.08, p-value < 0.01). This was true for each of the UC and CD separate analyses, as well. Moreover, it was shown that higher serum/plasma resistin levels were detected in the active phase of IBD than in the remission phase (SMD 1.04, 95% CI 0.65 to 1.42, p-value = 0.01). Finally, higher serum/plasma resistin levels were found in the remission phase compared to healthy controls (SMD 0.60, 95% CI 0.15 to 1.06, p-value < 0.01). CONCLUSION The results of this systematic review and meta-analysis support the conclusion that circulating resistin levels are increased in IBD (both UC and CD). Also, higher resistin levels were recorded in the remission phase of IBD in comparison with healthy controls. This indicates that further studies may provide valuable insights into the role of resistin in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd, 1417613151, Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyede Parmis Maroufi
- Neurosurgical Research Network, Universal Scientific Education and Research Network, Tehran University of Medical Sciences, Tehran, Iran
| | - Tara Reshadmanesh
- Student Research Center, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | | | - Mitra Norouzi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, Podgorica, Montenegro
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd, 1417613151, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Russjan E. The Role of Peptides in Asthma-Obesity Phenotype. Int J Mol Sci 2024; 25:3213. [PMID: 38542187 PMCID: PMC10970696 DOI: 10.3390/ijms25063213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 01/04/2025] Open
Abstract
The co-occurrence of asthma and obesity is becoming an increasingly common health problem. It became clear that both diseases are closely related, since overweight/obesity are associated with an increased risk of asthma development, and more than half of the subjects with severe or difficult-to-treat asthma are obese. Currently, there are no specific guidelines for the treatment of this group of patients. The mechanisms involved in the asthma-obesity phenotype include low-grade chronic inflammation and changes in pulmonary physiology. However, genetic predispositions, gender differences, comorbid conditions, and gut microbiota also seem to be important. Regulatory peptides affect many processes related to the functioning of the respiratory tract and adipose tissue. Adipokines such as leptin, adiponectin, resistin, and the less studied omentin, chemerin, and visfatin, as well as the gastrointestinal hormones ghrelin, cholecystokinin, glucagon-like peptide-1, and neuropeptides, including substance P or neuropeptide Y, can play a significant role in asthma with obesity. The aim of this article is to provide a concise review of the contribution of particular peptides in inflammatory reactions, obesity, asthma, and a combination of both diseases, as well as emphasize their potential role in the effective treatment of the asthma-obesity phenotype in the future.
Collapse
Affiliation(s)
- Ewelina Russjan
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
30
|
Abrami M, Biasin A, Tescione F, Tierno D, Dapas B, Carbone A, Grassi G, Conese M, Di Gioia S, Larobina D, Grassi M. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int J Mol Sci 2024; 25:1933. [PMID: 38339210 PMCID: PMC10856136 DOI: 10.3390/ijms25031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Fabiana Tescione
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| |
Collapse
|
31
|
Srikanth M, Rasool M. Resistin - A Plausible Therapeutic Target in the Pathogenesis of Psoriasis. Immunol Invest 2024; 53:115-159. [PMID: 38054436 DOI: 10.1080/08820139.2023.2288836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Resistin, a cytokine hormone predominantly secreted by adipose tissue, is elevated in various metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. In addition to its involvement in metabolic regulation, resistin has been implicated in the pathogenesis of psoriasis, a chronic inflammatory skin disorder. Numerous studies have reported increased resistin levels in psoriatic skin lesions, suggesting a possible association between resistin and psoriasis. Recent studies have suggested the potential involvement of resistin in the development and progression of certain cancers. Resistin is overexpressed in breast, colorectal, and gastric cancers. This suggests that it may play a role in the development of these cancers, possibly by inducing inflammation and cell growth. The link between resistin and cancer raises the possibility of shared underlying mechanisms driving the pathogenesis of psoriasis. Chronic inflammation, one such mechanism, is a hallmark of psoriasis and cancer. Further research is needed to fully understand the relationship between resistin and psoriasis. Identifying potential therapeutic targets is crucial for effective management of psoriasis. By doing so, we may be able to develop more effective treatment options for individuals living with psoriasis and ultimately improve their quality of life. Ultimately, a more comprehensive understanding of the mechanisms underlying the impact of resistin on psoriasis is essential for advancing our knowledge and finding new ways to treat and manage this challenging condition.
