1
|
Song Y, Liu H, Gu K, Liu Y. Association between nighttime sleep duration, nap time, and mild cognitive impairment in Chinese older adults: a cross-sectional study. BMC Public Health 2024; 24:2381. [PMID: 39223492 PMCID: PMC11367814 DOI: 10.1186/s12889-024-19900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aims to investigate the relationship between midday nap time, nighttime sleep duration, and mild cognitive impairment (MCI) in Chinese older adults and determine the recommended sleep duration to provide a scientific basis for preventing and managing MCI in this population. METHODS Utilizing the 2020 China Health and Retirement Longitudinal Study database, the demographic data, health status, and lifestyle information of the study participants were collected. A total of 5,314 valid samples were included in the analysis. Logistic regression and restricted cubic spline plots were employed to explore the relationship between sleep patterns and MCI. RESULTS In the cross-sectional analysis, a linear relationship was observed between midday nap duration and MCI among Chinese elderly. The probability of MCI was lowest among those who napped for less than 30 min at noon. Compared with individuals who napped for30-90 min, those who did not nap were more likely to have MCI (OR = 1.30, 95% CI: 1.05-1.60). Older adults with napping duration < 30 min (OR = 0.73, 95% CI:0.56-0.95) also exhibited lower probability of MCI when compared those without napping habit, Nighttime sleep duration exhibited a U-shaped relationship with MCI. Individuals with less than approximately 6 h of nighttime sleep showed a gradual decrease in the probability of MCI with increasing sleep duration, whereas those with more than 7.5 h demonstrated an increase in the probability of MCI with longer sleep duration. Older adults who slept less than 6 h at night (OR = 1.22, 95% CI: 1.01 ~ 1.46) or more than 8 h (OR = 1.78, 95% CI: 1.35-2.33) were more likely to develop MCI compared with those who slept 6 to 8 h. CONCLUSION After controlling for potential confounding variables, both nighttime sleep duration and midday nap duration exhibited a nonlinear "U"-shaped relationship with MCI among the elderly. The probability of depression was lower with a nap duration of approximately 60 min, and the optimal nighttime sleep duration was 6-8 h, with around 7 h providing the greatest cognitive benefits.
Collapse
Affiliation(s)
- Yanliqing Song
- College of Sports, Nanjing Tech University, Nanjing, China
| | - Haoqiang Liu
- College of Sports, Nanjing Tech University, Nanjing, China
| | - KeNan Gu
- College of Sports, Nanjing Tech University, Nanjing, China
| | - Yue Liu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
2
|
Callow DD, Spira AP, Bakker A, Smith JC. Sleep Quality Moderates the Associations between Cardiorespiratory Fitness and Hippocampal and Entorhinal Volume in Middle-Aged and Older Adults. Med Sci Sports Exerc 2024; 56:1740-1746. [PMID: 38742864 PMCID: PMC11326995 DOI: 10.1249/mss.0000000000003454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION/PURPOSE As individuals age, the entorhinal cortex (ERC) and hippocampus-crucial structures for memory-tend to atrophy, with related cognitive decline. Simultaneously, lifestyle factors that can be modified, such as exercise and sleep, have been separately linked to slowing of brain atrophy and functional decline. However, the synergistic impact of fitness and sleep on susceptible brain structures in aging adults remains uncertain. METHODS We examined both independent and interactive associations of fitness and subjective sleep quality with regard to ERC thickness and hippocampal volume in 598 middle-aged and older adults from the Human Connectome Lifespan Aging Project. Cardiorespiratory fitness was assessed using the 2-min walk test, whereas subjective sleep quality was measured with the continuous Pittsburgh Sleep Quality Index global score. High-resolution structural magnetic resonance imaging was used to examine mean ERC thickness and bilateral hippocampal volume. Through multiple linear regression analyses, we investigated the moderating effects of subjective sleep quality on the association between fitness and brain structure, accounting for age, sex, education, body mass index, gait speed, and subjective physical activity. RESULTS We found that greater cardiorespiratory fitness, but not subjective sleep quality, was positively associated with bilateral hippocampal volume and ERC thickness. Notably, significant interaction effects suggest that poor subjective sleep quality was associated with a weaker association between fitness and both hippocampal volume and ERC thickness. CONCLUSIONS Findings suggest the potential importance of both cardiorespiratory fitness and subjective sleep quality in preserving critical, age-vulnerable brain structures. Interventions targeting brain health should consider potential combined effects of sleep and fitness on brain health.
Collapse
Affiliation(s)
- Daniel D Callow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD
| |
Collapse
|
3
|
Faucher C, Borne L, Behler A, Paton B, Giorgio J, Fripp J, Thienel R, Lupton MK, Breakspear M. A central role of sulcal width in the associations of sleep duration and depression with cognition in mid to late life. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae058. [PMID: 39221446 PMCID: PMC11362672 DOI: 10.1093/sleepadvances/zpae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Study Objectives Evidence suggests that poor sleep impacts cognition, brain health, and dementia risk but the nature of the association is poorly understood. This study examined how self-reported sleep duration, napping, and subjective depression symptoms are associated with the brain-cognition relationship in older adults, using sulcal width as a measure of relative brain health. Methods A canonical partial least squares analysis was used to obtain two composite variables that relate cognition and sulcal width in a cross-sectional study of 137 adults aged 46-72. We used a combination of ANCOVA and path analyses to test the associations of self-reported sleep duration, napping, and subjective depression symptoms with the brain-cognition relationship. Results We observed a significant main effect of sleep duration on sulcal width, with participants reporting 7 hours showing narrower sulci than other durations. This effect remained significant after including subjective depression as a covariate, which also had a significant main effect on sulcal width in the model. There was no significant effect of napping on sulcal width. In path analyses where the effects of age, self-reported sleep duration and depression symptoms were investigated together, sulcal width mediated the relationship between age and cognition. We also observed a significant indirect effect of sulci width in the subjective depression-cognition relationship. Conclusions Findings suggest that self-reported sleep duration and subjective depression may each be independently associated with brain morphology, which is related to cognitive functions. Results could help inform clinical trials and related intervention studies that aim at delaying cognitive decline in adults at risk of developing dementia.
