1
|
Tshilate TS, Ishengoma E, Rhode C. Construction of a high-density linkage map and QTL detection for growth traits in South African abalone (Haliotis midae). Anim Genet 2024; 55:744-760. [PMID: 38945682 DOI: 10.1111/age.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/23/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Haliotis midae is one of the most important molluscs in South African commercial aquaculture. In this study, a high-resolution integrated linkage map was constructed, and QTL identified using 2b-RADseq for genotyping SNPs in three families. The final integrated linkage map was composed by merging the individual family maps, resulting in 3290 informative SNPs mapping to 18 linkage groups, conforming to the known haploid chromosome number for H. midae. The total map spanned 1798.25 cM with an average marker interval of 0.55 cM, representing a genome coverage of 98.76%. QTL analysis, across all three families, resulted in a total of five QTL identified for growth-related traits, shell width, shell length, and total body weight. For shell width and total body weight, one QTL was identified for each trait respectively, whilst three QTL were identified for shell length. The identified QTL respectively explained between 7.20% and 11.40% of the observed phenotypic variance. All three traits were significantly correlated (r = 0.862-0.970; p < 0.01) and shared overlapping QTL. The QTL for growth traits were mapped back to the H. midae draft genome and BLAST searches revealed the identity of candidate genes, such as egf-1, megf10, megf6, tnx, sevp1, kcp, notch1, and scube2 with possible functional roles in H. midae growth. The constructed high-density linkage map and mapped QTL have given valuable insights regarding the genetic architecture of growth-related traits and will be important genetic resources for marker-assisted selection. It remains, however, important to validate causal variants through linkage disequilibrium fine mapping in future.
Collapse
Affiliation(s)
| | - Edson Ishengoma
- Department of Genetics, Stellenbosch University, Matieland, South Africa
- Mkwawa University College of Education, University of Dar es Salaam, Iringa, Tanzania
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
2
|
Chen Y, Chen H, Han C, Ou H, Zhan X. The structure and proteomic analysis of byssus in Pteria penguin: Insights into byssus evolution and formation. J Proteomics 2024; 307:105267. [PMID: 39089615 DOI: 10.1016/j.jprot.2024.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.
Collapse
Affiliation(s)
- Yi Chen
- School of Ecology, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Syx D, Malfait F. Pathogenic mechanisms in genetically defined Ehlers-Danlos syndromes. Trends Mol Med 2024; 30:824-843. [PMID: 39147618 DOI: 10.1016/j.molmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 08/17/2024]
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of rare heritable connective tissue disorders, common hallmarks of which are skin hyperextensibility, joint hypermobility, and generalized connective tissue fragility. Currently, 13 EDS types are recognized, caused by defects in 20 genes which consequently alter biosynthesis, organization, and/or supramolecular assembly of collagen fibrils in the extracellular matrix (ECM). Molecular analyses on patient samples (mostly dermal fibroblast cultures), combined with studies on animal models, have highlighted that part of EDS pathogenesis can be attributed to impaired cellular dynamics. Although our understanding of the full extent of (extra)cellular consequences is still limited, this narrative review aims to provide a comprehensive overview of our current knowledge on the extracellular, pericellular, and intracellular alterations implicated in EDS pathogenesis.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
4
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Rajput A, De Deyn PP, Le Bastard N, Gearing M, Kaat LD, Van Swieten JC, Dopper E, Ghetti BF, Newell KL, Troakes C, de Yébenes JG, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Le Ber I, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Van Deerlin VM, Lee EB, White CL, Morris H, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dalgard C, Dickson DW, Höglinger GU, Schellenberg GD, Geschwind DH, Lee WP. Whole-genome sequencing analysis reveals new susceptibility loci and structural variants associated with progressive supranuclear palsy. Mol Neurodegener 2024; 19:61. [PMID: 39152475 PMCID: PMC11330058 DOI: 10.1186/s13024-024-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). METHOD In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. RESULTS Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. CONCLUSIONS Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV, Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura Donker Kaat
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sigrun Roeber
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Ulrich Müller
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias I Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivanna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clifton Dalgard
- Department of Anatomy Physiology and Genetics, the American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Shahbaz S, Rosero EP, Syed H, Hnatiuk M, Bozorgmehr N, Rahmati A, Zia S, Plemel J, Osman M, Elahi S. Bipotential B-neutrophil progenitors are present in human and mouse bone marrow and emerge in the periphery upon stress hematopoiesis. mBio 2024; 15:e0159924. [PMID: 39012145 PMCID: PMC11323571 DOI: 10.1128/mbio.01599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that gets skewed toward myelopoiesis. This restrains lymphopoiesis, but the role of lymphocytes in this process is not well defined. To unravel the intricacies of neutrophil responses in COVID-19, we performed bulk RNAseq on neutrophils from healthy controls and COVID-19 patients. Principal component analysis revealed distinguishing neutrophil gene expression alterations in COVID-19 patients. ICU and ward patients displayed substantial transcriptional changes, with ICU patients exhibiting a more pronounced response. Intriguingly, neutrophils from COVID-19 patients, notably ICU patients, exhibited an enrichment of immunoglobulin (Ig) and B cell lineage-associated genes, suggesting potential lineage plasticity. We validated our RNAseq findings in a larger cohort. Moreover, by reanalyzing single-cell RNA sequencing (scRNAseq) data on human bone marrow (BM) granulocytes, we identified the cluster of granulocyte-monocyte progenitors (GMP) enriched with Ig and B cell lineage-associated genes. These cells with lineage plasticity may serve as a resource depending on the host's needs during severe systemic infection. This distinct B cell subset may play a pivotal role in promoting myelopoiesis in response to infection. The scRNAseq analysis of BM neutrophils in infected mice further supported our observations in humans. Finally, our studies using an animal model of acute infection implicate IL-7/GM-CSF in influencing neutrophil and B cell dynamics. Elevated GM-CSF and reduced IL-7 receptor expression in COVID-19 patients imply altered hematopoiesis favoring myeloid cells over B cells. Our findings provide novel insights into the relationship between the B-neutrophil lineages during severe infection, hinting at potential implications for disease pathogenesis. IMPORTANCE This study investigates the dynamics of hematopoiesis in COVID-19, focusing on neutrophil responses. Through RNA sequencing of neutrophils from healthy controls and COVID-19 patients, distinct gene expression alterations are identified, particularly in ICU patients. Notably, neutrophils from COVID-19 patients, especially in the ICU, exhibit enrichment of immunoglobulin and B cell lineage-associated genes, suggesting potential lineage plasticity. Validation in a larger patient cohort and single-cell analysis of bone marrow granulocytes support the presence of granulocyte-monocyte progenitors with B cell lineage-associated genes. The findings propose a link between B-neutrophil lineages during severe infection, implicating a potential role for these cells in altered hematopoiesis favoring myeloid cells over B cells. Elevated GM-CSF and reduced IL-7 receptor expression in stress hematopoiesis suggest cytokine involvement in these dynamics, providing novel insights into disease pathogenesis.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Hussain Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Mark Hnatiuk
- Division of Hematology, University of Alberta, Edmonton, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jason Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Canada
- Women and Children Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Martínez-Hernández R, Sánchez de la Blanca N, Sacristán-Gómez P, Serrano-Somavilla A, Muñoz De Nova JL, Sánchez Cabo F, Heyn H, Sampedro-Núñez M, Marazuela M. Unraveling the molecular architecture of autoimmune thyroid diseases at spatial resolution. Nat Commun 2024; 15:5895. [PMID: 39003267 PMCID: PMC11246508 DOI: 10.1038/s41467-024-50192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) such as Graves' disease (GD) or Hashimoto's thyroiditis (HT) are organ-specific diseases that involve complex interactions between distinct components of thyroid tissue. Here, we use spatial transcriptomics to explore the molecular architecture, heterogeneity and location of different cells present in the thyroid tissue, including thyroid follicular cells (TFCs), stromal cells such as fibroblasts, endothelial cells, and thyroid infiltrating lymphocytes. We identify damaged antigen-presenting TFCs with upregulated CD74 and MIF expression in thyroid samples from AITD patients. Furthermore, we discern two main fibroblast subpopulations in the connective tissue including ADIRF+ myofibroblasts, mainly enriched in GD, and inflammatory fibroblasts, enriched in HT patients. We also demonstrate an increase of fenestrated PLVAP+ vessels in AITD, especially in GD. Our data unveil stromal and thyroid epithelial cell subpopulations that could play a role in the pathogenesis of AITD.
