1
|
Young K, Benny M, Schmidt A, Wu S. Unveiling the Emerging Role of Extracellular Vesicle-Inflammasomes in Hyperoxia-Induced Neonatal Lung and Brain Injury. Cells 2024; 13:2094. [PMID: 39768185 PMCID: PMC11674922 DOI: 10.3390/cells13242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Extremely premature infants are at significant risk for developing bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment (NDI). Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently unknown how BPD contributes to brain injury and long-term NDI in pre-term infants. Extracellular vesicles (EVs) are small, membrane-bound structures released from cells into the surrounding environment. EVs are involved in inter-organ communication in diverse pathological processes. Inflammasomes are large, multiprotein complexes that are part of the innate immune system and are responsible for triggering inflammatory responses and cell death. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly and activating inflammatory caspase-1. Activated caspase-1 cleaves gasdermin D (GSDMD) to release a 30 kD N-terminal domain that can form membrane pores, leading to lytic cell death, also known as pyroptosis. Activated caspase-1 can also cleave pro-IL-1β and pro-IL-18 to their active forms, which can be rapidly released through the GSDMD pores to induce inflammation. Recent evidence has emerged that activation of inflammasomes is associated with neonatal lung and brain injury, and inhibition of inflammasomes reduces hyperoxia-induced neonatal lung and brain injury. Additionally, multiple studies have demonstrated that hyperoxia stimulates the release of lung-derived EVs that contain inflammasome cargos. Adoptive transfer of these EVs into the circulation of normal neonatal mice and rats induces brain inflammatory injury. This review focuses on EV-inflammasomes' roles in mediating lung-to-brain crosstalk via EV-dependent and EV-independent mechanisms critical in BPD, brain injury, and NDI pathogenesis. EV-inflammasomes will be discussed as potential therapeutic targets for neonatal lung and brain injury.
Collapse
Affiliation(s)
| | | | | | - Shu Wu
- Division of Neonatology, Department of Pediatrics, Batchelor Children Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA; (K.Y.); (M.B.); (A.S.)
| |
Collapse
|
2
|
Firestone K, Gopalakrishna KP, Rogers LM, Peters A, Gaddy JA, Nichols C, Hall MH, Varela HN, Carlin SM, Hillebrand GH, Giacobe EJ, Aronoff DM, Hooven TA. A CRISPRi Library Screen in Group B Streptococcus Identifies Surface Immunogenic Protein (Sip) as a Mediator of Multiple Host Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627252. [PMID: 39677656 PMCID: PMC11643019 DOI: 10.1101/2024.12.06.627252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is an important pathobiont capable of colonizing various host environments, contributing to severe perinatal infections. Surface proteins play critical roles in GBS-host interactions, yet comprehensive studies of these proteins' functions have been limited by genetic manipulation challenges. This study leveraged a CRISPR interference (CRISPRi) library to target genes encoding surface-trafficked proteins in GBS, identifying their roles in modulating macrophage cytokine responses. Bioinformatic analysis of 654 GBS genomes revealed 66 conserved surface protein genes. Using a GBS strain expressing chromosomally integrated dCas9, we generated and validated CRISPRi strains targeting these genes. THP-1 macrophage-like cells were exposed to ethanol-killed GBS variants, and pro-inflammatory cytokines TNF-α and IL-1β were measured. Notably, knockdown of the sip gene, encoding the Surface Immunogenic Protein (Sip), significantly increased IL-1β secretion, implicating Sip in caspase-1-dependent regulation. Further, Δsip mutants demonstrated impaired biofilm formation, reduced adherence to human fetal membranes, and diminished uterine persistence in a mouse colonization model. These findings suggest Sip modulates GBS-host interactions critical for pathogenesis, underscoring its potential as a therapeutic target or vaccine component.
Collapse
Affiliation(s)
- K Firestone
- Indiana University School of Medicine, Department of Medicine
| | - K P Gopalakrishna
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA, USA
| | - L M Rogers
- Indiana University School of Medicine, Department of Medicine
| | - A Peters
- University of Pittsburgh, Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - J A Gaddy
- Vanderbilt University Medical Center, Department of Medicine, Nashville, TN, USA
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
- Vanderbilt University, Center for Medicine, Health, and Society, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA
| | - C Nichols
- Vanderbilt University Medical Center, Department of Medicine, Nashville, TN, USA
| | - M H Hall
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA
| | - H N Varela
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S M Carlin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G H Hillebrand
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E J Giacobe
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D M Aronoff
- Indiana University School of Medicine, Department of Medicine
| | - T A Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- R.K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Garcia-Flores V, Liu Z, Romero R, Pique-Regi R, Xu Y, Miller D, Levenson D, Galaz J, Winters AD, Farias-Jofre M, Panzer JJ, Theis KR, Gomez-Lopez N. Homeostatic Macrophages Prevent Preterm Birth and Improve Neonatal Outcomes by Mitigating In Utero Sterile Inflammation in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1620-1634. [PMID: 39431882 PMCID: PMC11572957 DOI: 10.4049/jimmunol.2400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
Preterm birth (PTB), often preceded by preterm labor, is a major cause of neonatal morbidity and mortality worldwide. Most PTB cases involve intra-amniotic inflammation without detectable microorganisms, termed in utero sterile inflammation, for which there is no established treatment. In this study, we propose homeostatic macrophages to prevent PTB and adverse neonatal outcomes caused by in utero sterile inflammation. Single-cell atlases of the maternal-fetal interface revealed that homeostatic maternal macrophages are reduced with human labor. M2 macrophage treatment prevented PTB and reduced adverse neonatal outcomes in mice with in utero sterile inflammation. Specifically, M2 macrophages halted premature labor by suppressing inflammatory responses in the amniotic cavity, including inflammasome activation, and mitigated placental and offspring lung inflammation. Moreover, M2 macrophages boosted gut inflammation in neonates and improved their ability to fight systemic bacterial infections. Our findings show that M2 macrophages are a promising strategy to mitigate PTB and improve neonatal outcomes resulting from in utero sterile inflammation.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| | - Roger Pique-Regi
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | - Dustyn Levenson
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew D. Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jonathan J. Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Kevin R. Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI and Bethesda, MD
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Omeljaniuk WJ, Garley M, Pryczynicz A, Motyka J, Charkiewicz AE, Milewska E, Laudański P, Miltyk W. NLRP3 Inflammasome in the Pathogenesis of Miscarriages. Int J Mol Sci 2024; 25:10513. [PMID: 39408839 PMCID: PMC11477432 DOI: 10.3390/ijms251910513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Despite significant advances in prenatal medicine, spontaneous miscarriage remains one of the most common and serious pregnancy complications, affecting an increasing number of women. Since many aspects of the pathogenesis of spontaneous miscarriage remain unexplained, the aim of this study has been to assess the involvement of the NLRP3 inflammasome as a potential causative factor. The concentrations of NLRP3, IL-1β, IL-18, and cytochrome C in the serum of patients after miscarriage were measured by means of the immunoenzymatic method. In the placental tissue, the expression of NLRP3, IL-1β, IL-18, and Caspase-1 as well as that of the classical apoptosis biomarkers Fas, FasL, Bcl-2, and Ca was evaluated by means of immunohistochemistry techniques. Additionally, in whole blood, the concentrations of elements crucial for pregnancy progression, such as Ca, K, Mg, and Na, were examined by means of the ICP-OES method. Significantly higher concentrations of NLRP3 and IL-18 were demonstrated in the serum of patients with miscarriage as compared to the control group. In the placental tissue samples, a higher expression of IL-1β, IL-18, and Caspase-1 proteins was noted in women who had experienced miscarriage as compared to the control group. At the same time, a significantly lower expression of FasL and Bcl-2 proteins as well as Ca deposits was observed in women after miscarriage as compared to those with a normal pregnancy outcome. Significantly lower concentrations of Ca and K were recorded in the blood of patients with spontaneous miscarriage as compared to pregnant women. The analysis of the results x indicated a greater involvement of the inflammasome in women with spontaneous miscarriage associated with oxidative-antioxidative imbalance than in the case of miscarriage related to NET formation. Our research has provided evidence for the involvement of the inflammasome in the process of spontaneous miscarriage and identifies a new direction for diagnostics that includes NLRP3 as a preventive element in prenatal care, particularly in light of the steadily declining number of pregnancies and the increasing number of reproductive failures.
Collapse
Affiliation(s)
- Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland (W.M.)
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Anna Pryczynicz
- Department of Pathomorfology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | | | - Angelika Edyta Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland
| | - Elżbieta Milewska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland (W.M.)
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland
- Women’s Health Research Institute, Calisia University, Nowy Świat 4, 62-800 Kalisz, Poland
- OVIklinika Infertility Center, Połczyńska 31, 01-377 Warsaw, Poland
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland (W.M.)
| |
Collapse
|
6
|
Singh KK, Gupta A, Forstner D, Guettler J, Ahrens MS, Prakasan Sheeja A, Fatima S, Shamkeeva S, Lia M, Dathan-Stumpf A, Hoffmann N, Shahzad K, Stepan H, Gauster M, Isermann B, Kohli S. LMWH prevents thromboinflammation in the placenta via HBEGF-AKT signaling. Blood Adv 2024; 8:4756-4766. [PMID: 38941535 PMCID: PMC11457404 DOI: 10.1182/bloodadvances.2023011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT Low molecular weight heparins (LMWH) are used to prevent or treat thromboembolic events during pregnancy. Although studies suggest an overall protective effect of LMWH in preeclampsia (PE), their use in PE remains controversial. LMWH may convey beneficial effects in PE independent of their anticoagulant activity, possibly by inhibiting inflammation. Here, we evaluated whether LMWH inhibit placental thromboinflammation and trophoblast NLRP3 inflammasome activation. Using an established procoagulant extracellular vesicle-induced and platelet-dependent PE-like mouse model, we show that LMWH reduces pregnancy loss and trophoblast inflammasome activation, restores altered trophoblast differentiation, and improves trophoblast proliferation in vivo and in vitro. Moreover, LMWH inhibits platelet-independent trophoblast NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. Mechanistically, LMWH activates via heparin-binding epidermal growth factor (HBEGF) signaling the PI3-kinase-AKT pathway in trophoblasts, thus preventing inflammasome activation. In human PE placental explants, inflammasome activation and PI3-kinase-AKT signaling events were reduced with LMWH treatment compared with those without LMWH treatment. Thus, LMWH inhibits sterile inflammation via the HBEGF signaling pathway in trophoblasts and ameliorates PE-associated complications. These findings suggest that drugs targeting the inflammasome may be evaluated in PE and identify a signaling mechanism through which LMWH ameliorates PE, thus providing a rationale for the use of LMWH in PE.