Collapse
Affiliation(s)
- Caroline Faucher
- School of Psychological Science, College of Science, Engineering and the Environment, University of Newcastle, Australia
- Australian eHealth Research Centre, CSIRO, Brisbane, Australia
| | - Léonie Borne
- School of Psychological Science, College of Science, Engineering and the Environment, University of Newcastle, Australia
| | - Anna Behler
- School of Psychological Science, College of Science, Engineering and the Environment, University of Newcastle, Australia
| | - Bryan Paton
- School of Psychological Science, College of Science, Engineering and the Environment, University of Newcastle, Australia
| | - Joseph Giorgio
- School of Psychological Science, College of Science, Engineering and the Environment, University of Newcastle, Australia
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Jurgen Fripp
- Australian eHealth Research Centre, CSIRO, Brisbane, Australia
| | - Renate Thienel
- School of Public Health and Medicine, College of Health Medicine and Wellbeing, University of Newcastle, Australia
| | - Michelle K Lupton
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Michael Breakspear
- School of Psychological Science, College of Science, Engineering and the Environment, University of Newcastle, Australia
- School of Public Health and Medicine, College of Health Medicine and Wellbeing, University of Newcastle, Australia
| |
Collapse
|
4
|
Andrews MJ, Salat DH, Milberg WP, McGlinchey RE, Fortier CB. Poor sleep and decreased cortical thickness in veterans with mild traumatic brain injury and post-traumatic stress disorder. Mil Med Res 2024; 11:51. [PMID: 39098930 PMCID: PMC11299360 DOI: 10.1186/s40779-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Poor sleep quality has been associated with changes in brain volume among veterans, particularly those who have experienced mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD). This study sought to investigate (1) whether poor sleep quality is associated with decreased cortical thickness in Iraq and Afghanistan war veterans, and (2) whether these associations differ topographically depending on the presence or absence of mTBI and PTSD. METHODS A sample of 440 post-9/11 era U.S. veterans enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders study at VA Boston, MA from 2010 to 2022 was included in the study. We examined the relationship between sleep quality, as measured by the Pittsburgh Sleep Quality Index (PSQI), and cortical thickness in veterans with mTBI (n = 57), PTSD (n = 110), comorbid mTBI and PTSD (n = 129), and neither PTSD nor mTBI (n = 144). To determine the topographical relationship between subjective sleep quality and cortical thickness in each diagnostic group, we employed a General Linear Model (GLM) at each vertex on the cortical mantle. The extent of topographical overlap between the resulting statistical maps was assessed using Dice coefficients. RESULTS There were no significant associations between PSQI and cortical thickness in the group without PTSD or mTBI (n = 144) or in the PTSD-only group (n = 110). In the mTBI-only group (n = 57), lower sleep quality was significantly associated with reduced thickness bilaterally in frontal, cingulate, and precuneus regions, as well as in the right parietal and temporal regions (β = -0.0137, P < 0.0005). In the comorbid mTBI and PTSD group (n = 129), significant associations were observed bilaterally in frontal, precentral, and precuneus regions, in the left cingulate and the right parietal regions (β = -0.0094, P < 0.0005). Interaction analysis revealed that there was a stronger relationship between poor sleep quality and decreased cortical thickness in individuals with mTBI (n = 186) compared to those without mTBI (n = 254) specifically in the frontal and cingulate regions (β = -0.0077, P < 0.0005). CONCLUSIONS This study demonstrates a significant relationship between poor sleep quality and lower cortical thickness primarily within frontal regions among individuals with both isolated mTBI or comorbid diagnoses of mTBI and PTSD. Thus, if directionality is established in longitudinal and interventional studies, it may be crucial to consider addressing sleep in the treatment of veterans who have sustained mTBI.
Collapse
Affiliation(s)
- Murray J Andrews
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA
| | - David H Salat
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02130, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, 02130, USA
- Anthinoula A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, 02130, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02138, USA.
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
5
|
Xiang W, Shen Y, Chen S, Tan H, Cao Q, Xu L. Causal relationship between sleep disorders and the risk of Alzheimer's disease: A Mendelian randomization study. Sleep Med 2024; 120:34-43. [PMID: 38865787 DOI: 10.1016/j.sleep.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND OBJECTIVE Epidemiological studies have shown that sleep disorders are risk factors for Alzheimer's disease (AD), but the causal relationship between sleep disorders and AD risk is unknown. We aim to assess the potential genetic causal association between sleep characteristics and AD, which may contribute to early identification and prediction of risk factors for AD. METHODS Seven sleep-related traits and the outcome phenotype AD were selected from published genome-wide association studies (GWASs). These sleep-related characteristics and instrumental variables (IVs) for AD were extracted. Two-sample and multivariate Mendelian randomization (MR) analyses were performed to assess the causal relationships between sleep characteristics and AD. The inverse variance weighted (IVW), weighted median (WME), weighted mode (WM), MR-Egger regression (MR-Egger) and simple mode (SM) models were used to evaluate causality. The existence of pleiotropy was detected and corrected by MR-Egger regression, MR pleiotropy residuals and outliers. RESULTS A two-sample MR study revealed a positive causal association between sleep duration and the onset of AD (OR = 1.002, 95 % CI: 1.000-1.004), and the risk of AD increased with increasing sleep duration. The MR-Egger regression method and MR-PRESSO were used to identify and correct pleiotropy, indicating that there was no horizontal pleiotropy. Heterogeneity was evaluated by Cochran's Q, which indicated no heterogeneity. In a multivariate MR study with seven sleep characteristics corrected for each other, we found that sleep duration remained causally associated with AD (OR = 1.004, 95 % CI: 1.000-1.007). Moreover, we found that after mutual correction, daytime napping had a causal relationship with the onset of AD, and daytime napping may reduce the risk of AD (OR = 0.995, 95 % CI: 0.991-1.000). CONCLUSION This study is helpful for the early identification and prediction of risk factors for AD, long sleep durations are a risk factor for AD, and daytime napping can reduce the risk of AD.
Collapse
Affiliation(s)
- Wenwen Xiang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Shen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shenjian Chen
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huadong Tan
- Department of Respiratory and Critical Care Medicine, Yichang Central People's Hospital, China Three Gorges University, Yichang, China
| | - Qian Cao
- Department of Neurology, Saarland University, Homburg, Germany
| | - Lijun Xu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Yesilkaya HU, Chen X, Watford L, McCoy E, Genc I, Du F, Ongur D, Yuksel C. Poor Self-Reported Sleep is Associated with Prolonged White Matter T2 Relaxation in Psychotic Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601887. [PMID: 39005452 PMCID: PMC11244968 DOI: 10.1101/2024.07.03.601887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Schizophrenia (SZ) and bipolar disorder (BD) are characterized by white matter (WM) abnormalities, however, their relationship with illness presentation is not clear. Sleep disturbances are common in both disorders, and recent evidence suggests that sleep plays a critical role in WM physiology. Therefore, it is plausible that sleep disturbances are associated with impaired WM integrity in these disorders. To test this hypothesis, we examined the association of self-reported sleep disturbances with WM transverse (T2) relaxation times in patients with SZ spectrum disorders and BD with psychotic features. Methods 28 patients with psychosis (17 BD-I, with psychotic features and 11 SZ spectrum disorders) were included. Metabolite and water T2 relaxation times were measured in the anterior corona radiata at 4T. Sleep was evaluated using the Pittsburgh Sleep Quality Index. Results PSQI total score showed a moderate to strong positive correlation with water T2 (r = 0.64, p<0.001). Linear regressions showed that this association was specific to sleep disturbance but was not a byproduct of exacerbation in depressive, manic, or psychotic symptoms. In our exploratory analysis, sleep disturbance was correlated with free water percentage, suggesting that increased extracellular water may be a mechanism underlying the association of disturbed sleep and prolonged water T2 relaxation. Conclusion Our results highlight the connection between poor sleep and WM abnormalities in psychotic disorders. Future research using objective sleep measures and neuroimaging techniques suitable to probe free water is needed to further our insight into this relationship.