Collapse
Affiliation(s)
- Rebeca Martínez-Hernández
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain.
| | - Nuria Sánchez de la Blanca
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Pablo Sacristán-Gómez
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - José Luis Muñoz De Nova
- Department of General and Digestive Surgery, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Sánchez Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain.
| |
Collapse
|
7
|
Wang Y, Liu X, Wang X, Lu J, Tian Y, Liu Q, Xue J. Matricellular proteins: Potential biomarkers in head and neck cancer. J Cell Commun Signal 2024; 18:e12027. [PMID: 38946720 PMCID: PMC11208127 DOI: 10.1002/ccs3.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 07/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of diverse multidomain macromolecules, including collagen, proteoglycans, and fibronectin, that significantly contribute to the mechanical properties of tissues. Matricellular proteins (MCPs), as a family of non-structural proteins, play a crucial role in regulating various ECM functions. They exert their biological effects by interacting with matrix proteins, cell surface receptors, cytokines, and proteases. These interactions govern essential cellular processes such as differentiation, proliferation, adhesion, migration as well as multiple signal transduction pathways. Consequently, MCPs are pivotal in maintaining tissue homeostasis while orchestrating intricate molecular mechanisms within the ECM framework. The expression level of MCPs in adult steady-state tissues is significantly low; however, under pathological conditions such as inflammation and cancer, there is a substantial increase in their expression. In recent years, an increasing number of studies have focused on elucidating the role and significance of MCPs in the development and progression of head and neck cancer (HNC). During HNC progression, there is a remarkable upregulation in MCP expression. Through their distinctive structure and function, they actively promote tumor growth, invasion, epithelial-mesenchymal transition, and lymphatic metastasis of HNC cells. Moreover, by binding to integrins and modulating various signaling pathways, they effectively execute their biological functions. Furthermore, MCPs also hold potential as prognostic indicators. Although the star proteins of various MCPs have been extensively investigated, there remains a plethora of MCP family members that necessitate further scrutiny. This article comprehensively examines the functionalities of each MCP and highlights the research advancements in the context of HNC, with an aim to identify novel biomarkers for HNC and propose promising avenues for future investigations.
Collapse
Affiliation(s)
- Yunsheng Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xudong Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xingyue Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jiyong Lu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Youxin Tian
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Qinjiang Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jincai Xue
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| |
Collapse
|
8
|
Chen J, Zeng Q, Wang X, Xu R, Wang W, Huang Y, Sun Q, Yuan W, Wang P, Chen D, Tong P, Jin H. Aberrant methylation and expression of TNXB promote chondrocyte apoptosis and extracullar matrix degradation in hemophilic arthropathy via AKT signaling. eLife 2024; 13:RP93087. [PMID: 38819423 PMCID: PMC11142640 DOI: 10.7554/elife.93087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xu Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Weidong Wang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuliang Huang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| |
Collapse
|
9
|
Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact Mater 2024; 34:494-519. [PMID: 38298755 PMCID: PMC10827697 DOI: 10.1016/j.bioactmat.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Biomaterial choice is an essential step during the development tissue engineering and regenerative medicine (TERM) applications. The selected biomaterial must present properties allowing the physiological-like recapitulation of several processes that lead to the reestablishment of homeostatic tissue or organ function. Biomaterials derived from the extracellular matrix (ECM) present many such properties and their use in the field has been steadily increasing. Considering this growing importance, it becomes imperative to provide a comprehensive overview of ECM biomaterials, encompassing their sourcing, processing, and integration into TERM applications. This review compiles the main strategies used to isolate and process ECM-derived biomaterials as well as different techniques used for its characterization, namely biochemical and chemical, physical, morphological, and biological. Lastly, some of their applications in the TERM field are explored and discussed.
Collapse
Affiliation(s)
- Jennifer Noro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Vilaça-Faria
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
10
|
Yue L, Gong T, Jiang W, Qian L, Gong W, Sun Y, Cai X, Xu H, Liu F, Wang H, Li S, Zhu Y, Zheng Z, Wu Q, Guo T. Proteomic profiling of ovarian clear cell carcinomas identifies prognostic biomarkers for chemotherapy. Proteomics 2024; 24:e2300242. [PMID: 38171885 DOI: 10.1002/pmic.202300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Clear cell ovarian carcinoma (CCOC) is a relatively rare subtype of ovarian cancer (OC) with high degree of resistance to standard chemotherapy. Little is known about the underlying molecular mechanisms, and it remains a challenge to predict its prognosis after chemotherapy. Here, we first analyzed the proteome of 35 formalin-fixed paraffin-embedded (FFPE) CCOC tissue specimens from a cohort of 32 patients with CCOC (H1 cohort) and characterized 8697 proteins using data-independent acquisition mass spectrometry (DIA-MS). We then performed proteomic analysis of 28 fresh frozen (FF) CCOC tissue specimens from an independent cohort of 24 patients with CCOC (H2 cohort), leading to the identification of 9409 proteins with DIA-MS. After bioinformatics analysis, we narrowed our focus to 15 proteins significantly correlated with the recurrence free survival (RFS) in both cohorts. These proteins are mainly involved in DNA damage response, extracellular matrix (ECM), and mitochondrial metabolism. Parallel reaction monitoring (PRM)-MS was adopted to validate the prognostic potential of the 15 proteins in the H1 cohort and an independent confirmation cohort (H3 cohort). Interferon-inducible transmembrane protein 1 (IFITM1) was observed as a robust prognostic marker for CCOC in both PRM data and immunohistochemistry (IHC) data. Taken together, this study presents a CCOC proteomic data resource and a single promising protein, IFITM1, which could potentially predict the recurrence and survival of CCOC.
Collapse
Affiliation(s)
- Liang Yue
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Tingting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University
| | - Wenhao Jiang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Liujia Qian
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Wangang Gong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yaoting Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Heli Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fanghua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Wang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Sainan Li
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, Peking University, Beijing, China
| | - Yi Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Nakatake M, Kurosaki H, Nakamura T. Histone deacetylase inhibitor boosts anticancer potential of fusogenic oncolytic vaccinia virus by enhancing cell-cell fusion. Cancer Sci 2024; 115:600-610. [PMID: 38037288 PMCID: PMC10859623 DOI: 10.1111/cas.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Oncolytic viruses have two anticancer functions: direct oncolysis and elicitation of antitumor immunity. We previously developed a novel fusogenic oncolytic vaccinia virus (FUVAC) from a non-fusogenic vaccinia virus (VV) and, by remodeling the tumor immune microenvironment, we demonstrated that FUVAC induced stronger oncolysis and antitumor immune responses compared with non-fusogenic VV. These functions depend strongly on cell-cell fusion induction. However, FUVAC tends to have decreased fusion activity in cells with low virus replication efficacy. Therefore, another combination strategy was required to increase cell-cell fusion in these cells. Histone deacetylase (HDAC) inhibitors suppress the host virus defense response and promote viral replication. Therefore, in this study, we selected an HDAC inhibitor, trichostatin A (TSA), as the combination agent for FUVAC to enhance its fusion-based antitumor potential. TSA was added prior to FUVAC treatment of murine tumor B16-F10 and CT26 cells. TSA increased the replication of both FUVAC and parental non-fusogenic VV. Moreover, TSA enhanced cell-cell fusion and FUVAC cytotoxicity in these tumor cells in a dose-dependent manner. Transcriptome analysis revealed that TSA-treated tumors showed altered expression of cellular component-related genes, which may affect fusion tolerance. In a bilateral tumor-bearing mouse model, combination treatment of TSA and FUVAC significantly prolonged mouse survival compared with either treatment alone or in combination with non-fusogenic VV. Our findings demonstrate that TSA is a potent enhancer of cell-cell fusion efficacy of FUVAC.
Collapse
Affiliation(s)
- Motomu Nakatake
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Hajime Kurosaki
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Takafumi Nakamura
- Division of Genomic Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| |
Collapse
|
12
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
13
|
Cerullo AR, McDermott MB, Pepi LE, Liu ZL, Barry D, Zhang S, Yang X, Chen X, Azadi P, Holford M, Braunschweig AB. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat Commun 2023; 14:5361. [PMID: 37660066 PMCID: PMC10475054 DOI: 10.1038/s41467-023-41094-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail, Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials. C. aspersum secretes three mucus-one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative "mucomics" approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences between C. aspersum mucus shows how considering structure at all levels can inform the design of mucus-inspired materials.
Collapse
Affiliation(s)
- Antonio R Cerullo
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Maxwell B McDermott
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Lauren E Pepi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Zhi-Lun Liu
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Diariou Barry
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Sheng Zhang
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Xi Chen
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, New York, NY, 10031, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Physics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Mande Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, 10024, USA
| | - Adam B Braunschweig
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, NY, 10065, USA.