Collapse
Affiliation(s)
- Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
32
|
Ali M, Kamran M, Talha M, Shad MU. Adiponectin blood levels and autism spectrum disorders: a systematic review. BMC Psychiatry 2024; 24:88. [PMID: 38297246 PMCID: PMC10832114 DOI: 10.1186/s12888-024-05529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE To review the relationship between adiponectin levels and autism spectrum disorders (ASDs) in children. BACKGROUND ASDs are associated with pervasive social interaction and communication abnormalities. Researchers have studied various pathophysiological mechanisms underlying ASDs to identify predictors for an early diagnosis to optimize treatment outcomes. Immune dysfunction, perhaps mediated by a decrease in anti-inflammatory adipokine, adiponectin, along with changes in other adipokines, may play a central role in increasing the risk for ASDs. However, other factors, such as low maternal vitamin D levels, atherosclerosis, diabetes, obesity, cardio-metabolic diseases, preterm delivery, and oxytocin gene polymorphism may also contribute to increased risk for ASDs. METHODS Searches on the database; PubMed, Google Scholar, and Cochrane using keywords; adiponectin, adipokines, ASD, autism, autistic disorder, included English-language studies published till September 2022. Data were extracted on mean differences between adiponectin levels in children with and without ASDs. RESULTS The search yielded six studies providing data on adiponectin levels in young patients with ASDs. As can be seen from Table 1, four of the six studies were positive for an inverse correlation between ASD and adiponectin levels. In addition, two of the four positive and one negative studies found low adiponectin levels associated with and the severity of autistic symptoms. However, results from one reviewed study were insignificant. CONCLUSION Most studies reviewed yielded lower adiponectin levels in children with ASDs as well as the severity of autistic symptoms.
Collapse
Affiliation(s)
- Mohsan Ali
- King Edward Medical University, Lahore, Pakistan.
| | - Maha Kamran
- King Edward Medical University, Lahore, Pakistan
| | - Muhammad Talha
- Combined Military Hospital Lahore Medical college and institute of Dentistry, Lahore, Pakistan
| | - Mujeeb U Shad
- University of Nevada, Las Vegas, NV, USA
- Touro University Nevada College of Osteopathic Medicine, Las Vegas, NV, USA
- The Valley Health System, Las Vegas, NV, USA
| |
Collapse
|
33
|
Yu X, Zhang N, Wu J, Zhao Y, Liu C, Liu G. Predictive value of adipokines for the severity of acute pancreatitis: a meta-analysis. BMC Gastroenterol 2024; 24:32. [PMID: 38218787 PMCID: PMC10787974 DOI: 10.1186/s12876-024-03126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a dangerous condition with a high mortality rate. Many studies have found an association between adipokines and the development of SAP, but the results are controversial. Therefore, we performed a meta-analysis of the association of inflammatory adipokines with SAP. METHODS We screened PubMed, EMBASE, Web of Science and Cochrane Library for articles on adipokines and SAP published before July 20, 2023. The quality of the literature was assessed using QUADAS criteria. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated to assess the combined effect. Subgroup analysis, sensitivity analysis and publication bias tests were also performed on the information obtained. RESULT Fifteen eligible studies included 1332 patients with acute pancreatitis (AP). Pooled analysis showed that patients with SAP had significantly higher serum levels of resistin (SMD = 0.78, 95% CI:0.37 to 1.19, z = 3.75, P = 0.000). The difference in leptin and adiponectin levels between SAP and mild acute pancreatitis (MAP) patients were not significant (SMD = 0.30, 95% CI: -0.08 to 0.68, z = 1.53, P = 0.127 and SMD = 0.11, 95% CI: -0.17 to 0.40, z = 0.80, P = 0.425, respectively). In patients with SAP, visfatin levels were not significantly different from that in patients with MAP (SMD = 1.20, 95% CI: -0.48 to 2.88, z = 1.40, P = 0.162). CONCLUSION Elevated levels of resistin are associated with the development of SAP. Resistin may serve as biomarker for SAP and has promise as therapeutic target.
Collapse
Affiliation(s)
- Xuehua Yu
- Hebei North University, Zhangjiakou, 075132, China
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Ning Zhang
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
- Hebei Medical University, Shijiazhuang, 050011, China
| | - Jing Wu
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Yunhong Zhao
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China
| | - Chengjiang Liu
- Department of Gastroenterology, Anhui Medical University, He Fei, 230601, China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, No.348, Heping West Road, Shijiazhuang, Hebei Province, 050057, China.
| |
Collapse
|
34
|
Agabiti-Rosei C, Saxton SN, De Ciuceis C, Lorenza Muiesan M, Rizzoni D, Agabiti Rosei E, Heagerty AM. Influence of Perivascular Adipose Tissue on Microcirculation: A Link Between Hypertension and Obesity. Hypertension 2024; 81:24-33. [PMID: 37937425 DOI: 10.1161/hypertensionaha.123.19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Alterations in microcirculation play a crucial role in the pathogenesis of cardiovascular and metabolic disorders such as obesity and hypertension. The small resistance arteries of these patients show a typical remodeling, as indicated by an increase of media or total wall thickness to lumen diameter ratio that impairs organ flow reserve. The majority of blood vessels are surrounded by a fat depot which is termed perivascular adipose tissue (PVAT). In recent years, data from several studies have indicated that PVAT is an endocrine organ that can produce a variety of adipokines and cytokines, which may participate in the regulation of vascular tone, and the secretory profile varies with adipocyte phenotype and disease status. The PVAT of lean humans largely secretes the vasodilator adiponectin, which will act in a paracrine fashion to reduce peripheral resistance and improve nutrient uptake into tissues, thereby protecting against the development of hypertension and diabetes. In obesity, PVAT becomes enlarged and inflamed, and the bioavailability of adiponectin is reduced. The inevitable consequence is a rise in peripheral resistance with higher blood pressure. The interrelationship between obesity and hypertension could be explained, at least in part, by a cross-talk between microcirculation and PVAT. In this article, we propose an integrated pathophysiological approach of this relationship, in order to better clarify its role in obesity and hypertension, as the basis for effective and specific prevention and treatment.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Sophie N Saxton
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| | - Carolina De Ciuceis
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Maria Lorenza Muiesan
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Italy (C.A.R., C.D.C, M.L.M.)