Collapse
Affiliation(s)
- Haluk Umit Yesilkaya
- McLean Hospital, Belmont, MA
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | | | | | - Fei Du
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Dost Ongur
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Cagri Yuksel
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Wang Z, Li X, Wang J, Yang W, Dove A, Lu W, Qi X, Sindi S, Xu W. Association of past and current sleep duration with structural brain differences: A large population-based study from the UK Biobank. Sleep Med 2024; 119:179-186. [PMID: 38692219 DOI: 10.1016/j.sleep.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE This study aimed to examine the association between past/current sleep duration and macro-/micro-structural brain outcomes and explore whether hypertension or social activity plays a role in such association. METHODS Within the UK Biobank, 40 436 dementia-free participants (age 40-70 years) underwent a baseline assessment followed by a brain magnetic resonance imaging (MRI) scan 9 years later. Past (baseline) and current (MRI scans) sleep duration (hours/day) were recorded and classified as short (≤5), intermediate (6-8), and long (≥9). Brain structural volumes and diffusion markers were assessed by MRI scans. RESULTS Compared with past intermediate sleep, past short sleep was related to smaller cortex volumes (standardized β [95 % CI]: -0.04 [-0.07, -0.02]) and lower regional fractional anisotropy (FA) (-0.08 [-0.13, -0.03]), while past long sleep was related to smaller regional subcortical volumes (standardized β: -0.04 to -0.07 for thalamus, accumbens, and hippocampus). Compared to current intermediate sleep, current short sleep was associated with smaller cortex volumes (-0.03 [-0.05, -0.01]), greater white matter hyperintensities (WMH) volumes (0.04 [0.01, 0.08]), and lower regional FA (-0.07 [-0.11, -0.02]). However, current long sleep was related to smaller total brain (-0.03 [-0.05, -0.02]), grey matter (-0.05 [-0.07, -0.03]), cortex (-0.05 [-0.07, -0.03]), regional subcortical volumes [standardized β: -0.05 to -0.09 for putamen, thalamus, hippocampus, and accumbens]), greater WMH volumes (0.06 [0.03, 0.09]), as well as lower regional FA (-0.05 [-0.09, -0.02]). The association between current long sleep duration and poor brain health was stronger among people with hypertension or low frequency of social activity (all Pinteraction <0.05). CONCLUSIONS Both past and current short/long sleep are associated with smaller brain volume and poorer white matter health in the brain, especially in individuals with hypertension and low frequency of social activity. Our findings highlight the need to maintain 6-8 h' sleep duration for healthy brain aging.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xuerui Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jiao Wang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenzhe Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Abigail Dove
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Wenli Lu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiuying Qi
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Weili Xu
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China; Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Tang S, Liu R, Ren J, Song L, Dong L, Qin Y, Zhao M, Wang Y, Dong Y, Zhao T, Liu C, Hou T, Cong L, Sindi S, Winblad B, Du Y, Qiu C. Association of objective sleep duration with cognition and brain aging biomarkers in older adults. Brain Commun 2024; 6:fcae144. [PMID: 38756537 PMCID: PMC11098043 DOI: 10.1093/braincomms/fcae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/21/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
The neuropathological mechanisms underlying the association between sleep duration and mild cognitive impairment remain poorly understood. This population-based study included 2032 dementia-free people (age ≥ 60 years; 55.1% women) derived from participants in the Multimodal Interventions to Delay Dementia and Disability in Rural China; of these, data were available in 841 participants for Alzheimer's plasma biomarkers (e.g. amyloid-β, total tau and neurofilament light chain), 1044 for serum microvascular biomarkers (e.g. soluble adhesion molecules) and 834 for brain MRI biomarkers (e.g. whiter matter, grey matter, hippocampus, lacunes, enlarged perivascular spaces and white matter hyperintensity WMH). We used electrocardiogram-based cardiopulmonary coupling analysis to measure sleep duration, a neuropsychological test battery to assess cognitive function and the Petersen's criteria to define mild cognitive impairment. Data were analysed with multivariable logistic and general linear models. In the total sample (n = 2032), 510 participants were defined with mild cognitive impairment, including 438 with amnestic mild cognitive impairment and 72 with non-amnestic mild cognitive impairment. Long sleep duration (>8 versus 6-8 h) was significantly associated with increased likelihoods of mild cognitive impairment and non-amnestic mild cognitive impairment and lower scores in global cognition, verbal fluency, attention and executive function (Bonferroni-corrected P < 0.05). In the subsamples, long sleep duration was associated with higher plasma amyloid-β40 and total tau, a lower amyloid-β42/amyloid-β40 ratio and smaller grey matter volume (Bonferroni-corrected P < 0.05). Sleep duration was not significantly associated with serum-soluble adhesion molecules, white matter hyperintensity volume, global enlarged perivascular spaces and lacunes (P > 0.05). Alzheimer's and neurodegenerative pathologies may represent common pathways linking long sleep duration with mild cognitive impairment and low cognition in older adults.
Collapse
Affiliation(s)
- Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rui Liu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Juan Ren
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingling Dong
- Department of Neurology, Dongying People’s Hospital, Dongying 257091, China
| | - Yu Qin
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Mingqing Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tong Zhao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Shireen Sindi
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Neuroepidemiology and Ageing Research Unit (AGE), School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Bengt Winblad
- Division of Neurogeriatrics and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
9
|
Idalino SCC, Cândido LM, Wagner KJP, de Souza Moreira B, de Carvalho Bastone A, Danielewicz AL, de Avelar NCP. Association between sleep problems and functional disability in community-dwelling older adults. BMC Geriatr 2024; 24:253. [PMID: 38481136 PMCID: PMC10938775 DOI: 10.1186/s12877-024-04822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/17/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Sleep problems are frequently observed in older adults. They can lead to changes in the individual's physical, occupational, cognitive, and social functioning, compromising the performance of activities of daily living and contributing to the occurrence of functional disability. This study evaluated the association between sleep problems and functional disability in community-dwelling older adults. METHODS This was a cross-sectional study with data from 10,507 Brazilian community-dwelling older adults participating in the 2013 National Health Survey. The exposure variable was self-reported sleep problems in the last two weeks. The outcome measure was functional disability assessed from self-reported questionnaires, categorized into basic activities of daily living (BADL) and instrumental activities of daily living (IADL), and defined as not being able to perform or having little or a lot of difficulty in at least one of the activities investigated in the domain of interest. RESULTS Older adults who reported sleep problems had 1.53 (95%CI: 1.34; 1.75) and 1.42 (95%CI: 1.26; 1.59) greater odds of having a disability in BADL and IADL when compared to individuals who reported having no sleep problems. CONCLUSIONS Older adults with sleep problems were more likely to have a functional disability, both in BADL and IADL. Thus, it is important to implement strategies to screen for sleep problems in older adults in primary health care as a preventive strategy for functional disability.
Collapse
Affiliation(s)
- Stefany Cristina Claudino Idalino
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Campus Araranguá, Rod. Governador Jorge Lacerda, 3201, Urussanguinha, Araranguá, Santa Catarina, 88906-072, Brazil
| | - Letícia Martins Cândido
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Campus Araranguá, Rod. Governador Jorge Lacerda, 3201, Urussanguinha, Araranguá, Santa Catarina, 88906-072, Brazil
| | - Katia Jakovljevic Pudla Wagner
- Federal University of Santa Catarina, Campus Curitibanos, Rod. Ulysses Gaboardi, 300, Curitibanos, Santa Catarina, 89520-000, Brazil
| | - Bruno de Souza Moreira
- Center for Studies in Public Health and Aging, Federal University of Minas Gerais and Oswaldo Cruz Foundation - Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Lúcia Danielewicz
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Campus Araranguá, Rod. Governador Jorge Lacerda, 3201, Urussanguinha, Araranguá, Santa Catarina, 88906-072, Brazil
| | - Núbia Carelli Pereira de Avelar
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Campus Araranguá, Rod. Governador Jorge Lacerda, 3201, Urussanguinha, Araranguá, Santa Catarina, 88906-072, Brazil.
