1
|
Wang J, Jin X, Yan S, Zhao H, Pang D, Ouyang H, Tang X. Yeast β-glucan promotes antiviral type I interferon response via dectin-1. Vet Microbiol 2024; 295:110107. [PMID: 38838382 DOI: 10.1016/j.vetmic.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of β-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/β levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shihan Yan
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Haoran Zhao
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China.
| |
Collapse
|
2
|
Keshavarz F, Mokhtari MJ, Poursadeghfard M. Increased level of GATA3-AS1 long non-coding RNA is correlated with the upregulation of GATA3 and IL-4 genes in multiple sclerosis patients. Mol Biol Rep 2024; 51:874. [PMID: 39080124 DOI: 10.1007/s11033-024-09818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play various roles in gene regulation. GATA3 antisense RNA 1 (GATA3-AS1) is an lncRNA gene neighboring GATA binding protein 3 (GATA3). The current study aims to quantitatively compare the levels of the expression of GATA3-AS1, GATA3, and Interleukin-4 (IL-4) in peripheral blood mononuclear cells (PBMC) samples of MS patients and healthy individuals under the hypothesis of regulation of GATA3 and IL-4 expression orchestrated by GATA3-AS1. METHODS AND RESULTS In this case-control study, the GATA3-AS1, GATA3 and IL-4 expression profiles were assessed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Also, we assessed the IL-4 levels in the serum. The median fold changes in MS patients vs. controls were (4.39 ± 0.38 vs. 2.44 ± 0.20) for GATA3-AS1, (5.22 ± 0.51 vs. 2.86 ± 0.30) for GATA3, and (6.16 ± 0.52 vs. 3.57 ± 0.38) for IL-4, (P < 0.001). Furthermore, the mean serum levels of IL-4 were 30.85 ± 1.53 pg/ml in MS patients and 11.15 ± 4.23 pg/ml in healthy controls (P < 0.001). ROC curve analysis showed that the level of GATA3-AS1 might serve as a biomarker for diagnosing MS patients with the area under the curve (AUC = 0.918, P < 0.0001). Based on our results, this GATA3-AS1/GATA3/IL-4 pathway may increase IL-4 expression in MS patients. CONCLUSIONS Our results indicate a probably regulatory function for GATA3-AS1and the levels of GATA3-AS1 in blood could be important biomarkers for MS diagnosis. To confirm and be more certain of these results, it is necessary to study neuromyelitis optica (NMO) and asthma patients in future studies.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| | | | - Maryam Poursadeghfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
4
|
Zhao C, Shi R, Lu X, Yang R, Chen Z, Chen B, Hu W, Ren J, Peng J, Zhu T, Zhu H, Huang C. Obligatory role of microglia-mobilized hippocampal CREB-BDNF signaling in the prophylactic effect of β-glucan on chronic stress-induced depression-like behaviors in mice. Eur J Pharmacol 2024; 964:176288. [PMID: 38142848 DOI: 10.1016/j.ejphar.2023.176288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Our previous studies have reported that pre-stimulation of microglia before stress stimulation is a possible strategy to prevent depression-like phenotypes; however, the molecular mechanisms underlying this effect are still unclear. Here, we used β-glucan, a polysaccharide from Saccharomyces cerevisiae with immunomodulatory activities that cannot elicit pro-inflammatory responses in microglia, to address this issue. Our results showed that a single injection of β-glucan one day before stress exposure dose-dependently prevented the depression-like behaviors triggered by chronic unpredictable stress (CUS), which peaked at 20 mg/kg and prevented the impairment of hippocampal brain-derived neurotrophic factor (BDNF) signaling, a pathological process critical for the progression of depression-like phenotypes. Inhibition of BDNF signaling by infusion of an anti-BDNF antibody into the hippocampus, knock-in of the mutant BDNF Val68Met allele, or blockade of the BDNF receptor in the hippocampus abolished the preventive effect of β-glucan on CUS-induced depression-like behaviors. Further analysis showed that cAMP-response element binding protein (CREB)-mediated increase of BDNF expression in the hippocampus was essential for the prevention of depression-like phenotypes by β-glucan. Pretreatment with minocycline or PLX3397 before β-glucan injection to suppress microglia abolished the preventive effect of β-glucan on impaired CREB-BDNF signaling in the hippocampus and depression-like behaviors in CUS mice. These results suggest that an increase in hippocampal BDNF following CREB activation triggered by β-glucan-induced microglia stimulation and subsequent TrkB signaling mediates the preventive effect of β-glucan on depression. β-Glucan may be a more suitable immunostimulant for the prevention of depression due to its inability to promote pro-inflammatory responses in microglia.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Pharmacy, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Macau, Taipa, 999078, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Zhuo Chen
- Invasive Technology Department, The Second Affiliated Hospital of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Wenfeng Hu
- Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shijidadao, Nantong 226007, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
5
|
Zhao C, Chen Z, Lu X, Hu W, Yang R, Lu Q, Chen B, Huang C. Microglia-Dependent Reversal of Depression-Like Behaviors in Chronically Stressed Mice by Administration of a Specific Immuno-stimulant β-Glucan. Neurochem Res 2024; 49:519-531. [PMID: 37962706 DOI: 10.1007/s11064-023-04056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
In recent years, the decline of microglia in the hippocampus has been shown to play a role in the development of depression, and its reversal shows marked antidepressant-like effects. β-glucan is a polysaccharide from Saccharomyces cerevisiae and has numerous beneficial effects on the nervous system, including improving axon regeneration and cognition. Considering its immuno-stimulatory activities in cultured microglia and brain tissues, we hypothesize that β-glucan may be a potential candidate to correct the functional deficiency of microglia and thereby alleviate depression-like behaviors in chronically stressed animals. An expected, our results showed that a single injection of β-glucan 5 h before behavioral tests at a dose of 10 or 20 mg/kg, but not at a dose of 5 mg/kg, reversed the depression-like behavior induced by chronic stress in mice in the tail suspension test, forced swimming test, and sucrose preference test. The effect of β-glucan (20 mg/kg) also showed time-dependent properties that were statistically significant 5 and 8, but not 3, hours after drug injection and persisted for at least 7 days. Fourteen days after β-glucan injection, no antidepressant-like effect was observed anymore. However, this effect was overcome by a second β-glucan injection (20 mg/kg) 14 days after the first β-glucan injection. Stimulation of microglia appeared to mediate the antidepressant-like effect of β-glucan, because both inhibition of microglia and their depletion prevented the antidepressant-like effect of β-glucan. Based on these effects of β-glucan, β-glucan administration could be developed as a new strategy for the treatment of depression.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Pharmacy, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Zhuo Chen
- Invasive Technology Department, First People's Hospital of Nantong City, the Second Affiliated Hospital of Nantong University, #666 Shengli Road, Nantong, 226006, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Wenfeng Hu
- Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shijidadao, Nantong, 226007, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong, 226006, Jiangsu, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
6
|
Ren J, Zhang Y, Pan H, Shi R, Zhu H, Yang R, Zhang L, Chen B, Zhu T, Lu X, Huang C. Mobilization of the innate immune response by a specific immunostimulant β-glucan confers resistance to chronic stress-induced depression-like behavior by preventing neuroinflammatory responses. Int Immunopharmacol 2024; 127:111405. [PMID: 38118316 DOI: 10.1016/j.intimp.2023.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Pre-stimulation of the innate immune response is an effective strategy to prevent depression-like phenotypes in animals. However, the use of conventional immunostimulants may cause adverse effects. Therefore, the search for agents that stimulate the innate immune response but do not induce a pro-inflammatory response could be a new research direction for the prevention of depression. β-glucan is a polysaccharide from Saccharomyces cerevisiae with unique immunomodulatory activity in microglia without eliciting a pro-inflammatory response that could lead to tissue damage. This suggests that β-glucan may be a suitable drug that can be used to prevent depression-like phenotypes. Our results showed that a single injection of β-glucan 1 day before stress exposure at a dose of 10 or 20 mg/kg, but notat a dose of 5 mg/kg, prevented depression-like behavior in mice treated with chronic unpredictable stress (CUS). This effect of β-glucan disappeared when the time interval between β-glucan and stress was extended from 1 day or 5 days to 10 days, which was rescued by a second injection 10 days after the first injection or by a repeated injection (4×, once daily) 10 days before stress exposure. A single β-glucan injection (20 mg/kg) 1 day before stress exposure prevented the CUS-induced increase in brain pro-inflammatory cytokines, and inhibition of the innate immune response by minocycline (40 mg/kg) abolished the preventive effect of β-glucan on CUS-induced depression-like behaviors and neuroinflammatory responses. These results suggest that β-glucan may prevent chronic stress-induced depression-like phenotypes and neuroinflammatory responses by stimulating the innate immune response.