| | - Damiano Rizzoni
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Enrico Agabiti Rosei
- Department of Medical and Surgical Sciences, University of Brescia, Italy (C.A.-R., C.D.C., M.L.M., D.R., E.A.R.)
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, The University of Manchester, Core Technology Facility, United Kingdom (S.N.S., A.M.H.)
| |
Collapse
|
35
|
Oikonomou P, Nikolaou C, Papachristou F, Sovatzidis A, Lambropoulou M, Giouleka C, Kontaxis V, Linardoutsos D, Papalois A, Pitiakoudis M, Tsaroucha A. Eugenol Reduced ΜPO, CD45 and HMGB1 Expression and Attenuated the Expression of Leukocyte Infiltration Markers in the Intestinal Tissue in Biliopancreatic Duct Ligation-Induced Pancreatitis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:74. [PMID: 38256335 PMCID: PMC10820626 DOI: 10.3390/medicina60010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Inflammation and dysregulation in the intestinal barrier function in acute pancreatitis (AP) trigger pancreatic lesions, systemic inflammatory response, and multiple organ dysfunction. Eugenol, as the main component of clove (Syzygium aromaticum), is known for its antioxidant and anti-inflammatory properties. We studied the potentially beneficial effect of eugenol in a rodent model of biliopancreatic duct ligation-induced AP. Materials and Methods: Rats were randomly divided into three groups: Sham, AP, and AP + eugenol (15 mg/kg/day). Serum TNFα, IL-6, IL-18, and resistin levels, as well as IL-6, TNFα, MPO, HMGB1, and CD45 tissue expression, were determined at various timepoints after the induction of AP. Results: Eugenol attenuated hyperemia and inflammatory cell infiltration in the intestinal mucosal, submucosal, and muscular layers. IL-6 and resistin serum levels were significantly reduced in the AP + eugenol group, while serum TNFα and IL-18 levels remained unaffected overall. TNFα pancreatic and intestinal expression was attenuated by eugenol at 72 h, while IL-6 expression was affected only in the pancreas. MPO, CD45, and HMGB1 intestinal expression was significantly reduced in eugenol-treated rats. Conclusions: Eugenol managed to attenuate the inflammatory response in the intestine in duct ligation-induced AP in rats.
Collapse
Affiliation(s)
- Panagoula Oikonomou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Christina Nikolaou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| | - Apostolos Sovatzidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Charikleia Giouleka
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Vasileios Kontaxis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Dimitrios Linardoutsos
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Apostolos Papalois
- Experimental Research Center, ELPEN Pharmaceuticals, Pikermi, 19009 Athens, Greece;
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
| | - Alexandra Tsaroucha
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.S.); (C.G.); (V.K.); (D.L.); (M.P.); (A.T.)
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.N.); (F.P.)
| |
Collapse
|
36
|
Wisniewska E, Laue D, Spinnen J, Kuhrt L, Kohl B, Bußmann P, Meier C, Schulze-Tanzil G, Ertel W, Jagielski M. Infrapatellar Fat Pad Modulates Osteoarthritis-Associated Cytokine and MMP Expression in Human Articular Chondrocytes. Cells 2023; 12:2850. [PMID: 38132170 PMCID: PMC10741519 DOI: 10.3390/cells12242850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Osteoarthritis (OA) most frequently affects the knee joint and is associated with an elevated expression of cytokines and extracellular cartilage matrix (ECM), degrading enzymes such as matrix metalloproteinases (MMPs). Differences in gene expression of the intra-articularly located infrapatellar fat pad (IPFP) and other fatty tissue suggest its autonomous function, yet its role in OA pathogenesis remains unknown. Human IPFPs and articular cartilage were collected from OA patients undergoing total knee arthroplasty, and biopsies from the IPFP of healthy patients harvested during knee arthroscopy served as controls (CO). Isolated chondrocytes were co-cultured with either osteoarthritic (OA) or CO-IPFPs in a transwell system. Chondrocyte expression of MMP1, -3, -13, type 1 and 2 collagens, interleukin IL1β, IL6, IL10, and tumor necrosis factor TNFα was analyzed by RTD-PCR at day 0 and day 2, and TNFα secretion was analyzed by ELISA. The cytokine release in IPFPs was assessed by an array. Results: Both IPFPs (CO, OA) significantly reduced the expression of type 2 collagen and TNFα in chondrocytes. On the other hand, only CO-IPFP suppressed the expression of type 1 collagen and significantly induced the MMP13 expression. On the contrary, IL1β and IL6 were significantly induced when exposed to OA-IPFP. Conclusions: The partial loss of the suppressive effect on type 1 collagen gene expression found for OA-IPFP shows the pathological remodeling and dedifferentiation potential of the OA-IPFP on the chondrocytes. However, the significant suppression of TNFα implies that the OA- and CO-IPFP could also exhibit a protective role in the knee joint, preventing the progress of inflammation.