| |
Collapse
|
10
|
Li X, Yin Y, Zhang H. Nonlinear association between self-reported sleep duration and cognitive function among middle-aged and older adults in China: The moderating effect of informal care. Sleep Med 2024; 115:226-234. [PMID: 38377839 DOI: 10.1016/j.sleep.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Cognitive impairment is a major public health problem urgently to be solved. This study aims to examine the association between sleep duration and cognitive function and its two subdimensions: episodic memory and mental status, and to explore the moderating effects of informal care on these associations among middle-aged and older adults in China. METHODS Data was drawn from China Health and Retirement Longitudinal Study (CHARLS) 2011, 2013, 2015 and 2018 datasets. Sleep duration and informal care were self-reported. Cognitive function was measured using CHARLS Harmonized Cognitive Assessment Protocol. Effects of informal care on sleep duration-cognitive function were assessed using Generalized Estimating Equations models. RESULTS The relationships between sleep duration and cognitive function, episodic memory, and mental status were all found to follow an inverted U-shaped pattern. Spouse care weakened the adverse effects of extreme sleep duration on cognitive function while the children care amplified them. Further, we only observed the moderating effects of spouse and children care on the association between sleep duration and episodic memory, but not mental status. CONCLUSIONS The relationships between sleep duration and cognitive function, along with its different dimensions, are nonlinear in nature. The impacts of sleep duration on cognitive function and its dimensions are contingent upon the levels of informal care received and the sources of that care. We provide valuable insights into the complex interplay between sleep duration, informal care, and cognitive function.
Collapse
Affiliation(s)
- Xuezhu Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujie Yin
- Department of Management, Marketing and Information Systems, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Hui Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Wu J, Wang C, Qi S, Qin Z, Xu H, Hong X. Joint associations of sleep duration and physical activity with cognitive impairment among rural elderly over 65 years old: a cross-sectional study. Psychogeriatrics 2024; 24:174-181. [PMID: 38097502 DOI: 10.1111/psyg.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/09/2023] [Accepted: 11/26/2023] [Indexed: 03/04/2024]
Abstract
BACKGROUND During the long preclinical phase of dementia, accelerated cognitive impairment is regarded as a cardinal marker. Thus, the identification of risk factors for cognitive impairment is of great significance for dementia prevention. This study aims to examine the joint associations of sleep duration and physical activity with cognitive impairment among rural elderly over 65 years old, and provide suggestions for improving the cognitive function in rural elderly over 65 years old. METHODS A cross-sectional study was conducted in rural Nanjing by recruiting 1147 individuals aged above 65 years. Cognitive function was assessed using the brief community screening instrument for dementia. Physical activity was assessed using the Global Physical Activity Questionnaire. Data were analyzed by multivariate logistic regression models, and a significant difference was set at P < 0.05. RESULTS Compared with participants with proper sleep duration and sufficient physical activity, participants with short sleep duration and insufficient physical activity (odds ratio (OR): 1.820; 95% CI: 1.265 ~ 2.618), long sleep duration and sufficient physical activity (OR: 2.428; 95% CI: 1.137 ~ 5.183) showed an increased likelihood of cognitive impairment. CONCLUSIONS Inappropriate sleep duration combined with insufficient physical activity was associated with a significantly higher likelihood of cognitive impairment in rural elderly over 65 years old.
Collapse
Affiliation(s)
- Jie Wu
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Chenchen Wang
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Shengxiang Qi
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Zhenzhen Qin
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Hao Xu
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Xin Hong
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
12
|
Callow DD, Zipunnikov V, Spira AP, Wanigatunga SK, Pettigrew C, Albert M, Soldan A. Actigraphy Estimated Sleep Moderates the Relationship between Physical Activity and Cognition in Older Adults. Ment Health Phys Act 2024; 26:100573. [PMID: 38264712 PMCID: PMC10803079 DOI: 10.1016/j.mhpa.2023.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Background and Aims Physical inactivity and poor sleep are common in older adults and may interact to contribute to age- and disease-related cognitive decline. However, prior work regarding the associations among physical activity, and cognition in older adults is primarily limited to subjective questionnaires that are susceptible to inaccuracies and recall bias. Therefore, this study examined whether objectively measured physical activity and sleep characteristics, each estimated using actigraphy, are independently or interactively associated with cognitive performance. Methods The study included 157 older adults free of dementia (136 cognitively unimpaired; 21 MCI; M age = 71.7) from the BIOCARD cohort. Results Using multiple linear regression, cognition was regressed on estimated total volume of physical activity (TVPA), sleep efficiency (SE), wake after sleep onset (WASO), and total sleep time (TST) (adjusted for age, sex, education, diagnosis, vascular risk factors, and Apolipoprotein E (APOE)-e4 genetic status). Models were also run for domain-specific cognitive composite scores. TVPA and SE each were positively associated with a global cognitive composite score. TVPA was positively associated with executive function and language composites, and SE was positively related to executive function, visuospatial, and language composites. Importantly, a TVPA by SE interaction (p = 0.015) suggested that adults with the poorest SE experienced the greatest benefit from physical activity in relation to global cognition. The other sleep metrics were unrelated to cognitive performance. Conclusion These results suggest that TVPA and SE may synergistically benefit cognition in older adults.
Collapse
Affiliation(s)
- Daniel D Callow
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adam P Spira
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| | - Sarah K Wanigatunga
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anja Soldan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Filardi M, Gnoni V, Tamburrino L, Nigro S, Urso D, Vilella D, Tafuri B, Giugno A, De Blasi R, Zoccolella S, Logroscino G. Sleep and circadian rhythm disruptions in behavioral variant frontotemporal dementia. Alzheimers Dement 2024; 20:1966-1977. [PMID: 38183333 PMCID: PMC10984421 DOI: 10.1002/alz.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Sleep and rest-activity rhythm alterations are common in neurodegenerative diseases. However, their characterization in patients with behavioral variant frontotemporal dementia (bvFTD) has proven elusive. We investigated rest-activity rhythm alterations, sleep disturbances, and their neural correlates in bvFTD. METHODS Twenty-seven bvFTD patients and 25 healthy controls completed sleep questionnaires and underwent 7 days of actigraphy while concurrently maintaining a sleep diary. Cortical complexity and thickness were calculated from T1-weighted magnetic resonance (MR) images. RESULTS Compared to controls, bvFTD patients showed longer time in bed (95% confidence interval [CI]: 79.31, 321.83) and total sleep time (95% CI: 24.38, 321.88), lower sleep efficiency (95% CI: -12.58, -95.54), and rest-activity rhythm alterations in the morning and early afternoon. Increased sleep duration was associated with reduced cortical thickness in frontal regions. DISCUSSION Patients with bvFTD showed longer sleep duration, lower sleep quality, and rest-activity rhythm alterations. Actigraphy could serve as a cost-effective and accessible tool for ecologically monitoring changes in sleep duration in bvFTD patients. HIGHLIGHTS We assessed sleep and circadian rhythms in behavioral variant frontotemporal dementia (bvFTD) using actigraphy. Patients with bvFTD show increased sleep duration and reduced sleep quality. Patients with bvFTD show rest-activity alterations in the morning and early afternoon. Sleep duration is associated with reduced cortical thickness in frontal regions. These alterations may represent an early sign of neurodegeneration.
