1
|
Savulescu-Fiedler I, Dorobantu-Lungu LR, Dragosloveanu S, Benea SN, Dragosloveanu CDM, Caruntu A, Scheau AE, Caruntu C, Scheau C. The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms. Curr Issues Mol Biol 2025; 47:115. [PMID: 39996836 PMCID: PMC11853762 DOI: 10.3390/cimb47020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood-brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer's disease or Parkinson's disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Luiza-Roxana Dorobantu-Lungu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “C.C. Iliescu”, 022328 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Departament of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
2
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
3
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
4
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Gathings A, Zaman V, Banik NL, Haque A. Insights into Calpain Activation and Rho-ROCK Signaling in Parkinson's Disease and Aging. Biomedicines 2024; 12:1074. [PMID: 38791036 PMCID: PMC11117523 DOI: 10.3390/biomedicines12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, has no cure, and current therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including microglial activation and induction of inflammatory responses. Activated microglia have been implicated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory responses, leading to neuron death. Calpain expression and activity is increased following glial activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and aging, and possible strategies and research directions for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Gathings
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
6
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
7
|
Zhu S, Wang L, Lv X, Xu Y, Dou W, Zhang H, Ye J. Application of diffusional kurtosis imaging for insights into structurally aberrant topology in Parkinson's disease. Acta Radiol 2024; 65:233-240. [PMID: 38017711 DOI: 10.1177/02841851231216039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Parkinson's disease (PD) has been regarded as a disconnection syndrome with functional and structural disturbances. However, as the anatomic determinants, the structural disconnections in PD have yet to be fully elucidated. PURPOSE To non-invasively construct structural networks based on microstructural complexity and to further investigate their potential topological abnormalities in PD given the technical superiority of diffusion kurtosis imaging (DKI) to the quantification of microstructure. MATERIAL AND METHODS The microstructural data of gray matter in both the PD group and the healthy control (HC) group were acquired using DKI. The structural networks were constructed at the group level by a covariation approach, followed by the calculation of topological properties based on graph theory and statistical comparisons between groups. RESULTS A total of 51 patients with PD and 50 HCs were enrolled. Individuals were matched between groups with respect to demographic characteristics (P >0.05). The constructed structural networks in both the PD and HC groups featured small-world properties. In comparison with the HC group, the PD group exhibited significantly altered global properties, with higher normalized characteristic path lengths, clustering coefficients, local efficiency values, and characteristic path lengths and lower global efficiency values (P <0.05). In terms of nodal centralities, extensive nodal disruptions were observed in patients with PD (P <0.05); these disruptions were mainly distributed in the sensorimotor network, default mode network, frontal-parietal network, visual network, and subcortical network. CONCLUSION These findings contribute to the technical application of DKI and the elucidation of disconnection syndrome in PD.
Collapse
Affiliation(s)
- Siying Zhu
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| | - Lijuan Wang
- Department of Radiology, Jintang First People's Hospital, Sichuan University, Chengdu, PR China
| | - Xiang Lv
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, PR China
| | - Hongying Zhang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| | - Jing Ye
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
8
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Lojek NM, Williams VA, Rogers AM, Sajo E, Black BJ, Ghezzi CE. A 3D In Vitro Cortical Tissue Model Based on Dense Collagen to Study the Effects of Gamma Radiation on Neuronal Function. Adv Healthc Mater 2024; 13:e2301123. [PMID: 37921265 PMCID: PMC11468710 DOI: 10.1002/adhm.202301123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.
Collapse
Affiliation(s)
- Neal M. Lojek
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria A. Williams
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Andrew M. Rogers
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Erno Sajo
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Bryan J. Black
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
10
|
Kang S, Noh Y, Oh SJ, Yoon HJ, Im S, Kwon HT, Pak YK. Neuroprotective Effects of Aldehyde-Reducing Composition in an LPS-Induced Neuroinflammation Model of Parkinson's Disease. Molecules 2023; 28:7988. [PMID: 38138478 PMCID: PMC10745824 DOI: 10.3390/molecules28247988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease in which neuroinflammation and oxidative stress interact to contribute to pathogenesis. This study investigates the in vivo neuroprotective effects of a patented yeast extract lysate in a lipopolysaccharide (LPS)-induced neuroinflammation model. The yeast extract lysate, named aldehyde-reducing composition (ARC), exhibited potent antioxidant and anti-aldehyde activities in vitro. Oral administration of ARC at 10 or 20 units/kg/day for 3 days prior to intraperitoneal injection of LPS (10 mg/kg) effectively preserved dopaminergic neurons in the substantia nigra (SN) and striatum by preventing LPS-induced cell death. ARC also normalized the activation of microglia and astrocytes in the SN, providing further evidence for its neuroprotective properties. In the liver, ARC downregulated the LPS-induced increase in inflammatory cytokines and reversed the LPS-induced decrease in antioxidant-related genes. These findings indicate that ARC exerts potent antioxidant, anti-aldehyde, and anti-inflammatory effects in vivo, suggesting its potential as a disease-modifying agent for the prevention and treatment of neuroinflammation-related diseases, including Parkinson's disease.
Collapse
Affiliation(s)
- Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
- Picoentech Co., Ltd., Seongnam-si 13201, Gyeong gi-do, Republic of Korea; (Y.N.); (H.T.K.)
| | - Youngjin Noh
- Picoentech Co., Ltd., Seongnam-si 13201, Gyeong gi-do, Republic of Korea; (Y.N.); (H.T.K.)
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.O.); (S.I.)
| | - Hye Ji Yoon
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
| | - Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.O.); (S.I.)
| | - Hung Taeck Kwon
- Picoentech Co., Ltd., Seongnam-si 13201, Gyeong gi-do, Republic of Korea; (Y.N.); (H.T.K.)
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.K.); (H.J.Y.)
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.O.); (S.I.)
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Dey A, Pramanik PK, Dwivedi SKD, Neizer-Ashun F, Kiss T, Ganguly A, Rice H, Mukherjee P, Xu C, Ahmad M, Csiszar A, Bhattacharya R. A role for the cystathionine-β-synthase /H 2S axis in astrocyte dysfunction in the aging brain. Redox Biol 2023; 68:102958. [PMID: 37948927 PMCID: PMC10663824 DOI: 10.1016/j.redox.2023.102958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Astrocytic dysfunction is central to age-related neurodegenerative diseases. However, the mechanisms leading to astrocytic dysfunction are not well understood. We identify that among the diverse cellular constituents of the brain, murine and human astrocytes are enriched in the expression of CBS. Depleting CBS in astrocytes causes mitochondrial dysfunction, increases the production of reactive oxygen species (ROS) and decreases cellular bioenergetics that can be partially rescued by exogenous H2S supplementation or by re-expressing CBS. Conversely, the CBS/H2S axis, associated protein persulfidation and proliferation are decreased in astrocytes upon oxidative stress which can be rescued by exogenous H2S supplementation. Here we reveal that in the aging brain, the CBS/H2S axis is downregulated leading to decreased protein persulfidation, together augmenting oxidative stress. Our findings uncover an important protective role of the CBS/H2S axis in astrocytes that may be disrupted in the aged brain.
