1
|
He J, Cui H, Jiang G, Fang L, Hao J. Knowledge mapping of trained immunity/innate immune memory: Insights from two decades of studies. Hum Vaccin Immunother 2024; 20:2415823. [PMID: 39434217 PMCID: PMC11497974 DOI: 10.1080/21645515.2024.2415823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
This study employs knowledge mapping and bibliometric techniques to analyze the research landscape of trained immunity over the past 20 years and to identify current research hotspots and future development directions. The literature related to trained immunity was searched from the Web of Science Core Collection database, spanning 2004 to 2023. VOSViewer, CiteSpace and Bibliometrix were used for the knowledge mapping analysis. The foremost research institutions are Radboud University Nijmegen, University of Bonn, and Harvard University. Professor Netea MG of Radboud University Nijmegen has published the greatest number of articles. The current research focus encompasses immune memory, nonspecific effects, epigenetics, metabolic reprogramming, BCG vaccine, and the development of trained immunity-based vaccines. It is likely that research on trained immunity-based vaccines will become a major focus in the development of new vaccines in the future. It would be advantageous to observe a greater number of prospective clinical studies with robust evidence.
Collapse
Affiliation(s)
- Jiacheng He
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Hongxia Cui
- College of Environment and Chemistry Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Guoqian Jiang
- College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, P.R China
| | - Lijun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
| | - Jianlei Hao
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, P.R. China
| |
Collapse
|
2
|
Erlandsson MC, Malmhäll-Bah E, Chandrasekaran V, Andersson KME, Nilsson LM, Töyrä Silfverswärd S, Pullerits R, Bokarewa MI. Insulin Sensitivity Controls Activity of Pathogenic CD4+ T Cells in Rheumatoid Arthritis. Cells 2024; 13:2124. [PMID: 39768214 PMCID: PMC11674209 DOI: 10.3390/cells13242124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Hyperinsulinemia connects obesity, and a poor lipid profile, with type 2 diabetes (T2D). Here, we investigated consequences of insulin exposure for T cell function in the canonical autoimmunity of rheumatoid arthritis (RA). We observed that insulin levels correlated with the glycolytic index of CD4+ cells but suppressed transcription of insulin receptor substrates, which was inversely related to insulin sensitivity. This connection between insulin levels and the glycolytic index was not seen in CD4+ cells of healthy controls. Exposure of CD4+ cells to insulin induced a senescent state recognized by cell cycle arrest and DNA content enrichment measured by flow cytometry. It also resulted in accumulation of DNA damage marker γH2AX. Insulin suppressed IFNγ production and induced the senescence-associated secretome in CD4+ cell cultures and in patients with hyperinsulinemia. Inhibition of JAK-STAT signaling (JAKi) improved insulin signaling, which activated the glycolytic index and facilitated senescence in CD4+ cell cultures. Treatment with JAKi was associated with an abundance of naïve and recent thymic emigrant T cells in the circulation of RA patients. Thus, we concluded that insulin exerts immunosuppressive ability by inducing senescence and inhibiting IFNγ production in CD4+ cells. JAKi promotes insulin effects and supports elimination of the pathogenic CD4+ cell in RA patients.
Collapse
Grants
- MB, 2017-03025, 2017-00359 Swedish Research Council
- MB, R-566961, R-751351 and R-860371; RP, R-969562, R-862061 the Swedish Association against Rheumatism
- MB, FAI-2018-0519, FAI-2020-0653, FAI-2022-0882 King Gustaf V:s 80-year Foundation
- MB, ALFGBG-717681, ALFGBG-965623; RP, ALFGBG-965012, ALFGBG-926621 Regional agreement on medical training and clinical research in the Western Götaland county
- MB the University of Gothenburg
Collapse
Affiliation(s)
- Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
- Rheumatology Clinic, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Lisa M. Nilsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Sofia Töyrä Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, 41346 Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (M.C.E.); (R.P.)
- Rheumatology Clinic, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
3
|
Gonzalez-Muñiz OE, Rodriguez-Carlos A, Santos-Mena A, Jacobo-Delgado YM, Gonzalez-Curiel I, Rivas-Santiago C, Navarro-Tovar G, Rivas-Santiago B. Metformin modulates corticosteroids hormones in adrenals cells promoting Mycobacterium tuberculosis elimination in human macrophages. Tuberculosis (Edinb) 2024; 148:102548. [PMID: 39068772 DOI: 10.1016/j.tube.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Research suggests that both tuberculosis (TB) and type 2 diabetes mellitus (T2DM) have an immuno-endocrine imbalance characterized by dysregulated proinflammatory molecules and hormone levels (high cortisol/DHEA ratio), impeding an effective immune response against Mycobacterium tuberculosis (Mtb) driven by cytokines, antimicrobial peptides (AMPs), and androgens like DHEA. Insulin, sulfonylurea derivatives, and metformin are commonly used glucose-lowering drugs in patients suffering from TB and T2DM. For this comorbidity, metformin is an attractive target to restore the immunoendocrine mechanisms dysregulated against Mtb. This study aimed to assess whether metformin influences cortisol and DHEA synthesis in adrenal cells and if these hormones influence the expression of proinflammatory cytokines and AMPs in Mtb-infected macrophages. Our results suggest that metformin may enhance DHEA synthesis while maintaining cortisol homeostasis. In addition, supernatants from metformin-treated adrenal cells decreased mycobacterial loads in macrophages, which related to rising proinflammatory cytokines and AMP expression (HBD-2 and 3). Intriguingly, we find that HBD-3 and LL-37 can modulate steroid synthesis in adrenal cells with diminished levels of cortisol and DHEA, highlighting the importance of crosstalk communication between adrenal hormones and these effectors of innate immunity. We suggest that metformin's effects can promote innate immunity against Mtb straight or through modulation of corticosteroid hormones.