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Abdulmalik S, Gallo J, Nip J, Katebifar S, Arul M, Lebaschi A, Munch LN, Bartly JM, Choudhary S, Kalajzic I, Banasavadi-Siddegowdae YK, Nukavarapu SP, Kumbar SG. Nanofiber matrix formulations for the delivery of Exendin-4 for tendon regeneration: In vitro and in vivo assessment. Bioact Mater 2023; 25:42-60. [PMID: 36733930 PMCID: PMC9876843 DOI: 10.1016/j.bioactmat.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Tendon and ligament injuries are the most common musculoskeletal injuries, which not only impact the quality of life but result in a massive economic burden. Surgical interventions for tendon/ligament injuries utilize biological and/or engineered grafts to reconstruct damaged tissue, but these have limitations. Engineered matrices confer superior physicochemical properties over biological grafts but lack desirable bioactivity to promote tissue healing. While incorporating drugs can enhance bioactivity, large matrix surface areas and hydrophobicity can lead to uncontrolled burst release and/or incomplete release due to binding. To overcome these limitations, we evaluated the delivery of a peptide growth factor (exendin-4; Ex-4) using an enhanced nanofiber matrix in a tendon injury model. To overcome drug surface binding due to matrix hydrophobicity of poly(caprolactone) (PCL)-which would be expected to enhance cell-material interactions-we blended PCL and cellulose acetate (CA) and electrospun nanofiber matrices with fiber diameters ranging from 600 to 1000 nm. To avoid burst release and protect the drug, we encapsulated Ex-4 in the open lumen of halloysite nanotubes (HNTs), sealed the HNT tube endings with a polymer blend, and mixed Ex-4-loaded HNTs into the polymer mixture before electrospinning. This reduced burst release from ∼75% to ∼40%, but did not alter matrix morphology, fiber diameter, or tensile properties. We evaluated the bioactivity of the Ex-4 nanofiber formulation by culturing human mesenchymal stem cells (hMSCs) on matrix surfaces for 21 days and measuring tenogenic differentiation, compared with nanofiber matrices in basal media alone. Strikingly, we observed that Ex-4 nanofiber matrices accelerated the hMSC proliferation rate and elevated levels of sulfated glycosaminoglycan, tendon-related genes (Scx, Mkx, and Tnmd), and ECM-related genes (Col-I, Col-III, and Dcn), compared to control. We then assessed the safety and efficacy of Ex-4 nanofiber matrices in a full-thickness rat Achilles tendon defect with histology, marker expression, functional walking track analysis, and mechanical testing. Our analysis confirmed that Ex-4 nanofiber matrices enhanced tendon healing and reduced fibrocartilage formation versus nanofiber matrices alone. These findings implicate Ex-4 as a potentially valuable tool for tendon tissue engineering.
Collapse
Affiliation(s)
- Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Jack Gallo
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jonathan Nip
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Amir Lebaschi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Lucas N. Munch
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jenna M. Bartly
- Department of Immunology, Center on Aging, University of Connecticut Health, Farmington, CT, USA
| | - Shilpa Choudhary
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, USA
| | | | - Syam P. Nukavarapu
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
15
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
16
|
Coron A, Fonseca DM, Sharma A, Slupphaug G, Strand BL, Rokstad AMA. MS-proteomics provides insight into the host responses towards alginate microspheres. Mater Today Bio 2022; 17:100490. [DOI: 10.1016/j.mtbio.2022.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
|
17
|
Kerick M, Acosta-Herrera M, Simeón-Aznar CP, Callejas JL, Assassi S, Proudman SM, Nikpour M, Hunzelmann N, Moroncini G, de Vries-Bouwstra JK, Orozco G, Barton A, Herrick AL, Terao C, Allanore Y, Fonseca C, Alarcón-Riquelme ME, Radstake TRDJ, Beretta L, Denton CP, Mayes MD, Martin J. Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis. NPJ Genom Med 2022; 7:57. [PMID: 36198672 PMCID: PMC9534873 DOI: 10.1038/s41525-022-00327-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals.
Collapse
Affiliation(s)
- Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain.
| | | | | | - Shervin Assassi
- Department of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susanna M Proudman
- Rheumatology Unit, Royal Adelaide Hospital and University of Adelaide, Adelaide, SA, Australia
| | - Mandana Nikpour
- The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia
| | | | - Gianluca Moroncini
- Department of Clinical and Molecular Science, Università Politecnica delle Marche e Ospedali Riuniti, Ancona, Italy
| | | | - Gisela Orozco
- Center for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Center, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Anne Barton
- Center for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Center, Manchester University NHS Foundation Trust, Manchester, Greater Manchester, UK
| | - Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Northern care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yannick Allanore
- Department of Rheumatology A, Hospital Cochin, Paris, Île-de-France, France
| | - Carmen Fonseca
- Center for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Marta Eugenia Alarcón-Riquelme
- Center for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Christopher P Denton
- Center for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Maureen D Mayes
- Department of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| |
Collapse
|
18
|
Iori S, Pauletto M, Bassan I, Bonsembiante F, Gelain ME, Bardhi A, Barbarossa A, Zaghini A, Dacasto M, Giantin M. Deepening the Whole Transcriptomics of Bovine Liver Cells Exposed to AFB1: A Spotlight on Toll-like Receptor 2. Toxins (Basel) 2022; 14:toxins14070504. [PMID: 35878242 PMCID: PMC9323327 DOI: 10.3390/toxins14070504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle. The bovine fetal hepatocyte cell line (BFH12) was exposed for 48 h to three different AFB1 concentrations (0.9 µM, 1.8 µM and 3.6 µM). Whole-transcriptomic changes were measured by RNA-seq analysis, showing significant differences in the expression of genes mainly involved in inflammatory response, oxidative stress, drug metabolism, apoptosis and cancer. As a confirmatory step, post-translational investigations on genes of interest were implemented. Cell death associated with necrosis rather than apoptosis events was noted. As far as the toxicity mechanism is concerned, a molecular pathway linking inflammatory response and oxidative stress was postulated. Toll-Like Receptor 2 (TLR2) activation, consequent to AFB1 exposure, triggers an intracellular signaling cascade involving a kinase (p38β MAPK), which in turn allows the nuclear translocation of the activator protein-1 (AP-1) and NF-κB, finally leading to the release of pro-inflammatory cytokines. Furthermore, a p38β MAPK negative role in cytoprotective genes regulation was postulated. Overall, our investigations improved the actual knowledge on the molecular effects of this worldwide relevant natural toxin in cattle.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Correspondence: ; Tel.: +39-049-827-2946
| |
Collapse
|
19
|
Prevalence of CAH-X Syndrome in Italian Patients with Congenital Adrenal Hyperplasia (CAH) Due to 21-Hydroxylase Deficiency. J Clin Med 2022; 11:jcm11133818. [PMID: 35807105 PMCID: PMC9267771 DOI: 10.3390/jcm11133818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
21-hydroxylase deficiency (21OHD), the most common form of congenital adrenal hyperplasia (CAH), is associated with pathogenic variants in CYP21A2 gene. The clinical form of the disease ranges from classic or severe to non-classic (NC) or mild late onset. The CYP21A2 gene is located on the long arm of chromosome 6, within the RCCX region, one of the most complex loci in the human genome. The 3′untranslated sequence of CYP21A2 exon 10 overlap the last exon of TNXB gene (these genes lie on the opposite strands of DNA and have the opposite transcriptional direction) that encodes an extracellular matrix glycoprotein tenascin-X (TNX). A recombination event between TNXB and its pseudogene TNXA causes a 30 kb deletion producing a chimeric TNXA/TNXB gene (CAH-X chimera) where both CYP21A2 and TNXB genes are impaired. This genetic condition characterizes a subset of patients with 21OHD who display the hypermobility phenotype of Ehlers–Danlos syndrome (hEDS) (CAH-X Syndrome). The aim of this study was to assess the prevalence of CAH-X syndrome in an Italian cohort of patients with 21OHD. At this purpose, 196 probands were recruited. Multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing were used to identify the CAH-X genotype. Twenty-one individuals showed the heterozygous continuous deletion involving the CYP21A2 and part of the TNXB gene. EDS-related clinical manifestations were identified in most patients carrying the CAH-X chimera. A CAH-X prevalence of 10.7% was estimated in our population.
Collapse
|
20
|
Tucker RP, Degen M. Revisiting the Tenascins: Exploitable as Cancer Targets? Front Oncol 2022; 12:908247. [PMID: 35785162 PMCID: PMC9248440 DOI: 10.3389/fonc.2022.908247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
For their full manifestation, tumors require support from the surrounding tumor microenvironment (TME), which includes a specific extracellular matrix (ECM), vasculature, and a variety of non-malignant host cells. Together, these components form a tumor-permissive niche that significantly differs from physiological conditions. While the TME helps to promote tumor progression, its special composition also provides potential targets for anti-cancer therapy. Targeting tumor-specific ECM molecules and stromal cells or disrupting aberrant mesenchyme-cancer communications might normalize the TME and improve cancer treatment outcome. The tenascins are a family of large, multifunctional extracellular glycoproteins consisting of four members. Although each have been described to be expressed in the ECM surrounding cancer cells, tenascin-C and tenascin-W are currently the most promising candidates for exploitability and clinical use as they are highly expressed in various tumor stroma with relatively low abundance in healthy tissues. Here, we review what is known about expression of all four tenascin family members in tumors, followed by a more thorough discussion on tenascin-C and tenascin-W focusing on their oncogenic functions and their potential as diagnostic and/or targetable molecules for anti-cancer treatment purposes.
Collapse
Affiliation(s)
- Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- *Correspondence: Martin Degen,
| |
Collapse
|
21
|
Abstract
The term CAH-X was coined to describe a subset of patients with 21-hydroxylase deficiency displaying a phenotype compatible with the hypermobility type of Ehlers Danlos syndrome. The genetic defect is due to the monoallelic presence of a CYP21A2 deletion extending into the gene encoding tenascin X (TNXB), a connective tissue extracellular matrix protein. The result is a chimeric TNXA/TNXB gene causing tenascin-X haploinsufficiency. The prevalence of CAH-X was estimated to be around 14-15% in large cohorts of patients with 21-hydroxylase deficiency. However, population studies are still scarce and the clinical picture of the syndrome has yet to be fully defined. In this review, we discuss the current knowledge regarding the genetic and clinical profile of the CAH-X syndrome.