Collapse
Affiliation(s)
- Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yi Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ruiting Shi
- Faculty of Humanities and Social Sciences, City University of Macau, Av. Parde Tomas Pereira, Taipa 999078, Macau
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Lin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Pharmacy, Affiliated Maternal and Child Health Hospital of Nantong University, #399 Shiji Dadao, Nantong 226007, Jiangsu, China
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
7
|
Mentrup T, Leinung N, Patel M, Fluhrer R, Schröder B. The role of SPP/SPPL intramembrane proteases in membrane protein homeostasis. FEBS J 2024; 291:25-44. [PMID: 37625440 DOI: 10.1111/febs.16941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Signal peptide peptidase (SPP) and the four SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 constitute a family of aspartyl intramembrane proteases with homology to presenilins. The different members reside in distinct cellular localisations within the secretory pathway and the endo-lysosomal system. Despite individual cleavage characteristics, they all cleave single-span transmembrane proteins with a type II orientation exhibiting a cytosolic N-terminus. Though the identification of substrates is not complete, SPP/SPPL-mediated proteolysis appears to be rather selective. Therefore, according to our current understanding cleavage by SPP/SPPL proteases rather seems to serve a regulatory function than being a bulk proteolytic pathway. In the present review, we will summarise our state of knowledge on SPP/SPPL proteases and in particular highlight recently identified substrates and the functional and/or (patho)-physiological implications of these cleavage events. Based on this, we aim to provide an overview of the current open questions in the field. These are connected to the regulation of these proteases at the cellular level but also in context of disease and patho-physiological processes. Furthermore, the interplay with other proteostatic systems capable of degrading membrane proteins is beginning to emerge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Nadja Leinung
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Mehul Patel
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| |
Collapse
|
8
|
Church KA, Cardona AE, Hopp SC. Roles in Innate Immunity. ADVANCES IN NEUROBIOLOGY 2024; 37:263-286. [PMID: 39207697 DOI: 10.1007/978-3-031-55529-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are best known as the resident phagocytes of the central nervous system (CNS). As a resident brain immune cell population, microglia play key roles during the initiation, propagation, and resolution of inflammation. The discovery of resident adaptive immune cells in the CNS has unveiled a relationship between microglia and adaptive immune cells for CNS immune-surveillance during health and disease. The interaction of microglia with elements of the peripheral immune system and other CNS resident cells mediates a fine balance between neuroprotection and tissue damage. In this chapter, we highlight the innate immune properties of microglia, with a focus on how pattern recognition receptors, inflammatory signaling cascades, phagocytosis, and the interaction between microglia and adaptive immune cells regulate events that initiate an inflammatory or neuroprotective response within the CNS that modulates immune-mediated disease exacerbation or resolution.
Collapse
Affiliation(s)
- Kaira A Church
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Department of Pharmacology, Biggs Institute for Alzheimer's and Neurodegenerative Disease, The University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Chen B, Zhao C, Zhu H, Lu X, Liu H, Lu Q, Zhu T, Huang C. β-glucan, a specific immuno-stimulant, produces rapid antidepressant effects by stimulating ERK1/2-dependent synthesis of BDNF in the hippocampus. Eur J Pharmacol 2023; 961:176161. [PMID: 37939990 DOI: 10.1016/j.ejphar.2023.176161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
A decline in microglia in the dentate gyrus of the hippocampus has recently been described as an important mechanism for the progression of depression. Reversal of this decline by innate immune system stimulants may represent a novel strategy to ameliorate the depressive phenotype in chronically stressed animals. β-glucan is a polysaccharide from Saccharomyces cerevisiae. It can efficiently stimulate microglia without inducing the production of pro-inflammatory cytokines. Therefore, β-glucan could be an ideal drug to ameliorate depressive phenotypes. In the present study, we found that a single injection of β-glucan reversed depression-like behaviors in mice induced by chronic unpredictable stress (CUS) in a dose-dependent manner, which was accompanied by a reversal of the CUS-induced decrease in brain-derived neurotrophic factor (BDNF) protein levels in the dentate gyrus. The crucial role of BDNF signaling in the antidepressant effect of β-glucan was demonstrated by experiments showing that infusion of an anti-BDNF antibody into dentate gyrus, construction of BDNF-Val68Met allele knock-in mice, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of β-glucan. The increased BDNF signaling induced by β-glucan was mediated by extracellular signal-regulated kinase1/2 (ERK1/2)-mediated BDNF synthesis, and inhibition of ERK1/2 by SL327 was able to abolish the antidepressant effect of β-glucan. Moreover, inhibition or depletion of microglia by minocycline or PLX3397 abolished the reversal effect of β-glucan on CUS-induced depression-like behaviors and CUS-induced impairment of ERK1/2-BDNF signaling. These results suggest that β-glucan exhibits antidepressant effects by stimulating microglia-mediated activation of ERK1/2 and synthesis of BDNF in the hippocampus.
Collapse
Affiliation(s)
- Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Cheng Zhao
- Department of Pharmacy, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, #66 Renmin South Road, Yancheng, 224006, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong, 226006, Jiangsu, China
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
10
|
Carroll JA, Striebel JF, Baune C, Chesebro B, Race B. CD11c is not required by microglia to convey neuroprotection after prion infection. PLoS One 2023; 18:e0293301. [PMID: 37910561 PMCID: PMC10619787 DOI: 10.1371/journal.pone.0293301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Prion diseases are caused by the misfolding of a normal host protein that leads to gliosis, neuroinflammation, neurodegeneration, and death. Microglia have been shown to be critical for neuroprotection during prion infection of the central nervous system (CNS), and their presence extends survival in mice. How microglia impart these benefits to the infected host are unknown. Previous transcriptomics and bioinformatics studies suggested that signaling through the heterodimeric integrin receptor CD11c/CD18, expressed by microglia in the brain, might be important to microglial function during prion disease. Herein, we intracerebrally challenged CD11c-/- mice with prion strain RML and compared them to similarly infected C57BL/6 mice as controls. We initially assessed changes in the brain that are associated with disease such as astrogliosis, microgliosis, prion accumulation, and survival. Targeted qRT-PCR arrays were used to determine alterations in transcription in mice in response to prion infection. We demonstrate that expression of Itgax (CD11c) and Itgb2 (CD18) increases in the CNS in correlation with advancing prion infection. Gliosis, neuropathology, prion deposition, and disease progression in prion infected CD11c deficient mice were comparable to infected C57BL/6 mice. Additionally, both CD11c deficient and C57BL/6 prion-infected mouse cohorts had a similar consortium of inflammatory- and phagocytosis-associated genes that increased as disease progressed to clinical stages. Ingenuity Pathway Analysis of upregulated genes in infected C57BL/6 mice suggested numerous cell-surface transmembrane receptors signal through Spleen Tyrosine Kinase, a potential key regulator of phagocytosis and innate immune activation in the prion infected brain. Ultimately, the deletion of CD11c did not influence prion pathogenesis in mice and CD11c signaling is not involved in the neuroprotection provided by microglia, but our analysis identified a conspicuous phagocytosis pathway in the CNS of infected mice that appeared to be activated during prion pathogenesis.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chase Baune
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
11
|
Xin Y, Tian M, Deng S, Li J, Yang M, Gao J, Pei X, Wang Y, Tan J, Zhao F, Gao Y, Gong Y. The Key Drivers of Brain Injury by Systemic Inflammatory Responses after Sepsis: Microglia and Neuroinflammation. Mol Neurobiol 2023; 60:1369-1390. [PMID: 36445634 PMCID: PMC9899199 DOI: 10.1007/s12035-022-03148-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Sepsis is a leading cause of intensive care unit admission and death worldwide. Most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). Although accumulating studies in the past two decades focused on the pathogenesis of SAE, a systematic review of retrospective studies which exclusively focuses on the inflammatory mechanisms of SAE has been lacking yet. This review summarizes the recent advance in the field of neuroinflammation and sheds light on the activation of microglia in SAE. Activation of microglia predominates neuroinflammation. As the gene expression profile changes, microglia show heterogeneous characterizations throughout all stages of SAE. Here, we summarize the systemic inflammation following sepsis and also the relationship of microglial diversity and neuroinflammation. Moreover, a collection of neuroinflammation-related dysfunction has also been reviewed to illustrate the possible mechanisms for SAE. In addition, promising pharmacological or non-pharmacological therapeutic strategies, especially those which target neuroinflammation or microglia, are also concluded in the final part of this review. Collectively, clarification of the vital relationship between neuroinflammation and SAE-related mental disorders would significantly improve our understanding of the pathophysiological mechanisms in SAE and therefore provide potential targets for therapies of SAE aimed at inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yuewen Xin
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuixiang Deng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jianpeng Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xu Pei
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yao Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feng Zhao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
The Dectin-1 Receptor Signaling Pathway Mediates the Remyelination Effect of Lentinan through Suppression of Neuroinflammation and Conversion of Microglia. J Immunol Res 2022; 2022:3002304. [PMID: 36619719 PMCID: PMC9812608 DOI: 10.1155/2022/3002304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Demyelinating diseases such as multiple sclerosis (MS) are chronic inflammatory autoimmune diseases and involve demyelination and axonal degeneration. Microglia rapidly respond to changes in the environment by altering morphotype and function during the progressive disease stage. Although substantial progress has been made in the drug development for MS, treatment of the progressive forms of the disease remains unsatisfactory. There is great interest in identifying novel agents for treating MS. Lentinus edodes is a traditional food, which can improve physiological function. Lentinan (LNT), a type of polysaccharide extracted from mushroom Lentinus edodes, is an anti-inflammatory and immunomodulatory agent. Here, we studied the remyelination effects of LNT and its therapeutic target in regulating the functions of neuroinflammation. We found that LNT enhanced remyelination and rescued motor deficiency by regulating dectin-1 receptor to inhibit neuroinflammation and microglial cell transformation. LNT promoted the conversion of microglial cells from the M1 status induced by LPS to the M2 status, enhanced the anti-inflammatory markers IL-10 and BDNF, inhibited inflammatory markers TNF-α and IL-1β, and downregulated the microglia activation and oligodendrocyte and astrocyte proliferation by modulating dectin-1. If we injected the dectin-1-specific inhibitor laminarin (Lam), the remyelination effects induced by LNT were completely abolished. Thus, these results suggest that LNT is a novel and potential therapeutic agent that can rescue MS neuroimmune imbalance and remyelination through a dectin-1 receptor-dependent mechanism.