Collapse
Affiliation(s)
- Kunal Kumar Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Mirjam Susanne Ahrens
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Akshay Prakasan Sheeja
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Saikal Shamkeeva
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Massimiliano Lia
- Department of Obstetrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Anne Dathan-Stumpf
- Department of Obstetrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Nikola Hoffmann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Holger Stepan
- Department of Obstetrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
7
|
Dos Anjos Cordeiro JM, Santos LC, Santos BR, de Jesus Nascimento AE, Santos EO, Barbosa EM, de Macêdo IO, Mendonça LD, Sarmento-Neto JF, Pinho CS, Coura ETDS, Santos ADS, Rodrigues ME, Rebouças JS, De-Freitas-Silva G, Munhoz AD, de Lavor MSL, Silva JF. Manganese porphyrin-based treatment improves fetal-placental development and protects against oxidative damage and NLRP3 inflammasome activation in a rat maternal hypothyroidism model. Redox Biol 2024; 74:103238. [PMID: 38870780 PMCID: PMC11225907 DOI: 10.1016/j.redox.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Oxidative stress (OS) and endoplasmic reticulum stress (ERS) are at the genesis of placental disorders observed in preeclampsia, intrauterine growth restriction, and maternal hypothyroidism. In this regard, cationic manganese porphyrins (MnPs) comprise potent redox-active therapeutics of high antioxidant and anti-inflammatory potential, which have not been evaluated in metabolic gestational diseases yet. This study evaluated the therapeutic potential of two MnPs, [MnTE-2-PyP]5+ (MnP I) and [MnT(5-Br-3-E-Py)P]5+ (MnP II), in the fetal-placental dysfunction of hypothyroid rats. Hypothyroidism was induced by administration of 6-Propyl-2-thiouracil (PTU) and treatment with MnPs I and II 0.1 mg/kg/day started on the 8th day of gestation (DG). The fetal and placental development, and protein and/or mRNA expression of antioxidant mediators (SOD1, CAT, GPx1), hypoxia (HIF1α), oxidative damage (8-OHdG, MDA), ERS (GRP78 and CHOP), immunological (TNFα, IL-6, IL-10, IL-1β, IL-18, NLRP3, Caspase1, Gasdermin D) and angiogenic (VEGF) were evaluated in the placenta and decidua on the 18th DG using immunohistochemistry and qPCR. ROS and peroxynitrite (PRX) were quantified by fluorometric assay, while enzyme activities of SOD, GST, and catalase were evaluated by colorimetric assay. MnPs I and II increased fetal body mass in hypothyroid rats, and MnP I increased fetal organ mass. MnPs restored the junctional zone morphology in hypothyroid rats and increased placental vascularization. MnPs blocked the increase of OS and ERS mediators caused by hypothyroidism, showing similar levels of expression of HIFα, 8-OHdG, MDA, Gpx1, GRP78, and Chop to the control. Moreover, MnPs I and/or II increased the protein expression of SOD1, Cat, and GPx1 and restored the expression of IL10, Nlrp3, and Caspase1 in the decidua and/or placenta. However, MnPs did not restore the low placental enzyme activity of SOD, CAT, and GST caused by hypothyroidism, while increased the decidual and placental protein expression of TNFα. The results show that treatment with MnPs improves the fetal-placental development and the placental inflammatory state of hypothyroid rats and protects against oxidative stress and reticular stress caused by hypothyroidism at the maternal-fetal interface.
Collapse
Affiliation(s)
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Emilly Oliveira Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Isabela Oliveira de Macêdo
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - José Ferreira Sarmento-Neto
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Clarice Santos Pinho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Acácio de Sá Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Marciel Elio Rodrigues
- Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual Do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Júlio Santos Rebouças
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Joao Pessoa, Brazil
| | - Gilson De-Freitas-Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Dias Munhoz
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Mário Sérgio Lima de Lavor
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil.
| |
Collapse
|
8
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
9
|
Lestari B, Fukushima T, Utomo RY, Wahyuningsih MSH. Apoptotic and non-apoptotic roles of caspases in placenta physiology and pathology. Placenta 2024; 151:37-47. [PMID: 38703713 DOI: 10.1016/j.placenta.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.
Collapse
Affiliation(s)
- Beni Lestari
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan.
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
10
|
Sánchez-Gil MA, Fraile-Martinez O, García-Montero C, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Camacho-Alcázar A, De León-Luis JA, Bravo C, Díaz-Pedrero R, López-Gonzalez L, Bujan J, Cancelo MJ, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exacerbated Activation of the NLRP3 Inflammasome in the Placentas from Women Who Developed Chronic Venous Disease during Pregnancy. Int J Mol Sci 2024; 25:5528. [PMID: 38791563 PMCID: PMC11122606 DOI: 10.3390/ijms25105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic venous disease (CVD) comprises a spectrum of morphofunctional disorders affecting the venous system, affecting approximately 1 in 3 women during gestation. Emerging evidence highlights diverse maternofetal implications stemming from CVD, particularly impacting the placenta. While systemic inflammation has been associated with pregnancy-related CVD, preliminary findings suggest a potential link between this condition and exacerbated inflammation in the placental tissue. Inflammasomes are major orchestrators of immune responses and inflammation in different organs and systems. Notwithstanding the relevance of inflammasomes, specifically the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3)- which has been demonstrated in the placentas of women with different obstetric complications, the precise involvement of this component in the placentas of women with CVD remains to be explored. This study employs immunohistochemistry and real-time PCR (RT-qPCR) to examine the gene and protein expression of key components in both canonical and non-canonical pathways of the NLRP3 inflammasome (NLRP3, ASC-apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain-caspase 1, caspase 5, caspase 8, and interleukin 1β) within the placental tissue of women affected by CVD. Our findings reveal a substantial upregulation of these components in CVD-affected placentas, indicating a potential pathophysiological role of the NLRP3 inflammasome in the development of this condition. Subsequent investigations should focus on assessing translational interventions addressing this dysregulation in affected patient populations.
Collapse
Affiliation(s)
- María Asunción Sánchez-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- University Defense Center of Madrid (CUD), 28047 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Adrían Camacho-Alcázar
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
| | - Juan A. De León-Luis
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Laura López-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - María J. Cancelo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Department of Obstetrics and Gynecology, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.S.-G.); (O.F.-M.); (C.G.-M.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (A.C.-A.); (J.B.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
11
|
Tripathy S, Burd I, Kelleher MA. Membrane inflammasome activation by choriodecidual Ureaplasma parvum infection without intra-amniotic infection in a Non-Human Primate model†. Biol Reprod 2024; 110:971-984. [PMID: 38335245 PMCID: PMC11094395 DOI: 10.1093/biolre/ioae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Intrauterine infection is a significant cause of neonatal morbidity and mortality. Ureaplasma parvum is a microorganism commonly isolated from cases of preterm birth and preterm premature rupture of membranes (pPROM). However, the mechanisms of early stage ascending reproductive tract infection remain poorly understood. To examine inflammation in fetal (chorioamnionic) membranes we utilized a non-human primate (NHP) model of choriodecidual U. parvum infection. Eight chronically catheterized pregnant rhesus macaques underwent maternal-fetal catheterization surgery at ~105-112 days gestation and choriodecidual inoculation with U. parvum (105 CFU/mL, n =4) or sterile media (controls; n = 4) starting at 115-119 days, repeated at 5-day intervals until C-section at 136-140 days (term=167 days). The average inoculation to delivery interval was 21 days, and Ureaplasma infection of the amniotic fluid (AF) was undetectable in all animals. Choriodecidual Ureaplasma infection resulted in increased fetal membrane expression of MMP-9 and PTGS2, but did not result in preterm labor or increased concentrations of AF pro-inflammatory cytokines. However, membrane expression of inflammasome sensors, NLRP3, NLRC4, AIM2, and NOD2, and adaptor ASC (PYCARD) gene expression were significantly increased. Gene expression of IL-1β, IL-18, IL-18R1 , CASPASE-1, and pro-CASPASE-1 protein increased with Ureaplasma infection. Downstream inflammatory genes MYD88 and NFκB (Nuclear factor kappa-light-chain-enhancer of activated B cells) were also significantly upregulated. These results demonstrate that choriodecidual Ureaplasma infection, can cause activation of inflammasome complexes and pathways associated with pPROM and preterm labor prior to microbes being detectable in the AF.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meredith A Kelleher
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
12
|
Flis W, Socha MW. The Role of the NLRP3 Inflammasome in the Molecular and Biochemical Mechanisms of Cervical Ripening: A Comprehensive Review. Cells 2024; 13:600. [PMID: 38607039 PMCID: PMC11012148 DOI: 10.3390/cells13070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The uterine cervix is one of the key factors involved in ensuring a proper track of gestation and labor. At the end of the gestational period, the cervix undergoes extensive changes, which can be summarized as a transformation from a non-favorable cervix to one that is soft and prone to dilation. During a process called cervical ripening, fundamental remodeling of the cervical extracellular matrix (ECM) occurs. The cervical ripening process is a derivative of many interlocking and mutually driving biochemical and molecular pathways under the strict control of mediators such as inflammatory cytokines, nitric oxide, prostaglandins, and reactive oxygen species. A thorough understanding of all these pathways and learning about possible triggering factors will allow us to develop new, better treatment algorithms and therapeutic goals that could protect women from both dysfunctional childbirth and premature birth. This review aims to present the possible role of the NLRP3 inflammasome in the cervical ripening process, emphasizing possible mechanisms of action and regulatory factors.
Collapse
Affiliation(s)
- Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| |
Collapse
|
13
|
Liu X, Li Z, Lu D. MicroRNA-223-3p downregulates the inflammatory response in preeclampsia placenta via targeting NLRP3. BMC Pregnancy Childbirth 2024; 24:175. [PMID: 38448875 PMCID: PMC10918892 DOI: 10.1186/s12884-024-06371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVE To investigate the regulatory role of miR-223-3p in the inflammatory response of PE placenta. METHODS PE and normal placental tissues were collected to measure the expression of NLRP3 and miR-223-3p. The targeting relationship between NLRP3 and miR-223-3P was verified by bioinformatics analysis and classical double-luciferase reporter gene assay. Lipopolysaccharide (LPS) was used to induce HTR8/SVneo cells as PE placental cell inflammation model. Then we transfected miR-223-3p overexpression/miR-223-3p negative control plasmid into the LPS-induced HTR8/SVneo cells. Next, the expressions of NLRP3, Caspase-1, GSDMD, IL-1β and IL-18 were evaluated to elucidate the regulatory effect of miR-223-3p on the inflammatory response mediated by NLRP3 in PE placenta. RESULTS Compared with normal controls, NLRP3 was significantly up-regulated in PE placenta, while miR-223-3p was down-regulated. In addition, NLRP3 was a direct target of miR-223-3p. Further research revealed that the expression of NLRP3, Caspase-1, GSDMD, IL-1β and IL-18 could be obviously promoted in HTR8/SVneo cells treated with LPS (500 ng/ml) for 24 h, nevertheless it could be significantly suppressesed under the overexpression of miR-223-3p. CONCLUSION MiR-223-3p suppressed NLRP3 inflamariomes activation, downstream inflammatory factors secretion and pyroptosis in LPS-induced HTR8/SVneo cells indicating that miR-223-3p could serve as an anti-inflammatory factor in preeclampsia.
Collapse
Affiliation(s)
- Xueqiong Liu
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhiyue Li
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Dan Lu
- Clinical Medical College of Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
14
|
Xu H, Feng P, Sun Y, Wu D, Wang D, Wu L, Peng H, Li H. Plasma trimethylamine N-oxide metabolites in the second trimester predict the risk of hypertensive disorders of pregnancy: a nested case-control study. Hypertens Res 2024; 47:778-789. [PMID: 38177285 DOI: 10.1038/s41440-023-01563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
The relationship between gut microbiota products trimethylamine oxide (TMAO) and related metabolites including betaine, choline and L-carnitine and hypertensive disorders of pregnancy (HDP) is unclear. In order to examine whether plasma TMAO and related metabolites predict the risk of HDP, a nested case-control study was conducted in Chinese women based on a prospective cohort including 9447 participants. 387 pairs of pregnant women (n = 774) were matched and their plasma TMAO, betaine, choline, and L-carnitine at 16-20 gestational weeks were measured by liquid chromatography-mass spectrometry. Odds ratio (OR) and the 95% confidence interval (95% CI) were calculated using the conditional logistic regression, to examine the association between TMAO metabolites and HDP. The findings showed that higher plasma betaine (≥24.94 μmol/L) was associated with a decreased risk of HDP and its subtype gestational hypertension (GH), with adjusted ORs of 0.404 (95% CI: 0.226-0.721) and 0.293 (95% CI: 0.134-0.642), respectively. Higher betaine/choline ratio (>2.64) was associated with a lower risk of HDP and its subtype preeclampsia or chronic hypertension with superimposed preeclampsia (PE/CH-PE), with adjusted ORs of 0.554 (95% CI: 0.354-0.866) and 0.226 (95% CI: 0.080-0.634). Moreover, compared with traditional factors (TFs) model, the TMAO metabolites+ TFs model had a higher predictive ability for PE/CH-PE (all indexes P values < 0.0001). Therefore, it suggests that the detection of plasma betaine and choline in the early second trimester of pregnancy can better assess the risk of HDP.