Collapse
|
22
|
Liang G, Wang S, Shao J, Jin Y, Xu L, Yan Y, Günther S, Wang L, Offermanns S. Tenascin-X Mediates Flow-Induced Suppression of EndMT and Atherosclerosis. Circ Res 2022; 130:1647-1659. [PMID: 35443807 DOI: 10.1161/circresaha.121.320694] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial-to-mesenchymal transition (EndMT) has been identified as a critical driver of vascular inflammation and atherosclerosis, and TGF-β (transforming growth factor β) is a key mediator of EndMT. Both EndMT and atherosclerosis are promoted by disturbed flow, whereas unidirectional laminar flow limits EndMT and is atheroprotective. How EndMT and endothelial TGF-β signaling are regulated by different flow patterns is, however, still poorly understood. METHODS Flow chamber experiments in vitro and endothelium-specific knockout mice were used to study the role of tenascin-X in the regulation of EndMT and atherosclerosis as well as the underlying mechanisms. RESULTS In human endothelial cells as well as in human and mouse aortae, unidirectional laminar flow but not disturbed flow strongly increased endothelial expression of the extracellular matrix protein TN-X (tenascin-X) in a KLF4 (Krüppel-like factor 4) dependent manner. Mice with endothelium-specific loss of TN-X (EC-Tnxb-KO) showed increased endothelial TGF-β signaling as well as increased endothelial expression of EndMT and inflammatory marker genes. When EC-Tnxb-KO mice were subjected to partial carotid artery ligation, we observed increased vascular remodeling. EC-Tnxb-KO mice crossed to low-density lipoprotein receptor-deficient mice showed advanced atherosclerotic lesions after being fed a high-fat diet. Treatment of EC-Tnxb-KO mice with an anti-TGF-beta antibody or additional endothelial loss of TGF-beta receptors 1 and 2 normalized endothelial TGF-beta signaling and prevented EndMT. In in vitro studies, we found that TN-X through its fibrinogen-like domain directly interacts with TGF-β and thereby interferes with its binding to the TGF-β receptor. CONCLUSIONS In summary, we show that TN-X is a central mediator of flow-induced inhibition of EndMT, endothelial inflammation and atherogenesis, which functions by binding to and by blocking the activity of TGF-β. Our data identify a novel mechanism of flow-dependent regulation of vascular TGF-β, which holds promise for generating new strategies to prevent vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Jingchen Shao
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - YoungJune Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Liran Xu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China (S.W., L.X.)
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China (Y.Y.)
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Germany (S.G.)
| | - Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.)
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Germany (G.L., J.S., Y.J., L.W., S.O.).,Center for Molecular Medicine, Goethe University Frankfurt, Germany (S.O.).,Cardiopulmonary Institute (CPI), Frankfurt/Bad Nauheim, Germany (S.O.).,German Center for Cardiovascular Research (DZHK), Rhine-Main site, Frankfurt and Bad Nauheim, Germany (S.O.)
| |
Collapse
|
23
|
Bhardwaj V, Fabijanic KI, Cohen A, Mao J, Azadegan C, Pittet JC, Bris BL. Holistic approach to visualize and quantify collagen organization at macro, micro, and nano‐scale. Skin Res Technol 2022; 28:419-426. [PMID: 35285552 PMCID: PMC9907653 DOI: 10.1111/srt.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND There is scarcity of imaging and image processing techniques for accurate discrimination and quantitation of the dermal extracellular matrix (ECM), primarily collagen. The aim of this study was to develop and demonstrate a holistic imaging and image processing approach to visualize and quantify collagen remodeling at the macro-, micro- and nano-scale using histochemical imaging, Reflectance Confocal Microscopy (RCM), and Atomic Force Microscopy (AFM), respectively. MATERIAL AND METHODS For proof-of-concept, a commercial anti-aging product known to induce collagen neo-synthesis and re-organization was tested ex vivo on human skin biopsies from two aged females. RESULTS Relative to untreated skin, collagen fibers (RCM) and fibrils (AFM) were longer and aligned after treatment. The content of collagen and elastin (histochemical imaging and ELISA) statistically improved after treatment. CONCLUSION Based on our findings, we can conclude: (1) AFM, RCM, and histochemical imaging can accurately discriminate collagen from other ECM components in the skin and (2) the image processing methods can enable quantitation and hence capture small improvements in collagen remodeling after treatment (commercial cosmetic product with collagen organizer technology as proof-of-concept). The reported holistic imaging approach has direct clinical implications for scientists and dermatologists to make quick, real-time, and accurate decisions in skin research and diagnostics.
Collapse
Affiliation(s)
- Vinay Bhardwaj
- Department of Global Personal Care and Skin Health R&D Colgate‐Palmolive Company New Jersey USA
| | | | - Aaron Cohen
- Department of Global Personal Care and Skin Health R&D Colgate‐Palmolive Company New Jersey USA
| | - Junhong Mao
- Department of Global Personal Care and Skin Health R&D Colgate‐Palmolive Company New Jersey USA
| | - Chloe Azadegan
- Department of Global Personal Care and Skin Health R&D Colgate‐Palmolive Company New Jersey USA
| | | | | |
Collapse
|
24
|
Abdollahzadeh F, Khoshdel-Rad N, Moghadasali R. Kidney development and function: ECM cannot be ignored. Differentiation 2022; 124:28-42. [DOI: 10.1016/j.diff.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/03/2022]
|
25
|
Krayem I, Sohrabi Y, Javorková E, Volkova V, Strnad H, Havelková H, Vojtíšková J, Aidarova A, Holáň V, Demant P, Lipoldová M. Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse. Front Immunol 2022; 12:760881. [PMID: 35154069 PMCID: PMC8826059 DOI: 10.3389/fimmu.2021.760881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in frequencies of blood cell subpopulations were reported to influence the course of infections, atopic and autoimmune diseases, and cancer. We have discovered a unique mouse strain B10.O20 containing extremely high frequency of myeloid-derived cells (MDC) in spleen. B10.O20 carries 3.6% of genes of the strain O20 on the C57BL/10 genetic background. It contains much higher frequency of CD11b+Gr1+ cells in spleen than both its parents. B10.O20 carries O20-derived segments on chromosomes 1, 15, 17, and 18. Their linkage with frequencies of blood cell subpopulations in spleen was tested in F2 hybrids between B10.O20 and C57BL/10. We found 3 novel loci controlling MDC frequencies: Mydc1, 2, and 3 on chromosomes 1, 15, and 17, respectively, and a locus controlling relative spleen weight (Rsw1) that co-localizes with Mydc3 and also influences proportion of white and red pulp in spleen. Mydc1 controls numbers of CD11b+Gr1+ cells. Interaction of Mydc2 and Mydc3 regulates frequency of CD11b+Gr1+ cells and neutrophils (Gr1+Siglec-F- cells from CD11b+ cells). Interestingly, Mydc3/Rsw1 is orthologous with human segment 6q21 that was shown previously to determine counts of white blood cells. Bioinformatics analysis of genomic sequence of the chromosomal segments bearing these loci revealed polymorphisms between O20 and C57BL/10 that change RNA stability and genes’ functions, and we examined expression of relevant genes. This identified potential candidate genes Smap1, Vps52, Tnxb, and Rab44. Definition of genetic control of MDC can help to personalize therapy of diseases influenced by these cells.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eliška Javorková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Aigerim Aidarova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Holáň
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
26
|
Santoreneos R, Vakulin C, Ellul M, Rawlings L, Hardy T, Poplawski N. Recurrent pneumothorax in a case of tenascin-X deficient Ehlers-Danlos syndrome: Broadening the phenotypic spectrum. Am J Med Genet A 2022; 188:1583-1588. [PMID: 35128805 PMCID: PMC9303620 DOI: 10.1002/ajmg.a.62674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/05/2021] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Abstract
The genomic region surrounding the Tenascin‐XB gene (TNXB) is a complex and duplicated region, with several pseudogenes that predispose to high rates of homologous recombination. Classical‐like Ehlers–Danlos syndrome (clEDS) is the result of tenascin‐X deficiency due to biallelic loss of function variants in the TNXB gene. Here we present a patient with clEDS and spontaneous pneumothorax, a feature not previously reported to be associated with this condition. Two inherited pathogenic/likely pathogenic variants were identified; a previously reported deletion resulting in a TNXA/TNXB chimeric gene and a novel frameshift variant. The Tenascin‐XB gene is well described in the literature to be associated with collagen metabolism, stabilization of the fibrillar‐collagen matrix and is expressed abundantly in the extracellular matrix. We propose that tenascin‐X deficiency is directly related to pneumothorax predisposition. This case expands the phenotypic spectrum of clEDS and highlights the challenges with molecular analysis and diagnosis
Collapse
Affiliation(s)
- Renee Santoreneos
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Cassandra Vakulin
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Melissa Ellul
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Lesley Rawlings
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Tristan Hardy
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.,Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Halper J. Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:105-126. [PMID: 34807416 DOI: 10.1007/978-3-030-80614-9_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Collagens are the most abundant components of the extracellular matrix (ECM) and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. It is an insoluble polymer of the monomeric soluble precursor tropoelastin, and the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of transforming growth factors β (TGFβ) through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Many other molecules, though lower in quantity, function as essential, structural and/or functional components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its multidomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin it also binds to a variety of compounds, particularly to various growth factors, and as such, fibrinogen is a player in cardiovascular and extracellular matrix physiology. Laminins contribute to the structure of the ECM and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Fibrillins represent the predominant core of microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide basis for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Latent TGFβ binding proteins (LTBPs) are included here as their structure is similar to fibrillins. Several categories of ECM components described after fibrillins are sub-classified as matricellular proteins, i.e., they are secreted into ECM, but do not provide structure. Rather they interact with cell membrane receptors, collagens, proteases, hormones and growth factors, communicating and directing cell-ECM traffic. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Matrilins have been emerging as a new group of supporting actors, and their role in connective tissue physiology and pathophysiology has not been fully characterized. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