Collapse
|
13
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
14
|
Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, Kumar A, Lei C, Zhang L, Liu QM, Yan J, McClain CJ, Merchant ML, Zhang HG. Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectin-1 Complex Into Microglial Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105385. [PMID: 34897972 PMCID: PMC8858573 DOI: 10.1002/smll.202105385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Indexed: 05/23/2023]
Abstract
Microglia modulate pro-inflammatory and neurotoxic activities. Edible plant-derived factors improve brain function. Current knowledge of the molecular interactions between edible plant-derived factors and the microglial cell is limited. Here an alcohol-induced chronic brain inflammation model is used to identify that the microglial cell is the novel target of oat nanoparticles (oatN). Oral administration of oatN inhibits brain inflammation and improves brain memory function of mice that are fed alcohol. Mechanistically, ethanol activates dectin-1 mediated inflammatory pathway. OatN is taken up by microglial cells via β-glucan mediated binding to microglial hippocalcin (HPCA) whereas oatN digalactosyldiacylglycerol (DGDG) prevents assess of oatN β-glucan to dectin-1. Subsequently endocytosed β-glucan/HPCA is recruited in an endosomal recycling compartment (ERC) via interaction with Rab11a. This complex then sequesters the dectin-1 in the ERC in an oatN β-glucan dependent manner and alters the location of dectin-1 from Golgi to early endosomes and lysosomes and increases exportation of dectin-1 into exosomes in an Rab11a dependent manner. Collectively, these cascading actions lead to preventing the activation of the alcoholic induced brain inflammation signing pathway(s). This coordinated assembling of the HPCA/Rab11a/dectin-1 complex by oral administration of oatN may contribute to the prevention of brain inflammation.
Collapse
Affiliation(s)
- Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of ICU, the Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Qiaohong M Liu
- Peak Neuromonitoring Associates-Kentucky, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, 40202, USA
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA
| |
Collapse
|
15
|
Ruiz-Pérez G, Ruiz de Martín Esteban S, Marqués S, Aparicio N, Grande MT, Benito-Cuesta I, Martínez-Relimpio AM, Arnanz MA, Tolón RM, Posada-Ayala M, Cravatt BF, Esteban JA, Romero J, Palenzuela R. Potentiation of amyloid beta phagocytosis and amelioration of synaptic dysfunction upon FAAH deletion in a mouse model of Alzheimer's disease. J Neuroinflammation 2021; 18:223. [PMID: 34587978 PMCID: PMC8482614 DOI: 10.1186/s12974-021-02276-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The complex pathophysiology of Alzheimer's disease (AD) hampers the development of effective treatments. Attempts to prevent neurodegeneration in AD have failed so far, highlighting the need for further clarification of the underlying cellular and molecular mechanisms. Neuroinflammation seems to play a crucial role in disease progression, although its specific contribution to AD pathogenesis remains elusive. We have previously shown that the modulation of the endocannabinoid system (ECS) renders beneficial effects in a context of amyloidosis, which triggers neuroinflammation. In the 5xFAD model, the genetic inactivation of the enzyme that degrades anandamide (AEA), the fatty acid amide hydrolase (FAAH), was associated with a significant amelioration of the memory deficit. METHODS In this work, we use electrophysiology, flow cytometry and molecular analysis to evaluate the cellular and molecular mechanisms underlying the improvement associated to the increased endocannabinoid tone in the 5xFAD mouse- model. RESULTS We demonstrate that the chronic enhancement of the endocannabinoid tone rescues hippocampal synaptic plasticity in the 5xFAD mouse model. At the CA3-CA1 synapse, both basal synaptic transmission and long-term potentiation (LTP) of synaptic transmission are normalized upon FAAH genetic inactivation, in a CB1 receptor (CB1R)- and TRPV1 receptor-independent manner. Dendritic spine density in CA1 pyramidal neurons, which is notably decreased in 6-month-old 5xFAD animals, is also restored. Importantly, we reveal that the expression of microglial factors linked to phagocytic activity, such as TREM2 and CTSD, and other factors related to amyloid beta clearance and involved in neuron-glia crosstalk, such as complement component C3 and complement receptor C3AR, are specifically upregulated in 5xFAD/FAAH-/- animals. CONCLUSION In summary, our findings support the therapeutic potential of modulating, rather than suppressing, neuroinflammation in Alzheimer's disease. In our model, the long-term enhancement of the endocannabinoid tone triggered augmented microglial activation and amyloid beta phagocytosis, and a consequent reversal in the neuronal phenotype associated to the disease.
Collapse
Affiliation(s)
- Gonzalo Ruiz-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | | - Sharai Marqués
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Noelia Aparicio
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - M Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Irene Benito-Cuesta
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Ana M Martínez-Relimpio
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - M Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Rosa M Tolón
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - María Posada-Ayala
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Rocío Palenzuela
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
16
|
Deerhake ME, Shinohara ML. Emerging roles of Dectin-1 in noninfectious settings and in the CNS. Trends Immunol 2021; 42:891-903. [PMID: 34489167 DOI: 10.1016/j.it.2021.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022]
Abstract
Dectin-1 is a C-type lectin receptor (CLR) expressed on the surface of various mammalian myeloid cells. Dectin-1 recognizes β-glucans and elicits antifungal proinflammatory immune responses. Recent studies have begun to examine the biology of Dectin-1 in previously less explored settings, such as homeostasis, sterile inflammation, and in the central nervous system. Indeed, in certain contexts, Dectin-1 is now known to promote tolerance, and anti-inflammatory and neuroprotective responses. In this review, we provide an overview of the current understanding of the roles of Dectin-1 in immunology beyond the context of fungal infections, mainly focusing on in vivo neuroimmunology studies, which could reveal new therapeutic approaches to modify innate immune responses in neurologic disorders.
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
17
|
Murakawa-Hirachi T, Mizoguchi Y, Ohgidani M, Haraguchi Y, Monji A. Effect of memantine, an anti-Alzheimer's drug, on rodent microglial cells in vitro. Sci Rep 2021; 11:6151. [PMID: 33731780 PMCID: PMC7969939 DOI: 10.1038/s41598-021-85625-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pathophysiology of Alzheimer's disease (AD) is related to neuroinflammatory responses mediated by microglia. Memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors used as an anti-Alzheimer's drug, protects from neuronal death accompanied by suppression of proliferation and activation of microglial cells in animal models of AD. However, it remains to be tested whether memantine can directly affect microglial cell function. In this study, we examined whether pretreatment with memantine affects intracellular NO and Ca2+ mobilization using DAF-2 and Fura-2 imaging, respectively, and tested the effects of memantine on phagocytic activity by human β-Amyloid (1-42) phagocytosis assay in rodent microglial cells. Pretreatment with memantine did not affect production of NO or intracellular Ca2+ elevation induced by TNF in rodent microglial cells. Pretreatment with memantine also did not affect the mRNA expression of pro-inflammatory (TNF, IL-1β, IL-6 and CD45) or anti-inflammatory (IL-10, TGF-β and arginase) phenotypes in rodent microglial cells. In addition, pretreatment with memantine did not affect the amount of human β-Amyloid (1-42) phagocytosed by rodent microglial cells. Moreover, we observed that pretreatment with memantine did not affect 11 major proteins, which mainly function in the phagocytosis and degradation of β-Amyloid (1-42), including TREM2, DAP12 and neprilysin in rodent microglial cells. To the best of our knowledge, this is the first report to suggest that memantine does not directly modulate intracellular NO and Ca2+ mobilization or phagocytic activity in rodent microglial cells. Considering the neuroinflammation hypothesis of AD, the results might be important to understand the effect of memantine in the brain.
Collapse
Affiliation(s)
- Toru Murakawa-Hirachi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Masahiro Ohgidani
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinori Haraguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
18
|
Li H, Xiao Y, Han L, Jia Y, Luo S, Zhang D, Zhang L, Wu P, Xiao C, Kan W, Du J, Bao H. Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Res Bull 2021; 171:16-24. [PMID: 33705858 DOI: 10.1016/j.brainresbull.2021.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is a prevalent, chronic, and recurrent disease. At least one-third of patients have treatment-resistant depression; therefore, there is an urgent need for novel drug development. Cumulative studies have suggested an inflammatory mechanism for the pathophysiology of MDD. Ganoderma lucidum polysaccharides (GLP) is an anti-inflammatory and immunomodulatory agent. Here, we found that an injection of GLP led to a rapid and robust antidepressant effect after 60 min in the tail suspension test. This antidepressant effect remained after 5 days of treatment with GLP in the forced swim test. Unlike psychostimulants, GLP did not show a hyperactive effect in the open field test. After 60 min or 5 days of treatment, GLP exhibited an antidepressant effect in a chronic social defeat stress (CSDS) depression animal model. Moreover, after 5 days of treatment, GLP attenuated the expression of the proinflammatory cytokines IL-1β and TNF-α, enhanced the expression of the anti-inflammatory cytokine IL-10 and the neurotrophic factor BDNF, and inhibited the activation of microglia and proliferation of astrocytes in the hippocampus of CSDS mice. In addition, after 5 days of treatment, GLP significantly enhanced GluA1 S845 phosphorylation as well as GluA1 and GluA2 expression levels in the hippocampus of CSDS mice. To determine whether the antidepressant effect was mediated by Dectin-1, we found that GLP treatment enhanced Dectin-1 expression in the hippocampus in CSDS mice, and the Dectin-1-specific inhibitor laminarin almost completely blocked the antidepressant effect of GLP. This study identified GLP, an agonist of Dectin-1, as a novel and rapid antidepressant with clinical potential and multiple beneficial mechanisms, particularly in regulating the neuroimmune system and, subsequently, AMPA receptor function.