Collapse
Affiliation(s)
- He Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Pei Feng
- Department of Community Health Care, Kunshan Maternity and Children's Health Care Hospital, Kunshan, China
| | - Yexiu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Di Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Dandan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Wu
- Department of Maternal and Child Health, Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - Hao Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China.
| | - Hongmei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China.
| |
Collapse
|
15
|
Tanaka H, Ozawa R, Henmi Y, Hosoda M, Karasawa T, Takahashi M, Takahashi H, Iwata H, Kuwayama T, Shirasuna K. Gasdermin D regulates soluble fms-like tyrosine kinase 1 release in macrophages. Reprod Biol 2024; 24:100857. [PMID: 38295720 DOI: 10.1016/j.repbio.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 04/02/2024]
Abstract
Preeclampsia (PE) is a serious complication, and soluble fms-like tyrosine kinase (sFLT1) released from the placenta is one of the causes of PE pathology. Trophoblasts are the primary source of sFLT1; however, monocytes/macrophages exist enough in the placenta can also secrete sFLT1. Sterile inflammatory responses, especially NLRP3 inflammasome and its downstream gasdermin D (GSDMD)-regulated pyroptosis, may be involved in the development of PE pathology. In this study, we investigated whether human monocyte/macrophage cell line THP-1 cells secrete sFLT1 depending on the NLRP3 inflammasome and GSDMD. To differentiate THP-1 monocytes into macrophages, treatment with phorbol 12-myristate 13-acetate (PMA) induced sFLT1 with interleukin (IL)- 1β, but did not induce cell lytic death. IL-1β secretion induced by PMA inhibited by deletion of NLRP3 and inhibitors of NLRP3 and caspase-1, but deletion of NLRP3 and these inhibitors did not affect sFLT1 secretion in THP-1 cells. Both gene deletion and inhibition of GSDMD dramatically decreased IL-1β and sFLT1 secretion from THP-1 cells. Treatment with CA074-ME (a cathepsin B inhibitor) also reduced the secretion of both sFLT1 and IL-1β in THP-1 cells. In conclusion, THP-1 macrophages release sFLT1 in a GSDMD-dependent manner, but not in the NLRP3 inflammasome-dependent manner, and this sFLT1 release may be associated with the non-lytic role of GSDMD. In addition, sFLT1 levels induced by PMA are associated with lysosomal cathepsin B in THP-1 macrophages. We suggest that sFLT1 synthesis regulated by GSDMD are involved in the pathology of PE.
Collapse
Affiliation(s)
- Hazuki Tanaka
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Ren Ozawa
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Yuka Henmi
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Manabu Hosoda
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Japan.
| |
Collapse
|
16
|
McElwain CJ, Musumeci A, Manna S, McCarthy FP, McCarthy CM. L-ergothioneine reduces mitochondrial-driven NLRP3 activation in gestational diabetes mellitus. J Reprod Immunol 2024; 161:104171. [PMID: 38029485 DOI: 10.1016/j.jri.2023.104171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Maternal hyperglycaemia has a significant impact on placental metabolism and mitochondrial function. The NLRP3 inflammasome is responsive to endogenous signals of mitochondrial dysfunction. We tested our hypothesis that mitochondrial dysfunction orchestrates activation of the NLRP3 inflammasome and contributes to inflammation in gestational diabetes mellitus (GDM). METHODS Fasting blood, omental and placental tissue were collected on the day of caesarean section from nulliparous women with normal glucose tolerant (NGT) (n = 30) and GDM (n = 27) pregnancies. Cell-free mitochondrial DNA (cf-mtDNA) copy number was quantified by real-time PCR. M1-like (CD14+CD86+CD206-) and M2-like (CD14+CD86+CD206+) macrophage populations were characterized by flow cytometry. Immunoblotting for protein expression of NLRP3, ASC and caspase-1 was performed in maternal BMI and age-matched tissue samples. IL-1β and IL-18 were measured by multiplex ELISA. Placental explants from GDM participants were cultured for 24 h with 1 mM L-ergothioneine (antioxidant) and 1 µM MCC950 (NLRP3 inhibitor). RESULTS Cf-mtDNA copy numbers were significantly higher in GDM compared to NGT participants (p = 0.002). Placental populations of CD14+ (p = 0.02) and CD14+CD86+CD206- (p = 0.03) macrophages produced significantly increased levels of mitochondrial superoxide in GDM compared to NGT participants. Placental production of IL-18 (p = 0.04) was significantly increased in GDM. This increase in placental IL-18 was attenuated by treatment with 1 µM MCC950 (p = 0.0005), and 1 mM L-ergothioneine (p = 0.007). CONCLUSION Placental inflammation is significantly increased in women with GDM. Furthermore, this increase may be initiated by elevated production of mitochondrial superoxide by macrophage subpopulations and orchestrated by the NLRP3 inflammasome. The mitochondrial antioxidant, L-ergothioneine, ameliorates NLRP3-induced placental inflammation in GDM, identifying a potential therapeutic role.
Collapse
Affiliation(s)
- Colm J McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Fergus P McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Hirahara Y, Yamaguchi M, Takase-Minegishi K, Kirino Y, Aoki S, Hirahara L, Obata S, Kasai M, Maeda A, Tsuchida N, Yoshimi R, Horita N, Nakajima H, Miyagi E. Pregnancy outcomes in patients with familial Mediterranean fever: systematic review and meta-analysis. Rheumatology (Oxford) 2024; 63:277-284. [PMID: 37594755 DOI: 10.1093/rheumatology/kead417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE The relationship between FMF and pregnancy outcomes remains unclear. This systematic review and meta-analysis aimed to clarify this association. METHODS Electronic databases-PubMed, Web of Science, Cochrane, and EMBASE-were searched on 20 December 2022, using specific search terms. Case-control, cohort, and randomized clinical trial studies comparing patients with FMF and healthy controls were considered eligible. We excluded systematic reviews, meta-analyses, case series with fewer than five cases, republished articles without new findings on pregnancy outcomes, studies targeting paternal FMF, and those not published in English. The results were summarized in the form of odds ratios (ORs) and 95% CIs, using a random-effects model. This study was registered in the University hospital Medical Information Network Clinical Trials Registry (Japan) as UMIN000049827. RESULTS The initial electronic search identified 611 records, of which 9 were included in this meta-analysis (177 735 pregnancies, 1242 with FMF, and 176 493 healthy controls). FMF was significantly associated with increased odds of preterm deliveries (OR, 1.67; 95% CI, 1.05-2.67; I2 = 22%) and insignificantly associated with increased odds of fetal growth restriction (OR, 1.45; 95% CI, 0.90-2.34; I2 = 0%) and hypertensive disorders during pregnancy (OR, 1.28; 95% CI, 0.87-1.87; I2 = 0%). CONCLUSION FMF was significantly associated with preterm delivery and insignificantly associated with fetal growth restriction and hypertensive disorders. All of the included studies were observational studies. Treatment characteristics were not fully collected from the articles, and further analysis of treatments for FMF in pregnancy is still warranted.
Collapse
Affiliation(s)
- Yuhya Hirahara
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Midori Yamaguchi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigeru Aoki
- Perinatal Center for Maternity and Neonates, Yokohama City University Medical Center, Yokohama, Japan
| | - Lisa Hirahara
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Soichiro Obata
- Perinatal Center for Maternity and Neonates, Yokohama City University Medical Center, Yokohama, Japan
| | - Michi Kasai
- Perinatal Center for Maternity and Neonates, Yokohama City University Medical Center, Yokohama, Japan
| | - Ayaka Maeda
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
18
|
Govindarajah V, Sakabe M, Good S, Solomon M, Arasu A, Chen N, Zhang X, Grimes HL, Kendler A, Xin M, Reynaud D. Gestational diabetes in mice induces hematopoietic memory that affects the long-term health of the offspring. J Clin Invest 2024; 134:e169730. [PMID: 37988162 PMCID: PMC10786695 DOI: 10.1172/jci169730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Gestational diabetes is a common medical complication of pregnancy that is associated with adverse perinatal outcomes and an increased risk of metabolic diseases and atherosclerosis in adult offspring. The mechanisms responsible for this delayed pathological transmission remain unknown. In mouse models, we found that the development of atherosclerosis in adult offspring born to diabetic pregnancy can be in part linked to hematopoietic alterations. Although they do not show any gross metabolic disruptions, the adult offspring maintain hematopoietic features associated with diabetes, indicating the acquisition of a lasting diabetic hematopoietic memory. We show that the induction of this hematopoietic memory during gestation relies on the activity of the advanced glycation end product receptor (AGER) and the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which lead to increased placental inflammation. In adult offspring, we find that this memory is associated with DNA methyltransferase 1 (DNMT1) upregulation and epigenetic changes in hematopoietic progenitors. Together, our results demonstrate that the hematopoietic system can acquire a lasting memory of gestational diabetes and that this memory constitutes a pathway connecting gestational health to adult pathologies.
Collapse
Affiliation(s)
| | | | - Samantha Good
- Division of Experimental Hematology and Cancer Biology and
| | | | - Ashok Arasu
- Division of Experimental Hematology and Cancer Biology and
| | - Nong Chen
- Division of Experimental Hematology and Cancer Biology and
| | - Xuan Zhang
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
- Department of Pediatrics and
| | - Ady Kendler
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology and
- Department of Pediatrics and
| | - Damien Reynaud
- Division of Experimental Hematology and Cancer Biology and
- Department of Pediatrics and
| |
Collapse
|
19
|
Rezaei M, Ghasemi M, Saravani M, Moghadam RG, Shahraki-Ghadimi H, Norouzi M, Salimi S. The effects of NLRP3 rs10754558 and rs4612666 polymorphisms on preeclampsia susceptibility, onset, and severity: a case-control study and in silico analysis. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:165-173. [PMID: 38915451 PMCID: PMC11194025 DOI: 10.22099/mbrc.2024.49510.1936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Preeclampsia (PE) is one of the serious complications of pregnancy and its exact etiology is unknown. Inflammasomes are multiportion complexes whose relation with PE has been described. Evidence showed the effect of NLRP3 inflammasome in PE pathogenesis. In the current study, we investigated the possible impacts of NLRP3 polymorphisms on PE. A total of 252 PE and 258 control pregnant women were selected for the study. The PCR-RFLP method was employed to genotype rs10754558 and rs4612666 polymorphisms. The RNAsnp and SpliceAid 2 software were used for in silico analysis. There was no relationship between NLRP3 polymorphisms and PE. In comparison to control women, the NLRP3 rs10754558 could increase the risk of severe PE in codominant and dominant models (OR=1.89, 95% CI=1.19-3.01, P=0.012, OR=1.95, 95% CI=1.24-3.06, P=0.0037, respectively). The findings of the in silico analysis revealed the effects of rs10754558 C to G and rs4612666 C to T substitutions on protein binding sites and rs10754558 C to G substitution on secondary RNA structure. These findings could confirm the finding those studies reported the impacts of these variants on various diseases. In conclusion, the NLRP3 rs10754558 variant was associated with an increased risk of EOPE and severe PE.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Marzieh Ghasemi
- Department of Obstetrics and Gynecology, Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rahele Ghasemian- Moghadam
- Department of Obstetrics and Gynecology, Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Shahraki-Ghadimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahtab Norouzi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Bosco M, Romero R, Gallo DM, Suksai M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Al Qasem M, Franchi MP, Grossman LI, Aras S, Chaiworapongsa T. Evidence for the participation of CHCHD2/MNRR1, a mitochondrial protein, in spontaneous labor at term and in preterm labor with intra-amniotic infection. J Matern Fetal Neonatal Med 2023; 36:2183088. [PMID: 36941246 PMCID: PMC10352953 DOI: 10.1080/14767058.2023.2183088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Intra-amniotic inflammation (IAI), associated with either microbe (infection) or danger signals (sterile), plays a major role in the pathophysiology of preterm labor and delivery. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2) [also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1)], a mitochondrial protein involved in oxidative phosphorylation and cell survival, is capable of sensing tissue hypoxia and inflammatory signaling. The ability to maintain an appropriate energy balance at the cellular level while adapting to environmental stress is essential for the survival of an organism. Mitochondrial dysfunction has been observed in acute systemic inflammatory conditions, such as sepsis, and is proposed to be involved in sepsis-induced multi-organ failure. The purpose of this study was to determine the amniotic fluid concentrations of CHCHD2/MNRR1 in pregnant women, women at term in labor, and those in preterm labor (PTL) with and without IAI. METHODS This cross-sectional study comprised patients allocated to the following groups: (1) mid-trimester (n = 16); (2) term in labor (n = 37); (3) term not in labor (n = 22); (4) PTL without IAI who delivered at term (n = 25); (5) PTL without IAI who delivered preterm (n = 47); and (6) PTL with IAI who delivered preterm (n = 53). Diagnosis of IAI (amniotic fluid interleukin-6 concentration ≥2.6 ng/mL) included cases associated with microbial invasion of the amniotic cavity and those of sterile nature (absence of detectable bacteria, using culture and molecular microbiology techniques). Amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations were determined with a validated and sensitive immunoassay. RESULTS (1) CHCHD2/MNRR1 was detectable in all amniotic fluid samples and women at term without labor had a higher amniotic fluid CHCHD2/MNRR1 concentration than those in the mid-trimester (p = 0.003); (2) the amniotic fluid concentration of CHCHD2/MNRR1 in women at term in labor was higher than that in women at term without labor (p = 0.01); (3) women with PTL and IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those without IAI, either with preterm (p < 0.001) or term delivery (p = 0.01); (4) women with microbial-associated IAI had a higher amniotic fluid CHCHD2/MNRR1 concentration than those with sterile IAI (p < 0.001); (5) among women with PTL and IAI, the amniotic fluid concentration of CHCHD2/MNRR1 correlated with that of interleukin-6 (Spearman's Rho = 0.7; p < 0.001); and (6) no correlation was observed between amniotic fluid and maternal plasma CHCHD2/MNRR1 concentrations among women with PTL. CONCLUSION CHCHD2/MNRR1 is a physiological constituent of human amniotic fluid in normal pregnancy, and the amniotic concentration of this mitochondrial protein increases during pregnancy, labor at term, and preterm labor with intra-amniotic infection. Hence, CHCHD2/MNRR1 may be released into the amniotic cavity by dysfunctional mitochondria during microbial-associated IAI.