Collapse
Affiliation(s)
- Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
28
|
Vroman R, Malfait AM, Miller RE, Malfait F, Syx D. Animal Models of Ehlers-Danlos Syndromes: Phenotype, Pathogenesis, and Translational Potential. Front Genet 2021; 12:726474. [PMID: 34712265 PMCID: PMC8547655 DOI: 10.3389/fgene.2021.726474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable connective tissues disorders mainly characterized by skin hyperextensibility, joint hypermobility and generalized tissue fragility. Currently, 14 EDS subtypes each with particular phenotypic features are recognized and are caused by genetic defects in 20 different genes. All of these genes are involved in the biosynthesis and/or fibrillogenesis of collagens at some level. Although great progress has been made in elucidating the molecular basis of different EDS subtypes, the pathogenic mechanisms underlying the observed phenotypes remain poorly understood, and consequentially, adequate treatment and management options for these conditions remain scarce. To date, several animal models, mainly mice and zebrafish, have been described with defects in 14 of the 20 hitherto known EDS-associated genes. These models have been instrumental in discerning the functions and roles of the corresponding proteins during development, maturation and repair and in portraying their roles during collagen biosynthesis and/or fibrillogenesis, for some even before their contribution to an EDS phenotype was elucidated. Additionally, extensive phenotypical characterization of these models has shown that they largely phenocopy their human counterparts, with recapitulation of several clinical hallmarks of the corresponding EDS subtype, including dermatological, cardiovascular, musculoskeletal and ocular features, as well as biomechanical and ultrastructural similarities in tissues. In this narrative review, we provide a comprehensive overview of animal models manifesting phenotypes that mimic EDS with a focus on engineered mouse and zebrafish models, and their relevance in past and future EDS research. Additionally, we briefly discuss domestic animals with naturally occurring EDS phenotypes. Collectively, these animal models have only started to reveal glimpses into the pathophysiological aspects associated with EDS and will undoubtably continue to play critical roles in EDS research due to their tremendous potential for pinpointing (common) signaling pathways, unveiling possible therapeutic targets and providing opportunities for preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Robin Vroman
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Rachel E. Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Sumioka T, Iwanishi H, Okada Y, Miyajima M, Ichikawa K, Reinach PS, Matsumoto KI, Saika S. Impairment of corneal epithelial wound healing is association with increased neutrophil infiltration and reactive oxygen species activation in tenascin X-deficient mice. J Transl Med 2021; 101:690-700. [PMID: 33782532 PMCID: PMC8137452 DOI: 10.1038/s41374-021-00576-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/14/2023] Open
Abstract
The purpose of the study was to uncover the role of tenascin X in modulation of healing in mouse corneas subjected to epithelium debridement. Healing in corneas with an epithelial defect was evaluated at the levels of gene and protein expression. Wound healing-related mediators and inflammatory cell infiltration were detected by histology, immunohistochemistry and real-time RT-PCR. Tenascin X protein was upregulated in the wounded wild-type (WT) corneal epithelium. The lack of tenascin X impaired closure of an epithelial defect and accelerated infiltration of neutrophils into the wound periphery as compared to the response in WT tissue. Expression of wound healing-related proinflammatory and reparative components, i.e., interleukin-6, transforming growth factor β, matrix metalloproteinases, were unaffected by the loss of tenascin X expression. Marked accumulation of malondialdehyde (a lipid peroxidation-derived product) was observed in KO healing epithelia as compared with its WT counterpart. Neutropenia induced by systemic administration of a specific antibody rescued the impairment of epithelial healing in KO corneas, with reduction of malondialdehyde levels in the epithelial cells. Finally, we showed that a chemical scavenging reactive oxygen species reversed the impairment of attenuation of epithelial repair with a reduction of tissue levels of malondialdehyde. In conclusion, loss of tenascin X prolonged corneal epithelial wound healing and increased neutrophilic inflammatory response to debridement in mice. Tenascin X contributes to the control of neutrophil infiltration needed to support the regenerative response to injury and prevent the oxidative stress mediators from rising to cytotoxic levels.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Kana Ichikawa
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Peter S Reinach
- Department of Ophthalmology, Wenzhou Medical University, Wenzhou, P. R. China
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Enya-cho, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
30
|
Aubert A, Mercier-Gouy P, Aguero S, Berthier L, Liot S, Prigent L, Alcaraz LB, Verrier B, Terreux R, Moali C, Lambert E, Valcourt U. Latent TGF-β Activation Is a Hallmark of the Tenascin Family. Front Immunol 2021; 12:613438. [PMID: 34054795 PMCID: PMC8155481 DOI: 10.3389/fimmu.2021.613438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β) isoforms are secreted as inactive complexes formed through non-covalent interactions between bioactive TGF-β entities and their N-terminal pro-domains called latency-associated peptides (LAP). Extracellular activation of latent TGF-β within this complex is a crucial step in the regulation of TGF-β activity for tissue homeostasis and immune cell function. We previously showed that the matrix glycoprotein Tenascin-X (TN-X) interacted with the small latent TGF-β complex and triggered the activation of the latent cytokine into a bioactive TGF-β. This activation most likely occurs through a conformational change within the latent TGF-β complex and requires the C-terminal fibrinogen-like (FBG) domain of the glycoprotein. As the FBG-like domain is highly conserved among the Tenascin family members, we hypothesized that Tenascin-C (TN-C), Tenascin-R (TN-R) and Tenascin-W (TN-W) might share with TN-X the ability to regulate TGF-β bioavailability through their C-terminal domain. Here, we demonstrate that purified recombinant full-length Tenascins associate with the small latent TGF-β complex through their FBG-like domains. This association promotes activation of the latent cytokine and subsequent TGF-β cell responses in mammary epithelial cells, such as cytostasis and epithelial-to-mesenchymal transition (EMT). Considering the pleiotropic role of TGF-β in numerous physiological and pathological contexts, our data indicate a novel common function for the Tenascin family in the regulation of tissue homeostasis under healthy and pathological conditions.
Collapse
Affiliation(s)
- Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Perrine Mercier-Gouy
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Stéphanie Aguero
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Laurent Berthier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Laura Prigent
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Lindsay B Alcaraz
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Raphaël Terreux
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Catherine Moali
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
31
|
Albacete-Albacete L, Sánchez-Álvarez M, Del Pozo MA. Extracellular Vesicles: An Emerging Mechanism Governing the Secretion and Biological Roles of Tenascin-C. Front Immunol 2021; 12:671485. [PMID: 33981316 PMCID: PMC8107694 DOI: 10.3389/fimmu.2021.671485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV–dependent ECM secretion and its potential relevance for disease, with a focus on TnC.
Collapse
Affiliation(s)
- Lucas Albacete-Albacete
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Angel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
32
|
Orend G, Tucker RP. Did Tenascin-C Co-Evolve With the General Immune System of Vertebrates? Front Immunol 2021; 12:663902. [PMID: 33912190 PMCID: PMC8071991 DOI: 10.3389/fimmu.2021.663902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023] Open
Abstract
Tenascin-C plays important roles in immunity. Toll-like receptor 4, integrin α9β1 and chemokines have already been identified as key players in executing the immune regulatory functions of tenascin-C. Tenascin-C is also found in reticular fibers in lymphoid tissues, which are major sites involved in the regulation of adaptive immunity. Did the “tool box” for reading and interpreting the immune-regulating instructions imposed by tenascins and tenascin-C co-evolve? Though the extracellular matrix is ancient, tenascins evolved relatively recently. Tenascin-like genes are first encountered in cephalochordates and urochordates, which are widely accepted as the early branching chordate lineages. Vertebrates lacking jaws like the lamprey have tenascins, but a tenascin gene that clusters in the tenascin-C clade first appears in cartilaginous fish. Adaptive immunity apparently evolved independently in jawless and jawed vertebrates, with the former using variable lymphocyte receptors for antigen recognition, and the latter using immunoglobulins. Thus, while tenascins predate the appearance of adaptive immunity, the first tenascin-C appears to have evolved in the first organisms with immunoglobulin-based adaptive immunity. While a C-X-C chemokine is present in the lamprey, C-C chemokines also appear in the first organisms with immunoglobulin-based adaptive immunity, as does the major histocompatibility complex, T-cell receptors, Toll-like receptor 4 and integrin α9β1. Given the importance of tenascin-C in inflammatory events, the co-evolution of tenascin-C and key elements of adaptive and innate immunity is suggestive of a fundamental role for this extracellular matrix glycoprotein in the immune response of jawed vertebrates.