Collapse
Affiliation(s)
- Ewa Wisniewska
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Dominik Laue
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Jacob Spinnen
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Leonard Kuhrt
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Patricia Bußmann
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Carola Meier
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University (PMU), Prof.-Ernst Nathan Strasse 1, 90419 Nuremberg, Germany;
| | - Wolfgang Ertel
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| | - Michal Jagielski
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.W.); (D.L.); (J.S.); (L.K.); (B.K.); (P.B.); (C.M.); (W.E.)
| |
Collapse
|
37
|
Budhiraja P, Nguyen M, Heilman R, Kaplan B. The Role of Allograft Nephrectomy in the Failing Kidney Transplant. Transplantation 2023; 107:2486-2496. [PMID: 37122077 DOI: 10.1097/tp.0000000000004625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Patients with failed renal allografts have associated increased morbidity and mortality. The individualization of immunosuppression taper is the key element in managing these patients to avoid graft intolerance and sensitization while balancing the risk of continued immunosuppression. Most patients with uncomplicated chronic allograft failure do not require allograft nephrectomy (AN), and there is no clear evidence that it improves outcomes. The AN procedure is associated with variable morbidity and mortality. It is reserved mainly for early technical graft failure or in symptomatic cases associated with allograft infection, malignancy, or graft intolerance syndrome. It may also be considered in those who cannot tolerate immunosuppression and are at high risk for graft intolerance. AN has been associated with an increased risk of sensitization due to inflammatory response from surgery, immunosuppression withdrawal with allograft failure, and retained endovascular tissue. Although it is presumed that for-cause AN after transplant failure is associated with sensitization, it remains unclear whether elective AN in patients who remain on immunotherapy may prevent sensitization. The current practice of immunosuppression taper has not been shown to prevent sensitization or increase infection risk, but current literature is limited by selection bias and the absence of medication adherence data. We discuss the management of failed allografts based on retransplant candidacy, wait times, risk of graft intolerance syndrome, and immunosuppression side effects. Many unanswered questions remain, and future prospective randomized trials are needed to help guide evidence-based management.
Collapse
Affiliation(s)
| | | | | | - Bruce Kaplan
- Department of Medicine, Colorado Center for Transplantation Care, Research and Education (CCTCARE), University of Colorado, Aurora, CO
| |
Collapse
|
38
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
39
|
Bilski J, Schramm-Luc A, Szczepanik M, Mazur-Biały AI, Bonior J, Luc K, Zawojska K, Szklarczyk J. Adipokines in Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Biomedicines 2023; 11:2998. [PMID: 38001998 PMCID: PMC10669400 DOI: 10.3390/biomedicines11112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease manifested by joint involvement, extra-articular manifestations, and general symptoms. Adipose tissue, previously perceived as an inert energy storage organ, has been recognised as a significant contributor to RA pathophysiology. Adipokines modulate immune responses, inflammation, and metabolic pathways in RA. Although most adipokines have a pro-inflammatory and aggravating effect on RA, some could counteract this pathological process. The coexistence of RA and sarcopenic obesity (SO) has gained attention due to its impact on disease severity and outcomes. Sarcopenic obesity further contributes to the inflammatory milieu and metabolic disturbances. Recent research has highlighted the intricate crosstalk between adipose tissue and skeletal muscle, suggesting potential interactions between these tissues in RA. This review summarizes the roles of adipokines in RA, particularly in inflammation, immune modulation, and joint destruction. In addition, it explores the emerging role of adipomyokines, specifically irisin and myostatin, in the pathogenesis of RA and their potential as therapeutic targets. We discuss the therapeutic implications of targeting adipokines and adipomyokines in RA management and highlight the challenges and future directions for research in this field.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Marian Szczepanik
- Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agnieszka Irena Mazur-Biały
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| | - Kevin Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (A.S.-L.); (K.L.)
| | - Klaudia Zawojska
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland; (A.I.M.-B.); (K.Z.)
| | - Joanna Szklarczyk
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; (J.B.); (J.S.)