Collapse
Affiliation(s)
- Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Dahiana M. Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand
| | - Adi L. Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Malek Al Qasem
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Massimo P. Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Lawrence I. Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| |
Collapse
|
21
|
Garcia-Puente LM, Fraile-Martinez O, García-Montero C, Bujan J, De León-Luis JA, Bravo C, Rodríguez-Benitez P, Pintado P, Ruiz-Labarta FJ, Álvarez-Mon M, García-Honduvilla N, Cancelo MJ, Saez MA, Ortega MA. Placentas from Women with Late-Onset Preeclampsia Exhibit Increased Expression of the NLRP3 Inflammasome Machinery. Biomolecules 2023; 13:1644. [PMID: 38002326 PMCID: PMC10669618 DOI: 10.3390/biom13111644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Pre-eclampsia is a harmful and potentially lethal medical condition during pregnancy clinically diagnosed by hypertension and commonly accompanied by proteinuria and multiorgan affections. According to the time of diagnosis, it is differentiated between early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less dangerous and presenting distinct pathophysiological signatures, LO-PE has a greater prevalence than EO-PE, both having significant consequences on the placenta. Previous works have evidenced that exacerbated inflammation in this organ might play a potential pathogenic role in the development of pre-eclampsia, and there is some preliminary evidence that the hyperactivation of inflammasomes can be related to the altered immunoinflammatory responses observed in the placentas of these patients. However, the precise role of inflammasomes in the placentas of women with LO-PE remains to be fully understood. In this work, we have studied the gene and protein expression of the main components related to the canonical and non-canonical pathways of the inflammasome NLRP3 (NLRP3, ASC, caspase 1, caspase 5, caspase 8, interleukin 1β, and interleukin 18) in the placental tissue of women with LO-PE. Our results show a marked increase in all these components in the placentas of women who have undergone LO-PE, suggesting that NLRP3 inflammasome plays a potentially pathophysiological role in the development of this entity. Future works should aim to evaluate possible translational approaches to this dysregulation in these patients.
Collapse
Affiliation(s)
- Luis M Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Pilar Pintado
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Francisco Javier Ruiz-Labarta
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María J Cancelo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of Obstetrics and Gynecology, University Hospital of Guadalajara, 19002 Guadalajara, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
22
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Tripathy S, Burd I, Kelleher MA. Membrane Inflammasome Activation by Choriodecidual Ureaplasma parvum Infection without Intra-Amniotic Infection in an NHP Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557989. [PMID: 37781578 PMCID: PMC10541100 DOI: 10.1101/2023.09.18.557989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Intrauterine infection is a significant cause of preterm labor and neonatal morbidity and mortality. Ureaplasma parvum is the micro-organism most commonly isolated from cases of preterm birth and preterm premature rupture of membranes (pPROM). However, the mechanisms during the early stages of ascending reproductive tract infection that initiate maternal-fetal inflammatory pathways, preterm birth and pPROM remain poorly understood. To examine inflammation in fetal (chorioamnionic) membranes in response to Ureaplasma parvum infection, we utilized a novel in vivo non-human primate model of early choriodecidual infection. Eight chronically catheterized pregnant rhesus macaques underwent maternal-fetal catheterization surgery at 105-112 days gestation and choriodecidual inoculation with Ureaplasma parvum (10 5 cfu/mL of a low passaged clinical isolate, serovar 1; n=4) or saline/sterile media (Controls; n=4) starting at 115-119 days gestation, repeated every 5 days until scheduled cesarean-section at 136-140d gestation (term=167d). The average inoculation to delivery interval was 21 days and Ureaplasma infection of the amniotic fluid was undetectable by culture and PCR in all animals. Inflammatory mediators in amniotic fluid (AF) were assessed by Luminex, ELISA and multiplex assays. RNA was extracted from the chorion and amnionic membranes for single gene analysis (qRT-PCR) and protein expression was determined by Western blot and immunohistochemistry. Our NHP model of choriodecidual Ureaplasma infection, representing an early-stage ascending reproductive tract infection without microbial invasion of the amniotic cavity, resulted in increased fetal membrane protein and gene expression of MMP-9 and PTGS2, but did not result in preterm labor (no increase in uterine contractility) or increased concentrations of amniotic fluid pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-18, TNF-α). However, membrane expression of inflammasome sensor molecules, NLRP3, NLRC4, AIM2 and NOD2, and the adaptor protein ASC ( PYCARD ) gene expression were significantly increased in the Ureaplasma group when compared to non-infected controls. Gene expression of IL-1 β, IL-18, the IL-18R1 receptor , CASPASE-1 and pro-CASPASE-1 protein were also increased in the fetal membranes with Ureaplasma infection. Downstream inflammatory signaling genes MYD88 was also significantly upregulated in both the amnion and chorion, along with a significant increase in NFKB in the chorion. These results demonstrate that even at the early stages of ascending reproductive tract Ureaplasma infection, activation of inflammasome complexes and pathways associated with degradation of chorioamnionic membrane integrity are present. This study therefore provides experimental evidence for the importance of the early stages of ascending Ureaplasma infection in initiating processes of pPROM and preterm labor. These findings have implications for the identification of intrauterine inflammation before microbes are detectable in the amniotic fluid (sterile inflammation) and the timing of potential treatments for preterm labor and fetal injury caused by intrauterine infection.
Collapse
|
24
|
Jancsura MK, Schmella MJ, Helsabeck N, Gillespie SL, Roberts JM, Conley YP, Hubel CA. Inflammatory markers are elevated in early pregnancy, but not late pregnancy, in women with overweight and obesity that later develop preeclampsia. Am J Reprod Immunol 2023; 90:e13763. [PMID: 37641371 PMCID: PMC10465815 DOI: 10.1111/aji.13763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM Obesity and preeclampsia both involve a pathological inflammatory response, which may be how obesity increases preeclampsia risk. Previous studies have failed to assess robust measurements of inflammatory markers across gestation, specifically in overweight/ obese women in the context of preeclampsia. METHOD OF STUDY We measured 20 inflammatory markers in plasma via multiplex assay (ThermoFisher Inflammation 20 plex Human ProcartaPlex Panel) across the three trimesters of pregnancy in an existing cohort of overweight and obese women who developed preeclampsia (n = 37) and without preeclampsia (n = 74). Mann-Whitney U tests examined differences in inflammatory marker concentrations between cases and controls. Repeated measures ANOVA tests were used to explore differences in inflammatory marker concentrations over time within cases and controls. RESULTS Pro-inflammatory markers (IL-1α, IL-1β, IL-6, IFN-α, IFN-γ, GM-CSF, IL-12p70, IL-17α, TNF-α, IL-8) and anti-inflammatory markers (IL-4, IL-10, IL-13) were higher in the first and second trimester in participants who later developed preeclampsia compared to those who did not (p < .05). Only TNF-α and IL-8 remained elevated in the third trimester. Inflammatory markers did not change across pregnancy in preeclampsia cases but did increase across pregnancy in controls. CONCLUSION Our findings diverge from prior studies, predominantly of non-obese women, that report lower circulating concentrations of anti-inflammatory cytokines in preeclampsia versus normotensive pregnancy, particularly by late pregnancy. We posit that women with overweight and obesity who develop preeclampsia entered pregnancy with a heightened pro-inflammatory state likely related to obesity, which increased risk for preeclampsia. Further studies are needed to investigate if inflammatory maker profiles differ between obese and non-obese women.
Collapse
Affiliation(s)
- McKenzie K Jancsura
- College of Nursing Martha S. Pitzer Center for Women, Children and Youth, The Ohio State University, Columbus, USA
| | | | | | - Shannon L Gillespie
- College of Nursing Martha S. Pitzer Center for Women, Children and Youth, The Ohio State University, Columbus, USA
| | - James M Roberts
- Departments of Obstetrics Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Epidemiology and Clinical and Translational Research, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, Pittsburgh, United States
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, USA
| | - Carl A Hubel
- Departments of Obstetrics Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, Pittsburgh, United States
| |
Collapse
|
25
|
Galaz J, Motomura K, Romero R, Liu Z, Garcia-Flores V, Tao L, Xu Y, Done B, Arenas-Hernandez M, Kanninen T, Farias-Jofre M, Miller D, Tarca AL, Gomez-Lopez N. A key role for NLRP3 signaling in preterm labor and birth driven by the alarmin S100B. Transl Res 2023; 259:46-61. [PMID: 37121539 PMCID: PMC10524625 DOI: 10.1016/j.trsl.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Preterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Bogdan Done
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
26
|
Tian L, Zhang Z, Mao Y, Zong M. Association between pregnant women with rheumatoid arthritis and preeclampsia: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e34131. [PMID: 37390281 PMCID: PMC10313298 DOI: 10.1097/md.0000000000034131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND To examine the association between pregnant women with rheumatoid arthritis (RA) and the risk of preeclampsia. METHODS This study was registered on the International Prospective Register of Systematic Reviews (PROSPERO) under the number CRD42022361571. The primary outcome was preeclampsia. Two evaluators independently reviewed the included studies, assessed their risk of bias, and extracted the data. Unadjusted and adjusted ratios with 95% confidence intervals and 95% prediction intervals were calculated. Heterogeneity was quantified using the І2 statistic, where І2 ≥ 50% indicated the presence of significant heterogeneity. Subgroup and sensitivity analyses were performed to test the robustness of the overall findings. RESULTS A total of 8 studies, including 10,951,184 pregnant women, of whom 13,333 were diagnosed with RA, met the inclusion criteria. Meta-analysis revealed that pregnant women with RA were significantly more likely to develop preeclampsia than those without RA (pooled odds ratio, 1.66; 95% confidence interval, 1.52-1.80; P < .001; І2 < .001). CONCLUSION RA during pregnancy is associated with higher odds of preeclampsia.