Collapse
Affiliation(s)
- Oscar E Gonzalez-Muñiz
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P, Mexico
| | - Adrián Rodriguez-Carlos
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico
| | - Alan Santos-Mena
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P, Mexico
| | - Yolanda M Jacobo-Delgado
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico
| | - Irma Gonzalez-Curiel
- Sciences and Chemical Technology, Chemistry Sciences School, Autonomous University of Zacatecas, Zacatecas, 98085, Mexico
| | - Cesar Rivas-Santiago
- CONAHCYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas, 98085, Mexico
| | | | - Bruno Rivas-Santiago
- Biomedical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|
4
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 PMCID: PMC11535468 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H. Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
5
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2024:10.1007/s11010-024-05099-6. [PMID: 39198360 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
6
|
Schwartz L, Simoni A, Yan P, Salamon K, Turkoglu A, Vasquez Martinez G, Zepeda-Orozco D, Eichler T, Wang X, Spencer JD. Insulin receptor orchestrates kidney antibacterial defenses. Proc Natl Acad Sci U S A 2024; 121:e2400666121. [PMID: 38976738 PMCID: PMC11260129 DOI: 10.1073/pnas.2400666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Urinary tract infection (UTI) commonly afflicts people with diabetes. This augmented infection risk is partly due to deregulated insulin receptor (IR) signaling in the kidney collecting duct. The collecting duct is composed of intercalated cells (ICs) and principal cells (PCs). Evidence suggests that ICs contribute to UTI defenses. Here, we interrogate how IR deletion in ICs impacts antibacterial defenses against uropathogenic Escherichia coli. We also explore how IR deletion affects immune responses in neighboring PCs with intact IR expression. To accomplish this objective, we profile the transcriptomes of IC and PC populations enriched from kidneys of wild-type and IC-specific IR knock-out mice that have increased UTI susceptibility. Transcriptomic analysis demonstrates that IR deletion suppresses IC-integrated stress responses and innate immune defenses. To define how IR shapes these immune defenses, we employ murine and human kidney cultures. When challenged with bacteria, murine ICs and human kidney cells with deregulated IR signaling cannot engage central components of the integrated stress response-including activating transcriptional factor 4 (ATF4). Silencing ATF4 impairs NFkB activation and promotes infection. In turn, NFkB silencing augments infection and suppresses antimicrobial peptide expression. In diabetic mice and people with diabetes, collecting duct cells show reduced IR expression, impaired integrated stress response engagement, and compromised immunity. Collectively, these translational data illustrate how IR orchestrates collecting duct antibacterial responses and the communication between ICs and PCs.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
- Division of Nephrology and Hypertension, Department of Pediatrics, Nationwide Children’s, Columbus, OH43205
| | - Aaron Simoni
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
| | - Pearlly Yan
- Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH43210
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH43210
| | - Kristin Salamon
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
| | - Altan Turkoglu
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH43210
| | - Gabriela Vasquez Martinez
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
| | - Diana Zepeda-Orozco
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
- Division of Nephrology and Hypertension, Department of Pediatrics, Nationwide Children’s, Columbus, OH43205
| | - Tad Eichler
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
| | - Xin Wang
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
| | - John David Spencer
- The Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH43205
- Division of Nephrology and Hypertension, Department of Pediatrics, Nationwide Children’s, Columbus, OH43205
| |
Collapse
|
7
|
Schwartz L, Salamon K, Simoni A, Eichler T, Jackson AR, Murtha M, Becknell B, Kauffman A, Linn-Peirano S, Holdsworth N, Tyagi V, Tang H, Rust S, Cortado H, Zabbarova I, Kanai A, Spencer JD. Insulin receptor signaling engages bladder urothelial defenses that limit urinary tract infection. Cell Rep 2024; 43:114007. [PMID: 38517889 PMCID: PMC11094371 DOI: 10.1016/j.celrep.2024.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
Urinary tract infections (UTIs) commonly afflict people with diabetes. To better understand the mechanisms that predispose diabetics to UTIs, we employ diabetic mouse models and altered insulin signaling to show that insulin receptor (IR) shapes UTI defenses. Our findings are validated in human biosamples. We report that diabetic mice have suppressed IR expression and are more susceptible to UTIs caused by uropathogenic Escherichia coli (UPEC). Systemic IR inhibition increases UPEC susceptibility, while IR activation reduces UTIs. Localized IR deletion in bladder urothelium promotes UTI by increasing barrier permeability and suppressing antimicrobial peptides. Mechanistically, IR deletion reduces nuclear factor κB (NF-κB)-dependent programming that co-regulates urothelial tight junction integrity and antimicrobial peptides. Exfoliated urothelial cells or urine samples from diabetic youths show suppressed expression of IR, barrier genes, and antimicrobial peptides. These observations demonstrate that urothelial insulin signaling has a role in UTI prevention and link IR to urothelial barrier maintenance and antimicrobial peptide expression.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Kristin Salamon
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Aaron Simoni
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Tad Eichler
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Ashley R Jackson
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Matthew Murtha
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Andrew Kauffman
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Tulane University, New Orleans, LA 70118, USA
| | - Sarah Linn-Peirano
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Natalie Holdsworth
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Vidhi Tyagi
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Hancong Tang
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Steve Rust
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Hanna Cortado
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Irina Zabbarova
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony Kanai
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA.
| |
Collapse
|
8
|
Braga Tibaes JR, Barreto Silva MI, Wollin B, Vine D, Tsai S, Richard C. Sex differences in systemic inflammation and immune function in diet-induced obesity rodent models: A systematic review. Obes Rev 2024; 25:e13665. [PMID: 38072656 DOI: 10.1111/obr.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 02/28/2024]
Abstract
Understanding sex differences in immunological responses in the context of obesity is important to improve health outcomes. This systematic review aimed to investigate sex differences in systemic inflammation, immune cell phenotype, and function in diet-induced obesity (DIO) animal models. A systematic search in Medline, Embase, and CINAHL from inception to April 2023 was conducted, using a combination of the following concepts: sex, obesity, cytokines, and immune cell phenotypes/function. Forty-one publications reporting on systemic inflammation (61%), cell phenotype (44%), and/or function (7%) were included. Females had lower systemic inflammation compared with males in response to DIO intervention and a higher proportion of macrophage (M)2-like cells compared with males that had a higher proportion of M1-like in adipose tissue. Although there were no clear sex differences in immune function, high-fat DIO intervention remains an important factor in the development of immune dysfunction in both males and females, including disturbances in cytokine production, proliferation, and migration of immune cells. Yet, the mechanistic links between diet and obesity on such immune dysfunction remain unclear. Future studies should investigate the role of diet and obesity in the functionality of immune cells and employ adequate methods for a high-quality investigation of sex differences in this context.
Collapse
Affiliation(s)
| | - Maria Ines Barreto Silva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Applied Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Pellegrino M, Secli V, D’Amico S, Petrilli LL, Caforio M, Folgiero V, Tumino N, Vacca P, Vinci M, Fruci D, de Billy E. Manipulating the tumor immune microenvironment to improve cancer immunotherapy: IGF1R, a promising target. Front Immunol 2024; 15:1356321. [PMID: 38420122 PMCID: PMC10899349 DOI: 10.3389/fimmu.2024.1356321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valerio Secli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Silvia D’Amico
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Matteo Caforio
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valentina Folgiero
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Doriana Fruci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
10
|
Aravindhan V, Yuvaraj S. Immune-endocrine network in diabetes-tuberculosis nexus: does latent tuberculosis infection confer protection against meta-inflammation and insulin resistance? Front Endocrinol (Lausanne) 2024; 15:1303338. [PMID: 38327565 PMCID: PMC10848915 DOI: 10.3389/fendo.2024.1303338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Tuberculosis patients with diabetes, have higher sputum bacillary load, delayed sputum conversion, higher rates of drug resistance, higher lung cavitary involvement and extra-pulmonary TB infection, which is called as "Diabetes-Tuberculosis Nexus". However, recently we have shown a reciprocal relationship between latent tuberculosis infection and insulin resistance, which has not been reported before. In this review, we would first discuss about the immune-endocrine network, which operates during pre-diabetes and incipient diabetes and how it confers protection against LTBI. The ability of IR to augment anti-TB immunity and the immunomodulatory effect of LTBI to quench IR were discussed, under IR-LTB antagonism. The ability of diabetes to impair anti-TB immunity and ability of active TB to worsen glycemic control, were discussed under "Diabetes-Tuberculosis Synergy". The concept of "Fighter Genes" and how they confer protection against TB but susceptibility to IR was elaborated. Finally, we conclude with an evolutionary perspective about how IR and LTBI co-evolved in endemic zones, and have explained the molecular basis of "IR-LTB" Antagonism" and "DM-TB Synergy", from an evolutionary perspective.