| |
Collapse
|
40
|
Tsounis EP, Aggeletopoulou I, Mouzaki A, Triantos C. Creeping Fat in the Pathogenesis of Crohn's Disease: An Orchestrator or a Silent Bystander? Inflamm Bowel Dis 2023; 29:1826-1836. [PMID: 37260352 DOI: 10.1093/ibd/izad095] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 06/02/2023]
Abstract
Although the phenomenon of hypertrophied adipose tissue surrounding inflamed bowel segments in Crohn's disease has been described since 1932, the mechanisms mediating the creeping fat formation and its role in the pathogenesis of the disease have not been fully unraveled. Recent advances demonstrating the multiple actions of adipose tissue beyond energy storage have brought creeping fat to the forefront of scientific research. In Crohn's disease, dysbiosis and transmural injury compromise the integrity of the intestinal barrier, resulting in an excessive influx of intraluminal microbiota and xenobiotics. The gut and peri-intestinal fat are in close anatomic relationship, implying a direct reciprocal immunologic relationship, whereas adipocytes are equipped with an arsenal of innate immunity sensors that respond to invading stimuli. As a result, adipocytes and their progenitor cells undergo profound immunophenotypic changes, leading to adipose tissue remodeling and eventual formation of creeping fat. Indeed, creeping fat is an immunologically active organ that synthesizes various pro- and anti-inflammatory cytokines, profibrotic mediators, and adipokines that serve as paracrine/autocrine signals and regulate immune responses. Therefore, creeping fat appears to be involved in inflammatory signaling, which explains why it has been associated with a higher severity or complicated phenotype of Crohn's disease. Interestingly, there is growing evidence for an alternative immunomodulatory function of creeping fat as a second barrier that prevents an abnormal systemic inflammatory response at the expense of an increasingly proliferating profibrotic environment. Further studies are needed to clarify how this modified adipose tissue exerts its antithetic effect during the course of Crohn's disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
41
|
Du F, Zhu Z, Lai Z, Li K, Chen J, Zhang E, Wang J, Zhao H, Liu B. Imbalance of helper T cell subtypes and adipokine secretion in perivascular adipose tissue as a trigger of atherosclerosis in chronic Porphyromonas gingivalis W83 infection. Microbes Infect 2023; 25:105181. [PMID: 37423325 DOI: 10.1016/j.micinf.2023.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Periodontal disease, a prevalent oral disease, is an independent risk factor for atherosclerosis. Porphyromonas gingivalis (P.g), a keystone pathogen of periodontal disease, contributes to the pathogenesis of atherosclerosis. However, the exact mechanism remains unclear. An increasing number of studies have proposed the atherogenic influence of perivascular adipose tissue (PVAT) in pathological conditions including hyperlipidemia and diabetes. Nevertheless, the role of PVAT in atherosclerosis promoted by P.g infection has not been explored. In our study, we investigated the association between P.g colonization in PVAT and progression of atherosclerosis through experiments on clinical samples. We further investigated P.g invasion of PVAT, PVAT inflammation, aortic endothelial inflammation, aortic lipid deposition, and systemic inflammation in C57BL/6 J mice with or without P.g infection at 20, 24, and 28 weeks of age. PVAT inflammation, characterized by imbalance in Th1/Treg and dysregulated adipokine levels, was associated with P.g invasion, preceding endothelial inflammation that occurred independently of its direct invasion. The phenotype of systemic inflammation coincided with that of PVAT inflammation, but systemic inflammation occurred after endothelial inflammation. Therefore PVAT inflammation in early atherosclerosis could be a primary trigger of aortic endothelial inflammation and lipid deposition in chronic P.g infection, through the dysregulated paracrine secretion of T helper-1-related adipokines.
Collapse
Affiliation(s)
- Fenghe Du
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China; Peking Union Medical College, MD Program, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Zhan Zhu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China; Peking Union Medical College, MD Program, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Kang Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Erli Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100005, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100005, China.
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
42
|
Pham TT, Nimptsch K, Papadimitriou N, Aleksandrova K, Jenab M, Gunter MJ, Le Marchand L, Li L, Lynch BM, Castellví-Bel S, Phipps AI, Schmit SL, Brenner H, Ogino S, Giovannucci E, Pischon T. Genetically determined circulating resistin concentrations and risk of colorectal cancer: a two-sample Mendelian randomization study. J Cancer Res Clin Oncol 2023; 149:14889-14900. [PMID: 37599317 PMCID: PMC10602946 DOI: 10.1007/s00432-023-05193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE Resistin, a novel pro-inflammatory protein implicated in inflammatory processes, has been suggested to play a role in colorectal development. However, evidence from observational studies has been inconsistent. Mendelian randomization may be a complementary method to examine this association. METHODS We conducted a two-sample Mendelian randomization to estimate the association between genetically determined circulating resistin concentrations and risk of colorectal cancer (CRC). Protein quantitative trait loci (pQTLs) from the SCALLOP consortium were used as instrumental variables (IVs) for resistin. CRC genetic summary data was obtained from GECCO/CORECT/CCFR (the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry), and FinnGen (Finland Biobank). The inverse variance weighted method (IVW) was applied in the main analysis, and other robust methods were used as sensitivity analyses. Estimates for the association from the two data sources were then pooled using a meta-analysis approach. RESULTS Thirteen pQTLs were identified as IVs explaining together 7.80% of interindividual variation in circulating resistin concentrations. Based on MR analyses, genetically determined circulating resistin concentrations were not associated with incident CRC (pooled-IVW-OR per standard deviation of resistin, 1.01; 95% CI 0.96, 1.06; p = 0.67. Restricting the analyses to using IVs within or proximal to the resistin-encoding gene (cis-IVs), or to IVs located elsewhere in the genome (trans-IVs) provided similar results. The association was not altered when stratified by sex or CRC subsites. CONCLUSIONS We found no evidence of a relationship between genetically determined circulating resistin concentrations and risk of CRC.