Collapse
Affiliation(s)
- Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pijush Kanti Pramanik
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Fiifi Neizer-Ashun
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Abhrajit Ganguly
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Heather Rice
- Department of Biochemistry & Molecular Biology, Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
12
|
Villa-Cedillo SA, Matta-Yee-Chig D, Soto-Domínguez A, Rodríguez-Rocha H, García-García A, Montes-de-Oca-Saucedo CR, Loera-Arias MDJ, Valdés J, Saucedo-Cárdenas O. CDNF overexpression prevents motor-cognitive dysfunction by intrastriatal CPP-based delivery system in a Parkinson's disease animal model. Neuropeptides 2023; 102:102385. [PMID: 37837805 DOI: 10.1016/j.npep.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compact (SNpc), and no effective treatment has yet been established to prevent PD. Neurotrophic factors, such as cerebral dopamine neurotrophic factor (CDNF), have shown a neuroprotective effect on dopaminergic neurons. Previously, we developed a cell-penetrating-peptide-based delivery system that includes Asn194Lys mutation in the rabies virus glycoprotein-9R peptide (mRVG9R), which demonstrated a higher delivery rate than the wild-type. In this study, using a mouse PD-like model, we evaluated the intrastriatal mRVG9R-KP-CDNF gene therapy through motor and cognitive tests and brain cell analysis. The mRVG9R-KP-CDNF complex was injected into the striatum on days 0 and 20. To induce the PD-like model, mice were intraperitoneally administered Paraquat (PQ) twice a week for 6 weeks. Our findings demonstrate that mRVG9R-KP-CDNF gene therapy effectively protects brain cells from PQ toxicity and prevents motor and cognitive dysfunction in mice. We propose that the mRVG9R-KP-CDNF complex inhibits astrogliosis and microglia activation, safeguarding dopaminergic neurons and oligodendrocytes from PQ-induced damage. This study presents an efficient CDNF delivery system, protecting neurons and glia in the nigrostriatal pathway from PQ-induced damage, which is known to lead to motor and cognitive dysfunction in neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Sheila A Villa-Cedillo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Daniel Matta-Yee-Chig
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Adolfo Soto-Domínguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Humberto Rodríguez-Rocha
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Aracely García-García
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | | | - María de Jesús Loera-Arias
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Jesús Valdés
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Bioquímica, Mexico City, Mexico
| | - Odila Saucedo-Cárdenas
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
13
|
Gu XJ, Su WM, Dou M, Jiang Z, Duan QQ, Yin KF, Cao B, Wang Y, Li GB, Chen YP. Expanding causal genes for Parkinson's disease via multi-omics analysis. NPJ Parkinsons Dis 2023; 9:146. [PMID: 37865667 PMCID: PMC10590374 DOI: 10.1038/s41531-023-00591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Genome‑wide association studies (GWASs) have revealed numerous loci associated with Parkinson's disease (PD). However, some potential causal/risk genes were still not revealed and no etiological therapies are available. To find potential causal genes and explore genetically supported drug targets for PD is urgent. By integrating the expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) datasets from multiple tissues (blood, cerebrospinal fluid (CSF) and brain) and PD GWAS summary statistics, a pipeline combing Mendelian randomization (MR), Steiger filtering analysis, Bayesian colocalization, fine mapping, Protein-protein network and enrichment analysis were applied to identify potential causal genes for PD. As a result, GPNMB displayed a robust causal role for PD at the protein level in the blood, CSF and brain, and transcriptional level in the brain, while the protective role of CD38 (in brain pQTL and eQTL) was also identified. We also found inconsistent roles of DGKQ on PD between protein and mRNA levels. Another 9 proteins (CTSB, ARSA, SEC23IP, CD84, ENTPD1, FCGR2B, BAG3, SNCA, FCGR2A) were associated with the risk for PD based on only a single pQTL after multiple corrections. We also identified some proteins' interactions with known PD causative genes and therapeutic targets. In conclusion, this study suggested GPNMB, CD38, and DGKQ may act in the pathogenesis of PD, but whether the other proteins involved in PD needs more evidence. These findings would help to uncover the genes underlying PD and prioritize targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Dou
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kang-Fu Yin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
15
|
Eker F, Bolat E, Pekdemir B, Duman H, Karav S. Lactoferrin: neuroprotection against Parkinson's disease and secondary molecule for potential treatment. Front Aging Neurosci 2023; 15:1204149. [PMID: 37731953 PMCID: PMC10508234 DOI: 10.3389/fnagi.2023.1204149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease and is largely caused by the death of dopaminergic (DA) cells. Dopamine loss occurs in the substantia nigra pars compacta and leads to dysfunctions in motor functions. Death of DA cells can occur with oxidative stress and dysfunction of glial cells caused by Parkinson-related gene mutations. Lactoferrin (Lf) is a multifunctional glycoprotein that is usually known for its presence in milk, but recent research shows that Lf is also found in the brain regions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a known mitochondrial toxin that disturbs the mitochondrial electron transport chain (ETC) system and increases the rate of reactive oxygen species. Lf's high affinity for metals decreases the required iron for the Fenton reaction, reduces the oxidative damage to DA cells caused by MPTP, and increases their surveillance rate. Several studies also investigated Lf's effect on neurons that are treated with MPTP. The results pointed out that Lf's protective effect can also be observed without the presence of oxidative stress; thus, several potential mechanisms are currently being researched, starting with a potential HSPG-Lf interaction in the cellular membrane of DA cells. The presence of Lf activity in the brain region also showed that lactoferrin initiates receptor-mediated transcytosis in the blood-brain barrier (BBB) with the existence of lactoferrin receptors in the endothelial cells. The existence of Lf receptors both in endothelial cells and DA cells created the idea of using Lf as a secondary molecule in the transport of therapeutic agents across the BBB, especially in nanoparticle development.
Collapse
Affiliation(s)
| | | | | | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
16
|
Pauwels EKJ, Boer GJ. Parkinson's Disease: A Tale of Many Players. Med Princ Pract 2023; 32:155-165. [PMID: 37285828 PMCID: PMC10601631 DOI: 10.1159/000531422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
In 2020, more than 9 million patients suffering from Parkinson's disease (PD) were reported worldwide, and studies predict that the burden of this disease will grow substantially in industrial countries. In the last decade, there has been a better understanding of this neurodegenerative disorder, clinically characterized by motor disturbances, impaired balance, coordination, memory difficulties, and behavioral changes. Various preclinical investigations and studies on human postmortem brains suggest that local oxidative stress and inflammation promote misfolding and aggregation of alpha-synuclein within Lewy bodies and cause nerve cell damage. Parallel to these investigations, the familial contribution to the disease became evident from studies on genome-wide association in which specific genetic defects were linked to neuritic alpha-synuclein pathology. As for treatment, currently available pharmacological and surgical interventions may improve the quality of life but do not stop the progress of neurodegeneration. However, numerous preclinical studies have provided insights into the pathogenesis of PD. Their results provide a solid base for clinical trials and further developments. In this review, we discuss the pathogenesis, the prospects, and challenges of synolytic therapy, CRISPR, gene editing, and gene- and cell-based therapy. We also throw light on the recent observation that targeted physiotherapy may help improve the gait and other motor impairments.
Collapse
Affiliation(s)
| | - Gerard J. Boer
- Netherlands Institute for Brain Research, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Chakraborty P, Dey A, Gopalakrishnan AV, Swati K, Ojha S, Prakash A, Kumar D, Ambasta RK, Jha NK, Jha SK, Dewanjee S. Glutamatergic neurotransmission: A potential pharmacotherapeutic target for the treatment of cognitive disorders. Ageing Res Rev 2023; 85:101838. [PMID: 36610558 DOI: 10.1016/j.arr.2022.101838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
In the mammalian brain, glutamate is regarded to be the primary excitatory neurotransmitter due to its widespread distribution and wide range of metabolic functions. Glutamate plays key roles in regulating neurogenesis, synaptogenesis, neurite outgrowth, and neuron survival in the brain. Ionotropic and metabotropic glutamate receptors, neurotransmitters, neurotensin, neurosteroids, and others co-ordinately formulate a complex glutamatergic network in the brain that maintains optimal excitatory neurotransmission. Cognitive activities are potentially synchronized by the glutamatergic activities in the brain via restoring synaptic plasticity. Dysfunctional glutamate receptors and other glutamatergic components are responsible for the aberrant glutamatergic activity in the brain that cause cognitive impairments, loss of synaptic plasticity, and neuronal damage. Thus, controlling the brain's glutamatergic transmission and modifying glutamate receptor function could be a potential therapeutic strategy for cognitive disorders. Certain drugs that regulate glutamate receptor activities have shown therapeutic promise in improving cognitive functions in preclinical and clinical studies. However, several issues regarding precise functional information of glutamatergic activity are yet to be comprehensively understood. The present article discusses the scope of developing glutamatergic systems as prospective pharmacotherapeutic targets to treat cognitive disorders. Special attention has been given to recent developments, challenges, and future prospects.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand 248007, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, UP, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
18
|
Wiseman JA, Dragunow M, I-H Park T. Cell Type-Specific Nuclei Markers: The Need for Human Brain Research to Go Nuclear. Neuroscientist 2023; 29:41-61. [PMID: 34459315 DOI: 10.1177/10738584211037351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identifying and interrogating cell type-specific populations within the heterogeneous milieu of the human brain is paramount to resolving the processes of normal brain homeostasis and the pathogenesis of neurological disorders. While brain cell type-specific markers are well established, most are localized on cellular membranes or within the cytoplasm, with limited literature describing those found in the nucleus. Due to the complex cytoarchitecture of the human brain, immunohistochemical studies require well-defined cell-specific nuclear markers for more precise and efficient quantification of the cellular populations. Furthermore, efficient nuclear markers are required for cell type-specific purification and transcriptomic interrogation of archived human brain tissue through nuclei isolation-based RNA sequencing. To sate the growing demand for robust cell type-specific nuclear markers, we thought it prudent to comprehensively review the current literature to identify and consolidate a novel series of robust cell type-specific nuclear markers that can assist researchers across a range of neuroscientific disciplines. The following review article collates and discusses several key and prospective cell type-specific nuclei markers for each of the major human brain cell types; it then concludes by discussing the potential applications of cell type-specific nuclear workflows and the power of nuclear-based neuroscientific research.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Kim B, Suh YH, Joe E. LRRK2 decreases microglial actin dynamics by filamentous actin depolymerization and Rac1 inhibition. Anim Cells Syst (Seoul) 2022; 26:380-387. [PMID: 36605588 PMCID: PMC9809388 DOI: 10.1080/19768354.2022.2158219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An active actin dynamic is a crucial feature of brain microglia. Here we report that LRRK2, a primary familial Parkinson's disease-associated gene, negatively regulates microglia's actin dynamics. LRRK2 depolymerized filamentous actin (F-actin) by directly binding to it or inhibiting microglia's Rac-PAK signaling. LRRK2 knockdown resulted in a reduced ruffle and enhanced lamellipodia formation of ADP-activated microglia, altering the microglia's physiological activity to vigorous migration toward damaged cells. These results suggest that LRRK2 is a negative regulator for the controlled actin dynamics in microglia.