Collapse
Affiliation(s)
- Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Chennai, India
| | | |
Collapse
|
11
|
Gindri dos Santos B, Goedeke L. Macrophage immunometabolism in diabetes-associated atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00032. [PMID: 37849988 PMCID: PMC10578522 DOI: 10.1097/in9.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Macrophages play fundamental roles in atherosclerotic plaque formation, growth, and regression. These cells are extremely plastic and perform different immune functions depending on the stimuli they receive. Initial in vitro studies have identified specific metabolic pathways that are crucial for the proper function of pro-inflammatory and pro-resolving macrophages. However, the plaque microenvironment, especially in the context of insulin resistance and type 2 diabetes, constantly challenges macrophages with several simultaneous inflammatory and metabolic stimuli, which may explain why atherosclerosis is accelerated in diabetic patients. In this mini review, we discuss how macrophage mitochondrial function and metabolism of carbohydrates, lipids, and amino acids may be affected by this complex plaque microenvironment and how risk factors associated with type 2 diabetes alter the metabolic rewiring of macrophages and disease progression. We also briefly discuss current challenges in assessing macrophage metabolism and identify future tools and possible strategies to alter macrophage metabolism to improve treatment options for diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bernardo Gindri dos Santos
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Department of Medicine (Cardiology), The Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine (Endocrinology), The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Bae HR, Shin SK, Han Y, Yoo JH, Kim S, Young HA, Kwon EY. D-Allulose Ameliorates Dysregulated Macrophage Function and Mitochondrial NADH Homeostasis, Mitigating Obesity-Induced Insulin Resistance. Nutrients 2023; 15:4218. [PMID: 37836502 PMCID: PMC10574141 DOI: 10.3390/nu15194218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
D-allulose, a rare sugar, has been proposed to have potential benefits in addressing metabolic disorders such as obesity and type 2 diabetes (T2D). However, the precise mechanisms underlying these effects remain poorly understood. We aimed to elucidate the mechanisms by which D-allulose influences obesity-induced insulin resistance. We conducted gene set enrichment analysis on the liver and white adipose tissue of mice exposed to a high-fat diet (HFD) along with the white adipose tissue of individuals with obesity. Our study revealed that D-allulose effectively suppressed IFN-γ, restored chemokine signaling, and enhanced macrophage function in the livers of HFD-fed mice. This implies that D-allulose curtails liver inflammation, alleviating insulin resistance and subsequently impacting adipose tissue. Furthermore, D-allulose supplementation improved mitochondrial NADH homeostasis and translation in both the liver and white adipose tissue of HFD-fed mice. Notably, we observed decreased NADH homeostasis and mitochondrial translation in the omental tissue of insulin-resistant obese subjects compared to their insulin-sensitive counterparts. Taken together, these results suggest that supplementation with allulose improves obesity-induced insulin resistance by mitigating the disruptions in macrophage and mitochondrial function. Furthermore, our data reinforce the crucial role that mitochondrial energy expenditure plays in the development of insulin resistance triggered by obesity.
Collapse
Affiliation(s)
- Heekyong R. Bae
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Hyeon Yoo
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suntae Kim
- Omixplus, LLC., Gaithersburg, MD 20850, USA
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Food and Nutritional Genomics, Kyungpook National University, Daegu 41566, Republic of Korea
- Center for Beautiful Aging, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep 2023; 5:100811. [PMID: 37575883 PMCID: PMC10413159 DOI: 10.1016/j.jhepr.2023.100811] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.
Collapse
Affiliation(s)
- Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Michela Lisjak
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Eduardo H. Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Camilo J. Llamoza-Torres
- Department of Hepatology, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| |
Collapse
|
14
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes V, Escolà-Gil JC. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol 2023; 93:36-51. [PMID: 37156344 DOI: 10.1016/j.semcancer.2023.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.
Collapse
Affiliation(s)
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mireia Tondo
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Vicenta Llorente-Cortes
- Wihuri Research Institute, Helsinki, Finland; Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
16
|
Wolf AJ. Peptidoglycan-induced modulation of metabolic and inflammatory responses. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00024. [PMID: 37128291 PMCID: PMC10144284 DOI: 10.1097/in9.0000000000000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Bacterial cell wall peptidoglycan is composed of innate immune ligands and, due to its important structural role, also regulates access to many other innate immune ligands contained within the bacteria. There is a growing body of literature demonstrating how innate immune recognition impacts the metabolic functions of immune cells and how metabolic changes are not only important to inflammatory responses but are often essential. Peptidoglycan is primarily sensed in the context of the whole bacteria during lysosomal degradation; consequently, the innate immune receptors for peptidoglycan are primarily intracellular cytosolic innate immune sensors. However, during bacterial growth, peptidoglycan fragments are shed and can be found in the bloodstream of humans and mice, not only during infection but also derived from the abundant bacterial component of the gut microbiota. These peptidoglycan fragments influence cells throughout the body and are important for regulating inflammation and whole-body metabolic function. Therefore, it is important to understand how peptidoglycan-induced signals in innate immune cells and cells throughout the body interact to regulate how the body responds to both pathogenic and nonpathogenic bacteria. This mini-review will highlight key research regarding how cellular metabolism shifts in response to peptidoglycan and how systemic peptidoglycan sensing impacts whole-body metabolic function.
Collapse
Affiliation(s)
- Andrea J. Wolf
- The Karsh Division of Gastroenterology and Hepatology, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
17
|
Makhijani P, Basso PJ, Chan YT, Chen N, Baechle J, Khan S, Furman D, Tsai S, Winer DA. Regulation of the immune system by the insulin receptor in health and disease. Front Endocrinol (Lausanne) 2023; 14:1128622. [PMID: 36992811 PMCID: PMC10040865 DOI: 10.3389/fendo.2023.1128622] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
The signaling pathways downstream of the insulin receptor (InsR) are some of the most evolutionarily conserved pathways that regulate organism longevity and metabolism. InsR signaling is well characterized in metabolic tissues, such as liver, muscle, and fat, actively orchestrating cellular processes, including growth, survival, and nutrient metabolism. However, cells of the immune system also express the InsR and downstream signaling machinery, and there is increasing appreciation for the involvement of InsR signaling in shaping the immune response. Here, we summarize current understanding of InsR signaling pathways in different immune cell subsets and their impact on cellular metabolism, differentiation, and effector versus regulatory function. We also discuss mechanistic links between altered InsR signaling and immune dysfunction in various disease settings and conditions, with a focus on age related conditions, such as type 2 diabetes, cancer and infection vulnerability.
Collapse
Affiliation(s)
- Priya Makhijani
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
| | - Paulo José Basso
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Tao Chan
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nan Chen
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jordan Baechle
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
| | - Saad Khan
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - David Furman
- Buck Institute for Research in Aging, Novato, CA, United States
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Stanford 1, 000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, United States
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pilar, Argentina
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel A. Winer
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Buck Institute for Research in Aging, Novato, CA, United States
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance? Biomedicines 2023; 11:biomedicines11010229. [PMID: 36672737 PMCID: PMC9855361 DOI: 10.3390/biomedicines11010229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action.
Collapse
|
19
|
Li B, Sun S, Li JJ, Yuan JP, Sun SR, Wu Q. Adipose tissue macrophages: implications for obesity-associated cancer. Mil Med Res 2023; 10:1. [PMID: 36593475 PMCID: PMC9809128 DOI: 10.1186/s40779-022-00437-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Obesity is one of the most serious global health problems, with an incidence that increases yearly and coincides with the development of cancer. Adipose tissue macrophages (ATMs) are particularly important in this context and contribute to linking obesity-related inflammation and tumor progression. However, the functions of ATMs on the progression of obesity-associated cancer remain unclear. In this review, we describe the origins, phenotypes, and functions of ATMs. Subsequently, we summarize the potential mechanisms on the reprogramming of ATMs in the obesity-associated microenvironment, including the direct exchange of dysfunctional metabolites, inordinate cytokines and other signaling mediators, transfer of extracellular vesicle cargo, and variations in the gut microbiota and its metabolites. A better understanding of the properties and functions of ATMs under conditions of obesity will lead to the development of new therapeutic interventions for obesity-related cancer.