Collapse
Affiliation(s)
- Haoran Li
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Yuhuan Xiao
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Li Han
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Yue Jia
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Shaolei Luo
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Dandan Zhang
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, PR China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, 650201, PR China
| | - Chunjie Xiao
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China
| | - Weijing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, PR China
| | - Jing Du
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China; The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, PR China.
| | - Hongkun Bao
- Yunnan University, School of Medicine, 2 Cuihu North Road, Kunming, Yunnan, 650091, PR China.
| |
Collapse
|
19
|
Heng Y, Zhang X, Borggrewe M, van Weering HRJ, Brummer ML, Nijboer TW, Joosten LAB, Netea MG, Boddeke EWGM, Laman JD, Eggen BJL. Systemic administration of β-glucan induces immune training in microglia. J Neuroinflammation 2021; 18:57. [PMID: 33618716 PMCID: PMC7901224 DOI: 10.1186/s12974-021-02103-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background An innate immune memory response can manifest in two ways: immune training and immune tolerance, which refers to an enhanced or suppressed immune response to a second challenge, respectively. Exposing monocytes to moderate-to-high amounts of bacterial lipopolysaccharide (LPS) induces immune tolerance, whereas fungal β-glucan (BG) induces immune training. In microglia, it has been shown that different LPS inocula in vivo can induce either immune training or tolerance. Few studies focused on impact of BG on microglia and were only performed in vitro. The aim of the current study was to determine whether BG activates and induces immune memory in microglia upon peripheral administration in vivo. Methods Two experimental designs were used. In the acute design, mice received an intraperitoneal (i.p.) injection with PBS, 1 mg/kg LPS or 20 mg/kg BG and were terminated after 3 h, 1 or 2 days. In the preconditioning design, animals were first challenged i.p. with PBS, 1 mg/kg LPS or 20 mg/kg BG. After 2, 7 or 14 days, mice received a second injection with PBS or 1 mg/kg LPS and were sacrificed 3 h later. Microglia were isolated by fluorescence-activated cell sorting, and cytokine gene expression levels were determined. In addition, a self-developed program was used to analyze microglia morphological changes. Cytokine concentrations in serum were determined by a cytokine array. Results Microglia exhibited a classical inflammatory response to LPS, showing significant upregulation of Tnf, Il6, Il1β, Ccl2, Ccl3 and Csf1 expression, three h after injection, and obvious morphological changes 1 and 2 days after injection. With an interval of 2 days between two challenges, both BG and LPS induced immune training in microglia. The training effect of LPS changed into immune tolerance after a 7-day interval between 2 LPS challenges. Preconditioning with BG and LPS resulted in increased morphological changes in microglia in response to a systemic LPS challenge compared to naïve microglia. Conclusions Our results demonstrate that preconditioning with BG and LPS both induced immune training of microglia at two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning resulted in immune tolerance in microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02103-4.
Collapse
Affiliation(s)
- Yang Heng
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Xiaoming Zhang
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Malte Borggrewe
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Hilmar R J van Weering
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Maaike L Brummer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Tjalling W Nijboer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.,Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jon D Laman
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| |
Collapse
|
20
|
Kalia N, Singh J, Kaur M. The role of dectin-1 in health and disease. Immunobiology 2021; 226:152071. [PMID: 33588306 DOI: 10.1016/j.imbio.2021.152071] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/07/2021] [Accepted: 01/31/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cell-associated C-type lectin-1 (Dectin-1), also known as β-glucan receptor is an emerging pattern recognition receptor (PRR) which belongs to the family of C-type lectin receptor (CLR). This CLR identifies ligands independently of Ca2+ and is majorly involved in coupling of innate with adaptive immunity. Formerly, Dectin-1 was best known for its role in anti-fungal defense only. However, recent explorations suggested its wider role in defense against variety of infectious diseases caused by pathogens including bacteria, parasites and viruses. In fact, Dectin-1 signaling axis has been suggested to be targeted as an effective therapeutic strategy for cancers. Dectin-1 has also been elucidated ascetically in the heart, respiratory, intestinal, neurological and developmental disorders. Being a defensive PRR, Dectin-1 results in optimal immune responses in collaboration with other PRRs, but the overall evaluation reinforces the hypothesis of disease development on dis-regulation of Dectin-1 activity. This underscores the impact of Dectin-1 polymorphisms in modulating protein expression and generation of non-optimal immune responses through defective collaborations, further underlining their therapeutic potential. To add on, Dectin-1 influence autoimmunity and severe inflammation accredited to recognition of self T cells and apoptotic cells through unknown ligands. Few reports have also testified its redundant role in infections, which makes it a complicated molecule to be fully resolved. Thus, Dectin-1 is a hub that runs a complex collaborative network, whose interactive wire connections to different PRRs are still pending to be revealed. Alternatively, so far focus of almost all the researchers was the two major cell surface isoforms of Dectin-1, despite the fact that its soluble functional intracellular isoform (Dectin-1E) has already been dissected but is indefinable. Therefore, this review intensely recommends the need of future research to resolve the un-resolved and treasure the comprehensive role of Dectin-1 in different clinical outcomes, before determining its therapeutic prospective.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India.
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143001, India.
| |
Collapse
|
21
|
Kumar S, Matthews QL, Sims B. Effects of Cocaine on Human Glial-Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 8:563441. [PMID: 33505956 PMCID: PMC7830252 DOI: 10.3389/fcell.2020.563441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Microglia are important myeloid cells present in the brain parenchyma that serve a surveillance function in the central nervous system. Microglial cell activation results in neuroinflammation that, when prolonged, can disrupt immune homeostasis and neurogenesis. Activated microglia-derived extracellular vesicles (EVs) may be involved in the propagation of inflammatory responses and modulation of cell-to-cell communication. However, a complete understanding of how EVs are regulated by drugs of abuse, such as cocaine, is still lacking. FINDINGS Cocaine exposure reduced human microglial cell (HMC3) viability, decreased expression of CD63 and dectin-1 in HMC3-derived EVs, and increased expression of the apoptotic marker histone H2A.x in HMC3-derived EVs. CONCLUSION Cocaine impacts HMC3 cell viability and specific EV protein expression, which could disrupt cellular signaling and cell-to-cell communication.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, University of Alabama, Birmingham, AL, United States
| | - Qiana L. Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, United States
| | - Brian Sims
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
22
|
Braun DJ, Dimayuga E, Morganti JM, Van Eldik LJ. Microglial-associated responses to comorbid amyloid pathology and hyperhomocysteinemia in an aged knock-in mouse model of Alzheimer's disease. J Neuroinflammation 2020; 17:274. [PMID: 32943069 PMCID: PMC7499995 DOI: 10.1186/s12974-020-01938-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Elevated blood homocysteine levels, termed hyperhomocysteinemia (HHcy), is a prevalent risk factor for Alzheimer's disease (AD) in elderly populations. While dietary supplementation of B-vitamins is a generally effective method to lower homocysteine levels, there is little if any benefit to cognition. In the context of amyloid pathology, dietary-induced HHcy is known to enhance amyloid deposition and certain inflammatory responses. Little is known, however, about whether there is a more specific effect on microglia resulting from combined amyloid and HHcy pathologies. METHODS The present study used a knock-in mouse model of amyloidosis, aged to 12 months, given 8 weeks of B-vitamin deficiency-induced HHcy to better understand how microglia are affected in this comorbidity context. RESULTS We found that HHcy-inducing diet increased amyloid plaque burden, altered the neuroinflammatory milieu, and upregulated the expression of multiple damage-associated and "homeostatic" microglial genes. CONCLUSIONS Taken together, these data indicate complex effects of comorbid pathologies on microglial function that are not driven solely by increased amyloid burden. Given the highly dynamic nature of microglia, their central role in AD pathology, and the frequent occurrence of various comorbidities in AD patients, it is increasingly important to understand how microglia respond to mixed pathological processes.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
| | - Edgardo Dimayuga
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
23
|
Microglial Response to Aspergillus flavus and Candida albicans: Implications in Endophthalmitis. J Fungi (Basel) 2020; 6:jof6030162. [PMID: 32899547 PMCID: PMC7558867 DOI: 10.3390/jof6030162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
Aspergillus flavus is the most common etiology of fungal endophthalmitis in India, while Candida albicans is the causative agent in the West. In this study, we determined the role of microglial cells in evoking an inflammatory response following an infection with A. flavus and C. albicans strains isolated from patients with endophthalmitis. Microglia (CHME-3) cells were infected with A. flavus and C. albicans and the expression of Toll-Like Receptors (TLRs), cytokines and Matrix metalloproteinases (MMPs) were assessed at various time intervals. A. flavus infected cells induced higher expressions of TLR-1, -2, -5, -6, -7 and -9 and cytokines such as IL-1α, IL-6, IL-8, IL-10 and IL-17. In contrast, C. albicans infected microglia induced only TLR-2 along with the downregulation of IL-10 and IL-17. The expression of MMP-9 (Matrix metalloproteinase-9) was however upregulated in both A. flavus and C. albicans infected microglia. These results indicate that microglial cells have the ability to incite an innate response towards endophthalmitis causing fungal pathogens via TLRs and inflammatory mediators. Moreover, our study highlights the differential responses of microglia towards yeast vs. filamentous fungi.
Collapse
|
24
|
Lax N, Fainstein N, Nishri Y, Ben-Zvi A, Ben-Hur T. Systemic microbial TLR2 agonists induce neurodegeneration in Alzheimer's disease mice. J Neuroinflammation 2020; 17:55. [PMID: 32059733 PMCID: PMC7023749 DOI: 10.1186/s12974-020-01738-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accumulating data suggest a central role for brain microglia in mediating cortical neuronal death in Alzheimer's disease (AD), and for Toll-like receptor 2 (TLR2) in their toxic activation. Amyloid deposition in preclinical AD is associated with microglial activation but not directly with neurodegeneration. We examined in transgenic 5xFAD mice the hypothesis that systemic TLR2 agonists, derived from common infectious agents, may accelerate neurodegeneration in AD. METHODS Microbial wall-derived TLR2 agonists zymosan and lipoteichoic acid were administered intraperitoneally or intracerebroventricularly to 7-month-old wild-type or 5xFAD mice. Immunofluorescent stainings were used to quantify cortical neurons and evaluate tissue reaction. Microglial activation was assessed using functional assays, RNA expression, and FACS analysis. RESULTS Repeated low-dose systemic administration of zymosan or lipoteichoic acid killed cortical neurons in 5xFAD mice but not in wild-type mice. Direct CNS delivery of a selective TLR2 antagonist blocked the neurotoxicity of systemically administered zymosan, indicating that CNS TLR2 mediates this effect. Systemically administered zymosan crossed the disrupted blood-brain barrier in 5xFAD mice and entered brain parenchyma. By intracerebroventricular delivery, we found a dose- and exposure time-dependent acute neurotoxic effect of the microbial TLR2 agonist, killing cortical neurons. 5xFAD mice exhibited significantly increased vulnerability to TLR2 agonist-induced neuronal loss as compared to wild-type mice. Microbial TLR2-induced neurodegeneration was abolished by inhibiting microglia. The vulnerability of 5xFAD mice brains was mediated by an increase in number and neurotoxic phenotype of TLR2-expressing microglia. CONCLUSIONS We suggest that repeated exposure to microbial TLR2 agonists may facilitate neurodegeneration in AD by their microglial-mediated toxicity to the hyper-vulnerable environment of the AD brain.