Collapse
Affiliation(s)
- Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea, Beomsue Kim Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea; Eunhye Joe Department of Pharmacology; Neuroscience Graduate Program, Department of Biomedical Sciences; Center for Convergence Research of Neurological Disorders, Ajou University Schoo lof Medicine, Suwon16499, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunhye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea,Center for Convergence Research of Neurological Disorders, Ajou University Schoo lof Medicine, Suwon, Republic of Korea, Beomsue Kim Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea; Eunhye Joe Department of Pharmacology; Neuroscience Graduate Program, Department of Biomedical Sciences; Center for Convergence Research of Neurological Disorders, Ajou University Schoo lof Medicine, Suwon16499, Republic of Korea
| |
Collapse
|
20
|
Malfunction of astrocyte and cholinergic input is involved in postoperative impairment of hippocampal synaptic plasticity and cognitive function. Neuropharmacology 2022; 217:109191. [PMID: 35835213 DOI: 10.1016/j.neuropharm.2022.109191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/04/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022]
Abstract
Postoperative delirium (POD) occurs in a few days after major surgery under general anesthesia and may cause serious health problems. However, effective intervention and treatment remain unavailable because the underlying mechanisms have far been elucidated. In the present study, we explored the role of the malfunctioned astrocytes in POD. Our results showed that mice with tibia fracture displayed spatial and temporal memory impairments, reduced LTP, and activated astrocytes in the hippocampus in early postoperative stage. Using electrophysiological and Ca2+ imaging techniques in hippocampal slices, we demonstrated the malfunctions of astrocytes in surgery mice: depolarized resting membrane potential, higher membrane conductance and capacitance, and attenuated Ca2+ elevation in response to external stimulation. The degraded calcium signaling in hippocampal astrocytes in surgery mice was restored by correcting the diminution of acetylcholine release with galantamine. Furthermore, pharmacologically blocking astrocyte activation with fluorocitrate and enhancing cholinergic inputs with galantamine normalized hippocampal LTP in surgery mice. Finally, inhibition of astrocyte activation with fluorocitrate in the hippocampus improved cognitive function in surgery mice. Therefore, the prevention of astrocyte activation may be a valuable strategy for the intervention of cognitive dysfunction in POD, and acetylcholine receptors may be valid drug targets for this purpose.
Collapse
|
21
|
Legarda SB, Michas-Martin PA, McDermott D. Managing Intractable Symptoms of Parkinson's Disease: A Nonsurgical Approach Employing Infralow Frequency Neuromodulation. Front Hum Neurosci 2022; 16:894781. [PMID: 35880105 PMCID: PMC9308006 DOI: 10.3389/fnhum.2022.894781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
|
22
|
Amin R, Quispe C, Docea AO, Alibek Y, Kulbayeva M, Durna Daştan S, Calina D, Sharifi-Rad J. The role of Tumour Necrosis Factor in neuroinflammation associated with Parkinson's disease and targeted therapies. Neurochem Int 2022; 158:105376. [PMID: 35667491 DOI: 10.1016/j.neuint.2022.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders Parkinson's disease is a progressive neurodegenerative disorder associated with neuroinflammatory responses that lead to the neurodegeneration of the dopaminergic neurons. These neuroinflammatory mechanisms involve various cytokines produced by the activated glial cells. Tumour Necrosis factor α (TNF α) is one of the major mediators of the neuroinflammation associated with neurodegeneration. TNF α has a dual role of neuroprotection and neurotoxicity in the brain. The effective pathways of TNF involve various signalling pathways transduced by the receptors TNFR1 and TNFR2. Effective therapeutic strategies have been produced targeting the neurotoxic behaviour of the Tumour Necrosis Factor and the associated neurodegeneration which includes the use of Dominant Negative Tumour Necrosis Factor (DN-TNF) inhibitors like XENP 345 and XPro®1595 and peroxisome proliferator receptor gamma (PPAR-γ) agonists.
Collapse
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science, Assam Down Town University, Panikhaiti, Guwahati, Assam, India.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, 1110939, Chile.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ydyrys Alibek
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Marzhan Kulbayeva
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey; Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
23
|
Liao S, Luo Y, Chunchai T, Singhanat K, Arunsak B, Benjanuwattra J, Apaijai N, Chattipakorn N, Chattipakorn SC. An apoptosis inhibitor suppresses microglial and astrocytic activation after cardiac ischemia/reperfusion injury. Inflamm Res 2022; 71:861-872. [PMID: 35655102 DOI: 10.1007/s00011-022-01590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Microglial hyperactivation and apoptosis were observed following myocardial infarction and ischemia reperfusion (I/R) injury. This study aimed to test the hypothesis that the apoptosis inhibitor, Z-VAD, attenuates microglial and astrocytic hyperactivation and brain inflammation in rats with cardiac I/R injury. MATERIALS AND METHODS Rats were subjected to either sham or cardiac I/R operation (30 min-ischemia followed by 120-min reperfusion), rats in the cardiac I/R group were given either normal saline solution or Z-VAD at 3.3 mg/kg via intravenous injection 15 min prior to cardiac ischemia. Left ventricular ejection fraction (% LVEF) was determined during the cardiac I/R protocol. The brain tissues were removed and used to determine brain apoptosis, brain inflammation, microglial and astrocyte morphology. RESULTS Cardiac dysfunction was observed in rats with cardiac I/R injury as indicated by decreased %LVEF. In the brain, we found brain apoptosis, brain inflammation, microglia hyperactivation, and reactive astrogliosis occurred following cardiac I/R injury. Pretreatment with Z-VAD effectively increased %LVEF, reduced brain apoptosis, attenuated brain inflammation by decreasing IL-1β mRNA levels, suppressed microglial and astrocytic hyperactivation and proliferation after cardiac I/R injury. CONCLUSION Z-VAD exerts neuroprotective effects against cardiac I/R injury not only targeting apoptosis but also microglial and astrocyte activation.