Collapse
Affiliation(s)
- Gertraud Orend
- Inserm U1109, The Tumor Microenvironment Laboratory, INSERM UMR_S 1109, Faculté de Médecine, Hopital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France.,Université Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, United States
| |
Collapse
|
33
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Watanabe S, Ito Y, Samura O, Nakano H, Sawamura D, Asahina A, Itoh M. Novel gross deletion mutation c.-105_4042+498del in the TNXB gene in a Japanese woman with classical-like Ehlers-Danlos syndrome: A case of uneventful pregnancy and delivery. J Dermatol 2021; 48:e227-e228. [PMID: 33721335 DOI: 10.1111/1346-8138.15837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Shoko Watanabe
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Ito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Akihiko Asahina
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Munenari Itoh
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan.,Dermatology Clinic Itoiin, Shizuoka, Japan
| |
Collapse
|
35
|
Tuna F, Doğanlar ZB, Özdemir H, Demirbag Kabayel D, Doğanlar O. Ehlers-Danlos syndrome-related genes and serum strontium, zinc, and lithium levels in generalized joint hypermobility: a case-control study. Connect Tissue Res 2021; 62:215-225. [PMID: 31594391 DOI: 10.1080/03008207.2019.1675648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim of the study: Generalized joint hypermobility (GJH) is a common feature of almost all Ehlers-Danlos syndrome (EDS) types; however, its genetic basis remains unclear. Therefore, it is crucial to distinguish the genetic basis of GJH from other connective tissue disorders, including the different subtypes of EDS. The aim of this study was to determine the blood EDS-related gene expressions and serum element levels in GJH and reveal their predictive characteristics and correlations with the Beighton score. Materials and Methods: A total of 39 women aged 18-23 years with GJH and 38 age- and sex-matched controls were included in the study. Inductively coupled plasma mass spectrometry was used to analyze the serum levels of zinc (Zn), strontium (Sr), and lithium (Li). The relative expression levels of the EDS-related genes were determined using quantitative real-time polymerase chain reaction (PCR). Results: Our results showed that women with GJH possessed significantly lower Li and higher Zn and Sr levels than the controls. In addition, the gene expressions of TNXB and SLC39A13 were significantly higher, whereas those of COL1A1, COL1A2, COL5A1, FKBP14, and DSE were lower in the GJH group. Pearson correlation analyses revealed a strong negative correlation between the Beighton score and B4GALT7, FKBP14, COL1A1, and Li. However, a significant positive correlation was noted between the Beighton score and SLC39A13, TNXB, Zn, Sr, and B3GALT6. Conclusion: Our findings provide valuable basal levels for conducting gene function analysis of joint hypermobility-related connective tissue disorders.
Collapse
Affiliation(s)
- Filiz Tuna
- Department of Physical Medicine and Rehabilitation, Trakya University Faculty of Medicine , Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Trakya Universtiy Faculty of Medicine , Edirne, Turkey
| | - Hande Özdemir
- Department of Physical Medicine and Rehabilitation, Trakya University Faculty of Medicine , Edirne, Turkey
| | - Derya Demirbag Kabayel
- Department of Physical Medicine and Rehabilitation, Trakya University Faculty of Medicine , Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya Universtiy Faculty of Medicine , Edirne, Turkey
| |
Collapse
|
36
|
Wiegand A, Kreifelts B, Munk MHJ, Geiselhart N, Ramadori KE, MacIsaac JL, Fallgatter AJ, Kobor MS, Nieratschker V. DNA methylation differences associated with social anxiety disorder and early life adversity. Transl Psychiatry 2021; 11:104. [PMID: 33542190 PMCID: PMC7862482 DOI: 10.1038/s41398-021-01225-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Social anxiety disorder (SAD) is a psychiatric disorder characterized by extensive fear in social situations. Multiple genetic and environmental factors are known to contribute to its pathogenesis. One of the main environmental risk factors is early life adversity (ELA). Evidence is emerging that epigenetic mechanisms such as DNA methylation might play an important role in the biological mechanisms underlying SAD and ELA. To investigate the relationship between ELA, DNA methylation, and SAD, we performed an epigenome-wide association study for SAD and ELA examining DNA from whole blood of a cohort of 143 individuals using DNA methylation arrays. We identified two differentially methylated regions (DMRs) associated with SAD located within the genes SLC43A2 and TNXB. As this was the first epigenome-wide association study for SAD, it is worth noting that both genes have previously been associated with panic disorder. Further, we identified two DMRs associated with ELA within the SLC17A3 promoter region and the SIAH3 gene and several DMRs that were associated with the interaction of SAD and ELA. Of these, the regions within C2CD2L and MRPL28 showed the largest difference in DNA methylation. Lastly, we found that two DMRs were associated with both the severity of social anxiety and ELA, however, neither of them was found to mediate the contribution of ELA to SAD later in life. Future studies are needed to replicate our findings in independent cohorts and to investigate the biological pathways underlying these effects.
Collapse
Affiliation(s)
- Ariane Wiegand
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Benjamin Kreifelts
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany ,grid.6546.10000 0001 0940 1669Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nadja Geiselhart
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Katia E. Ramadori
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Julia L. MacIsaac
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Andreas J. Fallgatter
- grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michael S. Kobor
- grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, BC Children’s Hospital Research Institute, Vancouver, V5Z 4H4 BC Canada
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Eberhard Karls University of Tübingen, Tübingen, Germany. .,Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
37
|
Affiliation(s)
- Walter L. Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute of Human Genetics, University of California, San Francisco, CA, United States
| |
Collapse
|
38
|
Matsumoto KI, Aoki H. The Roles of Tenascins in Cardiovascular, Inflammatory, and Heritable Connective Tissue Diseases. Front Immunol 2020; 11:609752. [PMID: 33335533 PMCID: PMC7736112 DOI: 10.3389/fimmu.2020.609752] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tenascins are a family of multifunctional extracellular matrix (ECM) glycoproteins with time- and tissue specific expression patterns during development, tissue homeostasis, and diseases. There are four family members (tenascin-C, -R, -X, -W) in vertebrates. Among them, tenascin-X (TNX) and tenascin-C (TNC) play important roles in human pathologies. TNX is expressed widely in loose connective tissues. TNX contributes to the stability and maintenance of the collagen network, and its absence causes classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder. In contrast, TNC is specifically and transiently expressed upon pathological conditions such as inflammation, fibrosis, and cancer. There is growing evidence that TNC is involved in inflammatory processes with proinflammatory or anti-inflammatory activity in a context-dependent manner. In this review, we summarize the roles of these two tenascins, TNX and TNC, in cardiovascular and inflammatory diseases and in clEDS, and we discuss the functional consequences of the expression of these tenascins for tissue homeostasis.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| |
Collapse
|
39
|
Brisset M, Metay C, Carlier RY, Badosa C, Marques C, Schalkwijk J, vanVlijmen-Willems I, Jimenez-Mallebrera C, Keren B, Jobic V, Laforêt P, Malfatti E. Biallelic mutations in Tenascin-X cause classical-like Ehlers-Danlos syndrome with slowly progressive muscular weakness. Neuromuscul Disord 2020; 30:833-838. [PMID: 32988710 DOI: 10.1016/j.nmd.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022]
Abstract
Tenascin-X, is an extracellular matrix glycoprotein expressed in skin, muscle, tendons, and blood vessels with an anti-adhesive function. Biallelic Tenascin-X mutations cause classical-like Ehlers-Danlos syndrome. We report a 46-year-old woman with slowly progressive weakness of the lower limbs and myalgia from age 28 years. In the past she had Raynaud's phenomenon, multiple sprains and joint dislocations, conjunctival haemorrhages and a colonic perforation during colonoscopy. Neurologic examination showed moderate asymmetric proximal and axial muscular weakness, distal amyotrophy of 4 limbs, moderate skin hyperextensibility, and hypermobility of distal joints of fingers. Whole body Magnetic Resonance Imaging showed symmetric fatty infiltration of thigh and leg muscles, with predominant atrophy of thighs. Next Generation Sequencing revealed two pathogenic TNXB variants, g.32024681C>G, c.7826-1G>C, and g.32016181dup, c.9998dupA, p.(Asn3333Lysfs*35). Western Blot and immunofluorescence studies confirmed a marked Tenascin-X reduction in both patient's serum and muscle. Here we further detail the clinical and genetic spectrum of a patient with classical-like Ehlers-Danlos syndrome and prominent muscle involvement.