Collapse
Affiliation(s)
- Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Lucchinetti E, Lou PH, Holtzhauer G, Noureddine N, Wawrzyniak P, Hartling I, Lee M, Strachan E, Clemente-Casares X, Tsai S, Rogler G, Krämer SD, Hersberger M, Zaugg M. Novel lipid emulsion for total parenteral nutrition based on 18-carbon n-3 fatty acids elicits a superior immunometabolic phenotype in a murine model compared with standard lipid emulsions. Am J Clin Nutr 2022; 116:1805-1819. [PMID: 36166844 DOI: 10.1093/ajcn/nqac272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/22/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND While lipid emulsions in modern formulations for total parenteral nutrition (TPN) provide essential fatty acids and dense calories, they also promote inflammation and immunometabolic disruptions. OBJECTIVES We aimed to develop a novel lipid emulsion for TPN use with superior immunometabolic actions compared with available standard lipid emulsions. METHODS A novel lipid emulsion [Vegaven (VV)] containing 30% of 18-carbon n-3 fatty acids (α-linolenic acid and stearidonic acid) was developed for TPN (VV-TPN) and compared with TPN containing soybean oil-based lipid emulsion (IL-TPN) and fish-oil-based lipid emulsion (OV-TPN). In vivo studies were performed in instrumented male C57BL/6 mice subjected to 7-d TPN prior to analysis of cytokines, indices of whole-body and hepatic glucose metabolism, immune cells, lipid mediators, and mucosal bowel microbiome. RESULTS IL-6 to IL-10 ratios were significantly lower in liver and skeletal muscle of VV-TPN mice when compared with IL-TPN or OV-TPN mice. VV-TPN and OV-TPN each increased hepatic insulin receptor abundance and resulted in similar HOMA-IR values, whereas only VV-TPN increased hepatic insulin receptor substrate 2 and maintained normal hepatic glycogen content, effects that were IL-10-dependent and mediated by glucokinase activation. The percentages of IFN-γ- and IL-17-expressing CD4+ T cells were increased in livers of VV-TPN mice, and liver macrophages exhibited primed phenotypes when compared with IL-TPN. This immunomodulation was associated with successful elimination of the microinvasive bacterium Akkermansia muciniphila from the bowel mucosa by VV-TPN as opposed to standard lipid emulsions. Assay of hepatic lipid mediators revealed a distinct profile with VV-TPN, including increases in 9(S)-hydroxy-octadecatrienoic acid. When co-administered with IL-TPN, hydroxy-octadecatrienoic acids mimicked the VV-TPN immunometabolic phenotype. CONCLUSIONS We here report the unique anti-inflammatory, insulin-sensitizing, and immunity-enhancing properties of a newly developed lipid emulsion designed for TPN use based on 18-carbon n-3 fatty acids.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | - Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Megan Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Erin Strachan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
21
|
Shan X, Hu P, Ni L, Shen L, Zhang Y, Ji Z, Cui Y, Guo M, Wang H, Ran L, Yang K, Wang T, Wang L, Chen B, Yao Z, Wu Y, Yu Q. Serine metabolism orchestrates macrophage polarization by regulating the IGF1-p38 axis. Cell Mol Immunol 2022; 19:1263-1278. [PMID: 36180780 PMCID: PMC9622887 DOI: 10.1038/s41423-022-00925-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/05/2022] [Indexed: 01/27/2023] Open
Abstract
Serine metabolism is reportedly involved in immune cell functions, but whether and how serine metabolism regulates macrophage polarization remain largely unknown. Here, we show that suppressing serine metabolism, either by inhibiting the activity of the key enzyme phosphoglycerate dehydrogenase in the serine biosynthesis pathway or by exogenous serine and glycine restriction, robustly enhances the polarization of interferon-γ-activated macrophages (M(IFN-γ)) but suppresses that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, serine metabolism deficiency increases the expression of IGF1 by reducing the promoter abundance of S-adenosyl methionine-dependent histone H3 lysine 27 trimethylation. IGF1 then activates the p38-dependent JAK-STAT1 axis to promote M(IFN-γ) polarization and suppress STAT6-mediated M(IL-4) activation. This study reveals a new mechanism by which serine metabolism orchestrates macrophage polarization and suggests the manipulation of serine metabolism as a therapeutic strategy for macrophage-mediated immune diseases.
Collapse
Affiliation(s)
- Xiao Shan
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Penghui Hu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Lina Ni
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Long Shen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Yanan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Zemin Ji
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Yan Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Haoan Wang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
- Shandong Provincial Hospital, School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Kun Yang
- Shandong Provincial Hospital, School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Wang
- Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Bin Chen
- Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China.
- Shandong Provincial Hospital, School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Qiujing Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
22
|
Yao X, Wang X. Bioinformatics searching of diagnostic markers and immune infiltration in polycystic ovary syndrome. Front Genet 2022; 13:937309. [PMID: 36118901 PMCID: PMC9471256 DOI: 10.3389/fgene.2022.937309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in reproductive-aged women, and it affects numerous women worldwide. This study aimed to identify potential diagnostic markers and explore the infiltration of immune cells in PCOS, contributing to the development of potential therapeutic drugs for this disease. We identified five key genes: CBLN1 (AUC = 0.924), DNAH5 (AUC = 0.867), HMOX1 (AUC = 0.971), SLC26A8 (AUC = 0,933), and LOC100507250 (AUC = 0.848) as diagnostic markers of PCOS. Compared with paired normal group, naïve B cells, gamma delta T cells, resting CD4 memory T cells, and activated CD4 memory T cells were significantly decreased in PCOS while M2 macrophages were significantly increased. Significant correlations were presented between the five key genes and the components of immune infiltrate. The results of CMap suggest that four drugs, ISOX, apicidin, scriptaid, and NSC-94258, have the potential to reverse PCOS. The present study helps provide novel insights for the prevention and treatment of PCOS, and immune cell infiltration plays a role that cannot be ignored in the occurrence and progression of the disease.
Collapse
|
23
|
Monteiro LDB, Prodonoff JS, Favero de Aguiar C, Correa-da-Silva F, Castoldi A, Bakker NVT, Davanzo GG, Castelucci B, Pereira JADS, Curtis J, Büscher J, Reis LMD, Castro G, Ribeiro G, Virgílio-da-Silva JV, Adamoski D, Dias SMG, Consonni SR, Donato J, Pearce EJ, Câmara NOS, Moraes-Vieira PM. Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity. Diabetes 2022; 71:1546-1561. [PMID: 35377454 DOI: 10.2337/db21-0842] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022]
Abstract
Obesity is a major concern for global health care systems. Systemic low-grade inflammation in obesity is a major risk factor for insulin resistance. Leptin is an adipokine secreted by the adipose tissue that functions by controlling food intake, leading to satiety. Leptin levels are increased in obesity. Here, we show that leptin enhances the effects of LPS in macrophages, intensifying the production of cytokines, glycolytic rates, and morphological and functional changes in the mitochondria through an mTORC2-dependent, mTORC1-independent mechanism. Leptin also boosts the effects of IL-4 in macrophages, leading to increased oxygen consumption, expression of macrophage markers associated with a tissue repair phenotype, and wound healing. In vivo, hyperleptinemia caused by diet-induced obesity increases the inflammatory response by macrophages. Deletion of leptin receptor and subsequently of leptin signaling in myeloid cells (ObR-/-) is sufficient to improve insulin resistance in obese mice and decrease systemic inflammation. Our results indicate that leptin acts as a systemic nutritional checkpoint to regulate macrophage fitness and contributes to obesity-induced inflammation and insulin resistance. Thus, specific interventions aimed at downstream modulators of leptin signaling may represent new therapeutic targets to treat obesity-induced systemic inflammation.
Collapse
Affiliation(s)
- Lauar de Brito Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Juliana Silveira Prodonoff
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Cristhiane Favero de Aguiar
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Felipe Correa-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Angela Castoldi
- Laboratory Keizo Asami, Immunopathology Laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Bianca Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Jonathan Curtis
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jörg Büscher
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Larissa Menezes Dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Guilherme Ribeiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - João Victor Virgílio-da-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
- Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Zieleniewska NA, Kazberuk M, Chlabicz M, Eljaszewicz A, Kamiński K. Trained Immunity as a Trigger for Atherosclerotic Cardiovascular Disease-A Literature Review. J Clin Med 2022; 11:jcm11123369. [PMID: 35743439 PMCID: PMC9224533 DOI: 10.3390/jcm11123369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis remains the leading cause of cardiovascular diseases and represents a primary public health challenge. This chronic state may lead to a number of life-threatening conditions, such as myocardial infarction and stroke. Lipid metabolism alterations and inflammation remain at the forefront of the pathogenesis of atherosclerotic cardiovascular disease, but the overall mechanism is not yet fully understood. Recently, significant effects of trained immunity on atherosclerotic plaque formation and development have been reported. An increased reaction to restimulation with the same stimulator is a hallmark of the trained innate immune response. The impact of trained immunity is a prominent factor in both acute and chronic coronary syndrome, which we outline in this review.