Collapse
Affiliation(s)
- Suchan Liao
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ying Luo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kodchanan Singhanat
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthipong Benjanuwattra
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
24
|
Yoon HH, Ye S, Lim S, Jo A, Lee H, Hong F, Lee SE, Oh SJ, Kim NR, Kim K, Kim BJ, Kim H, Lee CJ, Nam MH, Hur JW, Jeon SR. CRISPR-Cas9 Gene Editing Protects from the A53T-SNCA Overexpression-Induced Pathology of Parkinson's Disease In Vivo. CRISPR J 2022; 5:95-108. [PMID: 35191750 DOI: 10.1089/crispr.2021.0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in specific genes, including synuclein alpha (SNCA) that encodes the α-synuclein protein, are known to be risk factors for sporadic Parkinson's disease (PD), as well as critical factors for familial PD. In particular, A53T-mutated SNCA (A53T-SNCA) is a well-studied familial pathologic mutation in PD. However, techniques for deletion of the mutated SNCA gene in vivo have not been developed. Here, we used the CRISPR-Cas9 system to delete A53T-SNCA in vitro as well as in vivo. Adeno-associated virus carrying SaCas9-KKH with a single-guide RNA targeting A53T-SNCA significantly reduced A53T-SNCA expression levels in vitro. Furthermore, we tested its therapeutic potential in vivo in a viral A53T-SNCA-overexpressing rat model of PD. Gene deletion of A53T-SNCA significantly rescued the overexpression of α-synuclein, reactive microgliosis, dopaminergic neurodegeneration, and parkinsonian motor symptoms. Our findings propose CRISPR-Cas9 system as a potential prevention strategy for A53T-SNCA-specific PD.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sunghyeok Ye
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sunhwa Lim
- Convergence Research Center for Dementia, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Ara Jo
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Hawon Lee
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Felix Hong
- RnD center, GeneCker, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Soo-Jin Oh
- Convergence Research Center for Dementia, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Na-Rae Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea; and Kyung Hee University, Seoul, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea; Kyung Hee University, Seoul, Korea.,Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, Korea
| | - Junseok W Hur
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea; Kyung Hee University, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Kyung Hee University, Seoul, Korea
| |
Collapse
|
25
|
Shen D, Liu K, Wang H, Wang H. Autophagy modulation in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2022; 209:140-150. [PMID: 35641229 PMCID: PMC9390842 DOI: 10.1093/cei/uxac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis (MS), a white matter demyelinating disease of the central nervous system (CNS), is characterized by neuroinflammatory and neurodegenerative. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model for investigating pathogenic mechanisms of MS, representing the destruction of the blood-brain barrier (BBB), the activation of T cells, and the infiltration of myeloid cells. An increasing number of studies have documented that autophagy plays a critical role in the pathogenesis of both MS and EAE. Autophagy maintains CNS homeostasis by degrading the damaged organelles and abnormal proteins. Furthermore, autophagy is involved in inflammatory responses by regulating the activation of immune cells and the secretion of inflammatory factors. However, the specific mechanisms of autophagy involved in MS and EAE are not completely understood. In this review, we will summarize the complex mechanisms of autophagy in MS and EAE, providing potential therapeutic approaches for the management of MS.
Collapse
Affiliation(s)
- Donghui Shen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao 266000, Shan Dong Province, China
| | - Kang Liu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao 266000, Shan Dong Province, China
| | - Hongyan Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao 266000, Shan Dong Province, China
| | - Haifeng Wang
- Correspondence: Haifeng Wang, Department of Neurology, Qingdao Municipal Hospital, Qingdao, Shan Dong Province, China.
| |
Collapse
|
26
|
Neuroprotective Effects of Resveratrol in In vivo and In vitro Experimental Models of Parkinson's Disease: a Systematic Review. Neurotox Res 2022; 40:319-345. [PMID: 35013904 DOI: 10.1007/s12640-021-00450-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is currently the second most common neurodegenerative disease, being characterized by motor and non-motor symptoms. The therapeutic options available for its treatment are limited, do not slow the progression of the disease, and have serious side effects. For this reason, many studies have sought to find compounds with neuroprotective properties that bring additional benefits to current therapy. In this context, resveratrol is a phenolic compound, found in many plant species, capable of crossing the blood-brain barrier and having multiple biological properties. Experimental studies in vitro and in vivo have shown that it can prevent or slow the progression of a variety of diseases, including PD. In this systematic review, we summarize the effects of resveratrol in experimental in vivo and in vitro models of PD and discuss the molecular mechanisms involved in its action. The bibliographic search was performed in the databases of PubMed, Web of Science, SciELO, and Google Scholar, and based on the inclusion criteria, 41 articles were selected and discussed. Most of the included studies have demonstrated neuroprotective effects of resveratrol. In general, resveratrol prevented behavioral and/or neurological disorders, improved antioxidant defenses, reduced neuroinflammatory processes, and inhibited apoptosis. In summary, this systematic review offers important scientific evidence of neuroprotective effects of resveratrol in PD and also provide valuable information about its mechanism of action that can support future clinical studies.
Collapse
|
27
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
28
|
Haidar MA, Ibeh S, Shakkour Z, Reslan MA, Nwaiwu J, Moqidem YA, Sader G, Nickles RG, Babale I, Jaffa AA, Salama M, Shaito A, Kobeissy F. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr Neuropharmacol 2022; 20:2050-2065. [PMID: 34856905 PMCID: PMC9886840 DOI: 10.2174/1570159x19666211202123322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yomna Adel Moqidem
- Biotechnology Program, School of Science and Engineering, The American University in Cairo, Cairo, Egypt
| | - Georgio Sader
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Rachel G. Nickles
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ismail Babale
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aneese A. Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, New Cairo 11835, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
29
|
Chen C, Mossman E, Malko P, McDonald D, Blain AP, Bone L, Erskine D, Filby A, Vincent AE, Hudson G, Reeve AK. Astrocytic Changes in Mitochondrial Oxidative Phosphorylation Protein Levels in Parkinson's Disease. Mov Disord 2021; 37:302-314. [PMID: 34779538 DOI: 10.1002/mds.28849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction within neurons, particularly those of the substantia nigra, has been well characterized in Parkinson's disease and is considered to be related to the pathogenesis of this disorder. Dysfunction within this important organelle has been suggested to impair neuronal communication and survival; however, the reliance of astrocytes on mitochondria and the impact of their dysfunction on this essential cell type are less well characterized. OBJECTIVE This study aimed to uncover whether astrocytes harbor oxidative phosphorylation (OXPHOS) deficiencies in Parkinson's disease and whether these deficiencies are more likely to occur in astrocytes closely associated with neurons or those more distant from them. METHODS Postmortem human brain sections from patients with Parkinson's disease were subjected to imaging mass cytometry for individual astrocyte analysis of key OXPHOS proteins across all five complexes. RESULTS We show the variability in the astrocytic expression of mitochondrial proteins between individuals. In addition, we found that there is evidence of deficiencies in respiratory chain subunit expression within these important glia and changes, particularly in mitochondrial mass, associated with Parkinson's disease and that are not simply a consequence of advancing age. CONCLUSION Our data show that astrocytes, like neurons, are susceptible to mitochondrial defects and that these could have an impact on their reactivity and ability to support neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Mossman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David McDonald
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alasdair P Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Bone
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew Filby
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Sanchez A, Morales I, Rodriguez-Sabate C, Sole-Sabater M, Rodriguez M. Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines 2021; 9:biomedicines9101341. [PMID: 34680458 PMCID: PMC8533570 DOI: 10.3390/biomedicines9101341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease (PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the ability of astrocytes to control these causes, and the procedures that can be used to promote the neuroprotective action of astrocytes will be commented upon, here.
Collapse
Affiliation(s)
- Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Department of Psychiatry, Getafe University Hospital, 28905 Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, 38010 Tenerife, Spain;
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-922-319361; Fax: +34-922-319397
| |
Collapse
|
31
|
Yan M, Zhang S, Li C, Liu Y, Zhao J, Wang Y, Yang Y, Zhang L. 5-Lipoxygenase as an emerging target against age-related brain disorders. Ageing Res Rev 2021; 69:101359. [PMID: 33984528 DOI: 10.1016/j.arr.2021.101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a common feature of age-related brain disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and cerebral ischemia. 5-lipoxygenase (5-LOX), a proinflammatory enzyme, modulates inflammation by generating leukotrienes. Abnormal activation of 5-LOX and excessive production of leukotrienes have been detected in the development of age-related brain pathology. In this review, we provide an update on the current understanding of 5-LOX activation and several groups of functionally related inhibitors. In addition, the modulatory roles of 5-LOX in the pathogenesis and progression of the age-related brain disorders have been comprehensively highlighted and discussed. Inhibition of 5-LOX activation may represent a promising therapeutic strategy for AD, PD and cerebral ischemia.