Collapse
Affiliation(s)
- Lv Tian
- School of Nursing, Jilin University, Changchun, China
| | - Zhiyuan Zhang
- School of Nursing, Jilin University, Changchun, China
| | - Yuting Mao
- Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, China
| | - Minru Zong
- School of Nursing, Jilin University, Changchun, China
- Department of Rehabilitation, The Third Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Hosseini E, Kohan-Ghadr HR, Bazrafkan M, Amorim CA, Askari M, Zakeri A, Mousavi SN, Kafaeinezhad R, Afradiasbagharani P, Esfandyari S, Nazari M. Rescuing fertility during COVID-19 infection: exploring potential pharmacological and natural therapeutic approaches for comorbidity, by focusing on NLRP3 inflammasome mechanism. J Assist Reprod Genet 2023; 40:1173-1185. [PMID: 36892705 PMCID: PMC9995769 DOI: 10.1007/s10815-023-02768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The respiratory system was primarily considered the only organ affected by Coronavirus disease 2019 (COVID-19). As the pandemic continues, there is an increasing concern from the scientific community about the future effects of the virus on male and female reproductive organs, infertility, and, most significantly, its impact on the future generation. The general presumption is that if the primary clinical symptoms of COVID-19 are not controlled, we will face several challenges, including compromised infertility, infection-exposed cryopreserved germ cells or embryos, and health complications in future generations, likely connected to the COVID-19 infections of parents and ancestors. In this review article, we dedicatedly studied severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virology, its receptors, and the effect of the virus to induce the activation of inflammasome as the main arm of the innate immune response. Among inflammasomes, nucleotide oligomerization domain-like receptor protein, pyrin domain containing 3 (NLRP3) inflammasome pathway activation is partly responsible for the inflicted damages in both COVID-19 infection and some reproductive disorders, so the main focus of the discussion is on NLRP3 inflammasome in the pathogenesis of COVID-19 infection alongside in the reproductive biology. In addition, the potential effects of the virus on male and female gonad functions were discussed, and we further explored the potential natural and pharmacological therapeutic approaches for comorbidity via NLRP3 inflammasome neutralization to develop a hypothesis for averting the long-term repercussions of COVID-19. Since activation of the NLRP3 inflammasome pathway contributes to the damage caused by COVID-19 infection and some reproductive disorders, NLRP3 inflammasome inhibitors have a great potential to be considered candidates for alleviating the pathological effects of the COVID-19 infection on the germ cells and reproductive tissues. This would impede the subsequent massive wave of infertility that may threaten the patients.
Collapse
Affiliation(s)
- Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
| | - Mahshid Bazrafkan
- Reproductive Biotechnology Research Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maryam Askari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Raheleh Kafaeinezhad
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Sahar Esfandyari
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Liang R, Panelli DM, Stevenson DK, Rehkopf DH, Shaw GM. Associations between pregnancy glucose measurements and risk of preterm birth: a retrospective cohort study of commercially insured women in the United States from 2003 to 2021. Ann Epidemiol 2023; 81:31-39.e19. [PMID: 36905977 PMCID: PMC10195092 DOI: 10.1016/j.annepidem.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE To investigate associations between glucose measurements during pregnancy and risk of preterm birth (PTB). METHODS Retrospective cohort study of commercially insured women with singleton live births in the United States from 2003 to 2021 using longitudinal medical claims, socioeconomic data, and eight glucose results from different fasting and post-load tests performed between 24 and 28 weeks of gestation for gestational diabetes screening. Risk ratios of PTB (<37 weeks) were estimated via Poisson regression for z-standardized glucose measures. Non-linear relationships for continuous glucose measures were examined via generalized additive models. RESULTS Elevations in all eight glucose measures were associated with increased risk (adjusted risk ratio point estimates: 1.05-1.19) of PTB for 196,377 women with non-fasting 50-g glucose challenge test (one glucose result), 31,522 women with complete 100-g, 3-hour fasting oral glucose tolerance test (OGTT) results (four glucose results), and 10,978 women with complete 75-g, 2-hour fasting OGTT results (three glucose results). Associations were consistent after adjusting for and stratifying by sociodemographic and clinical factors. Substantial non-linear relationships (U-, J-, and S-shaped) were observed between several glucose measurements and PTB. CONCLUSIONS Elevations in various glucose measures were linearly and non-linearly associated with increased PTB risk, even before diagnostic thresholds for gestational diabetes.
Collapse
Affiliation(s)
- Richard Liang
- Stanford University School of Medicine, Department of Epidemiology and Population Health, Alway Building, Stanford, CA.
| | - Danielle M Panelli
- Stanford University School of Medicine, Division of Maternal-Fetal Medicine and Obstetrics, Department of Obstetrics and Gynecology, Palo Alto, CA
| | - David K Stevenson
- Stanford University School of Medicine, Department of Pediatrics, Division of Neonatal and Developmental Medicine, March of Dimes Prematurity Research Center at Stanford University School of Medicine, Palo Alto, CA
| | - David H Rehkopf
- Stanford University School of Medicine, Department of Epidemiology and Population Health, Alway Building, Stanford, CA; Stanford University School of Medicine, Division of Primary Care and Population Health, Stanford, CA; Stanford University, Department of Sociology, Stanford, CA; Stanford University, Center for Population Health Sciences, Palo Alto, CA.
| | - Gary M Shaw
- Stanford University School of Medicine, Department of Pediatrics, Division of Neonatal and Developmental Medicine, March of Dimes Prematurity Research Center at Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
29
|
Santos BR, Cordeiro JMDA, Santos LC, Santana LDS, Nascimento AEDJ, Silva JF. Kisspeptin Suppresses Inflammasome-NLRP3 Activation and Pyroptosis Caused by Hypothyroidism at the Maternal-Fetal Interface of Rats. Int J Mol Sci 2023; 24:ijms24076820. [PMID: 37047793 PMCID: PMC10095583 DOI: 10.3390/ijms24076820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 04/14/2023] Open
Abstract
Gestational diseases such as preeclampsia and gestational diabetes cause inflammasome activation and pyroptosis in the placenta and changes in placental kisspeptin levels. Although maternal hypothyroidism also reduces the kisspeptin/Kiss1R system at the maternal-fetal interface, there is still no information on whether this dysfunction causes inflammasome activation and pyroptosis in the placenta or influences the modulatory role of kisspeptin in these processes. This study aimed to evaluate whether hypothyroidism activates the inflammasome-NLRP3 pathway and pyroptosis at the maternal-fetal interface of rats and whether kisspeptin can modulate these processes. Hypothyroidism was induced in Wistar rats by the administration of propylthiouracil. Kisspeptin-10 (Kp10) treatment began on the 8th day of gestation (DG). Gene and/or protein expressions of NLRP3, Caspase 1, IL-1β, IL-18, and Gasdermin D (Gsmd) were evaluated in the deciduae and placentae at the 18th DG. Hypothyroidism increased the decidual and placental stainings of NLRP3, IL-1β, and Gasdermin D, and increased the gene expressions of Nlrp3, Ilβ, and Il18 in the placenta and of Gsmd in the decidua. Treatment with Kp10 suppressed the increase in NLRP3/Nlrp3, IL-1β, Il18, and Gasdermin D/Gsmd caused by hypothyroidism at the maternal-fetal interface. However, Kp10 increased the placental gene expressions of Casp1 and Il1β. The findings demonstrated that maternal hypothyroidism activated the inflammasome-NLRP3 pathway and pyroptosis at the maternal-fetal interface of rats and that treatment with Kp10 was able to block these processes, thus suggesting that kisspeptin analogues may be promising in the treatment of gestational diseases that involve inflammasome activation and pyroptosis.
Collapse
Affiliation(s)
- Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Acácia Eduarda de Jesus Nascimento
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| |
Collapse
|
30
|
TMBIM4 Deficiency Facilitates NLRP3 Inflammasome Activation-Induced Pyroptosis of Trophoblasts: A Potential Pathogenesis of Preeclampsia. BIOLOGY 2023; 12:biology12020208. [PMID: 36829486 PMCID: PMC9953300 DOI: 10.3390/biology12020208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Impaired invasion of EVTs results in inadequate remodelling of arteries and poor placentation, leading to PE. TMBIM4 was found to promote the migration and invasion of human osteosarcoma U2-OS and breast cancer MCF7 cell lines. However, the effect of TMBIM4 on trophoblast biological behaviour and its relevance to PE pathophysiology remain unclear. In this study, we confirmed that TMBIM4 was highly expressed in cytotrophoblasts, syncytiotrophoblasts, and EVTs of the human placenta during early pregnancy. By comparing the expression levels of TMBIM4 in the placenta of women with normal-term pregnancy and PE, TMBIM4 was found to be significantly decreased in PE. Thereafter, we determined the expression of TMBIM4 in the LPS-treated first-trimester human trophoblast cell line HTR-8/SVneo (mimicking a PE-like cell model), and determined the effect of TMBIM4 on trophoblast function and its underlying mechanism. LPS treatment reduced the expression of TMBIM4 and induced NLRP3 inflammasome activity in HTR-8/SVneo cells. KO of TMBIM4 in the HTR-8/SVneo cell line impaired cell viability, migration, and invasion, which was more severe in the LPS/ATP-treated TMBIM4-KO cell line. Moreover, TMBIM4 deficiency enhanced NLRP3 inflammasome activity and promoted subsequent pyroptosis, with or without LPS/ATP treatment. The negative relationship between TMBIM4 expression and NLRP3 inflammatory activity was verified in PE placentas. Inhibiting the NLRP3 inflammasome with MCC950 in HTR-8/SVneo cells alleviated LPS/ATP-induced pyroptosis and damaged cell function in the TMBIM4-KO cell line. Overall, this study revealed a new PE-associated protein, TMBIM4, and its biological significance in trophoblast pyroptosis mediated by the NLRP3 inflammasome. TMBIM4 may serve as a potential target for the treatment of placental inflammation-associated PE.
Collapse
|
31
|
Cervicovaginal Cytokines to Predict the Onset of Normal and Preterm Labor: a Pseudo-longitudinal Study. Reprod Sci 2023; 30:221-232. [PMID: 35799020 DOI: 10.1007/s43032-022-01007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/12/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory processes associated with human parturition are still not completely understood, not only because the gap between inflammation and the onset of labor has been difficult to study but also because of the limited knowledge about the role of cervicovaginal fluid (CVF) cytokines during the sequence of labor. We aimed to determine whether CVF cytokines could predict the onset of normal and preterm labor. Chemokines and proinflammatory and anti-inflammatory cytokines in CVF were measured in a pseudo-longitudinal manner in healthy women between 12 and 41 weeks gestation with intact fetal membranes before and during the first stage of labor. Women were grouped into five stages, from the absence of uterine activity and cervical changes to regular uterine contractions with cervix dilation > 3 cm (active phase of labor). Of 144 women with spontaneous labor, 96 gave birth at term, 48 gave birth preterm, and both groups displayed similar cytokine concentrations. We found positive correlations between proinflammatory cytokines and the initial sequence of labor, using individual cytokines and score-based data by principal component analysis (IFN-γ, TNF-α, IL-1β, IL-6) as dependent variables. The risk of labor onset increased as the concentrations of IL-6 increased (hazard ratio = 202.09, 95% confidence interval = 24.57-1662.49, P < 0.001). The IL-6 concentration predicted the onset of labor within 12 days of sampling (area under the time-dependent ROC curve = 0.785, 95% confidence interval = 0.693-0.877). Here, we showed that regardless of gestational age, the onset of labor could be predicted by the IL-6 concentration in the CVF, since the initial sequence of spontaneous labor displayed an inflammatory response expressed by the increase in proinflammatory cytokines.