Collapse
Affiliation(s)
- Neta Lax
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Yossi Nishri
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
25
|
Brioschi S, Zhou Y, Colonna M. Brain Parenchymal and Extraparenchymal Macrophages in Development, Homeostasis, and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:294-305. [PMID: 31907272 PMCID: PMC7034672 DOI: 10.4049/jimmunol.1900821] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Abstract
Microglia are parenchymal macrophages of the CNS; as professional phagocytes they are important for maintenance of the brain's physiology. These cells are generated through primitive hematopoiesis in the yolk sac and migrate into the brain rudiment after establishment of embryonic circulation. Thereafter, microglia develop in a stepwise fashion, reaching complete maturity after birth. In the CNS, microglia self-renew without input from blood monocytes. Recent RNA-sequencing studies have defined a molecular signature for microglia under homeostasis. However, during disease, microglia undergo remarkable phenotypic changes, which reflect the acquisition of specialized functions tailored to the pathological context. In addition to microglia, the brain-border regions host populations of extraparenchymal macrophages with disparate origins and phenotypes that have recently been delineated. In this review we outline recent findings that provide a deeper understanding of both parenchymal microglia and extraparenchymal brain macrophages in homeostasis and during disease.
Collapse
Affiliation(s)
- Simone Brioschi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
26
|
Tahani S, Dehghani L, Jahanbani-Ardakani H, Shaygannejad V, Fazli A, Hamidavi A, Eskandari N. Elevated serum level of IL-4 in neuromyelitis optica and multiple sclerosis patients. J Immunoassay Immunochem 2019; 40:555-563. [PMID: 31422745 DOI: 10.1080/15321819.2019.1655649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mediators have important roles in the pathogenesis of autoimmune diseases. Interleukin 4 (IL-4) is one of the most important cytokines that has a regulatory effect on immune cells. In the current study, the serum level of IL-4 was assessed in the newly diagnosed neuromyelitis optica (NMO) and multiple sclerosis (MS) patients compared to healthy subjects. ELISA technique was used for assessment of the serum level of IL-4, and data analysis was performed by SPSS software. Serum level of IL-4 was elevated in both NMO and MS patients compared with healthy individuals (P < .001), but no statistically significant difference was identified between MS and NMO patients (P = .071). Furthermore, gender (female) and AQP4-Ab had significant impacts on the level of IL-4 in NMO patients (P < .001). These data show the crucial role of IL-4 in the pathogenesis of NMO and MS diseases. However, we suggest future studies to investigate the serum level of IL-4 in NMO and MS patients to clarify more roles of this cytokine in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Soheil Tahani
- Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran.,Department of Medical Sciences, School of Medicine, Najafabad Branch, Islamic Azad University , Isfahan , Iran
| | - Leila Dehghani
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | | - Vahid Shaygannejad
- Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Ali Fazli
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Azin Hamidavi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
27
|
Sato-Hashimoto M, Nozu T, Toriba R, Horikoshi A, Akaike M, Kawamoto K, Hirose A, Hayashi Y, Nagai H, Shimizu W, Saiki A, Ishikawa T, Elhanbly R, Kotani T, Murata Y, Saito Y, Naruse M, Shibasaki K, Oldenborg PA, Jung S, Matozaki T, Fukazawa Y, Ohnishi H. Microglial SIRPα regulates the emergence of CD11c + microglia and demyelination damage in white matter. eLife 2019; 8:42025. [PMID: 30910011 PMCID: PMC6435324 DOI: 10.7554/elife.42025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
A characteristic subset of microglia expressing CD11c appears in response to brain damage. However, the functional role of CD11c+ microglia, as well as the mechanism of its induction, are poorly understood. Here we report that the genetic ablation of signal regulatory protein α (SIRPα), a membrane protein, induced the emergence of CD11c+ microglia in the brain white matter. Mice lacking CD47, a physiological ligand of SIRPα, and microglia-specific SIRPα-knockout mice exhibited the same phenotype, suggesting that an interaction between microglial SIRPα and CD47 on neighbouring cells suppressed the emergence of CD11c+ microglia. A lack of SIRPα did not cause detectable damage to the white matter, but resulted in the increased expression of genes whose expression is characteristic of the repair phase after demyelination. In addition, cuprizone-induced demyelination was alleviated by the microglia-specific ablation of SIRPα. Thus, microglial SIRPα suppresses the induction of CD11c+ microglia that have the potential to accelerate the repair of damaged white matter.
Collapse
Affiliation(s)
- Miho Sato-Hashimoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Tomomi Nozu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Riho Toriba
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Ayano Horikoshi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Miho Akaike
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Kyoko Kawamoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Ayaka Hirose
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Yuriko Hayashi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Hiromi Nagai
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Wakana Shimizu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Ayaka Saiki
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Tatsuya Ishikawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Ruwaida Elhanbly
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masae Naruse
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| |
Collapse
|
28
|
Camilli G, Eren E, Williams DL, Aimanianda V, Meunier E, Quintin J. Impaired phagocytosis directs human monocyte activation in response to fungal derived β-glucan particles. Eur J Immunol 2018; 48:757-770. [PMID: 29313961 DOI: 10.1002/eji.201747224] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
Recognition of the fungal cell wall carbohydrate β-glucan by the host receptor Dectin-1 elicits broad immunomodulatory responses, such as phagocytosis and activation of oxidative burst. These responses are essential for engulfing and killing fungal pathogens. Phagocytic monocytes are key mediators of these early host inflammatory responses to infection. Remarkably, whether phagocytosis of fungal β-glucan leads to an inflammatory response in human monocytes remains to be established. Here, we show that phagocytosis of heat-killed Candida albicans is essential to trigger inflammation and cytokine release. By contrast, inhibition of actin-dependent phagocytosis of particulate (1-3,1-6)-β-glucan induces a strong inflammatory signature. Sustained monocyte activation, induced by fungal β-glucan particles upon actin cytoskeleton disruption, relies on Dectin-1 and results in the classical caspase-1 inflammasome formation through NLRP3, generation of an oxidative burst, NF-κB activation, and increased inflammatory cytokine release. PI3K and NADPH oxidase were crucial for both cytokine secretion and ROS generation, whereas Syk signaling mediated only cytokine production. Our results highlight the mechanism by which phagocytosis tightly controls the activation of phagocytes by fungal pathogens and strongly suggest that actin cytoskeleton dynamics are an essential determinant of the host's susceptibility or resistance to invasive fungal infections.
Collapse
Affiliation(s)
- Giorgio Camilli
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - Elif Eren
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David L Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | - Etienne Meunier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jessica Quintin
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, Van Kooyk Y. Neuroinflammation: Microglia and T Cells Get Ready to Tango. Front Immunol 2018; 8:1905. [PMID: 29422891 PMCID: PMC5788906 DOI: 10.3389/fimmu.2017.01905] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
In recent years, many paradigms concerning central nervous system (CNS) immunology have been challenged and shifted, including the discovery of CNS-draining lymphatic vessels, the origin and functional diversity of microglia, the impact of T cells on CNS immunological homeostasis and the role of neuroinflammation in neurodegenerative diseases. In parallel, antigen presentation outside the CNS has revealed the vital role of antigen-presenting cells in maintaining tolerance toward self-proteins, thwarting auto-immunity. Here, we review recent findings that unite these shifted paradigms of microglial functioning, antigen presentation, and CNS-directed T cell activation, focusing on common neurodegenerative diseases. It provides an important update on CNS adaptive immunity, novel targets, and a concept of the microglia T-cell equilibrium.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette Van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
30
|
Xu S, Shinohara ML. Tissue-Resident Macrophages in Fungal Infections. Front Immunol 2017; 8:1798. [PMID: 29312319 PMCID: PMC5732976 DOI: 10.3389/fimmu.2017.01798] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022] Open
Abstract
Invasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
31
|
Alcocer-Gómez E, Castejón-Vega B, Cordero MD. Stress-Induced NLRP3 Inflammasome in Human Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:127-162. [PMID: 28427559 DOI: 10.1016/bs.apcsb.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stress is a complex event that induces disturbances to physiological and psychological homeostasis, and it may have a detrimental impact on certain brain and physiological functions. In the last years, a dual role of the stress effect has been studied in order to elucidate the molecular mechanism by which can induce physiological symptoms after psychological stress exposition and vice versa. In this sense, inflammation has been proposed as an important starring. And in the same line, the inflammasome complex has emerged to give responses because of its role of stress sensor. The implication of the same complex, NLRP3 inflammasome, in different diseases such as cardiovascular, neurodegenerative, psychiatric, and metabolic diseases opens a door to develop new therapeutic perspectives.