Collapse
Affiliation(s)
- Natalia Anna Zieleniewska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Małgorzata Kazberuk
- Scientific Group of Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Małgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Invasive Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, 15-259 Bialystok, Poland;
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, 15-259 Bialystok, Poland; (N.A.Z.); (M.C.)
- Department of Cardiology, Teaching University Hospital of Białystok, 15-259 Bialystok, Poland
- Correspondence:
| |
Collapse
|
25
|
Obesity and Leptin Resistance in the Regulation of the Type I Interferon Early Response and the Increased Risk for Severe COVID-19. Nutrients 2022; 14:nu14071388. [PMID: 35406000 PMCID: PMC9002648 DOI: 10.3390/nu14071388] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity, and obesity-associated conditions such as hypertension, chronic kidney disease, type 2 diabetes, and cardiovascular disease, are important risk factors for severe Coronavirus disease-2019 (COVID-19). The common denominator is metaflammation, a portmanteau of metabolism and inflammation, which is characterized by chronically elevated levels of leptin and pro-inflammatory cytokines. These induce the “Suppressor Of Cytokine Signaling 1 and 3” (SOCS1/3), which deactivates the leptin receptor and also other SOCS1/3 sensitive cytokine receptors in immune cells, impairing the type I and III interferon early responses. By also upregulating SOCS1/3, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 adds a significant boost to this. The ensuing consequence is a delayed but over-reactive immune response, characterized by high-grade inflammation (e.g., cytokine storm), endothelial damage, and hypercoagulation, thus leading to severe COVID-19. Superimposing an acute disturbance, such as a SARS-CoV-2 infection, on metaflammation severely tests resilience. In the long run, metaflammation causes the “typical western” conditions associated with metabolic syndrome. Severe COVID-19 and other serious infectious diseases can be added to the list of its short-term consequences. Therefore, preventive measures should include not only vaccination and the well-established actions intended to avoid infection, but also dietary and lifestyle interventions aimed at improving body composition and preventing or reversing metaflammation.
Collapse
|
26
|
Cruz-Pineda WD, Garibay-Cerdenares OL, Rodríguez-Ruíz HA, Matia-García I, Marino-Ortega LA, Espinoza-Rojo M, Reyes-Castillo Z, Castro-Alarcón N, Castañeda-Saucedo E, Illades-Aguiar B, Parra-Rojas I. Changes in the Expression of Insulin Pathway, Neutrophil Elastase and Alpha 1 Antitrypsin Genes from Leukocytes of Young Individuals with Insulin Resistance. Diabetes Metab Syndr Obes 2022; 15:1865-1876. [PMID: 35757193 PMCID: PMC9215908 DOI: 10.2147/dmso.s362881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic hyperinsulinemia is a hallmark of insulin resistance that affects a diversity of cells, including leukocytes modifying the expression of some genes involved in insulin signaling. PURPOSE The aim of this study was to evaluate how hyperinsulinemia affects the expression of genes involved in the proximal insulin signaling pathway in leukocytes from 45 young individuals grouped: normal weight with not insulin resistance (NIR), with insulin resistance (IR) and with obesity (OB-IR). METHODS qPCR was performed to analyze the expression of insulin receptor (INSR), insulin receptor substrate 1 and 2 (IRS-1 and IRS-2), neutrophil elastase (NE), alpha 1 antitrypsin (A1AT), glucose transporters 1, 3 and 4 (GLUT-1, GLUT-3 and GLUT-4) by the 2-ΔCt method, and the correlation between the genes was determined by Spearman's test. RESULTS The mRNA expression analysis of all genes between NIR and IR individuals revealed no differences. However, when comparing NIR and IR individuals with OB-IR, an increase in NE and A1AT expression and a clear trend towards a decrease in IRS-2 expression was observed, whereas the comparison of IR and OB-IR showed a decrease in GLUT-3 expression. Overall, the correlation analysis showed that in the IR group there was a positive correlation only between NE with IRS-1 (r = 0.72, p = 0.003), while in the OB-IR group, there was a positive correlation between the NE and A1AT with INSR (r = 0.62, p = 0.01 and r = 0.74, p = 0.002, respectively) and with IRS-2 (r = 0.74, p = 0.002 and r = 0.76, p = 0.001, respectively). CONCLUSION These results suggest that hyperinsulinemia and obesity are associated with changes in the expression of genes in leukocytes involved in the insulin pathway that are related to NE and A1AT.
Collapse
Affiliation(s)
- Walter David Cruz-Pineda
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Olga Lilia Garibay-Cerdenares
- CONACyT-Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Olga Lilia Garibay-Cerdenares, CONACyT-Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo, Guerrero, CP 39090, México, Tel/Fax +52 7474710901, Email
| | - Hugo Alberto Rodríguez-Ruíz
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Inés Matia-García
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Linda Anahí Marino-Ortega
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Investigación en Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Correspondence: Isela Parra-Rojas, Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo, Guerrero, CP 39090, México, Tel/Fax +52 7474719310, Email
| |
Collapse
|
27
|
AKT Isoforms in Macrophage Activation, Polarization, and Survival. Curr Top Microbiol Immunol 2022; 436:165-196. [PMID: 36243844 DOI: 10.1007/978-3-031-06566-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Cho DH, Lee GY, An JH, Han SN. The Effects of 1,25(OH)2D3 treatment on Immune Responses and Intracellular Metabolic Pathways of Bone Marrow-Derived Dendritic Cells from Lean and Obese Mice. IUBMB Life 2021; 74:378-390. [PMID: 34962347 DOI: 10.1002/iub.2592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Vitamin D affects differentiation, maturation, and activation of dendritic cells (DCs). Obesity-related immune dysfunction is associated with metabolic changes in immune cells. Objectives of the study are to investigate the effects of vitamin D and obesity on immune responses and markers related to immunometabolism of bone marrow-derived dendritic cells (BMDCs). Bone marrow cells (BMCs) were isolated from lean and obese mice, and BMDCs were generated by culturing BMCs with rmGM-CSF. BMDCs were treated with 1 or 10 nM of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and maturation was induced by LPS (50 ng/mL) stimulation for 24 h. Cell phenotypes, cytokine productions, and expression of proteins and genes involved in Akt/mTOR signaling pathway and glycolytic pathway were determined. 1,25(OH)2D3 treatment inhibited differentiation of BMDCs (CD11c+ %), expression of phenotypes related with DC function (MHC class II and CD86) and production of IL-12p70 in both lean and obese mice. The expression of PD-L1 and the ratio of IL-10/IL-12p70 were increased by 1,25(OH)2D3. With 1,25(OH)2D3 treatment, Akt/mTOR signaling pathway was suppressed, and expression of genes related to glycolysis (Glut1, Pfkfb4, Hif1A) was increased. The upregulation of glycolysis-related genes observed with 1,25(OH)2D3 treatment seems to be associated with the induction of tolerogenic features of BMDCs from lean and obese mice, and Hif1A seems to have a potential role in conveying the effect of 1,25(OH)2D3 on glycolysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Da Hye Cho
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Jeong Hee An
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Calco GN, Proskocil BJ, Jacoby DB, Fryer AD, Nie Z. Metformin prevents airway hyperreactivity in rats with dietary obesity. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1105-L1118. [PMID: 34668415 PMCID: PMC8715020 DOI: 10.1152/ajplung.00202.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Increased insulin is associated with obesity-related airway hyperreactivity and asthma. We tested whether the use of metformin, an antidiabetic drug used to reduce insulin resistance, can reduce circulating insulin, thereby preventing airway hyperreactivity in rats with dietary obesity. Male and female rats were fed a high- or low-fat diet for 5 wk. Some male rats were simultaneously treated with metformin (100 mg/kg orally). In separate experiments, after 5 wk of a high-fat diet, some rats were switched to a low-fat diet, whereas others continued a high-fat diet for an additional 5 wk. Bronchoconstriction and bradycardia in response to bilateral electrical vagus nerve stimulation or to inhaled methacholine were measured in anesthetized and vagotomized rats. Body weight, body fat, caloric intake, fasting glucose, and insulin were measured. Vagally induced bronchoconstriction was potentiated only in male rats on a high-fat diet. Males gained more body weight, body fat, and had increased levels of fasting insulin compared with females. Metformin prevented development of vagally induced airway hyperreactivity in male rats on high-fat diet, in addition to inhibiting weight gain, fat gain, and increased insulin. In contrast, switching rats to a low-fat diet for 5 wk reduced body weight and body fat, but it did not reverse fasting glucose, fasting insulin, or potentiation of vagally induced airway hyperreactivity. These data suggest that medications that target insulin may be effective treatment for obesity-related asthma.