Collapse
Affiliation(s)
- Marco Filardi
- Department of Translational Biomedicine and Neurosciences (DiBraiN)University of Bari Aldo MoroBariItaly
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Ludovica Tamburrino
- Department of Translational Biomedicine and Neurosciences (DiBraiN)University of Bari Aldo MoroBariItaly
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Benedetta Tafuri
- Department of Translational Biomedicine and Neurosciences (DiBraiN)University of Bari Aldo MoroBariItaly
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
- Department of Diagnostic ImagingPia Fondazione “Card. G. Panico”TricaseItaly
| | - Stefano Zoccolella
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
- Neurology Unit, San Paolo HospitalAzienda Sanitaria Locale (ASL) BariBariItaly
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neurosciences (DiBraiN)University of Bari Aldo MoroBariItaly
- Center for Neurodegenerative Diseases and the Aging BrainUniversity of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”TricaseItaly
| |
Collapse
|
14
|
Mellow ML, Dumuid D, Olds T, Stanford T, Dorrian J, Wade AT, Fripp J, Xia Y, Goldsworthy MR, Karayanidis F, Breakspear MJ, Smith AE. Cross-sectional associations between 24-hour time-use composition, grey matter volume and cognitive function in healthy older adults. Int J Behav Nutr Phys Act 2024; 21:11. [PMID: 38291446 PMCID: PMC10829181 DOI: 10.1186/s12966-023-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Increasing physical activity (PA) is an effective strategy to slow reductions in cortical volume and maintain cognitive function in older adulthood. However, PA does not exist in isolation, but coexists with sleep and sedentary behaviour to make up the 24-hour day. We investigated how the balance of all three behaviours (24-hour time-use composition) is associated with grey matter volume in healthy older adults, and whether grey matter volume influences the relationship between 24-hour time-use composition and cognitive function. METHODS This cross-sectional study included 378 older adults (65.6 ± 3.0 years old, 123 male) from the ACTIVate study across two Australian sites (Adelaide and Newcastle). Time-use composition was captured using 7-day accelerometry, and T1-weighted magnetic resonance imaging was used to measure grey matter volume both globally and across regions of interest (ROI: frontal lobe, temporal lobe, hippocampi, and lateral ventricles). Pairwise correlations were used to explore univariate associations between time-use variables, grey matter volumes and cognitive outcomes. Compositional data analysis linear regression models were used to quantify associations between ROI volumes and time-use composition, and explore potential associations between the interaction between ROI volumes and time-use composition with cognitive outcomes. RESULTS After adjusting for covariates (age, sex, education), there were no significant associations between time-use composition and any volumetric outcomes. There were significant interactions between time-use composition and frontal lobe volume for long-term memory (p = 0.018) and executive function (p = 0.018), and between time-use composition and total grey matter volume for executive function (p = 0.028). Spending more time in moderate-vigorous PA was associated with better long-term memory scores, but only for those with smaller frontal lobe volume (below the sample mean). Conversely, spending more time in sleep and less time in sedentary behaviour was associated with better executive function in those with smaller total grey matter volume. CONCLUSIONS Although 24-hour time use was not associated with total or regional grey matter independently, total grey matter and frontal lobe grey matter volume moderated the relationship between time-use composition and several cognitive outcomes. Future studies should investigate these relationships longitudinally to assess whether changes in time-use composition correspond to changes in grey matter volume and cognition.
Collapse
Affiliation(s)
- Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia.
| | - Dorothea Dumuid
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Timothy Olds
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ty Stanford
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Jillian Dorrian
- Behaviour-Brain-Body Research Centre, Justice and Society, University of South Australia, Adelaide, Australia
| | - Alexandra T Wade
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Mitchell R Goldsworthy
- Behaviour-Brain-Body Research Centre, Justice and Society, University of South Australia, Adelaide, Australia
- School of Biomedicine, University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, Australia
| | - Michael J Breakspear
- Functional Neuroimaging Laboratory, School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, Australia
- Discipline of Psychiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
15
|
Baril AA, Kojis DJ, Himali JJ, Decarli CS, Sanchez E, Johnson KA, El Fakhri G, Thibault E, Yiallourou SR, Himali D, Cavuoto MG, Pase MP, Beiser AS, Seshadri S. Association of Sleep Duration and Change Over Time With Imaging Biomarkers of Cerebrovascular, Amyloid, Tau, and Neurodegenerative Pathology. Neurology 2024; 102:e207807. [PMID: 38165370 PMCID: PMC10834132 DOI: 10.1212/wnl.0000000000207807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Both short and long sleep duration were previously associated with incident dementia, but underlying mechanisms remain unclear. We evaluated how self-reported sleep duration and its change over time associate with (A)myloid, (T)au, (N)eurodegeneration, and (V)ascular neuroimaging markers of Alzheimer disease. METHODS Two Framingham Heart Study overlapping samples were studied: participants who underwent 11C-Pittsburg Compound B amyloid and 18F-flortaucipir tau PET imaging and participants who underwent an MRI. MRI metrics estimated neurodegeneration (total brain volume) and cerebrovascular injuries (white matter hyperintensities [WMHs] volume, covert brain infarcts, free-water [FW] fraction). Self-reported sleep duration was assessed and split into categories both at the time of neuroimaging testing and approximately 13 years before: short ≤6 hours. average 7-8 hours, and long ≥9 hours. Logistic and linear regression models were used to examine sleep duration and neuroimaging metrics. RESULTS The tested cohort was composed of 271 participants (age 53.6 ± 8.0 years; 51% male) in the PET imaging sample and 2,165 participants (age 61.3 ± 11.1 years; 45% male) in the MRI sample. No fully adjusted association was observed between cross-sectional sleep duration and neuroimaging metrics. In fully adjusted models compared with consistently sleeping 7-8 hours, groups transitioning to a longer sleep duration category over time had higher FW fraction (short to average β [SE] 0.0062 [0.0024], p = 0.009; short to long β [SE] 0.0164 [0.0076], p = 0.031; average to long β [SE] 0.0083 [0.0022], p = 0.002), and those specifically going from average to long sleep duration also had higher WMH burden (β [SE] 0.29 [0.11], p = 0.007). The opposite associations (lower WMH and FW) were observed in participants consistently sleeping ≥9 hours as compared with people consistently sleeping 7-8 hours in fully adjusted models (β [SE] -0.43 [0.20], p = 0.028; β [SE] -0.019 [0.004], p = 0.020). Each hour of increasing sleep (continuous, β [SE] 0.12 [0.04], p = 0.003; β [SE] 0.002 [0.001], p = 0.021) and extensive increase in sleep duration (≥2 hours vs 0 ± 1 hour change; β [SE] 0.24 [0.10], p = 0.019; β [SE] 0.0081 [0.0025], p = 0.001) over time was associated with higher WMH burden and FW fraction in fully adjusted models. Sleep duration change was not associated with PET amyloid or tau outcomes. DISCUSSION Longer self-reported sleep duration over time was associated with neuroimaging biomarkers of cerebrovascular pathology as evidenced by higher WMH burden and FW fraction. A longer sleep duration extending over time may be an early change in the neurodegenerative trajectory.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Daniel J Kojis
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Jayandra J Himali
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Charles S Decarli
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Erlan Sanchez
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Keith A Johnson
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Georges El Fakhri
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Emma Thibault
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Stephanie R Yiallourou
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Dibya Himali
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Marina G Cavuoto
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Matthew P Pase
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Alexa S Beiser
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Sudha Seshadri
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| |
Collapse
|
16
|
González KA, Tarraf W, Stickel AM, Kaur S, Agudelo C, Redline S, Gallo LC, Isasi CR, Cai J, Daviglus ML, Testai FD, DeCarli C, González HM, Ramos AR. Sleep duration and brain MRI measures: Results from the SOL-INCA MRI study. Alzheimers Dement 2024; 20:641-651. [PMID: 37772658 PMCID: PMC10840814 DOI: 10.1002/alz.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Sleep duration has been associated with dementia and stroke. Few studies have evaluated sleep pattern-related outcomes of brain disease in diverse Hispanics/Latinos. METHODS The SOL-INCA (Study of Latinos-Investigation of Neurocognitive Aging) magnetic resonance imaging (MRI) study recruited diverse Hispanics/Latinos (35-85 years) who underwent neuroimaging. The main exposure was self-reported sleep duration. Our main outcomes were total and regional brain volumes. RESULTS The final analytic sample included n = 2334 participants. Increased sleep was associated with smaller brain volume (βtotal_brain = -0.05, p < 0.01) and consistently so in the 50+ subpopulation even after adjusting for mild cognitive impairment status. Sleeping >9 hours was associated with smaller gray (βcombined_gray = -0.17, p < 0.05) and occipital matter volumes (βoccipital_gray = -0.18, p < 0.05). DISCUSSION We found that longer sleep duration was associated with lower total brain and gray matter volume among diverse Hispanics/Latinos across sex and background. These results reinforce the importance of sleep on brain aging in this understudied population. HIGHLIGHTS Longer sleep was linked to smaller total brain and gray matter volumes. Longer sleep duration was linked to larger white matter hyperintensities (WMHs) and smaller hippocampal volume in an obstructive sleep apnea (OSA) risk group. These associations were consistent across sex and Hispanic/Latino heritage groups.