Collapse
|
32
|
Jayaraj RL, Beiram R, Azimullah S, M. F. NM, Ojha SK, Adem A, Jalal FY. Noscapine Prevents Rotenone-Induced Neurotoxicity: Involvement of Oxidative Stress, Neuroinflammation and Autophagy Pathways. Molecules 2021; 26:4627. [PMID: 34361780 PMCID: PMC8348109 DOI: 10.3390/molecules26154627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (R.L.J.); (S.A.); (N.M.M.F.); (S.K.O.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (R.L.J.); (S.A.); (N.M.M.F.); (S.K.O.)
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (R.L.J.); (S.A.); (N.M.M.F.); (S.K.O.)
| | - Nagoor Meeran M. F.
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (R.L.J.); (S.A.); (N.M.M.F.); (S.K.O.)
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (R.L.J.); (S.A.); (N.M.M.F.); (S.K.O.)
| | - Abdu Adem
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Fakhreya Yousuf Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (R.L.J.); (S.A.); (N.M.M.F.); (S.K.O.)
| |
Collapse
|
33
|
Li Q, Shen C, Liu Z, Ma Y, Wang J, Dong H, Zhang X, Wang Z, Yu M, Ci L, Sun R, Shen R, Fei J, Huang F. Partial depletion and repopulation of microglia have different effects in the acute MPTP mouse model of Parkinson's disease. Cell Prolif 2021; 54:e13094. [PMID: 34312932 PMCID: PMC8349650 DOI: 10.1111/cpr.13094] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored. MATERIALS AND METHODS An acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation-related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP-challenged mice. RESULTS The receptor for colony-stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397-formulated diet for 21 days. Microglial depletion downregulated both pro-inflammatory and anti-inflammatory molecule expression at baseline and after MPTP administration. At 1d post-MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397-fed mice, but not in control diet (CD)-fed mice. However, partial microglial depletion in mice exerted little effect on MPTP-induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication. CONCLUSIONS Microglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.
Collapse
Affiliation(s)
- Qing Li
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Chenye Shen
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hongtian Dong
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zishan Wang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC, Shanghai, China
| | - Ruling Shen
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Jian Fei
- Joint Laboratory for Technology of Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.,Shanghai Laboratory Animal Research Center, Shanghai, China.,School of Life Science and Technology, Tongji University, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Jing' an District Centre Hospital of Shanghai Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Nam MH, Park JH, Song HJ, Choi JW, Kim S, Jang BK, Yoon HH, Heo JY, Lee H, An H, Kim HJ, Park SJ, Cho DW, Yang YS, Han SC, Kim S, Oh SJ, Jeon SR, Park KD, Lee CJ. KDS2010, a Newly Developed Reversible MAO-B Inhibitor, as an Effective Therapeutic Candidate for Parkinson's Disease. Neurotherapeutics 2021; 18:1729-1747. [PMID: 34611843 PMCID: PMC8608967 DOI: 10.1007/s13311-021-01097-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 02/04/2023] Open
Abstract
Monoamine oxidase-B (MAO-B) is a well-established therapeutic target for Parkinson's disease (PD); however, previous clinical studies on currently available irreversible MAO-B inhibitors have yielded disappointing neuroprotective effects. Here, we tested the therapeutic potential of KDS2010, a recently synthesized potent, selective, and reversible MAO-B inhibitor in multiple animal models of PD. We designed and synthesized a series of α-aminoamide derivatives and found that derivative KDS2010 exhibited the highest potency, specificity, reversibility, and bioavailability (> 100%). In addition, KDS2010 demonstrated significant neuroprotective and anti-neuroinflammatory efficacy against nigrostriatal pathway destruction in the mouse MPTP model of parkinsonism. Treatment with KDS2010 also alleviated parkinsonian motor dysfunction in 6-hydroxydopamine-induced and A53T mutant α-synuclein overexpression rat models of PD. Moreover, KDS2010 showed virtually no toxicity or side effects in non-human primates. KDS2010 could be a next-generation therapeutic candidate for PD.
Collapse
Affiliation(s)
- Min-Ho Nam
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02453, Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyo Jung Song
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
| | - Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Bo Ko Jang
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
| | - Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jun Young Heo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hyowon Lee
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heeyoung An
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sun Jun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Doo-Wan Cho
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212, Republic of Korea
| | - Young-Su Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212, Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeonbuk, 56212, Republic of Korea
| | - Sangwook Kim
- Neurobiogen Co., LTD, Seocho-gu, Seoul, 9, Republic of Korea
| | - Soo-Jin Oh
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, 02792, Republic of Korea.
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
35
|
An H, Lee H, Yang S, Won W, Lee CJ, Nam MH. Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson's Disease. Exp Neurobiol 2021; 30:222-231. [PMID: 34045369 PMCID: PMC8278136 DOI: 10.5607/en21013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. These pathological changes are associated with α-synuclein aggregation, which is more prone to be induced by an A53T mutation. Therefore, the overexpression of A53T-mutated α-synuclein (A53T-α-syn) has been utilized as a popular animal model of PD. However, this animal model only shows marginal-to-moderate extents of reactive astrogliosis and astrocytic α-synuclein accumulation, while these phenomena are prominent in human PD brains. Here we show that Adeno-GFAP-GFP virus injection into SNpc causes severe reactive astrogliosis and exacerbates the A53T-α-syn-mediated PD pathology. In particular, we demonstrate that AAV-CMV-A53T-α-syn injection, when combined with Adeno-GFAP-GFP, causes more significant loss of dopaminergic neuronal tyrosine hydroxylase level and gain of astrocytic GFAP and GABA levels. Moreover, the combination of AAV-CMV-A53T-α-syn and Adeno-GFAP-GFP causes an extensive astrocytic α-syn expression, just as in human PD brains. These results are in marked contrast to previous reports that AAV-CMV-A53T-α-syn alone causes α-syn expression mostly in neurons but rarely in astrocytes. Furthermore, the combination causes a severe PD-like motor dysfunction as assessed by rotarod and cylinder tests within three weeks from the virus injection, whereas Adeno-GFAP-GFP alone or AAV-CMV-A53T-α-syn alone does not. Our findings implicate that inducing reactive astrogliosis exacerbates PD-like pathologies and propose the virus combination as an advanced strategy for developing a new animal model of PD.
Collapse
Affiliation(s)
- Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Hyowon Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of KHU-KIST Convergent Science and Technology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
36
|
Li X, Wu X, Li N, Li D, Sui A, Khan K, Ge B, Li S, Li S, Zhao J. Scorpion venom heat-resistant synthesized peptide ameliorates 6-OHDA-induced neurotoxicity and neuroinflammation: likely role of Na v 1.6 inhibition in microglia. Br J Pharmacol 2021; 178:3553-3569. [PMID: 33886140 DOI: 10.1111/bph.15502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Microglia-related inflammation is associated with the pathology of Parkinson's disease. Functional voltage-gated sodium channels (VGSCs) are involved in regulating microglial function. Here, we aim to investigate the effects of scorpion venom heat-resistant synthesized peptide (SVHRSP) on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease-like mouse model and reveal its underlying mechanism. EXPERIMENTAL APPROACH Unilateral brain injection of 6-OHDA was performed to establish Parkinson's disease mouse model. After behaviour test, brain tissues were collected for morphological analysis and protein/gene expression examination. Primary microglia culture was used to investigate the role of sodium channel Nav 1.6 in the regulation of microglia inflammation by SVHRSP. KEY RESULTS SVHRSP treatment attenuated motor deficits, dopamine neuron degeneration, activation of glial cells and expression of pro-inflammatory cytokines induced by 6-OHDA lesion. Primary microglia activation and the production of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) were also suppressed by SVHRSP treatment. In addition, SVHRSP could inhibit mitogen-activated protein kinases (MAPKs) pathway, which plays pivotal roles in the pro-inflammatory response. Notably, SVHRSP treatment suppressed the overexpression of microglial Nav 1.6 induced by 6-OHDA and LPS. Finally, it was shown that the anti-inflammatory effect of SVHRSP in microglia was Nav 1.6 dependent and was related to suppression of sodium current and probably the consequent Na+ /Ca2+ exchange. CONCLUSIONS AND IMPLICATIONS SVHRSP might inhibit neuroinflammation and protect dopamine neurons via down-regulating microglial Nav 1.6 and subsequently suppressing intracellular Ca2+ accumulation to attenuate the activation of MAPKs signalling pathway in microglia.