Collapse
Affiliation(s)
- Marion Brisset
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France
| | - Corinne Metay
- APHP, Centre de Génétique Moléculaire et Chromosomique, Service de Biochimie Métabolique, U.F de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Groupe Hospitalier La Pitié-Salpêtrière Charles Foix, Paris, France
| | - Robert-Yves Carlier
- APHP, Medical imaging Department, Raymond Poincaré teaching Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, GHU PIFO, 104 Bld Raymond Poincaré, 92380 Garches, France
| | - Carmen Badosa
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Caterina Marques
- Department of Dermatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost Schalkwijk
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Sant Joan de Déu Hospital Sant Joan de Deu, Barcelona Spain
| | - Ivonne vanVlijmen-Willems
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Sant Joan de Déu Hospital Sant Joan de Deu, Barcelona Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Sant Joan de Déu Hospital Sant Joan de Deu, Barcelona Spain; U703 Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Boris Keren
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique et de Cytogénétique, Unité fonctionnelle de cytogénétique, Paris, France
| | - Valérie Jobic
- APHP, Centre de Génétique Moléculaire et Chromosomique, Service de Biochimie Métabolique, U.F de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Groupe Hospitalier La Pitié-Salpêtrière Charles Foix, Paris, France
| | - Pascal Laforêt
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire : Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles Saint Quentin en Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380 Paris-Saclay, France
| | - Edoardo Malfatti
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire : Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles Saint Quentin en Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380 Paris-Saclay, France.
| |
Collapse
|
40
|
Malfait F, Castori M, Francomano CA, Giunta C, Kosho T, Byers PH. The Ehlers-Danlos syndromes. Nat Rev Dis Primers 2020; 6:64. [PMID: 32732924 DOI: 10.1038/s41572-020-0194-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing and easy bruising. Fourteen different types of EDS are recognized, of which the molecular cause is known for 13 types. These types are caused by variants in 20 different genes, the majority of which encode the fibrillar collagen types I, III and V, modifying or processing enzymes for those proteins, and enzymes that can modify glycosaminoglycan chains of proteoglycans. For the hypermobile type of EDS, the molecular underpinnings remain unknown. As connective tissue is ubiquitously distributed throughout the body, manifestations of the different types of EDS are present, to varying degrees, in virtually every organ system. This can make these disorders particularly challenging to diagnose and manage. Management consists of a care team responsible for surveillance of major and organ-specific complications (for example, arterial aneurysm and dissection), integrated physical medicine and rehabilitation. No specific medical or genetic therapies are available for any type of EDS.
Collapse
Affiliation(s)
- Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Peter H Byers
- Department of Pathology and Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
42
|
Classical-like Ehlers-Danlos syndrome: a clinical description of 20 newly identified individuals with evidence of tissue fragility. Genet Med 2020; 22:1576-1582. [PMID: 32572181 DOI: 10.1038/s41436-020-0850-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Currently, 31 patients with classical-like EDS (clEDS) due to tenascin-X deficiency have been reported in the literature. We report on the clinical and molecular characteristics of 20 additional patients with clEDS to expand knowledge and to enable improved management of this rare genetic disorder. METHODS Patients diagnosed with clEDS by the national EDS service in the UK (n = 21) and abroad (n = 1) were asked for consent for publication of their clinical and molecular data. RESULTS Of 22 patients, 20 consented. All patients had typical features of clEDS: joint hypermobility, easy bruising, and skin hyperextensibility without atrophic scars. Importantly, 3/20 patients experienced gastrointestinal complications consisting of small or large bowel ruptures and one esophageal rupture. Other notable observations included two separate occurrences of spontaneous compartment syndrome, suspicion of nonaccidental injury due to significant bruising, and significant clinical variability regarding the debilitating effect of joint dislocations. CONCLUSIONS We propose a predisposition to tissue fragility, particularly of the gastrointestinal tract in patients with clEDS. As such, clinical and molecular confirmation of this diagnosis is essential. It is recommended to follow up these patients closely to understand the natural history to develop better recommendations for management.
Collapse
|
43
|
Dengjel J, Bruckner-Tuderman L, Nyström A. Skin proteomics - analysis of the extracellular matrix in health and disease. Expert Rev Proteomics 2020; 17:377-391. [PMID: 32552150 DOI: 10.1080/14789450.2020.1773261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The skin protects the human body from external insults and regulates water and temperature homeostasis. A highly developed extracellular matrix (ECM) supports the skin and instructs its cell functions. Reduced functionality of the ECM is often associated with skin diseases that cause physical impairment and also have implications on social interactions and quality of life of affected individuals. AREAS COVERED With a focus on the skin ECM we discuss how mass spectrometry (MS)-based proteomic approaches first contributed to establishing skin protein inventories and then facilitated elucidation of molecular functions and disease mechanisms. EXPERT OPINION MS-based proteomic approaches have significantly contributed to our understanding of skin pathophysiology, but also revealed the challenges in assessing the skin ECM. The numerous posttranslational modifications of ECM proteins, like glycosylation, crosslinking, oxidation, and proteolytic maturation in disease settings can be difficult to tackle and remain understudied. Increased ease of handling of LC-MS/MS systems and automated/streamlined data analysis pipelines together with the accompanying increased usage of LC-MS/MS approaches will ensure that in the coming years MS-based proteomic approaches will continue to play a vital part in skin disease research. They will facilitate the elucidation of molecular disease mechanisms and, ultimately, identification of new druggable targets.
Collapse
Affiliation(s)
- Jörn Dengjel
- Department of Biology, University of Fribourg , Fribourg, Switzerland
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| |
Collapse
|
44
|
Rood KM, Buhimschi CS, Zhao G, Oliver EA, Summerfield T, Bahtiyar MO, Buhimschi IA. Tenascin-X in amniotic fluid and reproductive tissues of pregnancies complicated by infection and preterm prelabor rupture of membranes†. Biol Reprod 2020; 100:773-782. [PMID: 30277495 DOI: 10.1093/biolre/ioy216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/30/2018] [Indexed: 11/12/2022] Open
Abstract
Preterm prelabor rupture of membranes (PPROM), which can precede or follow intra-amniotic infection/inflammation (IAI), is a poorly understood pregnancy complication. Tenascin-X (TNX) is a connective tissue extracellular matrix protein that regulates fibrillogenesis of collagens I, III, and V. Our goal was to investigate the presence and level of soluble TNX (sTNX) in amniotic fluid (AF) and TNX expression in reproductive tissues of pregnancies complicated by PPROM and IAI. We prospectively recruited 334 women pregnant with singletons who had a clinically indicated amniocentesis for genetic karyotyping, lung maturity testing, or rule-out IAI in the presence or absence of PPROM. We quantified TNX expression in fetal membranes, myometrium, cervix, and placenta using immunological methods and qRT-PCR. In pregnancies with normal outcomes, AF sTNX levels were GA-regulated with lower levels toward term. IAI significantly upregulated AF sTNX levels independent of membrane status. AF sTNX levels inversely correlated with fetal membranes tenascin XB (TNXB) mRNA level, which was significantly downregulated by IAI. Western blotting identified characteristic ∼75 and ∼140 kDa sTNX forms in both AF and fetal membranes. Fetal membranes, placenta, and cervix constitutively express TNX with the highest abundance in the amnion. Amnion TNX richness is significantly lost in the setting of IAI. Our results suggest that fetal membranes may be a source of AF sTNX whereby protein and mRNA expression seem to be significantly impacted by inflammation independent of fetal membrane status. A more thorough understanding of TNX changes may be valuable for understanding spontaneous PPROM and to potentially develop therapeutic targets.
Collapse
Affiliation(s)
- Kara M Rood
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Catalin S Buhimschi
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Guomao Zhao
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Emily A Oliver
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Taryn Summerfield
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mert Ozan Bahtiyar
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irina A Buhimschi
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
45
|
Liot S, Aubert A, Hervieu V, Kholti NE, Schalkwijk J, Verrier B, Valcourt U, Lambert E. Loss of Tenascin-X expression during tumor progression: A new pan-cancer marker. Matrix Biol Plus 2020; 6-7:100021. [PMID: 33543019 PMCID: PMC7852205 DOI: 10.1016/j.mbplus.2020.100021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a systemic disease involving multiple components produced from both tumor cells themselves and surrounding stromal cells. The pro- or anti-tumoral role of the stroma is still under debate. Indeed, it has long been considered the main physical barrier to the diffusion of chemotherapy by its dense and fibrous nature and its poor vascularization. However, in murine models, the depletion of fibroblasts, the main ExtraCellular Matrix (ECM)-producing cells, led to more aggressive tumors even though they were more susceptible to anti-angiogenic and immuno-modulators. Tenascin-C (TNC) is a multifunctional matricellular glycoprotein (i.e. an ECM protein also able to induce signaling pathway) and is considered as a marker of tumor expansion and metastasis. However, the status of other tenascin (TN) family members and particularly Tenascin-X (TNX) has been far less studied during this pathological process and is still controversial. Herein, through (1) in silico analyses of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and (2) immunohistochemistry staining of Tissue MicroArrays (TMA), we performed a large and extensive study of TNX expression at both mRNA and protein levels (1) in the 6 cancers with the highest incidence and mortality in the world (i.e. lung, breast, colorectal, prostate, stomach and liver) and (2) in the cancers for which sparse data regarding TNX expression already exist in the literature. We thus demonstrated that, in most cancers, TNX expression is significantly downregulated during cancer progression and we also highlighted, when data were available, that high TNXB mRNA expression in cancer is correlated with a good survival prognosis.