Collapse
Affiliation(s)
- Thu Thi Pham
- Molecular Epidemiology Research Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), World Health Organization, 150 Cours Albert Thomas, 69372, Lyon, Cedex 08, France
| | - Krasimira Aleksandrova
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, 28359, Bremen, Germany
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), World Health Organization, 150 Cours Albert Thomas, 69372, Lyon, Cedex 08, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), World Health Organization, 150 Cours Albert Thomas, 69372, Lyon, Cedex 08, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Li Li
- Department of Family Medicine and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Physical Activity Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Sergi Castellví-Bel
- Department of Gastroenterology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | | | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shuji Ogino
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Biobank Technology Platform, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Core Facility Biobank, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13125, Berlin, Germany.
| |
Collapse
|
43
|
Wang Z, Zhou X, Deng M, Yin Y, Li Y, Zhang Q, Bian Y, Miao J, Li J, Hou G. Clinical impacts of sarcopenic obesity on chronic obstructive pulmonary disease: a cross-sectional study. BMC Pulm Med 2023; 23:394. [PMID: 37853348 PMCID: PMC10585792 DOI: 10.1186/s12890-023-02702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Sarcopenia and obesity are two abnormal body composition phenotypes, and sarcopenic obesity (SO) is characterized by both low skeletal muscle mass (sarcopenia) and high adiposity (obesity). SO negatively influences the clinical status of patients with chronic obstructive pulmonary disease (COPD). However, the studies exploring the prevalence and clinical effects of SO in COPD patients are limited. Our study aimed to elucidate the prevalence and impact of SO on COPD patients. METHODS In this cross-sectional study, the pulmonary function, St. George's Respiratory Questionnaire, exercise tolerance, body composition, and serum levels of resistin and TNF-α were assessed in 198 COPD patients. The clinical value of serum resistin and TNF-α for predicting SO in patients with COPD was evaluated. RESULTS In the 198 patients with COPD, the prevalence rates of sarcopenia, obesity, and SO in COPD patients were 27.27%, 29.8%, and 9.6%, respectively. Patients with SO experienced more severe symptoms of dyspnea and worse health related quality of life. The expression of resistin increased in patients with SO compared to other patients. The AUC value of serum resistin level for predicting SO was 0.870 (95% CI: 0.799-0.940). BMI (OR: 1.474, 95% CI: 1.124-1.934) and resistin (OR: 1.001, 95% CI: 1.000-1.002) levels were independent risk factors of SO in patients with COPD in Multivariate analysis. CONCLUSION The prevalence rates of SO in COPD patients was 9.6%. COPD accompanied by SO is significantly associated with worse pulmonary function and poor physical performance. Serum resistin may be a potential adjunct for predicting SO in COPD patients.
Collapse
Affiliation(s)
- Zilin Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Disease, Beijing, China
| | - Mingming Deng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Yanxia Li
- Respiratory Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qin Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yiding Bian
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinrui Miao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiaye Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Gang Hou
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
44
|
Cai M, Zhao D, Han X, Han S, Zhang W, Zang Z, Gai C, Rong R, Gao T. The role of perivascular adipose tissue-secreted adipocytokines in cardiovascular disease. Front Immunol 2023; 14:1271051. [PMID: 37822930 PMCID: PMC10562567 DOI: 10.3389/fimmu.2023.1271051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
Perivascular adipose tissue and the vessel wall are connected through intricate bidirectional paracrine and vascular secretory signaling pathways. The secretion of inflammatory factors and oxidative products by the vessel wall in the diseased segment has the ability to influence the phenotype of perivascular adipocytes. Additionally, the secretion of adipokines by perivascular adipose tissue exacerbates the inflammatory response in the diseased vessel wall. Therefore, quantitative and qualitative studies of perivascular adipose tissue are of great value in the context of vascular inflammation and may provide a reference for the assessment of cardiovascular ischemic disease.