Collapse
|
32
|
Shan Y, Shen S, Long J, Tang Z, Wu C, Ni X. Term and Preterm Birth Initiation Is Associated with the Macrophages Shifting to M1 Polarization in Gestational Tissues in Mice. BIOLOGY 2022; 11:biology11121759. [PMID: 36552269 PMCID: PMC9775566 DOI: 10.3390/biology11121759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Inflammation in gestational tissues plays critical role in parturition initiation. We sought to investigate the leukocyte infiltration and cytokine profile in uterine tissues to understand the inflammation during term and preterm labor in the mouse model. Preterm birth was induced by the administration of lipopolysaccharide (LPS) or RU38486. The populations of leukocytes were determined by flow cytometry. Macrophages were the largest population in the myometrium and decidua in late gestation. The macrophage population was significantly changed in the myometrium and decidua from late pregnancy to term labor and significantly changed at LPS- and RU386-induced preterm labor. Neutrophils, T cells, and NKT cells were increased in LPS- and RU38486-induced preterm labor. The above changes were accompanied by the increased expression of cytokines and chemokines. In late gestation, M2 macrophages were the predominant phenotype in gestational tissues. M1 macrophages significantly increased in these tissues at term and preterm labor. IL-6 and NLRP3 expression was significantly increased in macrophages at labor, supporting that macrophages exhibit proinflammatory phenotypes. NLRP3 inflammasome inhibitor MCC950 mainly suppressed macrophage infiltration in the myometrium at term labor and preterm labor. Our data suggest that the M1 polarization of macrophages contributes to inflammation linked to term and preterm labor initiation in gestational tissues.
Collapse
Affiliation(s)
- Yali Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shiping Shen
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Jing Long
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Zhengshan Tang
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Cichun Wu
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xin Ni
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
- Correspondence:
| |
Collapse
|
33
|
Purandare N, Kunji Y, Xi Y, Romero R, Gomez-Lopez N, Fribley A, Grossman LI, Aras S. Lipopolysaccharide induces placental mitochondrial dysfunction in murine and human systems by reducing MNRR1 levels via a TLR4-independent pathway. iScience 2022; 25:105342. [PMID: 36339251 PMCID: PMC9633742 DOI: 10.1016/j.isci.2022.105342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Mitochondria play a key role in placental growth and development, and mitochondrial dysfunction is associated with inflammation in pregnancy pathologies. However, the mechanisms whereby placental mitochondria sense inflammatory signals are unknown. Mitochondrial nuclear retrograde regulator 1 (MNRR1) is a bi-organellar protein responsible for mitochondrial function, including optimal induction of cellular stress-responsive signaling pathways. Here, in a lipopolysaccharide-induced model of systemic placental inflammation, we show that MNRR1 levels are reduced both in mouse placental tissues in vivo and in human trophoblastic cell lines in vitro. MNRR1 reduction is associated with mitochondrial dysfunction, enhanced oxidative stress, and activation of pro-inflammatory signaling. Mechanistically, we uncover a non-conventional pathway independent of Toll-like receptor 4 (TLR4) that results in ATM kinase-dependent threonine phosphorylation that stabilizes mitochondrial protease YME1L1, which targets MNRR1. Enhancing MNRR1 levels abrogates the bioenergetic defect and induces an anti-inflammatory phenotype. We therefore propose MNRR1 as an anti-inflammatory therapeutic in placental inflammation.
Collapse
Affiliation(s)
- Neeraja Purandare
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| | - Yusef Kunji
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| | - Yue Xi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48104, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Andrew Fribley
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I. Grossman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| | - Siddhesh Aras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University; Detroit, MI 48201, USA
| |
Collapse
|
34
|
Wikström T, Abrahamsson S, Bengtsson‐Palme J, Ek J, Kuusela P, Rekabdar E, Lindgren P, Wennerholm U, Jacobsson B, Valentin L, Hagberg H. Microbial and human transcriptome in vaginal fluid at midgestation: Association with spontaneous preterm delivery. Clin Transl Med 2022; 12:e1023. [PMID: 36103557 PMCID: PMC9473488 DOI: 10.1002/ctm2.1023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intrauterine infection and inflammation caused by microbial transfer from the vagina are believed to be important factors causing spontaneous preterm delivery (PTD). Multiple studies have examined the relationship between the cervicovaginal microbiome and spontaneous PTD with divergent results. Most studies have applied a DNA-based assessment, providing information on the microbial composition but not transcriptional activity. A transcriptomic approach was applied to investigate differences in the active vaginal microbiome and human transcriptome at midgestation between women delivering spontaneously preterm versus those delivering at term. METHODS Vaginal swabs were collected in women with a singleton pregnancy at 18 + 0 to 20 + 6 gestational weeks. For each case of spontaneous PTD (delivery <37 + 0 weeks) two term controls were randomized (39 + 0 to 40 + 6 weeks). Vaginal specimens were subject to sequencing of both human and microbial RNA. Microbial reads were taxonomically classified using Kraken2 and RefSeq as a reference. Statistical analyses were performed using DESeq2. GSEA and HUMAnN3 were used for pathway analyses. RESULTS We found 17 human genes to be differentially expressed (false discovery rate, FDR < 0.05) in the preterm group (n = 48) compared to the term group (n = 96). Gene expression of kallikrein-2 (KLK2), KLK3 and four isoforms of metallothioneins 1 (MT1s) was higher in the preterm group (FDR < 0.05). We found 11 individual bacterial species to be differentially expressed (FDR < 0.05), most with a low occurrence. No statistically significant differences in bacterial load, diversity or microbial community state types were found between the groups. CONCLUSIONS In our mainly white population, primarily bacterial species of low occurrence were differentially expressed at midgestation in women who delivered preterm versus at term. However, the expression of specific human transcripts including KLK2, KLK3 and several isoforms of MT1s was higher in preterm cases. This is of interest, because these genes may be involved in critical inflammatory pathways associated with spontaneous PTD.
Collapse
Affiliation(s)
- Tove Wikström
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Sanna Abrahamsson
- Bioinformatics Core FacilitySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johan Bengtsson‐Palme
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
- Division of Systems and Synthetic BiologyDepartment ofBiology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Joakim Ek
- Institute of Neuroscience and PhysiologyDepartment of Physiology Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Elham Rekabdar
- Bioinformatics Core FacilitySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter Lindgren
- Department of Clinical ScienceIntervention and TechnologyKarolinska InstitutetStockholmSweden
- Centre for Fetal MedicineKarolinska University HospitalStockholmSweden
| | - Ulla‐Britt Wennerholm
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Bo Jacobsson
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Lil Valentin
- Department of Obstetrics and GynecologySkåne University HospitalMalmöSweden
- Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
35
|
Motomura K, Romero R, Galaz J, Tao L, Garcia-Flores V, Xu Y, Done B, Arenas-Hernandez M, Miller D, Gutierrez-Contreras P, Farias-Jofre M, Aras S, Grossman LI, Tarca AL, Gomez-Lopez N. Fetal and maternal NLRP3 signaling is required for preterm labor and birth. JCI Insight 2022; 7:158238. [PMID: 35993366 PMCID: PMC9462488 DOI: 10.1172/jci.insight.158238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pedro Gutierrez-Contreras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Siddhesh Aras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
36
|
Silber M, Dekel N, Heusler I, Biron-Shental T, Amiel A, Kidron D, Weisz A, Benchetrit S, Zitman-Gal T. Inflammasome activation in preeclampsia and intrauterine growth restriction. Am J Reprod Immunol 2022; 88:e13598. [PMID: 35976163 DOI: 10.1111/aji.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Preeclampsia (PE) and intrauterine growth restriction (IUGR) are leading causes of perinatal complications, affecting 8%-10% of all pregnancies. Inflammasomes are suspected to be one of the mechanisms that lead to the process of term and preterm labors. This study evaluated the inflammasome-dependent inflammation processes in placental tissue of women with PE and IUGR. METHODS OF STUDY In this prospective cohort study, 14 women with PE, 15 with placental-related IUGR and 19 with normal pregnancy (NP) were recruited during admission for delivery. Maternal blood was obtained prior to delivery and neonatal cord blood and placental tissue were obtained after delivery. RESULTS NLRP7 and PYCARD protein expression were higher in placental PE and IUGR samples versus NP samples. Immunostaining revealed that NLRP7 and PYCARD were upregulated in PE and IUGR placental syncytiotrophoblast, stroma and endothelial cells. PYCARD serum levels were significantly higher in women with PE and IUGR. No significant changes were observed in neonatal cord blood. CONCLUSIONS NLRP7 and PYCARD are key inflammatory proteins that are significantly elevated in PE and IUGR. Better understanding their significance may enable them to become markers of prediction or progression of PE and IUGR.
Collapse
Affiliation(s)
- Michal Silber
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Dekel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ishai Heusler
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aliza Amiel
- School of Nursing, Academic College of Tel Aviv-Yaffo, Tel Aviv-Yaffo, Israel
| | - Debora Kidron
- Pathology Department, Meir Medical Center, Kfar Saba, Israel
| | - Avivit Weisz
- Pathology Department, Meir Medical Center, Kfar Saba, Israel
| | - Sydney Benchetrit
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| | - Tali Zitman-Gal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
37
|
Ali HES, Scoggin K, Murase H, Norris J, Menarim B, Dini P, Ball B. Transcriptomic and histochemical analysis reveal the complex regulatory networks in equine Chorioallantois during spontaneous term labor. Biol Reprod 2022; 107:1296-1310. [PMID: 35913756 DOI: 10.1093/biolre/ioac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The equine chorioallantois (CA) undergoes complex physical and biochemical changes during labor. However, the molecular mechanisms controlling these changes are still unclear. Therefore, the current study aimed to characterize the transcriptome of equine CA during spontaneous labor and compare it to that of normal preterm CA. Placental samples were collected postpartum from mares with normal term labor (TL group, n = 4) and from preterm not in labor mares (330 days GA; PTNL group, n = 4). Our study identified 4137 differentially expressed genes (DEGs) (1820 upregulated and 2317 downregulated) in CA during TL as compared to PTNL. TL was associated with the upregulation of several pro-inflammatory mediators (MHC-I, MHC-II, NLRP3, CXCL8, and MIF). Also, TL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, MMP3, and MMP9) with subsequent extracellular matrix degradation and apoptosis, as reflected by upregulation of several apoptosis-related genes (ATF3, ATF4, FAS, FOS, and BIRC3). In addition, TL was associated with downregulation of 21 transcripts coding for collagens. The upregulation of proteases, along with the downregulation of collagens, is believed to be implicated in separation and rupture of the CA during TL. Additionally, TL was associated with downregulation of transcripts coding for proteins essential for progestin synthesis (SRD5A1 and AKR1C1) and angiogenesis (VEGFA and RTL1), as well as upregulation of prostaglandin synthesis-related genes (PTGS2 and PTGES), which could reflect the physiological switch in placental endocrinology and function during TL. In conclusion, our findings revealed the equine CA gene expression signature in spontaneous labor at term, which improves our understanding of the molecular mechanisms triggering labor.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Harutaka Murase
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Jamie Norris
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Bruno Menarim
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
38
|
Gomez-Lopez N, Galaz J, Miller D, Farias-Jofre M, Liu Z, Arenas-Hernandez M, Garcia-Flores V, Shaffer Z, Greenberg J, Theis KR, Romero R. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction 2022; 164:R11-R45. [PMID: 35559791 PMCID: PMC9233101 DOI: 10.1530/rep-22-0046] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
In brief The syndrome of preterm labor comprises multiple established and novel etiologies. This review summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights potential strategies for its prevention. Abstract Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause of preterm labor and birth, as well as novel etiologies non-associated with intra-amniotic inflammation (i.e. formally known as idiopathic). While the intra-amniotic inflammatory responses driven by microbes (infection) or alarmins (sterile) have some overlap in the participating cellular and molecular processes, the distinct natures of these two conditions necessitate the implementation of specific approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be treated with the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially be treated by administering a combination of anti-inflammatory drugs (e.g. betamethasone, inflammasome inhibitors, etc.). Recent evidence also supports the role of fetal T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases diagnosed as idiopathic. Moreover, herein we also provide evidence of two maternally-driven immune mechanisms responsible for preterm births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector T-cell responses. Secondly, homeostatic macrophages were shown to be essential for maintaining pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-polarized macrophages shows great promise for preventing inflammation-induced preterm birth. Collectively, in this review, we discuss the established and novel immune mechanisms responsible for preterm birth and highlight the potential targets for novel strategies aimed at preventing the multi-etiological syndrome of preterm labor leading to preterm birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zachary Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Jonathan Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201, USA
- Detroit Medical Center, Detroit, Michigan, 48201, USA
| |
Collapse
|
39
|
Galaz J, Romero R, Arenas-Hernandez M, Farias-Jofre M, Motomura K, Liu Z, Kawahara N, Demery-Poulos C, Liu TN, Padron J, Panaitescu B, Gomez-Lopez N. Clarithromycin prevents preterm birth and neonatal mortality by dampening alarmin-induced maternal–fetal inflammation in mice. BMC Pregnancy Childbirth 2022; 22:503. [PMID: 35725425 PMCID: PMC9210693 DOI: 10.1186/s12884-022-04764-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background One of every four preterm neonates is born to a woman with sterile intra-amniotic inflammation (inflammatory process induced by alarmins); yet, this clinical condition still lacks treatment. Herein, we utilized an established murine model of sterile intra-amniotic inflammation induced by the alarmin high-mobility group box-1 (HMGB1) to evaluate whether treatment with clarithromycin prevents preterm birth and adverse neonatal outcomes by dampening maternal and fetal inflammatory responses. Methods Pregnant mice were intra-amniotically injected with HMGB1 under ultrasound guidance and treated with clarithromycin or vehicle control, and pregnancy and neonatal outcomes were recorded (n = 15 dams each). Additionally, amniotic fluid, placenta, uterine decidua, cervix, and fetal tissues were collected prior to preterm birth for determination of the inflammatory status (n = 7–8 dams each). Results Clarithromycin extended the gestational length, reduced the rate of preterm birth, and improved neonatal mortality induced by HMGB1. Clarithromycin prevented preterm birth by interfering with the common cascade of parturition as evidenced by dysregulated expression of contractility-associated proteins and inflammatory mediators in the intra-uterine tissues. Notably, clarithromycin improved neonatal survival by dampening inflammation in the placenta as well as in the fetal lung, intestine, liver, and spleen. Conclusions Clarithromycin prevents preterm birth and improves neonatal survival in an animal model of sterile intra-amniotic inflammation, demonstrating the potential utility of this macrolide for treating women with this clinical condition, which currently lacks a therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04764-2.