Collapse
|
32
|
Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front Cell Neurosci 2017; 11:63. [PMID: 28337127 PMCID: PMC5343070 DOI: 10.3389/fncel.2017.00063] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation has been identified as a causative factor of multiple neurological diseases. The nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome, a subcellular multiprotein complex that is abundantly expressed in the central nervous system (CNS), can sense and be activated by a wide range of exogenous and endogenous stimuli such as microbes, aggregated and misfolded proteins, and adenosine triphosphate, which results in activation of caspase-1. Activated caspase-1 subsequently leads to the processing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) pro-inflammatory cytokines and mediates rapid cell death. IL-1β and IL-18 drive inflammatory responses through diverse downstream signaling pathways, leading to neuronal damage. Thus, the NLRP3 inflammasome is considered a key contributor to the development of neuroinflammation. In this review article, we briefly discuss the structure and activation the NLRP3 inflammasome and address the involvement of the NLRP3 inflammasome in several neurological disorders, such as brain infection, acute brain injury and neurodegenerative diseases. In addition, we review a series of promising therapeutic approaches that target the NLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds, however, these approaches are still experimental in neurological diseases. At present, it is plausible to generate cell-specific conditional NLRP3 knockout (KO) mice via the Cre system to investigate the role of the NLRP3 inflammasome, which may be instrumental in the development of novel pharmacologic investigations for neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
33
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
34
|
Koutsouras GW, Ramos RL, Martinez LR. Role of microglia in fungal infections of the central nervous system. Virulence 2016; 8:705-718. [PMID: 27858519 DOI: 10.1080/21505594.2016.1261789] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most fungi are capable of disseminating into the central nervous system (CNS) commonly being observed in immunocompromised hosts. Microglia play a critical role in responding to these infections regulating inflammatory processes proficient at controlling CNS colonization by these eukaryotic microorganisms. Nonetheless, it is this inflammatory state that paradoxically yields cerebral mycotic meningoencephalitis and abscess formation. As peripheral macrophages and fungi have been investigated aiding our understanding of peripheral disease, ascertaining the key interactions between fungi and microglia may uncover greater abilities to treat invasive fungal infections of the brain. Here, we present the current knowledge of microglial physiology. Due to the existing literature, we have described to greater extent the opportunistic mycotic interactions with these surveillance cells of the CNS, highlighting the need for greater efforts to study other cerebral fungal infections such as those caused by geographically restricted dimorphic and rare fungi.
Collapse
Affiliation(s)
- George W Koutsouras
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Raddy L Ramos
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| | - Luis R Martinez
- a Department of Biomedical Sciences , NYIT College of Osteopathic Medicine, New York Institute of Technology , Old Westbury , NY , USA
| |
Collapse
|
35
|
Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res 2016; 95:1360-1372. [PMID: 27862176 DOI: 10.1002/jnr.23986] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder leading to cognitive decline, neuropsychiatric symptoms, disability, caregiver burden, and premature death. It represents the most prevalent cause of dementia, and its incidence rates exponentially increase with increasing age. The number of Americans living with AD is rapidly increasing. An estimated 5.4 million Americans of all ages have AD in 2016. One in nine people aged 65 and older has AD, and by midcentury, someone in the United States will develop the disease every 33 sec. It is now accepted that neuroinflammation is a common feature of neurological disease. Inflammasomes, which are a multiprotein complex part of the innate immune system, induce inflammation in response to various stimuli, such as pathogens and stress. Inflammasomes activate proinflammatory caspases, such as caspase-1, leading to the activation of the proinflammatory cytokines interleukin (IL)-1b, IL-18, and IL-33, which promote neuroinflammation and brain pathologies. The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3 (NLRP3) inflammasome is the best characterized in neurodegenerative diseases, in particular AD. Recent research suggests that NLRP3 could possibly be used in targeted therapies to alleviate neuroinflammation. Modulation of endogenous cellular defense mechanisms may be an innovative approach to therapeutic intervention in AD and other disorders associated with neuroinflammation and neurodegeneration. Herein, we introduce the hormetic dose-response concept and present possible mechanisms and applications to neuroprotection. We summarize the mechanisms involved in activation of the NLRP3 inflammasome and its role in neuroinflammation. We also address and propose the potential therapeutic utility of the nutritional antioxidants sulforaphane and hydroxytyrosol against particular signs and symptoms of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Spinal Unit, Emergency Hospital "Cannizzaro,", Catania, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
36
|
Lentinan produces a robust antidepressant-like effect via enhancing the prefrontal Dectin-1/AMPA receptor signaling pathway. Behav Brain Res 2016; 317:263-271. [PMID: 27693847 DOI: 10.1016/j.bbr.2016.09.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Lentinan (LNT) is an immune regulator and its potential and mechanism for the treatment of mood disorder is of our interest. Dectin-1 is a β-glucan (including LNT) receptor that regulates immune functions in many immune cell types. Cumulative evidence has suggested that the glutamatergic system seems to play an important role in the treatment of depression. Here, we studied the antidepressant-like effects of LNT and its therapeutical target in regulating the functions of AMPA receptors. We found that 60min treatment with LNT leads to a significant antidepressant-like effect in the tail suspension test (TST) and the forced swim test (FST) in mice. The antidepressant-like effects of LNT in TST and FST remained after 1day or 5days of injections. Additionally, LNT did not show a hyperactive effect in the open field test. Dectin-1 receptor levels were increased after LNT treatment for 5days and the specific Dectin-1 inhibitor laminarin was able to block the antidepressant-like effects of LNT. After 5days of treatment, LNT enhanced p-GluR1 (S845) in the prefrontal cortex (PFC); however, the total GluR1, GluR2, and GluR3 expression levels remained unchanged. We also found that the AMPA-specific blocker GYKI 52466 was able to block the antidepressant-like effects of LNT. This study identified LNT as a novel antidepressant with clinical potential and a new antidepressant mechanism for regulating prefrontal Dectin-1/AMPA receptor signaling.
Collapse
|
37
|
Bao H, Ran P, Zhu M, Sun L, Li B, Hou Y, Nie J, Shan L, Li H, Zheng S, Xu X, Xiao C, Du J. The Prefrontal Dectin-1/AMPA Receptor Signaling Pathway Mediates The Robust and Prolonged Antidepressant Effect of Proteo-β-Glucan from Maitake. Sci Rep 2016; 6:28395. [PMID: 27329257 PMCID: PMC4916609 DOI: 10.1038/srep28395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/13/2023] Open
Abstract
Proteo-β-glucan from Maitake (PGM) is a strong immune regulator, and its receptor is called Dectin-1. Cumulative evidence suggests that AMPA receptors are important for the treatment of depression. Here, we report that PGM treatment leads to a significant antidepressant effect in the tail suspension test and forced swim test after sixty minutes of treatment in mice. After five consecutive days of PGM treatment, this antidepressant effect remained. PGM treatment did not show a hyperactive effect in the open field test. PGM significantly enhanced the expression of its receptor Dectin-1, as well as p-GluA1(S845) and GluA1, but not GluA2 or GluA3 in the prefrontal cortex (PFC) after five days of treatment. The Dectin-1 inhibitor Laminarin was able to block the antidepressant effect of PGM. At the synapses of PFC, PGM treatment significantly up-regulated the p-GluA1(S845), GluA1, GluA2, and GluA3 levels. Moreover, PGM’s antidepressant effects and the increase of p-GluA1(S845)/GluA1 lasted for 3 days after stopping treatment. The AMPA-specific antagonist GYKI 52466 was able to block the antidepressant effect of PGM. This study identified PGM as a novel antidepressant with clinical potential and a new antidepressant mechanism for regulating prefrontal Dectin-1/AMPA receptor signalling.
Collapse
Affiliation(s)
- Hongkun Bao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Pengzhan Ran
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Ming Zhu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Lijuan Sun
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Bai Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Yangyang Hou
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Jun Nie
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Liping Shan
- Beijing Gragen Biotechnology Co. Ltd., Beijing, P. R. China
| | - Hongliang Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Shangyong Zheng
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Chunjie Xiao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| | - Jing Du
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan, P. R. China.,School of Medicine, Yunnan University, Kunming, Yunnan, P. R. China
| |
Collapse
|
38
|
Walachowski S, Tabouret G, Foucras G. Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages. PLoS One 2016; 11:e0148464. [PMID: 26840954 PMCID: PMC4739705 DOI: 10.1371/journal.pone.0148464] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
β-glucans (BG) are abundant polysaccharides of the Saccharomyces cerevisiae cell wall (Sc CW), an industry byproduct. They have immuno-stimulatory properties upon engagement of dectin-1 (Clec7a), their main receptor on particular immune cells, and they actually become of great interest because of their preventive or therapeutic potentials. Zymosan, a crude extract of Sc CW was studied as a prototypic BG, despite its miscellaneous PAMPs content. Here, we examined the response of murine wild type or Clec7a-/- bone marrow-derived macrophages (BMDM) to products with increasing BG content (15, 65 or 75%) and compared their effects with those of other dectin-1 ligands. The enrichment process removed TLR ligands while preserving dectin-1 activity. The most enriched extracts have very low NFκB activity and triggered low amounts of cytokine production in contrast with crude products like zymosan and BG15. Furthermore, MyD88-/- BMDM did not produce TNFα in response to crude Sc CW extracts, whereas their response to BG-enriched extracts was unaffected, suggesting that BG alone are not able to initiate cytokine secretion. Although Sc CW-derived BG stimulated the late and strong expression of Csf2 in a dectin-1-dependent manner, they remain poor inducers of chemokine and cytokine production in murine macrophages.