Collapse
Affiliation(s)
- Gina N Calco
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
30
|
Russo S, Kwiatkowski M, Govorukhina N, Bischoff R, Melgert BN. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. Front Immunol 2021; 12:746151. [PMID: 34804028 PMCID: PMC8602812 DOI: 10.3389/fimmu.2021.746151] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus type II and obesity are two important causes of death in modern society. They are characterized by low-grade chronic inflammation and metabolic dysfunction (meta-inflammation), which is observed in all tissues involved in energy homeostasis. A substantial body of evidence has established an important role for macrophages in these tissues during the development of diabetes mellitus type II and obesity. Macrophages can activate into specialized subsets by cues from their microenvironment to handle a variety of tasks. Many different subsets have been described and in diabetes/obesity literature two main classifications are widely used that are also defined by differential metabolic reprogramming taking place to fuel their main functions. Classically activated, pro-inflammatory macrophages (often referred to as M1) favor glycolysis, produce lactate instead of metabolizing pyruvate to acetyl-CoA, and have a tricarboxylic acid cycle that is interrupted at two points. Alternatively activated macrophages (often referred to as M2) mainly use beta-oxidation of fatty acids and oxidative phosphorylation to create energy-rich molecules such as ATP and are involved in tissue repair and downregulation of inflammation. Since diabetes type II and obesity are characterized by metabolic alterations at the organism level, these alterations may also induce changes in macrophage metabolism resulting in unique macrophage activation patterns in diabetes and obesity. This review describes the interactions between metabolic reprogramming of macrophages and conditions of metabolic dysfunction like diabetes and obesity. We also focus on different possibilities of measuring a range of metabolites intra-and extracellularly in a precise and comprehensive manner to better identify the subsets of polarized macrophages that are unique to diabetes and obesity. Advantages and disadvantages of the currently most widely used metabolite analysis approaches are highlighted. We further describe how their combined use may serve to provide a comprehensive overview of the metabolic changes that take place intracellularly during macrophage activation in conditions like diabetes and obesity.
Collapse
Affiliation(s)
- Sara Russo
- Department of Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Marcel Kwiatkowski
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Groningen, Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2021; 42:2527-2551. [PMID: 34515874 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
32
|
Tourki B, Halade GV. Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Front Cardiovasc Med 2021; 8:695952. [PMID: 34409075 PMCID: PMC8367012 DOI: 10.3389/fcvm.2021.695952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover, based on the clinical signs and symptoms and the rise of the obesity epidemic, the number of patients developing HFpEF is increasing. From recent molecular and cellular studies, it becomes evident that HFpEF is not a single and homogenous disease but a cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity superimposed on aging drives the number of inflammatory pathways that intersect with metabolic dysfunction and suboptimal inflammation. Here, we compiled information on obesity-directed macrophage dysfunction that coincide with metabolic defects. Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of studying pervasive and unresolved inflammation in animal models to understand HFpEF. A broad and system-based approach will help to study major translational aspects of HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages in the clinical setting. Here, we covered experimental models that target HFpEF and emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to the development of spontaneous obesity, impaired macrophage function, and triggered kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging experimental model.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| |
Collapse
|
33
|
Kolliniati O, Ieronymaki E, Vergadi E, Tsatsanis C. Metabolic Regulation of Macrophage Activation. J Innate Immun 2021; 14:51-68. [PMID: 34247159 DOI: 10.1159/000516780] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Macrophages, the central mediators of innate immune responses, being in the first-line of defense, they have to readily respond to pathogenic or tissue damage signals to initiate the inflammatory cascade. Such rapid responses require energy to support orchestrated production of pro-inflammatory mediators and activation of phagocytosis. Being a cell type that is present in diverse environments and conditions, macrophages have to adapt to different nutritional resources. Thus, macrophages have developed plasticity and are capable of utilizing energy at both normoxic and hypoxic conditions and in the presence of varying concentrations of glucose or other nutrients. Such adaptation is reflected on changes in signaling pathways that modulate responses, accounting for the different activation phenotypes observed. Macrophage metabolism has been tightly associated with distinct activation phenotypes within the range of M1-like and M2-like types. In the context of diseases, systemic changes also affect macrophage metabolism, as in diabetes and insulin resistance, which results in altered metabolism and distinct activation phenotypes in the adipose tissue or in the periphery. In the context of solid tumors, tumor-associated macrophages adapt in the hypoxic environment, which results in metabolic changes that are reflected on an activation phenotype that supports tumor growth. Coordination of environmental and pathogenic signals determines macrophage metabolism, which in turn shapes the type and magnitude of the response. Therefore, modulating macrophage metabolism provides a potential therapeutic approach for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ourania Kolliniati
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Eleni Vergadi
- Department of Pediatrics, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| |
Collapse
|
34
|
Insulin-mediated immune dysfunction in the development of preeclampsia. J Mol Med (Berl) 2021; 99:889-897. [PMID: 33768298 DOI: 10.1007/s00109-021-02068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological observations implicate insulin resistance as a predisposing factor in the development of preeclampsia (PE). It is also well established that PE manifests in the context of a dysregulated immune response at the maternal-foetal interface, though all the underlying drivers of such immune dysregulation remains to be accounted for. Although it has long been known that various immune cells express insulin receptors following immune activation, it is only recently that insulin signalling has been shown to play a key role in immune cell differentiation, survival and effector function through its canonical activation of the PI3K/Akt/mTOR pathway. Here we argue that hyperinsulinemia, manifesting either from insulin resistance or from intensive insulin therapy, likely plays a direct role in driving immune cell dysfunction which plays a central role in the development of PE. This line of reasoning also explains the superior results of insulin-sparing interventions compared to intensive insulin therapy as monotherapy.