Collapse
Affiliation(s)
- Xiujie Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Xuefei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Donglai Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Aoran Sui
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Khizar Khan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Biying Ge
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
Strafella C, Caputo V, Termine A, Assogna F, Pellicano C, Pontieri FE, Macchiusi L, Minozzi G, Gambardella S, Centonze D, Bossù P, Spalletta G, Caltagirone C, Giardina E, Cascella R. Immune System and Neuroinflammation in Idiopathic Parkinson's Disease: Association Analysis of Genetic Variants and miRNAs Interactions. Front Genet 2021; 12:651971. [PMID: 34149802 PMCID: PMC8209518 DOI: 10.3389/fgene.2021.651971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the association of SNPs involved in the regulation of immune response, cellular degenerative and neuroinflammatory pathways with the susceptibility and progression of idiopathic Parkinson's Disease (PD). In particular, 342 PD patients were subjected to a genotyping analysis of a panel of 120 SNPs by Open Array Technology. As control group, 503 samples representative of the European general population were utilized. The genetic analysis identified 26 SNPs associated with PD susceptibility. Of them, 12 SNPs were described as significant expression Quantitative Loci (eQTL) variants in different brain regions associated with motor and non-motor PD phenomenology. Moreover, the study highlighted 11 novel susceptibility genes for PD, which may alter multiple signaling pathways critically involved in peripheral immune response, neuroinflammation, neurodegeneration and dopaminergic neurons wiring. The study of miRNA-target genes highlighted a possible role of miR-499a, miR-196a2, and miR-29a in the modulation of multiple neuroinflammatory and neurodegenerative mechanisms underlying PD physiopathology. The study described a network of interconnected genes (APOE, CLU, IL6, IL7R, IL12B, INPP5D, MAPK1, MEF2C, MIF, and TNFSF14), which may act as upstream regulators in the modulation of biological pathways relevant to PD. Intriguingly, IL6 stands out as a master gene regulator since it may indirectly regulate the network of interconnected genes. The study highlighted different genes and miRNAs interactions potentially involved in PD physiopathology, which are worth to be further explored to improve the knowledge of disease and the research of novel treatments strategies.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco E. Pontieri
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs, “Sapienza” Università di Roma, Rome, Italy
| | - Lucia Macchiusi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulietta Minozzi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Stefano Gambardella
- Neuromed Institute IRCCS, Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | | | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
38
|
Leucine-rich repeat kinase 2-related functions in GLIA: an update of the last years. Biochem Soc Trans 2021; 49:1375-1384. [PMID: 33960369 DOI: 10.1042/bst20201092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Missense mutations in the leucine-rich repeat kinase-2 (LRRK2) gene represent the most common cause of autosomal dominant Parkinson's disease (PD). In the years LRRK2 has been associated with several organelles and related pathways in cell. However, despite the significant amount of research done in the past decade, the contribution of LRRK2 mutations to PD pathogenesis remains unknown. Growing evidence highlights that LRRK2 controls multiple processes in brain immune cells, microglia and astrocytes, and suggests that deregulated LRRK2 activity in these cells, due to gene mutation, might be directly associated with pathological mechanisms underlying PD. In this brief review, we recapitulate and update the last LRRK2 functions dissected in microglia and astrocytes. Moreover, we discuss how dysfunctions of LRRK2-related pathways may impact glia physiology and their cross-talk with neurons, thus leading to neurodegeneration and progression of PD.
Collapse
|
39
|
An H, Heo JY, Lee CJ, Nam MH. The Pathological Role of Astrocytic MAOB in Parkinsonism Revealed by Genetic Ablation and Over-expression of MAOB. Exp Neurobiol 2021; 30:113-119. [PMID: 33972465 PMCID: PMC8118757 DOI: 10.5607/en21007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
The cause of Parkinson’s disease has been traditionally believed to be the dopaminergic neuronal death in the substantia nigra pars compacta (SNpc). This traditional view has been recently challenged by the proposal that reactive astrocytes serve as key players in the pathology of Parkinson’s disease through excessive GABA release. This aberrant astrocytic GABA is synthesized by the enzymatic action of monoamine oxidase B (MAOB), whose pharmacological inhibition and gene-silencing are reported to significantly alleviate parkinsonian motor symptoms in animal models of Parkinson’s disease. However, whether genetic ablation and over-expression of MAOB can bidirectionally regulate parkinsonian motor symptoms has not been tested. Here we demonstrate that genetic ablation of MAOB blocks the MPTP-induced augmentation of astrocytic GABA-mediated tonic inhibition of neighboring dopaminergic neurons as well as parkinsonian motor symptoms, indicating the necessity of MAOB for parkinsonian motor symptoms. Furthermore, we demonstrate that GFAP-MAOB transgenic mice, in which MAOB is over-expressed under the GFAP promoter for astrocyte-specific over-expression, display exacerbated MPTP-induced tonic inhibition and parkinsonian motor symptoms compared to wild-type mice, indicating the importance of astrocytic MAOB for parkinsonian motor symptoms. Our study provides genetic pieces of evidence for the causal link between the pathological role of astrocytic MAOB-dependent tonic GABA synthesis and parkinsonian motor symptoms.
Collapse
Affiliation(s)
- Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Jun Young Heo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
40
|
Park JS, Kam TI, Lee S, Park H, Oh Y, Kwon SH, Song JJ, Kim D, Kim H, Jhaldiyal A, Na DH, Lee KC, Park EJ, Pomper MG, Pletnikova O, Troncoso JC, Ko HS, Dawson VL, Dawson TM, Lee S. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:78. [PMID: 33902708 PMCID: PMC8074239 DOI: 10.1186/s40478-021-01180-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of age-related dementia. Increasing evidence suggests that neuroinflammation mediated by microglia and astrocytes contributes to disease progression and severity in AD and other neurodegenerative disorders. During AD progression, resident microglia undergo proinflammatory activation, resulting in an increased capacity to convert resting astrocytes to reactive astrocytes. Therefore, microglia are a major therapeutic target for AD and blocking microglia-astrocyte activation could limit neurodegeneration in AD. Here we report that NLY01, an engineered exedin-4, glucagon-like peptide-1 receptor (GLP-1R) agonist, selectively blocks β-amyloid (Aβ)-induced activation of microglia through GLP-1R activation and inhibits the formation of reactive astrocytes as well as preserves neurons in AD models. In two transgenic AD mouse models (5xFAD and 3xTg-AD), repeated subcutaneous administration of NLY01 blocked microglia-mediated reactive astrocyte conversion and preserved neuronal viability, resulting in improved spatial learning and memory. Our study indicates that the GLP-1 pathway plays a critical role in microglia-reactive astrocyte associated neuroinflammation in AD and the effects of NLY01 are primarily mediated through a direct action on Aβ-induced GLP-1R+ microglia, contributing to the inhibition of astrocyte reactivity. These results show that targeting upregulated GLP-1R in microglia is a viable therapy for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jong-Sung Park
- Russell H, Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- D&D Pharmatech Inc., Bundang-gu, Seongnam-si, 13494, Republic of Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Saebom Lee
- Russell H, Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neuraly Inc., Gaithersburg, MD, 20878, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yumin Oh
- Russell H, Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neuraly Inc., Gaithersburg, MD, 20878, USA
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Neuraly Inc., Gaithersburg, MD, 20878, USA
| | - Jae-Jin Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyunhee Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Aanishaa Jhaldiyal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Kang Choon Lee
- D&D Pharmatech Inc., Bundang-gu, Seongnam-si, 13494, Republic of Korea
| | - Eun Ji Park
- D&D Pharmatech Inc., Bundang-gu, Seongnam-si, 13494, Republic of Korea
| | - Martin G Pomper
- Russell H, Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olga Pletnikova
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Seulki Lee
- Russell H, Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- D&D Pharmatech Inc., Bundang-gu, Seongnam-si, 13494, Republic of Korea.