Collapse
Affiliation(s)
- Sarah Walachowski
- Université de Toulouse, INP-ENVT, UMR 1225, IHAP, Toulouse, France
- INRA, UMR1225, IHAP, Toulouse, France
| | - Guillaume Tabouret
- Université de Toulouse, INP-ENVT, UMR 1225, IHAP, Toulouse, France
- INRA, UMR1225, IHAP, Toulouse, France
| | - Gilles Foucras
- Université de Toulouse, INP-ENVT, UMR 1225, IHAP, Toulouse, France
- INRA, UMR1225, IHAP, Toulouse, France
- * E-mail:
| |
Collapse
|
39
|
Selli J, Unal D, Mercantepe F, Akaras N, Kabayel R, Unal B, Atilay H. Protective effects of beta glucan in brain tissues of post-menopausal rats: a histochemical and ultra-structural study. Gynecol Endocrinol 2016; 32:234-9. [PMID: 26486170 DOI: 10.3109/09513590.2015.1110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decline of estrogen during menopause has been associated with numerous significant changes that have been linked to many pathophysiological complications. In addition, ovarian hormone deficiency increases the production of reactive oxygen radicals which could result in oxidative stress and cell damage. While estrogen therapy is often considered to overcome the behavioral and physiological shortcomings, antioxidants are gaining popularity for their beneficial property. For this purpose, in the present study, utilizing the antioxidant properties of beta glucan has been examined in treatment of menopause induced oxidative stress in cerebral neurons. Four groups of female Wistar rats were used: control, ovariectomy, ovariectomy + estrogen treated and ovariectomy + beta glucan treated. We observed a significant increase in neural degeneration in ovariectomized rats as compared to controls. Moreover, increased oxidative stress in the brains of the ovariectomized rats has been detected by performing immunohistochemical analysis. A large number of immuno-positive cerebral neurons have been observed in ovariectomy group rat brains. Interestingly, providing beta glucan treatment to ovariectomized rats reduced the number of degenerated neurons. Our study is the first to examine light and electron microscopic examination and immunohistochemical and stereological analysis of estrogen depletion in rats and to test protective role of beta glucan in the experimental study.
Collapse
Affiliation(s)
- Jale Selli
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Deniz Unal
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Filiz Mercantepe
- b Department of Internal Medicine , Faculty of Medicine, Recep Tayyip Erdogan University , Rize , Turkey
| | - Nurhan Akaras
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Rabia Kabayel
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Bunyami Unal
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Hilal Atilay
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| |
Collapse
|
40
|
Inflammasome-induced IL-1β secretion in microglia is characterized by delayed kinetics and is only partially dependent on inflammatory caspases. J Neurosci 2015; 35:678-87. [PMID: 25589762 DOI: 10.1523/jneurosci.2510-14.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inflammasomes are multiprotein complexes that link pathogen recognition and cellular stress to the processing of the proinflammatory cytokine interleukin-1β (IL-1β). Whereas inflammasome-mediated activation is heavily studied in hematopoietic macrophages and dendritic cells, much less is known about microglia, resident tissue macrophages of the brain that originate from a distinct progenitor. To directly compare inflammasome-mediated activation in different types of macrophages, we isolated primary microglia and hematopoietic macrophages from adult, healthy rhesus macaques. We analyzed the expression profile of NOD (nucleotide-binding oligomerization domain)-like receptors, adaptor proteins, and caspases and characterized inflammasome activation and regulation in detail. We here demonstrate that primary microglia can respond to the same innate stimuli as hematopoietic macrophages. However, microglial responses are more persistent due to lack of negative regulation on pro-IL-1β expression. In addition, we show that while caspase 1, 4, and 5 activation is pivotal for inflammasome-induced IL-1β secretion by hematopoietic macrophages, microglial secretion of IL-1β is only partially dependent on these inflammatory caspases. These results identify key cell type-specific differences that may aid the development of strategies to modulate innate immune responses in the brain.
Collapse
|
41
|
Active Hexose Correlated Compound (AHCC) promotes an intestinal immune response in BALB/c mice and in primary intestinal epithelial cell culture involving toll-like receptors TLR-2 and TLR-4. Eur J Nutr 2015; 55:139-46. [PMID: 25596849 DOI: 10.1007/s00394-015-0832-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/08/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Active Hexose Correlated Compound (AHCC(®)) is a cultured mushroom extract that is commercially available and promoted for immune support. Available data suggest that AHCC supplementation affects immune cell populations and immune outcomes, including natural killer cell response to infection. The mechanism by which AHCC exerts its effects is not well understood. The present work aimed to characterize the immunomodulatory activity of AHCC in the gut and to study the effects of AHCC on toll-like receptor (TLR) signaling in intestinal epithelial cells (IECs). METHODS BALB/c mice were fed AHCC by gavage. In vivo activities were assessed by immunohistochemistry and cytokine production. The effects of AHCC on ex vivo primary cell culture from IECs were examined after challenge with LPS or E. coli alone or in the presence of anti-TLR-2 and TLR-4 blocking antibodies. RESULTS Feeding AHCC resulted in increased IgA+ cells in the intestine and increased sIgA, IL-10, and IFN-γ in the intestinal fluid. In IECs, contact with AHCC increased IL-6 production but not to the pro-inflammatory level of positive controls, LPS and E. coli. Blocking TLR-2 and TLR-4 reduced the induction of IL-6 by AHCC, suggesting that these innate receptors are involved in generating the immune response of IECs to AHCC. CONCLUSIONS AHCC may play a role in the orchestration of immune response and the maintenance of immune homeostasis in part by priming the TLR-2 and TLR-4 gate at the intestinal epithelium. Such a response is likely due to the recognition of non-pathogenic food-associated molecular patterns (FAMPs) such as those found associated with other mushroom or yeast-derived compounds.
Collapse
|
42
|
Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia 2014; 63:652-63. [PMID: 25471906 DOI: 10.1002/glia.22775] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/14/2014] [Indexed: 11/09/2022]
Abstract
Activation of microglia is the first and main immune response to brain injury. Release of the nucleotides ATP, ADP, and UDP from damaged cells regulate microglial migration and phagocytosis via purinergic P2Y receptors. We hypothesized that store-operated Ca(2+) entry (SOCE), the prevalent Ca(2+) influx mechanism in non-excitable cells, is a potent mediator of microglial responses to extracellular nucleotides. Expression analyses of STIM Ca(2+) sensors and Orai Ca(2+) channel subunits, that comprise the molecular machinery of SOCE, showed relevant levels of STIM1, STIM2, and Orai1 in cultured mouse microglia. STIM1 expression and SOCE were down-regulated by treatment of microglia with lipopolysaccharide, suggesting that inflammation limits SOCE by lower STIM1 abundance. Ca(2+) entry induced by cyclopiazonic acid, ATP, the P2Y6 receptor agonist UDP, or the P2Y12 receptor agonist 2-methylthio-ADP (2-MeSADP) was clearly affected in microglia from Stim1(-/-) , Stim2(-/-) , and Orai1(-/-) mice. SOCE blockers or ablation of STIM1, STIM2, or Orai1 severely impaired nucleotide-induced migration and phagocytosis in microglia. Thus, this study assigns SOCE, regulated by STIM1, STIM2, and Orai1 an essential role in purinergic signaling and activation of microglia.
Collapse
Affiliation(s)
- Marlen Michaelis
- Carl-Ludwig-Institute for Physiology, University of Leipzig, 04103, Leipzig, Germany
| | | | | | | | | |
Collapse
|
43
|
Baram L, Cohen-Kedar S, Spektor L, Elad H, Guzner-Gur H, Dotan I. Differential stimulation of peripheral blood mononuclear cells in Crohn's disease by fungal glycans. J Gastroenterol Hepatol 2014; 29:1976-84. [PMID: 25092526 DOI: 10.1111/jgh.12701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Crohn's disease (CD) is characterized by loss of tolerance to intestinal microorganisms. This is reflected by serological responses to fungal glycans such as mannan and β-glucans. Fungal glycans have various effects on immune cells. However, the evidence for their effects in CD is vague. This study aimed to assess the effects of fungal cell wall glycans on human peripheral blood mononuclear cells (PBMCs) from CD and control patients. METHODS Human PBMCs from CD and control patients were stimulated by fungal cell wall glycans. Cytokine secretion was detected by ELISA and glycan receptor expression by flow cytometry. RESULTS Mannan, β-glucans (curdlan), chitosan, and zymosan induced the secretion of interleukin (IL)-1β, IL-6, IL-23, IL-10, and tumor necrosis factor-α by PBMCs. Spleen tyrosin kinase and Src tyrosine kinase were involved in the response to mannan and β-glucans. Mannan and whole yeast cells induced a significantly higher pro-inflammatory cytokine response in CD compared with control patients. CONCLUSIONS The results may suggest that CD is characterized by hyperresponsiveness to fungal glycans. Thus, glycans may potentially be triggering or perpetuating inflammation.
Collapse
Affiliation(s)
- Liran Baram
- IBD Center, Department of Gastroenterology and Liver Diseases and The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Multi-step pathogenesis and induction of local immune response by systemic Candida albicans infection in an intravenous challenge mouse model. Int J Mol Sci 2014; 15:14848-67. [PMID: 25153636 PMCID: PMC4159886 DOI: 10.3390/ijms150814848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Different murine species differ in their susceptibility to systemic infection with Candida albicans, giving rise to varied host immune responses, and this is compounded by variations in virulence of the different yeast strains used. Hence, this study was aimed at elucidating the pathogenesis of a clinical C. albicans isolate (HVS6360) in a murine intravenous challenge model by examining the different parameters which included the counts of red blood cells and associated components as well as the organ-specific expression profiles of cytokines and chemokines. Kidneys and brains of infected mice have higher fungal recovery rates as compared to other organs and there were extensive yeast infiltration with moderate to severe inflammation seen in kidney and brain tissues. Red blood cells (RBCs) and haemoglobin (Hb) counts were reduced throughout the infection period. Pattern recognition receptors (PRRs), chemokines and cytokine transcription profiles were varied among the different organs (kidney, spleen and brain) over 72 h post infections. Transcription of most of the PRRs, cytokines and chemokines were suppressed at 72 h post infection in spleen while continuous expression of PRRs, cytokines and chemokines genes were seen in brain and kidney. Reduction in red blood cells and haemoglobin counts might be associated with the action of extracellular haemolysin enzyme and haeme oxygenase of C. albicans in conjunction with iron scavenging for the fungal growth. Renal cells responsible for erythropoietin production may be injured by the infection and hence the combined effect of haemolysis plus lack of erythropoietin-induced RBC replenishment leads to aggravated reduction in RBC numbers. The varied local host immune profiles among target organs during systemic C. albicans infection could be of importance for future work in designing targeted immunotherapy through immunomodulatory approaches.