Collapse
Affiliation(s)
- Kevin A. González
- Department of Neurosciences and Shiley‐Marcos Alzheimer's Disease Research CenterUniversity of California San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Wassim Tarraf
- Department of Healthcare Sciences and Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Ariana M. Stickel
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Sonya Kaur
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Christian Agudelo
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan Redline
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Linda C. Gallo
- Department of Psychology and South Bay Latino Research CenterSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Carmen R. Isasi
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jianwen Cai
- Department of BiostatisticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Martha L. Daviglus
- Institute for Minority Health ResearchCollege of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Fernando D. Testai
- Department of Neurology and RehabilitationUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California DavisSacramentoCaliforniaUSA
| | - Hector M. González
- Department of Neurosciences and Shiley‐Marcos Alzheimer's Disease Research CenterUniversity of California San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Alberto R. Ramos
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
17
|
Stankeviciute L, Falcon C, Operto G, Garcia M, Shekari M, Iranzo Á, Niñerola-Baizán A, Perissinotti A, Minguillón C, Fauria K, Molinuevo JL, Zetterberg H, Blennow K, Suárez-Calvet M, Cacciaglia R, Gispert JD, Grau-Rivera O. Differential effects of sleep on brain structure and metabolism at the preclinical stages of AD. Alzheimers Dement 2023; 19:5371-5386. [PMID: 37194734 DOI: 10.1002/alz.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Poor sleep quality is associated with cognitive outcomes in Alzheimer's disease (AD). We analyzed the associations between self-reported sleep quality and brain structure and function in cognitively unimpaired (CU) individuals. METHODS CU adults (N = 339) underwent structural magnetic resonance imaging, lumbar puncture, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire. A subset (N = 295) performed [18F] fluorodeoxyglucose positron emission tomography scans. Voxel-wise associations with gray matter volumes (GMv) and cerebral glucose metabolism (CMRGlu) were performed including interactions with cerebrospinal fluid (CSF) AD biomarkers status. RESULTS Poorer sleep quality was associated with lower GMv and CMRGlu in the orbitofrontal and cingulate cortices independently of AD pathology. Self-reported sleep quality interacted with altered core AD CSF biomarkers in brain areas known to be affected in preclinical AD stages. DISCUSSION Poor sleep quality may impact brain structure and function independently from AD pathology. Alternatively, AD-related neurodegeneration in areas involved in sleep-wake regulation may induce or worsen sleep disturbances. Highlights Poor sleep impacts brain structure and function independent of Alzheimer's disease (AD) pathology. Poor sleep exacerbates brain changes observed in preclinical AD. Sleep is an appealing therapeutic strategy for preventing AD.
Collapse
Affiliation(s)
- Laura Stankeviciute
- Universitat Pompeu Fabra, Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marina Garcia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mahnaz Shekari
- Universitat Pompeu Fabra, Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Álex Iranzo
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jose Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
18
|
Fjell AM, Sørensen Ø, Wang Y, Amlien IK, Baaré WFC, Bartrés-Faz D, Bertram L, Boraxbekk CJ, Brandmaier AM, Demuth I, Drevon CA, Ebmeier KP, Ghisletta P, Kievit R, Kühn S, Madsen KS, Mowinckel AM, Nyberg L, Sexton CE, Solé-Padullés C, Vidal-Piñeiro D, Wagner G, Watne LO, Walhovd KB. No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy. Nat Hum Behav 2023; 7:2008-2022. [PMID: 37798367 PMCID: PMC10663160 DOI: 10.1038/s41562-023-01707-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration-which is shorter than current recommendations.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway.
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pii Sunyer, Barcelona, Spain
| | - Lars Bertram
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging Working Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian A Drevon
- Vitas AS, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- UniDistance Suisse, Brig, Switzerland
- Swiss National Centre of Competence in Research LIVES, University of Geneva, Geneva, Switzerland
| | - Rogier Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Claire E Sexton
- Department of Psychiatry, University of Oxford, Oxford, UK
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Alzheimer's Association, Chicago, IL, USA
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pii Sunyer, Barcelona, Spain
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Skourti E, Simos P, Zampetakis A, Koutentaki E, Zaganas I, Alexopoulou C, Vgontzas A, Basta M. Long-term associations between objective sleep quality and quantity and verbal memory performance in normal cognition and mild cognitive impairment. Front Neurosci 2023; 17:1265016. [PMID: 37928739 PMCID: PMC10620682 DOI: 10.3389/fnins.2023.1265016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Although the link between sleep and memory function is well established, associations between sleep macrostructure and memory function in normal cognition and Mild Cognitive Impairment remain unclear. We aimed to investigate the longitudinal associations of baseline objectively assessed sleep quality and duration, as well as time in bed, with verbal memory capacity over a 7-9 year period. Participants are a well-characterized subsample of 148 persons (mean age at baseline: 72.8 ± 6.7 years) from the Cretan Aging Cohort. Based on comprehensive neuropsychiatric and neuropsychological evaluation at baseline, participants were diagnosed with Mild Cognitive Impairment (MCI; n = 79) or found to be cognitively unimpaired (CNI; n = 69). Sleep quality/quantity was estimated from a 3-day consecutive actigraphy recording, whereas verbal memory capacity was examined using the Rey Auditory Verbal Learning Test (RAVLT) and the Greek Passage Memory Test at baseline and follow-up. Panel models were applied to the data using AMOS including several sociodemographic and clinical covariates. Results Sleep efficiency at baseline directly predicted subsequent memory performance in the total group (immediate passage recall: β = 0.266, p = 0.001; immediate word list recall: β = 0.172, p = 0.01; delayed passage retrieval: β = 0.214, p = 0.002) with the effects in Passage Memory reaching significance in both clinical groups. Wake after sleep onset time directly predicted follow-up immediate passage recall in the total sample (β = -0.211, p = 0.001) and in the MCI group (β = -0.235, p = 0.02). In the total sample, longer 24-h sleep duration was associated with reduced memory performance indirectly through increased sleep duration at follow-up (immediate passage recall: β = -0.045, p = 0.01; passage retention index: β = -0.051, p = 0.01; RAVLT-delayed recall: β = -0.048, p = 0.009; RAVLT-retention index:β = -0.066, p = 0.004). Similar indirect effects were found for baseline 24-h time in bed. Indirect effects of sleep duration/time in bed were found predominantly in the MCI group. Discussion Findings corroborate and expand previous work suggesting that poor sleep quality and long sleep duration predict worse memory function in elderly. Timely interventions to improve sleep could help prevent or delay age-related memory decline among non-demented elderly.