- Neuraly Inc., Gaithersburg, MD, 20878, USA.
| |
Collapse
|
41
|
Chamera K, Trojan E, Kotarska K, Szuster-Głuszczak M, Bryniarska N, Tylek K, Basta-Kaim A. Role of Polyinosinic:Polycytidylic Acid-Induced Maternal Immune Activation and Subsequent Immune Challenge in the Behaviour and Microglial Cell Trajectory in Adult Offspring: A Study of the Neurodevelopmental Model of Schizophrenia. Int J Mol Sci 2021; 22:ijms22041558. [PMID: 33557113 PMCID: PMC7913889 DOI: 10.3390/ijms22041558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Multiple lines of evidence support the pathogenic role of maternal immune activation (MIA) in the occurrence of the schizophrenia-like disturbances in offspring. While in the brain the homeostatic role of neuron-microglia protein systems is well documented, the participation of the CX3CL1-CX3CR1 and CD200-CD200R dyads in the adverse impact of MIA often goes under-recognized. Therefore, in the present study, we examined the effect of MIA induced by polyinosinic:polycytidylic acid (Poly I:C) on the CX3CL1-CX3CR1 and CD200-CD200R axes, microglial trajectory (MhcII, Cd40, iNos, Il-1β, Tnf-α, Il-6, Arg1, Igf-1, Tgf-β and Il-4), and schizophrenia-like behaviour in adult male offspring of Sprague-Dawley rats. Additionally, according to the “two-hit” hypothesis of schizophrenia, we evaluated the influence of acute challenge with Poly I:C in adult prenatally MIA-exposed animals on the above parameters. In the present study, MIA evoked by Poly I:C injection in the late period of gestation led to the appearance of schizophrenia-like disturbances in adult offspring. Our results revealed the deficits manifested as a diminished number of aggressive interactions, presence of depressive-like episodes, and increase of exploratory activity, as well as a dichotomy in the sensorimotor gating in the prepulse inhibition (PPI) test expressed as two behavioural phenotypes (MIAPPI-low and MIAPPI-high). Furthermore, in the offspring rats subjected to a prenatal challenge (i.e., MIA) we noticed the lack of modulation of behavioural changes after the additional acute immune stimulus (Poly I:C) in adulthood. The important finding reported in this article is that MIA affects the expression and levels of the neuron-microglia proteins in the frontal cortex and hippocampus of adult offspring. We found that the changes in the CX3CL1-CX3CR1 axis could affect microglial trajectory, including decreased hippocampal mRNA level of MhcII and elevated cortical expression of Igf-1 in the MIAPPI-high animals and/or could cause the up-regulation of an inflammatory response (Il-6, Tnf-α, iNos) after the “second hit” in both examined brain regions and, at least in part, might differentiate behavioural disturbances in adult offspring. Consequently, the future effort to identify the biological background of these interactions in the Poly I:C-induced MIA model in Sprague-Dawley rats is desirable to unequivocally clarify this issue.
Collapse
|
42
|
Salemi M, Mazzetti S, De Leonardis M, Giampietro F, Medici V, Poloni TE, Cannarella R, Giaccone G, Pezzoli G, Cappelletti G, Ferri R. Poly (ADP-ribose) polymerase 1 and Parkinson's disease: A study in post-mortem human brain. Neurochem Int 2021; 144:104978. [PMID: 33516746 DOI: 10.1016/j.neuint.2021.104978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is crucial in both maintenance of genome integrity and cell death. PARP1 activation has been very recently linked to Parkinson's disease (PD) and its role in inducing the pathologic accumulation of α-Synuclein demonstrated in a PD mouse model. The objective of this study was to investigate the presence and localization of PARP1 in PD brain. PARP1 localization was assessed by immunostaining and confocal microscopy in post-mortem human brains obtained from PD patients (Braak stage VI) compared to controls. PARP1 positive nuclei in substantia nigra, mainly in dopaminergic neurons but also in astrocytes and oligodendrocytes, were decreased in PD. The same alteration was observed in several areas that are affected in PD pathology, namely the dorsal motor nucleus of vagus, frontal and cingulate cortex, whereas no changes in PARP1 staining were detectable in the inferior olivary nucleus that is unaffected in PD. In addition, PARP1 co-localizes with α-Synuclein that is accumulated in the cytoplasm and in Lewy bodies of PD tissue sections. Our data reveal previously unknown changes of PARP1 localization in the brain of PD patients, in both neurons and glia, supporting its widespread involvement in this pathology and its potential use as a therapeutic target.
Collapse
Affiliation(s)
| | - Samanta Mazzetti
- Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135, Milan, Italy
| | | | | | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, Milan, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, Milan, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giorgio Giaccone
- Unit of Neuropathology and Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135, Milan, Italy
| | | | | |
Collapse
|
43
|
Borden EA, Furey M, Gattone NJ, Hambardikar VD, Liang XH, Scoma ER, Abou Samra A, D-Gary LR, Dennis DJ, Fricker D, Garcia C, Jiang Z, Khan SA, Kumarasamy D, Kuppala H, Ringrose S, Rosenheim EJ, Van Exel K, Vudhayagiri HS, Zhang J, Zhang Z, Guitart-Mampel M, Urquiza P, Solesio ME. Is there a link between inorganic polyphosphate (polyP), mitochondria, and neurodegeneration? Pharmacol Res 2021; 163:105211. [PMID: 33010423 PMCID: PMC7855267 DOI: 10.1016/j.phrs.2020.105211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction - including increased apoptosis, calcium and protein dyshomeostasis within the organelle, and dysfunctional bioenergetics and oxidative status - is a common, early feature in all the major neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD). However, the exact molecular mechanisms that drive the organelle to dysfunction and ultimately to failure in these conditions are still not well described. Different authors have shown that inorganic polyphosphate (polyP), an ancient and well-conserved molecule, plays a key role in the regulation of mitochondrial physiology under basal conditions. PolyP, which is present in all studied organisms, is composed of chains of orthophosphates linked together by highly energetic phosphoanhydride bonds, similar to those found in ATP. This polymer shows a ubiquitous distribution, even if a high co-localization with mitochondria has been reported. It has been proposed that polyP might be an alternative to ATP for cellular energy storage in different organisms, as well as the implication of polyP in the regulation of many of the mitochondrial processes affected in AD and PD, including protein and calcium homeostasis. Here, we conduct a comprehensive review and discussion of the bibliography available regarding the role of polyP in the mitochondrial dysfunction present in AD and PD. Taking into account the data presented in this review, we postulate that polyP could be a valid, innovative and, plausible pharmacological target against mitochondrial dysfunction in AD and PD. However, further research should be conducted to better understand the exact role of polyP in neurodegeneration, as well as the metabolism of the polymer, and the effect of different lengths of polyP on cellular and mitochondrial physiology.
Collapse
Affiliation(s)
- Emily A Borden
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Matthew Furey
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Nicholas J Gattone
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Xiao Hua Liang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Ernest R Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Antonella Abou Samra
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - LaKeshia R D-Gary
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Dayshaun J Dennis
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Daniel Fricker
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Cindy Garcia
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - ZeCheng Jiang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Shariq A Khan
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Hasmitha Kuppala
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Savannah Ringrose
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Evan J Rosenheim
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Kimberly Van Exel
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | | | - Jiarui Zhang
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | - Zhaowen Zhang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Maria E Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, NJ, USA.