Collapse
|
35
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
36
|
van Niekerk G, van der Merwe M, Engelbrecht AM. Diabetes and susceptibility to infections: Implication for COVID-19. Immunology 2021; 164:467-475. [PMID: 34115881 PMCID: PMC8446942 DOI: 10.1111/imm.13383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
A number of mechanisms have been proposed to explain the well‐established link between diabetic status and an increased susceptibility to infection. Notably, diabetes has been shown to be one of the strongest factors influencing healthcare outcome in COVID‐19 infections. Though it has long been noted that lymphocytes upregulate insulin receptors following immune activation, until recently, this observation has received little attention. Here, we point out key findings implicating dysregulated insulin signalling in immune cells as a possible contributing factor in the immune pathology associated with diabetes. Mechanistically, insulin, by activating the PI3K/Akt/mTOR pathway, regulates various aspects of both myeloid cells and lymphocytes, such as cell survival, metabolic reprogramming and the polarization and differentiation of immune cells. PI3K signalling is also supressed by immune checkpoint proteins, suggesting that insulin signalling may antagonize peripheral tolerance. Remarkably, it has also recently been shown that, following insulin binding, the insulin receptor translocates to the nucleus where it plays a key role in regulating the transcription of various immune‐related genes, including pathways involved in viral infections. Taken together, these observations suggest that dysregulated insulin signalling may directly contribute to a defective immune response during COVID‐19 infections.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
37
|
Sanchez-Pino MD, Gilmore LA, Ochoa AC, Brown JC. Obesity-Associated Myeloid Immunosuppressive Cells, Key Players in Cancer Risk and Response to Immunotherapy. Obesity (Silver Spring) 2021; 29:944-953. [PMID: 33616242 PMCID: PMC8154641 DOI: 10.1002/oby.23108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
Obesity is a risk factor for developing several cancers. The dysfunctional metabolism and chronic activation of inflammatory pathways in obesity create a milieu that supports tumor initiation, progression, and metastasis. Obesity-associated metabolic, endocrine, and inflammatory mediators, besides interacting with cells leading to a malignant transformation, also modify the intrinsic metabolic and functional characteristics of immune myeloid cells. Here, the evidence supporting the hypothesis that obesity metabolically primes and promotes the expansion of myeloid cells with immunosuppressive and pro-oncogenic properties is discussed. In consequence, the accumulation of these cells, such as myeloid-derived suppressor cells and some subtypes of adipose-tissue macrophages, creates a microenvironment conducive to tumor development. In this review, the role of lipids, insulin, and leptin, which are dysregulated in obesity, is emphasized, as well as dietary nutrients in metabolic reprogramming of these myeloid cells. Moreover, emerging evidence indicating that obesity enhances immunotherapy response and hypothesized mechanisms are summarized. Priorities in deeper exploration involving the mechanisms of cross talk between metabolic disorders and myeloid cells related to cancer risk in patients with obesity are highlighted.
Collapse
Affiliation(s)
- Maria Dulfary Sanchez-Pino
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | | | - Augusto C. Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
| | - Justin C. Brown
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA
- LSU Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
38
|
Affinati AH, Wallia A, Gianchandani RY. Severe hyperglycemia and insulin resistance in patients with SARS-CoV-2 infection: a report of two cases. Clin Diabetes Endocrinol 2021; 7:8. [PMID: 33992101 PMCID: PMC8123093 DOI: 10.1186/s40842-021-00121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Severe insulin resistance is an uncommon finding in patients with type 2 diabetes but is often associated with difficult to managing blood glucose. While severe insulin resistance is most frequently seen in the setting of medication side effects or rare genetic conditions, this report of two cases highlights the presence of severe insulin resistance in the setting of severe COVID-19 and explores how this may contribute to the poor prognosis of patients with diabetes who become infected with SARS-CoV-2. CASE PRESENTATION Here we present the cases of two African-American women with pre-existing type 2 diabetes who developed severe COVID-19 requiring mechanical ventilation and concurrent severe insulin resistance with total daily insulin dose requirements of greater than 5 unit/kg. Both patients received aggressive insulin infusion and subcutaneous insulin therapy to obtain adequate glucose management. As their COVID-19 clinical course improved, their severe insulin resistance improved as well. CONCLUSIONS The association between critical illness and hyperglycemia is well documented in the literature, however severe insulin resistance is not commonly identified and may represent a unique clinical feature of the interaction between SARS-CoV-2 infection and type 2 diabetes.
Collapse
Affiliation(s)
- Alison H Affinati
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Domino's Farms (Lobby G, Suite 1500), 24 Frank Lloyd Wright Drive, MI, 48106, Ann Arbor, USA
| | - Amisha Wallia
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, IL, Chicago, USA
| | - Roma Y Gianchandani
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Domino's Farms (Lobby G, Suite 1500), 24 Frank Lloyd Wright Drive, MI, 48106, Ann Arbor, USA.
| |
Collapse
|
39
|
Tsokanos FF, Muley C, Khani S, Hass D, Fleming T, Wolff G, Bartelt A, Nawroth P, Herzig S. Methylglyoxal Drives a Distinct, Nonclassical Macrophage Activation Status. Thromb Haemost 2021; 121:1464-1475. [PMID: 33966256 DOI: 10.1055/s-0041-1726346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Metabolic complications in diabetic patients are driven by a combination of increased levels of nutrients and the presence of a proinflammatory environment. Methylglyoxal (MG) is a toxic byproduct of catabolism and has been strongly associated with the development of such complications. Macrophages are key mediators of inflammatory processes and their contribution to the development of metabolic complications has been demonstrated. However, a direct link between reactive metabolites and macrophage activation has not been demonstrated yet. Here, we show that acute MG treatment activated components of the p38 MAPK pathway and enhanced glycolysis in primary murine macrophages. MG induced a distinct gene expression profile sharing similarities with classically activated proinflammatory macrophages as well as metabolically activated macrophages usually found in obese patients. Transcriptomic analysis revealed a set of 15 surface markers specifically upregulated in MG-treated macrophages, thereby establishing a new set of targets for diagnostic or therapeutic purposes under high MG conditions, including diabetes. Overall, our study defines a new polarization state of macrophages that may specifically link aberrant macrophage activation to reactive metabolites in diabetes.
Collapse
Affiliation(s)
- Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Carolin Muley
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Sajjad Khani
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Daniela Hass
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Thomas Fleming
- Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Gretchen Wolff
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Alexander Bartelt
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Technische Universität München, Munich, Germany
| | - Peter Nawroth
- Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Chair Molecular Metabolic Control, Medical Faculty, Technical University Munich, Germany
| |
Collapse
|
40
|
Zhang AM, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab J 2021; 45:285-311. [PMID: 33775061 PMCID: PMC8164941 DOI: 10.4093/dmj.2020.0250] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.
Collapse
Affiliation(s)
- Anni M.Y. Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Janel L. Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
42
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
43
|
Cruz-Pineda WD, Parra-Rojas I, Rodríguez-Ruíz HA, Illades-Aguiar B, Matia-García I, Garibay-Cerdenares OL. The regulatory role of insulin in energy metabolism and leukocyte functions. J Leukoc Biol 2021; 111:197-208. [PMID: 33724523 PMCID: PMC9291603 DOI: 10.1002/jlb.2ru1220-847r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin is the hormone responsible for maintaining glucose homeostasis in the body, in addition to participating in lipid metabolism, protein synthesis, and the inhibition of gluconeogenesis. These functions are well characterized in the classic organ target cells that are responsible for general energy regulation: the liver, skeletal muscle, and adipose tissue. However, these actions are not restricted to these tissues because insulin has been shown to affect most cells in the body. This review describes the role of insulin in leukocyte signaling pathways, metabolism and functions, and how insulin resistance could affect this signaling and deteriorate leukocyte metabolism and function, in addition to showing evidence that suggests leukocytes may substantially contribute to the development of systemic insulin resistance.
Collapse
Affiliation(s)
- Walter David Cruz-Pineda
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Hugo Alberto Rodríguez-Ruíz
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.,Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Inés Matia-García
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Olga Lilia Garibay-Cerdenares
- CONACyT-Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.,Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
44
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
45
|
Ratter JM, van Heck JIP, Rooijackers HMM, Jansen HJ, van Poppel PCM, Tack CJ, Stienstra R. Insulin acutely activates metabolism of primary human monocytes and promotes a proinflammatory phenotype. J Leukoc Biol 2021; 110:885-891. [PMID: 33477205 DOI: 10.1002/jlb.3ab0120-019rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022] Open
Abstract
Increased glycolysis is a metabolic trait of activated innate immune cells and supports functional changes including cytokine production. Insulin drives glycolysis in nonimmune cells, yet its metabolic effects on human innate immune cells remain unexplored. Potential effects of insulin on immune cell metabolism may occur acutely after a postprandial increase in plasma insulin levels or as a consequence of chronically elevated insulin levels as observed in obese insulin-resistant individuals and patients with diabetes. Here, we investigated the effects of acute and chronic exposure to insulin on metabolism and function of primary human monocytes. Insulin acutely activated the PI3K/Akt/mTOR pathway in monocytes and increased both oxygen consumption and glycolytic rates. Functionally, acute exposure to insulin increased LPS-induced IL-6 secretion and reactive oxygen species production. To model chronically elevated insulin levels in patients with diabetes, we exposed monocytes from healthy individuals for 24 h to insulin. Although we did not find any changes in expression of metabolic genes that are regulated by insulin in non-immune cells, chronic exposure to insulin increased LPS-induced TNFα production and enhanced MCP-1-directed migration. Supporting this observation, we identified a positive correlation between plasma insulin levels and macrophage numbers in adipose tissue of overweight individuals. Altogether, insulin acutely activates metabolism of human monocytes and induces a shift toward a more proinflammatory phenotype, which may contribute to chronic inflammation in patients with diabetes.