Collapse
Affiliation(s)
- Eleni Skourti
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Panagiotis Simos
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Heraklion, Greece
- Computational Biomedicine Lab, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Psychiatry, University Hospital of Heraklion, Crete, Greece
| | - Alexandros Zampetakis
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Eirini Koutentaki
- Department of Psychiatry, University Hospital of Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Division of Neurology and Sensory Organs, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Alexandros Vgontzas
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Heraklion, Greece
- Department of Psychiatry, University Hospital of Heraklion, Crete, Greece
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State Health Milton S. Hershey Medical Center, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Maria Basta
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Heraklion, Greece
- Department of Psychiatry, University Hospital of Heraklion, Crete, Greece
- Sleep Research and Treatment Center, Department of Psychiatry and Behavioral Health, Penn State Health Milton S. Hershey Medical Center, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Day Care Center for Alzheimer’s Disease “Nefeli”, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
20
|
Wang Q, Hu S, Qi L, Wang X, Jin G, Wu D, Wang Y, Ren L. Causal associations between sleep traits and brain structure: a bidirectional Mendelian randomization study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:17. [PMID: 37784181 PMCID: PMC10544625 DOI: 10.1186/s12993-023-00220-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Emerging evidence suggests bidirectional causal relationships between sleep disturbance and psychiatric disorders, but the underlying mechanisms remain unclear. Understanding the bidirectional causality between sleep traits and brain imaging-derived phenotypes (IDPs) will help elucidate the mechanisms. Although previous studies have identified a range of structural differences in the brains of individuals with sleep disorders, it is still uncertain whether grey matter (GM) volume alterations precede or rather follow from the development of sleep disorders. RESULTS After Bonferroni correction, the forward MR analysis showed that insomnia complaint remained positively associated with the surface area (SA) of medial orbitofrontal cortex (β, 0.26; 95% CI, 0.15-0.37; P = 5.27 × 10-6). In the inverse MR analysis, higher global cortical SA predisposed individuals less prone to suffering insomnia complaint (OR, 0.89; 95%CI, 0.85-0.94; P = 1.51 × 10-5) and short sleep (≤ 6 h; OR, 0.98; 95%CI, 0.97-0.99; P = 1.51 × 10-5), while higher SA in posterior cingulate cortex resulted in a vulnerability to shorter sleep durations (β, - 0.09; 95%CI, - 0.13 to - 0.05; P = 1.21 × 10-5). CONCLUSIONS Sleep habits not only result from but also contribute to alterations in brain structure, which may shed light on the possible mechanisms linking sleep behaviours with neuropsychiatric disorders, and offer new strategies for prevention and intervention in psychiatric disorders and sleep disturbance.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- Institute of Sleep and Consciousness Disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Xiaopeng Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Guangyuan Jin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Di Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Yuke Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China
- National Center for Neurological Disorders, Beijing, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, NO.45 Changchun Street, Xicheng District, Beijing, China.
- National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
21
|
Gao X, Wei T, Xu S, Sun W, Zhang B, Li C, Sui R, Fei N, Li Y, Xu W, Han D. Sleep disorders causally affect the brain cortical structure: A Mendelian randomization study. Sleep Med 2023; 110:243-253. [PMID: 37657176 DOI: 10.1016/j.sleep.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND s: Previous studies have reported that patients with sleep disorders have altered brain cortical structures. However, the causality has not been determined. We performed a two-sample Mendelian randomization (MR) to reveal the causal effect of sleep disorders on brain cortical structure. METHODS We included as exposures 11 phenotypes of sleep disorders including subjective and objective sleep duration, insomnia symptom and poor sleep efficiency, daytime sleepiness (narcolepsy)/napping, morning/evening preference, and four sleep breathing related traits from nine European-descent genome-wide association studies (GWASs). Further, outcome variables were provided by ENIGMA Consortium GWAS for full brain and 34 region-specific cortical thickness (TH) and surface area (SA) of grey matter. Inverse-variance weighted (IVW) was used as the primary estimate whereas alternative MR methods were implemented as sensitivity analysis approaches to ensure results robustness. RESULTS At the global level, both self-reported or accelerometer-measured shorter sleep duration decreases the thickness of full brain both derived from self-reported data (βIVW = 0.03 mm, standard error (SE) = 0.02, P = 0.038; βIVW = 0.02 mm, SE = 0.01, P = 0.010). At the functional level, there were 66 associations of suggestive evidence of causality. Notably, one robust evidence after multiple testing correction (1518 tests) suggests the without global weighted SA of superior parietal lobule was influenced significantly by sleep efficiency (βIVW = -285.28 mm2, SE = 68.59, P = 3.2 × 10-5). CONCLUSIONS We found significant evidence that shorter sleep duration, as estimated by self-reported interview and accelerometer measurements, was causally associated with atrophy in the entire human brain.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Shenglong Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, People's Republic of China
| | - Bowen Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Cancan Li
- Department of Epidemiology and Health Statistics, School of Public Halth, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rongcui Sui
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Yanru Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| | - Wen Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Demin Han
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China; Obstructive Sleep Apnea-Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre, Capital Medical University, Beijing, 100730, People's Republic of China; Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, 100730, People's Republic of China.
| |
Collapse
|
22
|
Fjell AM, Sørensen Ø, Wang Y, Amlien IK, Baaré WFC, Bartrés-Faz D, Boraxbekk CJ, Brandmaier AM, Demuth I, Drevon CA, Ebmeier KP, Ghisletta P, Kievit R, Kühn S, Madsen KS, Nyberg L, Solé-Padullés C, Vidal-Piñeiro D, Wagner G, Watne LO, Walhovd KB. Is Short Sleep Bad for the Brain? Brain Structure and Cognitive Function in Short Sleepers. J Neurosci 2023; 43:5241-5250. [PMID: 37365003 PMCID: PMC10342221 DOI: 10.1523/jneurosci.2330-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Copenhagen, Denmark
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Copenhagen, Denmark
- Umeå Center for Functional Brain Imaging, Umeå University, 907 36 Umeå, Sweden
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 907 36 Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, 2020 Copenhagen, Denmark
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Ilja Demuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging working group, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178 Berlin, Germany
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, 13353 Berlin, Germany
| | - Christian A Drevon
- Vitas AS, The Science Park, 0349 Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of 0372 Oslo, Norway
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, 1205 Geneva, Switzerland
- UniDistance Suisse, 3900 Brig, Switzerland
- Swiss National Centre of Competence in Research LIVES, University of Geneva, 1205 Geneva, Switzerland
| | - Rogier Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, 1799 Copenhagen, Denmark
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
- Umeå Center for Functional Brain Imaging, Umeå University, 907 36 Umeå, Sweden
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, 07743 Jena, Germany
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Oslo University Hospital, 0424 Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, 1478, Lørenskog, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
23
|
Schiel JE, Tamm S, Holub F, Petri R, Dashti HS, Domschke K, Feige B, Goodman MO, Jones SE, Lane JM, Ratti PL, Ray DW, Redline S, Riemann D, Rutter MK, Saxena R, Sexton CE, Tahmasian M, Wang H, Weedon MN, Weihs A, Kyle SD, Spiegelhalder K. Associations between sleep health and grey matter volume in the UK Biobank cohort ( n = 33 356). Brain Commun 2023; 5:fcad200. [PMID: 37492488 PMCID: PMC10365832 DOI: 10.1093/braincomms/fcad200] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
As suggested by previous research, sleep health is assumed to be a key determinant of future morbidity and mortality. In line with this, recent studies have found that poor sleep is associated with impaired cognitive function. However, to date, little is known about brain structural abnormalities underlying this association. Although recent findings link sleep health deficits to specific alterations in grey matter volume, evidence remains inconsistent and reliant on small sample sizes. Addressing this problem, the current preregistered study investigated associations between sleep health and grey matter volume (139 imaging-derived phenotypes) in the UK Biobank cohort (33 356 participants). Drawing on a large sample size and consistent data acquisition, sleep duration, insomnia symptoms, daytime sleepiness, chronotype, sleep medication and sleep apnoea were examined. Our main analyses revealed that long sleep duration was systematically associated with larger grey matter volume of basal ganglia substructures. Insomnia symptoms, sleep medication and sleep apnoea were not associated with any of the 139 imaging-derived phenotypes. Short sleep duration, daytime sleepiness as well as late and early chronotype were associated with solitary imaging-derived phenotypes (no recognizable pattern, small effect sizes). To our knowledge, this is the largest study to test associations between sleep health and grey matter volume. Clinical implications of the association between long sleep duration and larger grey matter volume of basal ganglia are discussed. Insomnia symptoms as operationalized in the UK Biobank do not translate into grey matter volume findings.