Collapse
Affiliation(s)
- Meichao Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongsheng Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuang Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhennan Zang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenchen Gai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
45
|
Grygiel-Górniak B, Skoczek W. Molecular Background and Clinical Implications of Glucose Disorders in Patients with Psoriatic Arthritis. J Clin Med 2023; 12:5814. [PMID: 37762754 PMCID: PMC10532042 DOI: 10.3390/jcm12185814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriatic arthritis (PsA) is an inflammatory musculoskeletal disease characterized by joint and entheses involvement. This condition is often associated with an increased prevalence of obesity, encompassing more than one-third of all patients. Given the presence of metabolic disorders, it becomes crucial to enhance clinical oversight of metabolic parameters. An early diagnosis of glucose irregularities in PsA allows for the assessment of an effective treatment strategy. The approach proves valuable in preventing the development of insulin resistance (IR) or diabetes mellitus type 2 (DMt2). Similar pathways characterize the pathomechanism of PsA and DMt2, offering an innovative perspective on treatment management. The cytokines and adipokines synthesized in the course of PsA significantly impact the development process of IR and DMt2 in different mechanisms of action. Conversely, glucose disorders influence the activity of PsA and therapy outcomes. Given the chronic inflammatory background shared by PsA, obesity, and DMt2, it is evident that inadequate management of any of the mentioned conditions can exacerbate the others. Thus, when PsA coincides with DMt2, a comprehensive multidimensional approach is necessary. This includes an effective immunosuppressive regimen complemented by appropriate anti-diabetic and insulin therapies. Moreover, often overlooked recommendations concerning overall well-being and lifestyle adjustments hold significance. This manuscript explores the connections and the relationship between the molecular background of PsA and glucose disorders. It provides a detailed exposition of specific therapeutic approaches for both conditions.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | |
Collapse
|
46
|
Byeon HJ, Chae MK, Ko J, Lee EJ, Kikkawa DO, Jang SY, Yoon JS. The Role of Adipsin, Complement Factor D, in the Pathogenesis of Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37555734 PMCID: PMC10424154 DOI: 10.1167/iovs.64.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Purpose Graves' orbitopathy (GO) is an orbital manifestation of autoimmune Graves' disease, and orbital fibroblast is considered a target cell, producing pro-inflammatory cytokines and/or differentiating into adipocytes. Adipose tissue has been focused on as an endocrine and inflammatory organ secreting adipokines. We investigated the pathogenic role of a specific adipokine, adipsin, known as complement factor D in Graves' orbital fibroblasts. Methods The messenger RNA (mRNA) expression of multiple adipokines was investigated in adipose tissues harvested from GO and healthy subjects. Adipsin protein production was analyzed in primary cultured orbital fibroblasts under insulin growth factor (IGF)-1, CD40 ligand (CD40L) stimulation, and adipogenesis. The effect of blocking adipsin with small interfering RNA (siRNA) on pro-inflammatory cytokine production and adipogenesis was evaluated using quantitative real-time PCR, Western blot, and ELISA. Adipogenic differentiation was identified using Oil Red O staining. Results Adipsin gene expression was significantly elevated in GO tissue and increased after the stimulation of IGF-1 and CD40L, as well as adipocyte differentiation in GO cells. Silencing of adipsin suppressed IGF-1-induced IL-6, IL-8, COX2, ICAM-1, CCL2 gene expression, and IL-6 protein secretion. Adipsin suppression also attenuated adipocyte differentiation. Exogenous treatment of recombinant adipsin resulted in the activation of the Akt, ERK, p-38, and JNK signaling pathways. Conclusions Adipsin, secreted by orbital fibroblasts, may play a distinct role in the pathogenesis of GO. Inhibition of adipsin ameliorated the production of pro-inflammatory cytokines and adipogenesis in orbital fibroblasts. Our study provides an in vitro basis suggesting adipsin as a potential therapeutic target for GO treatment.
Collapse
Affiliation(s)
- Hyeong Ju Byeon
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Shokri B, Heidarianpour A, Shokri E. Effect of Exercise and Detraining on Signs of Puberty and Selected Inflammatory Markers in Girls with Precocious Puberty. Med Sci Sports Exerc 2023; 55:1133-1142. [PMID: 36790953 DOI: 10.1249/mss.0000000000003138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE We examined the effects of aerobic exercise and detraining on adiponectin, resistin, tumor necrosis factor alpha (TNF-α), white blood cell, and pubertal signs (uterine length, ovarian volume, luteinizing hormone [LH], and follicle-stimulating hormone [FSH]) in girls with central precocious puberty (CPP). METHODS Thirty girls with CPP (7-9 yr old) were randomly divided into CPP and CPP + Exercise (EX) groups. Fifteen healthy age-matched girls without precocious puberty participated for comparison with CPP. Subjects in the CPP + EX group attended 12 wk of aerobic exercise protocol three sessions a week. In the baseline, after completing the exercise protocol and after 4 wk of detraining, all the parameters were measured. In the CPP and healthy groups, all the parameters were measured in all three stages. To measure adiponectin, resistin, and TNF-α, the ELISA method was used. LH and FSH were measured by electrochemiluminescence immunoassay. White blood cell counts were analyzed by an automated blood cell counter. Repeated-measures ANOVA was used to analyze the results. RESULTS CPP girls have lower adiponectin ( P = 0.01) and higher TNF-α levels ( P = 0.001) than healthy girls. In the CPP + EX group, after 12 wk, body weight and fat mass decreased, and adiponectin increased significantly ( P = 0.02). Resistin ( P = 0.02), TNF-α ( P = 0.02), neutrophils ( P = 0.01), and signs of puberty significantly ( P < 0.05) decreased. After detraining, no significant change was observed except TNF-α, which increased significantly ( P = 0.03). In the CPP group, no significant change was observed in any of the parameters; only LH ( P = 0.0001) and uterine length and ovarian volume ( P = 0.003, P = 0.001) decreased after 12 and 16 wk, respectively. CONCLUSIONS Aerobic exercise can have a positive effect on the state of inflammation and pubertal signs. Positive effects remain after 4 wk of detraining.