Collapse
|
40
|
Role of Inflammasomes in Keloids and Hypertrophic Scars-Lessons Learned from Chronic Diabetic Wounds and Skin Fibrosis. Int J Mol Sci 2022; 23:ijms23126820. [PMID: 35743263 PMCID: PMC9223684 DOI: 10.3390/ijms23126820] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Keloids and hypertrophic scars are pathological cutaneous scars. They arise from excessive wound healing, which induces chronic dermal inflammation and results in overwhelming fibroblast production of extracellular matrix. Their etiology is unclear. Inflammasomes are multiprotein complexes that are important in proinflammatory innate-immune system responses. We asked whether inflammasomes participate in pathological scarring by examining the literature on scarring, diabetic wounds (also characterized by chronic inflammation), and systemic sclerosis (also marked by fibrosis). Pathological scars are predominantly populated by anti-inflammatory M2 macrophages and recent literature hints that this could be driven by non-canonical inflammasome signaling. Diabetic-wound healing associates with inflammasome activation in immune (macrophages) and non-immune (keratinocytes) cells. Fibrotic conditions associate with inflammasome activation and inflammasome-induced transition of epithelial cells/endothelial cells/macrophages into myofibroblasts that deposit excessive extracellular matrix. Studies suggest that mechanical stimuli activate inflammasomes via the cytoskeleton and that mechanotransduction-inflammasome crosstalk is involved in fibrosis. Further research should examine (i) the roles that various inflammasome types in macrophages, (myo)fibroblasts, and other cell types play in keloid development and (ii) how mechanical stimuli interact with inflammasomes and thereby drive scar growth. Such research is likely to significantly advance our understanding of pathological scarring and aid the development of new therapeutic strategies.
Collapse
|
41
|
de Castro Alves CE, de Melo SA, de Melo Silva J, de Oliveira LC, do Nascimento VA, Santos JHA, Naveca FG, Pontes GS. Increased Serum Levels of Growth-Differentiation Factor 3 (GDF3) and Inflammasome-Related Markers in Pregnant Women during Acute Zika Virus Infection. Viruses 2022; 14:v14051004. [PMID: 35632746 PMCID: PMC9145598 DOI: 10.3390/v14051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
The systemic inflammatory response elicited by acute Zika virus (ZIKV) infection during pregnancy plays a key role in the clinical outcomes in mothers and congenitally infected offspring. The present study aimed to evaluate the serum levels of GDF-3 and inflammasome-related markers in pregnant women during acute ZIKV infection. Serum samples from pregnant (n = 18) and non-pregnant (n = 22) women with acute ZIKV infection were assessed for NLRP3, IL-1β, IL-18, and GDF3 markers through an enzyme-linked immunosorbent assay. ZIKV-negative pregnant (n = 18) and non-pregnant women (n = 15) were used as control groups. All serum markers were highly elevated in the ZIKV-infected groups in comparison with control groups (p < 0.0001). Among the ZIKV-infected groups, the serum markers were significantly augmented in the pregnant women in comparison with non-pregnant women (NLRP3 p < 0.001; IL-1β, IL-18, and GDF3 p < 0.0001). The IL-18 marker was found at significantly higher levels (p < 0.05) in the third trimester of pregnancy. Bivariate and multivariate analyses showed a strong positive correlation between GDF3 and NLRP3 markers among ZIKV-infected pregnant women (r = 0.91, p < 0.0001). The findings indicated that acute ZIKV infection during pregnancy induces the overexpression of GDF-3 and inflammasome-related markers, which may contribute to congenital disorders and harmful pregnancy outcomes.
Collapse
Affiliation(s)
- Carlos Eduardo de Castro Alves
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, Brazil; (C.E.d.C.A.); (J.d.M.S.)
- Laboratório de Virologia e Imunologia, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-001, Brazil; (S.A.d.M.); (L.C.d.O.)
| | - Sabrina Araújo de Melo
- Laboratório de Virologia e Imunologia, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-001, Brazil; (S.A.d.M.); (L.C.d.O.)
| | - Jean de Melo Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, Brazil; (C.E.d.C.A.); (J.d.M.S.)
| | - Leonardo Calheiros de Oliveira
- Laboratório de Virologia e Imunologia, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-001, Brazil; (S.A.d.M.); (L.C.d.O.)
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus 69057-070, Brazil; (V.A.d.N.); (F.G.N.)
| | | | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus 69057-070, Brazil; (V.A.d.N.); (F.G.N.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Gemilson Soares Pontes
- Programa de Pós-Graduação em Imunologia Básica e Aplicada—PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas—UFAM, Manaus 69080-900, Brazil; (C.E.d.C.A.); (J.d.M.S.)
- Laboratório de Virologia e Imunologia, Instituto Nacional de Pesquisas da Amazônia, Manaus 69060-001, Brazil; (S.A.d.M.); (L.C.d.O.)
- Correspondence:
| |
Collapse
|
42
|
Alfian I, Chakraborty A, Yong HEJ, Saini S, Lau RWK, Kalionis B, Dimitriadis E, Alfaidy N, Ricardo SD, Samuel CS, Murthi P. The Placental NLRP3 Inflammasome and Its Downstream Targets, Caspase-1 and Interleukin-6, Are Increased in Human Fetal Growth Restriction: Implications for Aberrant Inflammation-Induced Trophoblast Dysfunction. Cells 2022; 11:1413. [PMID: 35563719 PMCID: PMC9102093 DOI: 10.3390/cells11091413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal growth restriction (FGR) is commonly associated with placental insufficiency and inflammation. Nonetheless, the role played by inflammasomes in the pathogenesis of FGR is poorly understood. We hypothesised that placental inflammasomes are differentially expressed and contribute to the aberrant trophoblast function. Inflammasome gene expression profiles were characterised by real-time PCR on human placental tissues collected from third trimester FGR and gestation-matched control pregnancies (n = 25/group). The functional significance of a candidate inflammasome was then investigated using lipopolysaccharide (LPS)-induced models of inflammation in human trophoblast organoids, BeWo cells in vitro, and a murine model of FGR in vivo. Placental mRNA expression of NLRP3, caspases 1, 3, and 8, and interleukin 6 increased (>2-fold), while that of the anti-inflammatory cytokine, IL-10, decreased (<2-fold) in FGR compared with control pregnancies. LPS treatment increased NLRP3 and caspase-1 expression (>2-fold) in trophoblast organoids and BeWo cell cultures in vitro, and in the spongiotrophoblast and labyrinth in the murine model of FGR. However, the LPS-induced rise in NLRP3 was attenuated by its siRNA-induced down-regulation in BeWo cell cultures, which correlated with reduced activity of the apoptotic markers, caspase-3 and 8, compared to the control siRNA-treated cells. Our findings support the role of the NLRP3 inflammasome in the inflammation-induced aberrant trophoblast function, which may contribute to FGR.
Collapse
Affiliation(s)
- Irvan Alfian
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya 6, Jakarta Pusat 10160, Indonesia
| | - Amlan Chakraborty
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore;
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Ricky W. K. Lau
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Gynaecology Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France;
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Sharon D. Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Chrishan S. Samuel
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
43
|
Arthurs AL, Smith MD, Hintural MD, Breen J, McCullough D, Thornton FI, Leemaqz SY, Dekker GA, Jankovic-Karasoulos T, Roberts CT. Placental Inflammasome mRNA Levels Differ by Mode of Delivery and Fetal Sex. Front Immunol 2022; 13:807750. [PMID: 35401528 PMCID: PMC8992795 DOI: 10.3389/fimmu.2022.807750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Parturition signals the end of immune tolerance in pregnancy. Term labour is usually a sterile inflammatory process triggered by damage associated molecular patterns (DAMPs) as a consequence of functional progesterone withdrawal. Activation of DAMPs recruits leukocytes and inflammatory cytokine responses in the myometrium, decidua, cervix and fetal membranes. Emerging evidence shows components of the inflammasome are detectable in both maternal decidua and placenta. However, the activation of the placental inflammasome with respect to mode of delivery has not been profiled. Placental chorionic villus samples from women delivering at term via unassisted vaginal (UV) birth, labouring lower segment caesarean section (LLSCS, emergency caesarean section) and prelabour lower segment caesarean section (PLSCS, elective caesarean section) underwent high throughput RNA sequencing (NextSeq Illumina) and bioinformatic analyses to identify differentially expressed inflammatory (DE) genes. DE genes (IL1RL1, STAT1, STAT2, IL2RB, IL17RE, IL18BP, TNFAIP2, TNFSF10 and TNFRSF8), as well as common inflammasome genes (IL1B, IL1R1, IL1R2, IL6, IL18, IL18R1, IL18R1, IL10, and IL33), were targets for further qPCR analyses and Western blotting to quantify protein expression. There was no specific sensor molecule-activated inflammasome which dominated expression when stratified by mode of delivery, implying that multiple inflammasomes may function synergistically during parturition. Whilst placentae from women who had UV births overall expressed pro-inflammatory mediators, placentae from LLSCS births demonstrated a much greater pro-inflammatory response, with additional interplay of pro- and anti-inflammatory mediators. As expected, inflammasome activation was very low in placentae from women who had PLSCS births. Sex-specific differences were also detected. Placentae from male-bearing pregnancies displayed higher inflammasome activation in LLSCS compared with PLSCS, and placentae from female-bearing pregnancies displayed higher inflammasome activation in LLSCS compared with UV. In conclusion, placental inflammasome activation differs with respect to mode of delivery and neonatal sex. Its assessment may identify babies who have been exposed to aberrant inflammation at birth that may compromise their development and long-term health and wellbeing.