| |
Collapse
|
44
|
Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in Multiple Sclerosis: Two Sides of the Same Coin. Front Cell Neurosci 2020; 14:603710. [PMID: 33328897 PMCID: PMC7714924 DOI: 10.3389/fncel.2020.603710] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex auto-immune disorder of the central nervous system (CNS) that involves a range of CNS and immune cells. MS is characterized by chronic neuroinflammation, demyelination, and neuronal loss, but the molecular causes of this disease remain poorly understood. One cellular process that could provide insight into MS pathophysiology and also be a possible therapeutic avenue, is autophagy. Autophagy is an intracellular degradative pathway essential to maintain cellular homeostasis, particularly in neurons as defects in autophagy lead to neurodegeneration. One of the functions of autophagy is to maintain cellular homeostasis by eliminating defective or superfluous proteins, complexes, and organelles, preventing the accumulation of potentially cytotoxic damage. Importantly, there is also an intimate and intricate interplay between autophagy and multiple aspects of both innate and adaptive immunity. Thus, autophagy is implicated in two of the main hallmarks of MS, neurodegeneration, and inflammation, making it especially important to understand how this pathway contributes to MS manifestation and progression. This review summarizes the current knowledge about autophagy in MS, in particular how it contributes to our understanding of MS pathology and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Chairi Misrielal
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Mauthe
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fulvio Reggiori
- Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
45
|
Pretreatment of Ascorbic Acid Inhibits MPTP-Induced Astrocytic Oxidative Stress through Suppressing NF- κB Signaling. Neural Plast 2020; 2020:8872296. [PMID: 33281897 PMCID: PMC7685864 DOI: 10.1155/2020/8872296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Astrocytes are a major constituent of the central nervous system (CNS). Astrocytic oxidative stress contributes to the development of Parkinson's disease (PD). Maintaining production of antioxidant and detoxification of reactive oxygen and nitrogen species (ROS/RNS) in astrocytes is critical to prevent PD. Study has illuminated that ascorbic acid (AA) stimulates dopamine synthesis and expression of tyrosine hydroxylase in human neuroblastoma cells. However, the role and regulatory mechanisms of AA on detoxification of astrocytes are still unclear. The purpose of our study is in-depth study of the regulatory mechanism of AA on detoxification of astrocytes. We found that AA pretreatment decreased the expression of ROS and inducible nitric oxide synthase (iNOS) in MPP+-treated astrocytes. In contrast, the expression levels of antioxidative substances—including superoxide dismutase (SOD), glutathione (GSH), and glutamate-cysteine ligase modifier (GCLM) subunit—were upregulated after AA pretreatment in MPP+-treated astrocytes. However, inhibition of NF-κB prevented such AA induced increases in antioxidative substances following MPP+ treatment in astrocytes, suggesting that AA improved antioxidative function of astrocytes through inhibiting NF-κB-mediated oxidative stress. Furthermore, in vivo studies revealed that AA preadministration also suppressed NF-κB and upregulated the expression levels of antioxidative substances in the midbrain of MPTP-treated mice. Additionally, pretreatment of AA alleviated MPTP-induced PD-like pathology in mice. Taken together, our results demonstrate that preadministration of AA improves the antioxidative function of astrocytes through suppressing NF-κB signaling, following alleviated the pathogenesis of PD which induced by MPTP. Hence, our findings elucidate a novel protective mechanism of AA in astrocytes.
Collapse
|
46
|
Tomás M, Martínez-Alonso E, Martínez-Martínez N, Cara-Esteban M, Martínez-Menárguez JA. Fragmentation of the Golgi complex of dopaminergic neurons in human substantia nigra: New cytopathological findings in Parkinson's disease. Histol Histopathol 2020; 36:47-60. [PMID: 33078843 DOI: 10.14670/hh-18-270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fragmentation of the Golgi ribbon is a common feature of Parkinson´s disease and other neurodegenerative diseases. This alteration could be the consequence of the anterograde and retrograde transport imbalance, α-synuclein aggregates, and/or cytoskeleton alterations. Most information on this process has been obtained from cellular and animal experimental models, and as such, there is little information available on human tissue. If the information on human tissue was available, it may help to understand the cytopathological mechanisms of this disease. In the present study, we analyzed the morphological characteristics of the Golgi complex of dopaminergic neurons in human samples of substantia nigra of control and Parkinson's disease patients. We measured the expression levels of putative molecules involved in Golgi fragmentation, including α-synuclein, tubulin, and Golgi-associated regulatory and structural proteins. We show that, as a consequence of the disease, the Golgi complex is fragmented into small stacks without vesiculation. We found that only a limited number of regulatory proteins are altered. Rab1, a small GTPase regulating endoplasmic reticulum-to-Golgi transport, is the most dramatically affected, being highly overexpressed in the surviving neurons. We found that the SNARE protein syntaxin 5 forms extracellular aggregates resembling the amyloid plaques characteristic of Alzheimer's disease. These findings may help to understand the cytopathology of Parkinson's disease.
Collapse
Affiliation(s)
- Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain.
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, Murcia, Spain
| | | | - Mireia Cara-Esteban
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | | |
Collapse
|
47
|
Post-GWAS knowledge gap: the how, where, and when. NPJ PARKINSONS DISEASE 2020; 6:23. [PMID: 32964108 PMCID: PMC7481221 DOI: 10.1038/s41531-020-00125-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023]
Abstract
Genetic risk for complex diseases very rarely reflects only Mendelian-inherited phenotypes where single-gene mutations can be followed in families by linkage analysis. More commonly, a large set of low-penetrance, small effect-size variants combine to confer risk; they are normally revealed in genome-wide association studies (GWAS), which compare large population groups. Whereas Mendelian inheritance points toward disease mechanisms arising from the mutated genes, in the case of GWAS signals, the effector proteins and even general risk mechanism are mostly unknown. Instead, the utility of GWAS currently lies primarily in predictive and diagnostic information. Although an amazing body of GWAS-based knowledge now exists, we advocate for more funding towards the exploration of the fundamental biology in post-GWAS studies; this research will bring us closer to causality and risk gene identification. Using Parkinson's Disease as an example, we ask, how, where, and when do risk loci contribute to disease?
Collapse
|
48
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
49
|
Ko W, Kim KW, Quang TH, Yoon CS, Kim N, Lee H, Kim SC, Woo ER, Kim YC, Oh H, Lee DS. Cudraflavanone B Isolated from the Root Bark of Cudrania tricuspidata Alleviates Lipopolysaccharide-Induced Inflammatory Responses by Downregulating NF-κB and ERK MAPK Signaling Pathways in RAW264.7 Macrophages and BV2 Microglia. Inflammation 2020; 44:104-115. [PMID: 32766955 DOI: 10.1007/s10753-020-01312-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A prenylated flavonoid, cudraflavanone B, is isolated from Cudrania tricuspidata. In this study, we investigated its anti-inflammatory and anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 and BV2 cells. In our initial study of the anti-inflammatory effects of cudraflavanone B the production of nitric oxide and prostaglandin E2 was attenuated in LPS-stimulated RAW264.7 and BV2 cells. These inhibitory effects were related to the downregulation of inducible nitric oxide synthase and cyclooxygenase-2. In addition, cudraflavanone B suppressed the production of pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α in LPS-induced RAW264.7 and BV2 cells. Moreover, the evaluation of the molecular mechanisms underlying the anti-inflammatory effects of cudraflavanone B revealed that the compound attenuated the nuclear factor-kappa B signaling pathway in LPS-induced RAW264.7 and BV2 cells. In addition, cudraflavanone B inhibited the phosphorylation of extracellular signal-regulated kinase mitogen-activated protein kinase signaling pathways in these LPS-stimulated cells. Thus, cudraflavanone B suppressed nuclear factor-κB, and extracellular signal-regulated kinase mitogen-activated protein kinase mediated inflammatory pathways, demonstrating its potential in the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Chi-Su Yoon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, 28116, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Sam-Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
50
|
Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci 2020; 144:151-164. [PMID: 32807662 DOI: 10.1016/j.jphs.2020.07.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamate transmission efficiency depends on the correct functionality and expression of a plethora of receptors and transporters, located both on neurons and glial cells. Of note, glutamate reuptake by dedicated transporters prevents its accumulation at the synapse as well as non-physiological spillover. Indeed, extracellular glutamate increase causes aberrant synaptic signaling leading to neuronal excitotoxicity and death. Moreover, extrasynaptic glutamate diffusion is strongly associated with glia reaction and neuroinflammation. Glutamate-induced excitotoxicity is mainly linked to an impaired ability of glial cells to reuptake and respond to glutamate, then this is considered a common hallmark in many neurodegenerative diseases, including Parkinson's disease (PD). In this review, we discuss the function of astrocytes and microglia in glutamate homeostasis, focusing on how glial dysfunction causes glutamate-induced excitotoxicity leading to neurodegeneration in PD.
Collapse
Affiliation(s)
- L Iovino
- Department of Biology, University of Padova, Italy
| | - M E Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - L Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| |
Collapse
|