Collapse
|
45
|
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014; 11:98. [PMID: 24889886 PMCID: PMC4060849 DOI: 10.1186/1742-2094-11-98] [Citation(s) in RCA: 1213] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
The concept of multiple macrophage activation states is not new. However, extending this idea to resident tissue macrophages, like microglia, has gained increased interest in recent years. Unfortunately, the research on peripheral macrophage polarization does not necessarily translate accurately to their central nervous system (CNS) counterparts. Even though pro- and anti-inflammatory cytokines can polarize microglia to distinct activation states, the specific functions of these states is still an area of intense debate. This review examines the multiple possible activation states microglia can be polarized to. This is followed by a detailed description of microglial polarization and the functional relevance of this process in both acute and chronic CNS disease models described in the literature. Particular attention is given to utilizing M2 microglial polarization as a potential therapeutic option in treating diseases.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - John A Olschowka
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - M Kerry O’Banion
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
46
|
Yan J, Wu B, Huang B, Huang S, Jiang S, Lu F. Dectin-1-CD37 association regulates IL-6 expression during Toxoplasma gondii infection. Parasitol Res 2014; 113:2851-60. [PMID: 24870248 DOI: 10.1007/s00436-014-3946-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii can establish chronic infection and is characterized by the formation of tissue cysts in the brain. Although T. gondii can infect any kind of nucleated cells, macrophages and related mononuclear phagocytes are its preferred targets in vivo. Microglial cells are the resident macrophages in the central nervous system. It has been reported that CD37, a tetraspanin molecule, is expressed exclusively in the immune system; Dectin-1, an important pattern-recognition receptor, is expressed on the surface of murine primary microglia. The Dectin-1-CD37 association can affect Dectin-1-mediated IL-6 secretion. However, there is no report concerning the relationship among the expressions of Dectin-1, IL-6, and CD37 during T. gondii infection. In the present study, Kunming outbred mice were infected with Prugniaud (Pru), a type II strain of T. gondii by oral gavage, and BV-2 murine microglial cells were cocultured with RH tachyzoites of T. gondii. By H&E and immunohistochemical staining, the results showed that marked inflammation and a significantly increased activation of Iba1-positive microglial cells were observed in the brain tissues of mice infected with T. gondii Pru strain at 5 weeks postinfection (p.i.) in comparison of uninfected controls. Using quantitative real-time PCR detection, Dectin-1 messenger RNA (mRNA) expressions were significantly upregulated in both brains at 3 (P < 0.01), 5 (P < 0.01), 7 (P < 0.01), and 9 (P < 0.05) weeks p.i. and spleens at 3, 5, 7, and 9 weeks p.i. (P < 0.01). IL-6 expressions showed similar dynamic tendency as that of Dectin-1 in both the brains and spleens at the same times in comparison of uninfected controls; CD37 expressions were significantly increased in the brain tissues at all the times (P < 0.01) and no significant differences in the spleens at 3 weeks p.i. but significantly downregulated in the spleens at 5, 7, and 9 weeks p.i. (P < 0.01). In vitro study showed that compared with uninfected controls, the mRNA expressions of Dectin-1 at 2, 4, 8, and 10 h (P < 0.01); IL-6 at 8 and 10 h (P < 0.01); and CD37 at 4 (P < 0.05), 8 (P < 0.01), and 10 h (P < 0.01) were significantly upregulated in BV-2 murine microglial cells stimulated with RH tachyzoites of T. gondii. Our data suggested that the expression of Dectin-1 was positively correlated with that of IL-6 in toxoplasmic encephalitis (TE) mouse model; Dectin-1 interaction with tetraspanin CD37 regulated IL-6 expression in both the brain tissues of TE mouse model and in the T. gongdii-infected BV-2 murine microglial cells.
Collapse
Affiliation(s)
- Junping Yan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | | | | | | | | | | |
Collapse
|
47
|
Talbott SM, Talbott JA, Talbott TL, Dingler E. β-Glucan supplementation, allergy symptoms, and quality of life in self-described ragweed allergy sufferers. Food Sci Nutr 2014; 1:90-101. [PMID: 24804018 PMCID: PMC3951572 DOI: 10.1002/fsn3.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/03/2022] Open
Abstract
This randomized, placebo-controlled, double-blind study compared the effects of daily supplementation for 4 week with 250 mg Wellmune WGP® β-1,3/1,6-Glucan (WGP) with placebo 250 mg/day (rice flour) on physical and psychological health attributes of self-described “moderate” ragweed allergy sufferers. Study participants (mean age = 36 ± 9 year; range 18–53 year) were recruited before the beginning of ragweed season (September) in Northeastern Ohio. Serum IgE concentration, allergy symptoms [via self-report, Visual Analog Scale (VAS), and Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ)], psychological well-being [Profile of Mood States (POMS)], and physical function (RAND SF-36 Medical Outcomes Study) were measured immediately prior to and after supplementation with WGP (n = 24) or placebo (n = 24) for 4 weeks. Data were analyzed using repeated measures analyses of variance (ANOVA). Compared with placebo, WGP reduced total allergy symptoms (28%), symptom severity (52%), and symptom rating on the VAS (37%) (P < 0.05), but had no effect on serum IgE levels. As measured by the POMS, WGP increased participants' rating of vigor (10%), but reduced tension (34%), depression (45%), anger (41%), fatigue (38%), and confusion (34%) (P < 0.05). Study participants given WGP reported increased physical health (11%), energy (19%), and emotional well-being (7%) compared with study participants given the placebo (RAND SF-36 Medical Outcomes Study). The WGP group also reported decreased sleep problems (53%), reduced nasal symptoms (59%), eye symptoms (57%), non-nasal symptoms (50%), activities (53%), emotions (57%), and improved quality of life (QOL) (56%), as well as improved global mood state (13%). Supplementation with WGP for 4 weeks improved allergy symptoms, overall physical health, and emotional well-being compared with placebo in self-described “moderate” ragweed allergy sufferers during ragweed allergy season.
Collapse
|
48
|
Li X, Wang J, Wang W, Liu C, Sun S, Gu J, Wang X, Boraschi D, Huang Y, Qu D. Immunomodulatory activity of a novel, synthetic beta-glucan (β-glu6) in murine macrophages and human peripheral blood mononuclear cells. PLoS One 2013; 8:e80399. [PMID: 24223225 PMCID: PMC3819285 DOI: 10.1371/journal.pone.0080399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Natural β-glucans extracted from plants and fungi have been used in clinical therapies since the late 20th century. However, the heterogeneity of natural β-glucans limits their clinical applicability. We have synthesized β-glu6, which is an analog of the lentinan basic unit, β-(1→6)-branched β-(1→3) glucohexaose, that contains an α-(1→3)-linked bond. We have demonstrated the stimulatory effect of this molecule on the immune response, but the mechanisms by which β-glu6 activates innate immunity have not been elucidated. In this study, murine macrophages and human PBMCs were used to evaluate the immunomodulatory effects of β-glu6. We showed that β-glu6 activated ERK and c-Raf phosphorylation but suppressed the AKT signaling pathway in murine macrophages. Additionally, β-glu6 enhanced the secretion of large levels of cytokines and chemokines, including CD54, IL-1α, IL-1β, IL-16, IL-17, IL-23, IFN-γ, CCL1, CCL3, CCL4, CCL12, CXCL10, tissue inhibitor of metalloproteinase-1 (TIMP-1) and G-CSF in murine macrophages as well as IL-6, CCL2, CCL3, CCL5, CXCL1 and macrophage migration inhibitory factor (MIF) in human PBMCs. In summary, it demonstrates the immunomodulatory activity of β-glu6 in innate immunity.
Collapse
Affiliation(s)
- Xiaofei Li
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jing Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Wei Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chunhong Liu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuhui Sun
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jianxin Gu
- Key Laboratory of Glycoconjugates Research Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xun Wang
- Shanghai Blood Center, Shanghai, China
| | - Diana Boraschi
- Laboratory of Cytokines, Unit of Immunobiology, Institute of Biomedical Technologies, National Research Council, Pisa, Italy
| | - Yuxian Huang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail: (DQ); (YH)
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail: (DQ); (YH)
| |
Collapse
|
49
|
Rizzetto L, De Filippo C, Rivero D, Riccadonna S, Beltrame L, Cavalieri D. Systems biology of host-mycobiota interactions: dissecting Dectin-1 and Dectin-2 signalling in immune cells with DC-ATLAS. Immunobiology 2013; 218:1428-37. [PMID: 23932568 DOI: 10.1016/j.imbio.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/02/2013] [Accepted: 07/06/2013] [Indexed: 01/04/2023]
Abstract
Modelling the networks sustaining the fruitful coexistence between fungi and their mammalian hosts is becoming increasingly important to control emerging fungal pathogens. The C-type lectins Dectin-1 and Dectin-2 are involved in host defense mechanisms against fungal infection driving inflammatory and adaptive immune responses and complement in containing fungal burdens. Recognizing carbohydrate structures in pathogens, their engagement induces maturation of dendritic cells (DCs) into potent immuno-stimulatory cells endowed with the capacity to efficiently prime T cells. Owing to these properties, Dectin-1 and Dectin-2 agonists are currently under investigation as promising adjuvants in vaccination procedures for the treatment of fungal infection. Thus, a detailed understanding of events' cascade specifically triggered in DCs upon engagement is of great interest in translational research. Here, we summarize the current knowledge on Dectin-1 and Dectin-2 signalling in DCs highlighting similarities and differences. Detailed maps are annotated, using the Biological Connection Markup Language (BCML) data model, and stored in DC-ATLAS, a versatile resource for the interpretation of high-throughput data generated perturbing the signalling network of DCs.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige (TN), Italy
| | | | | | | | | | | |
Collapse
|
50
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|