Collapse
Affiliation(s)
- Jacqueline M Ratter
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Düsseldorf, Germany
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hanne M M Rooijackers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henry J Jansen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pleun C M van Poppel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
46
|
LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation. Sci Rep 2021; 11:232. [PMID: 33420270 PMCID: PMC7794310 DOI: 10.1038/s41598-020-80291-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays central roles in the immune response. Inflammatory response normally requires higher energy and therefore is associated with glucose metabolism. Our recent study demonstrates that lncRNA HOTAIR plays key roles in NF-kB activation, cytokine expression, and inflammation. Here, we investigated if HOTAIR plays any role in the regulation of glucose metabolism in immune cells during inflammation. Our results demonstrate that LPS-induced inflammation induces the expression of glucose transporter isoform 1 (Glut1) which controls the glucose uptake in macrophages. LPS-induced Glut1 expression is regulated via NF-kB activation. Importantly, siRNA-mediated knockdown of HOTAIR suppressed the LPS-induced expression of Glut1 suggesting key roles of HOTAIR in LPS-induced Glut1 expression in macrophage. HOTAIR induces NF-kB activation, which in turn increases Glut1 expression in response to LPS. We also found that HOTAIR regulates glucose uptake in macrophages during LPS-induced inflammation and its knockdown decreases LPS-induced increased glucose uptake. HOTAIR also regulates other upstream regulators of glucose metabolism such as PTEN and HIF1α, suggesting its multimodal functions in glucose metabolism. Overall, our study demonstrated that lncRNA HOTAIR plays key roles in LPS-induced Glut1 expression and glucose uptake by activating NF-kB and hence HOTAIR regulates metabolic programming in immune cells potentially to meet the energy needs during the immune response.
Collapse
|
47
|
Ow JR, Cadez MJ, Zafer G, Foo JC, Li HY, Ghosh S, Wollmann H, Cazenave-Gassiot A, Ong CB, Wenk MR, Han W, Choi H, Kaldis P. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. eLife 2020; 9:63835. [PMID: 33345777 PMCID: PMC7771968 DOI: 10.7554/elife.63835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell cycle progression and lipid metabolism are well-coordinated processes required for proper cell proliferation. In liver diseases that arise from dysregulated lipid metabolism, hepatocyte proliferation is diminished. To study the outcome of CDK1 loss and blocked hepatocyte proliferation on lipid metabolism and the consequent impact on whole-body physiology, we performed lipidomics, metabolomics, and RNA-seq analyses on a mouse model. We observed reduced triacylglycerides in liver of young mice, caused by oxidative stress that activated FOXO1 to promote the expression of Pnpla2/ATGL. Additionally, we discovered that hepatocytes displayed malfunctioning β-oxidation, reflected by increased acylcarnitines (ACs) and reduced β-hydroxybutyrate. This led to elevated plasma free fatty acids (FFAs), which were transported to the adipose tissue for storage and triggered greater insulin secretion. Upon aging, chronic hyperinsulinemia resulted in insulin resistance and hepatic steatosis through activation of LXR. Here, we demonstrate that loss of hepatocyte proliferation is not only an outcome but also possibly a causative factor for liver pathology.
Collapse
Affiliation(s)
- Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matias J Cadez
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Gözde Zafer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Hong Yu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Chee Bing Ong
- Biological Resource Centre (BRC), A*STAR, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
48
|
van Niekerk G, Dalgleish AG, Joubert F, Joubert A, Engelbrecht AM. The immuno-oncological implications of insulin. Life Sci 2020; 264:118716. [PMID: 33159956 DOI: 10.1016/j.lfs.2020.118716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
Emerging evidence has implicated insulin in regulating the phenotypes of various immune cells through canonical downstream signalling effectors of insulin, namely, the PI3K/Akt/mTOR pathway. Notably, these signalling components also exhibit crosstalk with other immune signalling pathways, such as the JAK/STAT pathway (activated by cytokines and growth factors), and, importantly, are also negatively regulated by the immune checkpoint blockers (ICBs), PD-1 and CTLA-4. Here, we point out recent findings, suggesting that insulin may promote a pro-inflammatory phenotype with potential implications on ICB therapy. As an example, the contemporary paradigm holds that, while T cell receptor recognition of distinct MHC-expressed epitopes ensures specificity, co-activation of CD28 along with signal inputs form various cytokines and insulin operates to 'fine-tune' the immune response via PI3K and other downstream signalling molecules. These considerations highlight the urgent need for focused investigations into the role of insulin in regulating immune cell function in the context of ICB therapies.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Angus G Dalgleish
- Department of Cellular and Molecular Medicine, St George's University of London, London, UK
| | - Fourie Joubert
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Annie Joubert
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
49
|
Mouton AJ, Hall JE. Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. Am J Physiol Regul Integr Comp Physiol 2020; 319:R476-R484. [PMID: 32877243 DOI: 10.1152/ajpregu.00188.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in cardiomyocyte metabolism have been heavily implicated in cardiac injury and heart failure (HF). However, there is emerging evidence that metabolism in nonmyocyte populations, including cardiac fibroblasts, immune cells, and endothelial cells, plays an important role in cardiac remodeling and adaptation to injury. Here, we discuss recent advances and insights into nonmyocyte metabolism in the healthy and injured heart. Metabolic switching from mitochondrial oxidative phosphorylation to glycolysis is critical for immune cell (macrophage and T lymphocyte) and fibroblast phenotypic switching in the inflamed and fibrotic heart. On the other hand, cardiac endothelial cells are heavily reliant on glycolytic metabolism, and thus impairments in glycolytic metabolism underlie endothelial cell dysfunction. Finally, we review current and ongoing metabolic therapies for HF and the potential implications for nonmyocyte metabolism.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
50
|
Shaughness M, Acs D, Brabazon F, Hockenbury N, Byrnes KR. Role of Insulin in Neurotrauma and Neurodegeneration: A Review. Front Neurosci 2020; 14:547175. [PMID: 33100956 PMCID: PMC7546823 DOI: 10.3389/fnins.2020.547175] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin is a hormone typically associated with pancreatic release and blood sugar regulation. The brain was long thought to be “insulin-independent,” but research has shown that insulin receptors (IR) are expressed on neurons, microglia and astrocytes, among other cells. The effects of insulin on cells within the central nervous system are varied, and can include both metabolic and non-metabolic functions. Emerging data suggests that insulin can improve neuronal survival or recovery after trauma or during neurodegenerative diseases. Further, data suggests a strong anti-inflammatory component of insulin, which may also play a role in both neurotrauma and neurodegeneration. As a result, administration of exogenous insulin, either via systemic or intranasal routes, is an increasing area of focus in research in neurotrauma and neurodegenerative disorders. This review will explore the literature to date on the role of insulin in neurotrauma and neurodegeneration, with a focus on traumatic brain injury (TBI), spinal cord injury (SCI), Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Michael Shaughness
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Deanna Acs
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fiona Brabazon
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Nicole Hockenbury
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|