Collapse
Key Words
- CAF, Cancer-Associated Fibroblast
- Cancers
- D.E.G., Differentially Expressed Genes
- ECM, Extracellular Matrix
- EDS, Ehlers-Danlos syndrome
- FBG, fibrinogen
- FNIII, fibronectin type III
- GEO, Gene Expression Omnibus
- GSE, GEO Series
- HDAC1, histone deacetylase-1
- MMP, Matrix Metalloproteinase
- MPNST, Malignant Peripheral Nerve Sheath Tumors
- Meta-analysis
- Prognosis marker
- TCGA, The Cancer Genome Atlas
- TMA, Tissue MicroArray
- TME, Tumor MicroEnvironment
- TN, Tenascin
- TNC, Tenascin-C
- TNR, Tenascin-R
- TNW, Tenascin-W
- TNX, Tenascin-X
- TSS, Transcription Start Site
- Tenascin-X
- Tissue MicroArray
- lncRNA, long non-coding RNA
- mRNA and protein levels
Collapse
Affiliation(s)
- Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Valérie Hervieu
- Service d'Anatomopathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Naïma El Kholti
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Joost Schalkwijk
- Radboud Institute for Molecular Life Sciences, Faculty of Medical Sciences, 370 Geert Grooteplein-Zuid 26 28, 6525 GA Nijmegen, Netherlands
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| |
Collapse
|
46
|
Lopes FM, Roberts NA, Zeef LAH, Gardiner NJ, Woolf AS. Overactivity or blockade of transforming growth factor-β each generate a specific ureter malformation. J Pathol 2019; 249:472-484. [PMID: 31400222 PMCID: PMC6900140 DOI: 10.1002/path.5335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGFβ) has been reported to be dysregulated in malformed ureters. There exists, however, little information on whether altered TGFβ levels actually perturb ureter development. We therefore hypothesised that TGFβ has functional effects on ureter morphogenesis. Tgfb1, Tgfb2 and Tgfb3 transcripts coding for TGFβ ligands, as well as Tgfbr1 and Tgfbr2 coding for TGFβ receptors, were detected by quantitative polymerase chain reaction in embryonic mouse ureters collected over a wide range of stages. As assessed by in situ hybridisation and immunohistochemistry, the two receptors were detected in embryonic urothelia. Next, TGFβ1 was added to serum-free cultures of embryonic day 15 mouse ureters. These organs contain immature smooth muscle and urothelial layers and their in vivo potential to grow and acquire peristaltic function can be replicated in serum-free organ culture. Such organs therefore constitute a suitable developmental stage with which to define roles of factors that affect ureter growth and functional differentiation. Exogenous TGFβ1 inhibited growth of the ureter tube and generated cocoon-like dysmorphogenesis. RNA sequencing suggested that altered levels of transcripts encoding certain fibroblast growth factors (FGFs) followed exposure to TGFβ. In serum-free organ culture exogenous FGF10 but not FGF18 abrogated certain dysmorphic effects mediated by exogenous TGFβ1. To assess whether an endogenous TGFβ axis functions in developing ureters, embryonic day 15 explants were exposed to TGFβ receptor chemical blockade; growth of the ureter was enhanced, and aberrant bud-like structures arose from the urothelial tube. The muscle layer was attenuated around these buds, and peristalsis was compromised. To determine whether TGFβ effects were limited to one stage, explants of mouse embryonic day 13 ureters, more primitive organs, were exposed to exogenous TGFβ1, again generating cocoon-like structures, and to TGFβ receptor blockade, again generating ectopic buds. As for the mouse studies, immunostaining of normal embryonic human ureters detected TGFβRI and TGFβRII in urothelia. Collectively, these observations reveal unsuspected regulatory roles for endogenous TGFβ in embryonic ureters, fine-tuning morphogenesis and functional differentiation. Our results also support the hypothesis that the TGFβ up-regulation reported in ureter malformations impacts on pathobiology. Further experiments are needed to unravel the intracellular signalling mechanisms involved in these dysmorphic responses. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Leo AH Zeef
- The Bioinformatics Core FacilityUniversity of ManchesterManchesterUK
| | - Natalie J Gardiner
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Royal Manchester Children's HospitalManchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
47
|
Alabi BR, LaRanger R, Shay JW. Decellularized mice colons as models to study the contribution of the extracellular matrix to cell behavior and colon cancer progression. Acta Biomater 2019; 100:213-222. [PMID: 31562987 DOI: 10.1016/j.actbio.2019.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/11/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
Current 3D culture models to study colorectal cancer lack architectural support and signaling proteins provided by the tissue extracellular matrix (ECM) which may influence cell behavior and cancer progression. Therefore, the ability to study cancer cells in the context of a matrix that is physiologically more relevant and to understand how the ECM affects cancer progression has been understudied. To address this, we developed an ex-vivo 3D system, provided by intact wild type (WT) and colon cancer susceptible decellularized mouse colons (DMC), to support the growth of human cancer cells. DMC are free of viable cells but still contain extracellular matrix proteins including subsets of collagens. Stiffness, an important mechanical property, is also maintained in DMCs. Importantly, we observed that the DMC is permissive for cell proliferation and differentiation of a human colon cancer cell line (HT-29). Notably, the ability of cells in the WT DMC to differentiate was also greater when compared to Matrigel™, an extracellular matrix extract from a mouse tumor cell line. Additionally, we observed in invasion assays that DMC obtained from polyps from a colon cancer susceptible mouse model facilitated increased cell migration/invasion of colorectal cancer cells and immortalized non-tumor colonic epithelial cells compared to DMC from WT mice. Finally, using mass spectrometry, we identified extracellular matrix proteins that are more abundant in DMC from a colorectal cancer mouse model compared to age and sex-matched WT mice. We propose that these abundantly expressed proteins in the tumor microenvironment are potentially involved in colorectal cancer progression. STATEMENT OF SIGNIFICANCE: Decellularized matrices, when properly produced, are attractive biomaterials for tissue regeneration and replacement. We show here that the mouse decellularized matrices can also be repurposed to elucidate how the extracellular matrix influences human cell behavior and cancer progression. To do this we produce decellularized matrices, from mice colonic tissue, that have preserved tissue mechanical and structural properties. We demonstrate that the matrix better supports the differentiation of HT-29 cells, a colonic cancer cell line, compared to Matrigel™. Additionally, we show that the extracellular matrix contributes to colon cancer progression via invasion assays using extracellular matrix extracts. Finally, we use mass spectrometry to identify ECM proteins that are more abundant in colonic polyps compared to adjacent tissue regions. This model system may have therapeutic implications for colorectal cancer patients.
Collapse
Affiliation(s)
- Busola R Alabi
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Ryan LaRanger
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States.
| |
Collapse
|
48
|
Tokhmafshan F, El Andalousi J, Murugapoopathy V, Fillion ML, Campillo S, Capolicchio JP, Jednak R, El Sherbiny M, Turpin S, Schalkwijk J, Matsumoto KI, Brophy PD, Gbadegesin RA, Gupta IR. Children with vesicoureteric reflux have joint hypermobility and occasional tenascin XB sequence variants. Can Urol Assoc J 2019; 14:E128-E136. [PMID: 31702543 DOI: 10.5489/cuaj.6068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION To consider alternative mechanisms that give rise to a refluxing ureterovesical junction (UVJ), we hypothesized that children with a common heritable urinary tract defect, vesicoureteric reflux (VUR), may have a defect in the extracellular matrix composition of the UVJ and other tissues that would be revealed by assessment of the peripheral joints. Hypermobile joints can arise from defects in the extracellular matrix within the joint capsule that affect proteins, including tenascin XB (TNXB). METHODS We performed an observational study of children with familial and non-familial VUR to determine the prevalence of joint hypermobility, renal scarring, and DNA sequence variants in TNXB. RESULTS Most children (27/44) exhibited joint hypermobility using the Beighton scoring system. This included 15/26 girls (57.7%) and 12/18 boys (66.7%), which is a significantly higher prevalence for both sexes when compared to population controls (p<0.005). We found no association between joint hypermobility and renal scarring. Seven of 49 children harbored rare pathogenic sequence variants in TNXB, and two also exhibited joint hypermobility. No sequence variants in TNXB were identified in 25/27 children with VUR and joint hypermobility. Due to the observational design of the study, there was missing data for joint hypermobility scores in six children and for dimercaptosuccinic acid (DMSA) scans in 17 children. CONCLUSIONS We observed a high prevalence of VUR and joint hypermobility in children followed within a tertiary care pediatric urology clinic. While mutations in TNXB have been reported in families with VUR and joint hypermobility, we identified only two children with these phenotypes and pathogenic variants in TNXB. We, therefore, speculate that VUR and joint hypermobility may be due to mutations in other extracellular matrix genes.
Collapse
Affiliation(s)
| | - Jasmine El Andalousi
- Research Institute of McGill University Health Centre, Montreal Children's Hospital, Montreal, QC, Canada
| | | | | | - Sarah Campillo
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - John-Paul Capolicchio
- Department of Pediatric Surgery, Division of Pediatric Urology, Montreal Children's Hospital and McGill University, Montreal, QC, Canada
| | - Roman Jednak
- Department of Pediatric Surgery, Division of Pediatric Urology, Montreal Children's Hospital and McGill University, Montreal, QC, Canada
| | - Mohamed El Sherbiny
- Department of Pediatric Surgery, Division of Pediatric Urology, Montreal Children's Hospital and McGill University, Montreal, QC, Canada
| | - Sophie Turpin
- Department of Medical Imaging, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Joost Schalkwijk
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane, Japan
| | - Patrick D Brophy
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, United States
| | - Rasheed A Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC, United States
| | - Indra R Gupta
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Browning KN. Extracellular matrix proteins in the gastrointestinal tract: more than a supporting role. J Physiol 2019; 596:3831-3832. [PMID: 29998556 DOI: 10.1113/jp276661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
50
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|