Collapse
Affiliation(s)
- Anya L Arthurs
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Melanie D Smith
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mhyles D Hintural
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - James Breen
- South Australian Genomics Centre, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Dylan McCullough
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Francesca I Thornton
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Shalem Y Leemaqz
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Gustaaf A Dekker
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Tanja Jankovic-Karasoulos
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Claire T Roberts
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
44
|
Moghaddam AO, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Johnson AJW. Heterogeneous microstructural changes of the cervix influence cervical funneling. Acta Biomater 2022; 140:434-445. [PMID: 34958969 PMCID: PMC8828692 DOI: 10.1016/j.actbio.2021.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
The cervix acts as a dynamic barrier between the uterus and vagina, retaining the fetus during pregnancy and allowing birth at term. Critical to this function, the physical properties of the cervix change, or remodel, but abnormal remodeling can lead to preterm birth (PTB). Although cervical remodeling has been studied, the complex 3D cervical microstructure has not been well-characterized. In this complex, dynamic, and heterogeneous tissue microenvironment, the microstructural changes are likely also heterogeneous. Using quantitative, 3D, second-harmonic generation microscopy, we demonstrate that rat cervical remodeling during pregnancy is not uniform across the cervix; the collagen fibers orient progressively more perpendicular to the cervical canals in the inner cervical zone, but do not reorient in other regions. Furthermore, regions that are microstructurally distinct early in pregnancy become more similar as pregnancy progresses. We use a finite element simulation to show that heterogeneous regional changes influence cervical funneling, an important marker of increased risk for PTB; the internal cervical os shows ∼6.5x larger radial displacement when fibers in the inner cervical zone are parallel to the cervical canals compared to when fibers are perpendicular to the canals. Our results provide new insights into the microstructural and tissue-level cervical changes that have been correlated with PTB and motivate further clinical studies exploring the origins of cervical funneling. STATEMENT OF SIGNIFICANCE: Cervical funneling, or dilation of the internal cervical os, is highly associated with increased risk of preterm birth. This study explores the 3D microstructural changes of the rat cervix during pregnancy and illustrates how these changes influence cervical funneling, assuming similar evolution in rats and humans. Quantitative imaging showed that microstructural remodeling during pregnancy is nonuniform across cervical regions and that initially distinct regions become more similar. We report, for the first time, that remodeling of the inner cervical zone can influence the dilation of the internal cervical os and allow the cervix to stay closed despite increased intrauterine pressure. Our results suggest a possible relationship between the microstructural changes of this zone and cervical funneling, motivating further clinical investigations.
Collapse
Affiliation(s)
- A. Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Z. Lin
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - M. Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - H. Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - B. L. McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL 60612, USA
| | - K. C. Toussaint
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - A. J. Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Corresponding author at: 2101A Mechanical Engineering Laboratory MC-244, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, United States.
| |
Collapse
|
45
|
Menon R, Dixon CL, Cayne S, Radnaa E, Salomon C, Sheller-Miller S. Differences in cord blood extracellular vesicle cargo in preterm and term births. Am J Reprod Immunol 2022; 87:e13521. [PMID: 35007379 DOI: 10.1111/aji.13521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE This study determined the cord plasma-derived extracellular vesicle (exosomes; 30-160 nm particles) proteomic profile in patients who had spontaneous preterm birth (PTB) or preterm premature rupture of membranes (pPROM), compared to those who delivered at term regardless of labor status. METHODS This is a cross-sectional analysis of a retrospective cohort that quantified and determined the proteomic cargo content of exosomes present in cord blood plasma samples in PTB or pPROM, and normal term in labor (TL) or term not in labor (TNIL) pregnancies. Exosomes were isolated by differential centrifugation followed by size exclusion chromatography. Exosomes were characterized by nanoparticle tracking analysis (quantity and size) and markers (dot blots for exosome markers). The exosomal proteomic profile was identified by liquid chromatography-mass spectrometry (LC-MS/MS). Ingenuity pathway analysis determined canonical pathways and biofunctions associated with dysregulated proteins. RESULTS Cord plasma exosomes have similar quantity and exhibit both tetraspanin and ESCRT protein markers specific of exosomes regardless of the conditions. Proteomics analysis exhibited several similar markers as well as very unique markers in exosomes from each condition; however, bioinformatics analysis revealed a generalized and non-specific inflammatory condition represented in exosomes from different condition that is not indicative of any specific underlying biological functions indicative of an underlying pathology. CONCLUSIONS Compared to maternal plasma and amniotic fluid exosomes, the value of cord plasma derived exosomes is limited. Quantity, character, and proteomic cargo contents in exosomes or the pathways and functions represented by differentially expressed proteins do not distinguish specific conditions regarding normal and abnormal parturition. The value of cord plasma exosome proteomic cargo has limited value as an indicator of an underlying physiology or as a biomarker of fetal well-being.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic and Translation Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Christopher Luke Dixon
- Division of Basic and Translation Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Samir Cayne
- Division of Basic and Translation Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translation Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia.,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Samantha Sheller-Miller
- Division of Basic and Translation Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
46
|
Churchill MJ, Mitchell PS, Rauch I. Epithelial Pyroptosis in Host Defense. J Mol Biol 2022; 434:167278. [PMID: 34627788 PMCID: PMC10010195 DOI: 10.1016/j.jmb.2021.167278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.
Collapse
Affiliation(s)
- Madeline J Churchill
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
47
|
Nunes PR, Romao‐Veiga M, Ribeiro VR, Peraçoli JC, Peracoli MTS, De Oliveira L. COVID‐19: a new risk factor or just a new imitator of preeclampsia? NLRP3 activation: a possible commom mechanism. J Med Virol 2022; 94:1813-1814. [PMID: 35092040 PMCID: PMC9015530 DOI: 10.1002/jmv.27632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Priscila Rezeck Nunes
- Institute of Biosciences of Botucatu, Sao Paulo State University (Unesp), BotucatuSao PauloBrazil
| | - Mariana Romao‐Veiga
- Botucatu Medical School, Sao Paulo State University (Unesp), BotucatuSao PauloBrazil
| | - Vanessa Rocha Ribeiro
- Botucatu Medical School, Sao Paulo State University (Unesp), BotucatuSao PauloBrazil
| | - José Carlos Peraçoli
- Botucatu Medical School, Sao Paulo State University (Unesp), BotucatuSao PauloBrazil
| | | | - Leandro De Oliveira
- Botucatu Medical School, Sao Paulo State University (Unesp), BotucatuSao PauloBrazil
| |
Collapse
|
48
|
Abi Nahed R, Elkhoury Mikhael M, Reynaud D, Collet C, Lemaitre N, Michy T, Hoffmann P, Sergent F, Marquette C, Murthi P, Raia-Barjat T, Alfaidy N, Benharouga M. Role of NLRP7 in Normal and Malignant Trophoblast Cells. Biomedicines 2022; 10:biomedicines10020252. [PMID: 35203462 PMCID: PMC8868573 DOI: 10.3390/biomedicines10020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Gestational choriocarcinoma (CC) is an aggressive cancer that develops upon the occurrence of abnormal pregnancies such as Hydatidiform moles (HMs) or upon non-molar pregnancies. CC cells often metastasize in multiple organs and can cause maternal death. Recent studies have established an association between recurrent HMs and mutations in the Nlrp7 gene. NLRP7 is a member of a new family of proteins that contributes to innate immune processes. Depending on its level of expression, NLRP7 can function in an inflammasome-dependent or independent pathway. To date, the role of NLRP7 in normal and in malignant human placentation remains to be elucidated. We have recently demonstrated that NLRP7 is overexpressed in CC trophoblast cells and may contribute to their acquisition of immune tolerance via the regulation of key immune tolerance-associated factors, namely HLA family, βCG and PD-L1. We have also demonstrated that NLRP7 increases trophoblast proliferation and decreases their differentiation, both in normal and tumor conditions. Actual findings suggest that NLRP7 expression may ensure a strong tolerance of the trophoblast by the maternal immune system during normal pregnancy and may directly affect the behavior and aggressiveness of malignant trophoblast cells. The proposed review summarizes recent advances in the understanding of the significance of NLRP7 overexpression in CC and discusses its multifaceted roles, including its function in an inflammasome-dependent or independent pathways.
Collapse
Affiliation(s)
- Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Maya Elkhoury Mikhael
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Thierry Michy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Christel Marquette
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Padma Murthi
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiphaine Raia-Barjat
- Department of Gynecology and Obstetrics, University Hospital, 42100 Saint Etienne, France;
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
- Correspondence: (N.A.); (M.B.); Tel.: +33-6-3207-3234 (N.A.); Fax: +33-6-8911-7443 (M.B.)
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
- Correspondence: (N.A.); (M.B.); Tel.: +33-6-3207-3234 (N.A.); Fax: +33-6-8911-7443 (M.B.)
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW It is well established that controlled immune activation and balance is critical for women's reproductive health and successful pregnancy outcomes. Research in recent decades in both clinical and animal studies has demonstrated that aberrant immune activation and inflammation play a role in the development and progression of women's reproductive health and pregnancy-related disorders. Inflammasomes are multi-protein cytoplasmic complexes that mediate immune activation. In this review, we summarize current knowledge on the role of inflammasome activation in pregnancy-related disorders. RECENT FINDINGS Increased activation of inflammasome is associated with multiple women's health reproductive disorders and pregnancy-associated disorders, including preeclampsia (PreE). Inflammasome activation is also associated with the novel coronavirus disease 2019 (COVID-19) disease caused by the SARS-Cov-2 virus. We and others have observed a positive association between increased PreE incidences with the onset of the COVID-19 pandemic. Here, we present our recent data indicating increased inflammasome activation, represented by caspase-1 activity, in women with COVID-19 and PreE compared to normotensive pregnant women COVID-19. The role of inflammation in pregnancy-related disorders is an area of intense research interest. With the onset of the COVID-19 pandemic and the associated increase in PreE observed clinically, there is a greater need to identify mechanisms of pathophysiology and targets to treat this maternal disorder. Inflammasome activation is associated with PreE and COVID-19 infection and may hold therapeutic potential to improve outcomes associated with PreE and curb the morbidity attributed to PreE.
Collapse
|
50
|
Gall AR, Amoah SK, Kitase Y, Jantzie LL. Placental mediated mechanisms of perinatal brain injury: Evolving inflammation and exosomes. Exp Neurol 2022; 347:113914. [PMID: 34752783 PMCID: PMC8712107 DOI: 10.1016/j.expneurol.2021.113914] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Pregnancy is an inflammatory process that is carefully regulated by the placenta via immunomodulation and cell-to-cell communication of maternal and fetal tissues. Exosomes, types of extracellular vesicles, facilitate the intercellular communication and traffic biologically modifying cargo within the maternal-placental-fetal axis in normal and pathologic pregnancies. Chorioamnionitis is characterized by inflammation of chorioamniotic membranes that produces systemic maternal and fetal inflammatory responses of cytokine dysregulation and has been associated with brain injury and neurodevelopmental disorders. This review focuses on how pathologic placental exosomes propagate acute and chronic inflammation leading to brain injury. The evidence reviewed here highlights the need to investigate exosomes from pathologic pregnancies and those with known brain injury to identify new diagnostics, biomarkers, and potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander R Gall
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen K Amoah
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuma Kitase
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Kennedy Krieger Institute, Baltimore, MD, USA,Corresponding author at: 600 N. Wolfe Street, CMSC Building, 6-104A, Baltimore, MD 21287, USA. (L.L. Jantzie)
| |
Collapse
|