Collapse
Affiliation(s)
- Behnaz Shokri
- Faculty of Sports Sciences, Bu-Ali Sina University, Hamedan, IRAN
| | | | | |
Collapse
|
48
|
Vasileiadis GK, Sayols S, Zhao SS, Fatima T, Maglio C. Adipokines and risk of rheumatoid arthritis: A two-sample multivariable Mendelian randomisation study. PLoS One 2023; 18:e0286981. [PMID: 37294817 PMCID: PMC10256188 DOI: 10.1371/journal.pone.0286981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/29/2023] [Indexed: 06/11/2023] Open
Abstract
Adiponectin, leptin, and resistin are thought to be involved in the pathogenesis of rheumatoid arthritis (RA). However, the causal relationship between these adipokines and the risk for RA is unclear. We performed a range of two-sample Mendelian randomisation (MR) analyses to assess the causal effect of circulating adiponectin, leptin, and resistin on RA risk in European and East Asian individuals. Different sets of adiponectin-, leptin-, and resistin-related genetic variants were used as instruments for genetically determined adipokine levels. As body mass index (BMI) is a risk factor for RA and affects adipokine levels, multivariable MR was used to calculate the causal effect of each adipokine on RA risk taking BMI into account. Several MR analyses revealed no evidence of a causal relationship between circulating adiponectin, leptin, or resistin levels and RA risk in either Europeans or East Asians. Similarly, multivariable MR did not provide evidence of any causal effect of adiponectin, leptin, or resistin on RA risk when taking BMI into account. This MR study shows for the first time that genetically determined levels of adiponectin, leptin, or resistin do not have a direct causal effect on the risk of developing RA after adjustment for BMI.
Collapse
Affiliation(s)
- Georgios K. Vasileiadis
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine at the University of Gothenburg, Gothenburg, Sweden
| | - Sergi Sayols
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Sizheng Steven Zhao
- Division of Musculoskeletal and Dermatological Sciences, Centre for Genetics and Genomics Versus Arthritis, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Tahzeeb Fatima
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine at the University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cristina Maglio
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine at the University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
49
|
Broni EK, Ogunmoroti O, Osibogun O, Echouffo-Tcheugui JB, Chevli PA, Shapiro MD, Ndumele CE, Michos ED. Ideal Cardiovascular Health and Adipokine Levels: The Multi-Ethnic Study of Atherosclerosis. Endocr Pract 2023; 29:456-464. [PMID: 37028649 PMCID: PMC10330128 DOI: 10.1016/j.eprac.2023.03.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE To evaluate the association between ideal cardiovascular health (CVH) and adipokine levels. Adipokines are hormones implicated in obesity and its cardiometabolic consequences. The concept of ideal CVH was introduced to promote 7 key health factors and behaviors in the general population. Previous studies have found strong associations between obesity and ideal CVH. However, existing literature on the link between CVH and adipokines is scarce. METHODS We studied 1842 Multi-Ethnic Study of Atherosclerosis participants free of cardiovascular disease who had 7 CVH metrics (smoking, body mass index, physical activity, diet, total cholesterol, blood pressure, and fasting blood glucose) measured at baseline and serum adipokine levels measured at a median of 2.4 years later. Each CVH metric was assigned a score of 0 (poor), 1 (intermediate), or 2 (ideal), and all scores were summed for a total CVH score (0-14). The total CVH scores of 0 to 8, 9 to 10, and 11 to 14 were considered inadequate, average, and optimal, respectively. We used multivariable linear regression models to assess the nonconcurrent associations between the CVH score and log-transformed adipokine levels. RESULTS The mean age was 62.1 ± 9.8 years; 50.2% of participants were men. After adjusting for sociodemographic factors, a 1-unit higher CVH score was significantly associated with 4% higher adiponectin and 15% and 1% lower leptin and resistin levels. Individuals with optimal CVH scores had 27% higher adiponectin and 56% lower leptin levels than those with inadequate CVH scores. Similar trends were observed for those with average versus inadequate CVH scores. CONCLUSION In a multi-ethnic cohort free of cardiovascular disease at baseline, individuals with average and optimal CVH scores had a more favorable adipokine profile than those with inadequate CVH scores.
Collapse
Affiliation(s)
- Eric K Broni
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Oluseye Ogunmoroti
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olatokunbo Osibogun
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| | - Justin B Echouffo-Tcheugui
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Parag A Chevli
- Section on Hospital Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Chiadi E Ndumele
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erin D Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
50
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|