Collapse
Affiliation(s)
- Julian E Schiel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center—University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Sandra Tamm
- Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 17165 Stockholm, Sweden
- Department of Psychiatry, University of Oxford, Warneford Lane, OX3 7JX Oxford, UK
| | - Florian Holub
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center—University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Roxana Petri
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center—University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Hassan S Dashti
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Main St. 415, Cambridge, MA 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Cambridge St. 185, Boston, MA 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School,Fruit St. 55, Boston, MA 02114, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center—University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center—University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Francis St. 75, Boston, MA 02115, USA
| | - Samuel E Jones
- Institute for Molecular Medicine (FIMM), University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jacqueline M Lane
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Main St. 415, Cambridge, MA 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Cambridge St. 185, Boston, MA 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School,Fruit St. 55, Boston, MA 02114, USA
| | - Pietro-Luca Ratti
- Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Viale Officina 3, 6500 Bellinzona, Switzerland
| | - David W Ray
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Grafton St. 46, M13 9NT Manchester, UK
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Francis St. 75, Boston, MA 02115, USA
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center—University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Martin K Rutter
- Faculty of Biology, Medicine and Health, Centre for Biological Timing, University of Manchester, Grafton St. 46, M13 9NT Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Grafton St. 46, M13 9NT Manchester, UK
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Main St. 415, Cambridge, MA 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Cambridge St. 185, Boston, MA 02114, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School,Fruit St. 55, Boston, MA 02114, USA
| | - Claire E Sexton
- Department of Psychiatry, University of Oxford, Warneford Lane, OX3 7JX Oxford, UK
- Department of Neurology, Global Brain Health Institute, Memory and Aging Center, University of California, Nelson Rising Lane 675, San Francisco, CA 94158, USA
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße 14.6y, 52428 Jülich, Germany
- Medical Faculty, Institute for Systems Neuroscience, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Heming Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Main St. 415, Cambridge, MA 02142, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital and Harvard Medical School, Francis St. 75, Boston, MA 02115, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Euclid Ave. 10900, Cleveland, OH 44106-7288, USA
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Barrack Road, EX2 5DW Exeter, UK
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475 Greifswald, Germany
| | - Simon D Kyle
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute (SCNi), University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center—University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Griffiths J, Seesen M, Sirikul W, Siviroj P. Malnutrition, Depression, Poor Sleep Quality, and Difficulty Falling Asleep at Night Are Associated with a Higher Risk of Cognitive Frailty in Older Adults during the COVID-19 Restrictions. Nutrients 2023; 15:2849. [PMID: 37447178 DOI: 10.3390/nu15132849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The COVID-19 restrictions, such as social isolation and disruption of daily routines, can have detrimental effects, including increased stress, anxiety, sleep disturbance, and physical and cognitive decline among older adults. This study aimed to examine the association between nutritional status, depression, sleep quality, falling asleep at night, and cognitive frailty (CF) among older Thai adults during the COVID-19 pandemic. This cross-sectional study included 408 older adults with an average age of 70.54 (5.49) years. CF was determined using Fried's frailty phenotype and the Montreal Cognitive Assessment Basic. The Mini Nutritional Assessment-Short Form, Pittsburgh Sleep Quality Index, and geriatric depression assessment were used for assessment. Multiple logistic regression analysis demonstrated that participants who were malnourished (OR 3.786; 95%CI 1.719-8.335), depressed (OR 5.003; 95%CI 2.399-10.434), had poor sleep quality (OR 1.613; 95%CI 1.041-2.500), and engaged in difficulty falling asleep (OR 1.809; 95%CI 1.022-3.203) had a higher risk of CF compared to those who did not exhibit these factors. Therefore, malnutrition, depression, poor sleep quality, and difficulty falling asleep were identified as risk factors for CF among older adults in Thailand linked to the impact of the COVID-19 pandemic. It is crucial to develop interventions to prevent CF resulting from the mentioned variables.
Collapse
Affiliation(s)
- Jiranan Griffiths
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mathuramat Seesen
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wachiranun Sirikul
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Data Analytics and Knowledge Synthesis for Health Care, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Penprapa Siviroj
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Tsiknia AA, Parada H, Banks SJ, Reas ET. Sleep quality and sleep duration predict brain microstructure among community-dwelling older adults. Neurobiol Aging 2023; 125:90-97. [PMID: 36871334 PMCID: PMC10115563 DOI: 10.1016/j.neurobiolaging.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/11/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Although poor sleep quality and extreme sleep durations have been associated with brain atrophy and dementia, it is unclear whether sleep disturbances contribute to neural injury in the absence of neurodegeneration and cognitive impairment. In 146 dementia-free older adults of the Rancho Bernardo Study of Healthy Aging (76.7 ± 7.8 years at MRI), we examined associations of restriction spectrum imaging metrics of brain microstructure with self-reported sleep quality 6.3 ± 0.7 years prior, and with sleep duration reported 25, 15 and 9 years prior. Worse sleep quality predicted lower white matter restricted isotropic diffusion and neurite density and higher amygdala free water, with stronger associations between poor sleep quality and abnormal microstructure for men. Among women only, short or long sleep duration 25 and 15 years before MRI predicted lower white matter restricted isotropic diffusion and increased free water. Associations persisted after accounting for associated health and lifestyle factors. Sleep patterns were not related to brain volume or cortical thickness. Optimizing sleep behaviors throughout the life-course may help to preserve healthy brain aging.
Collapse
Affiliation(s)
- Amaryllis A Tsiknia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Humberto Parada
- Division of Epidemiology and Biostatistics, San Diego State University, San Diego, CA, USA
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Khosroazad S, Gilbert CF, Aronis JB, Daigle KM, Esfahani M, Almaghasilah A, Ahmed FS, Elias MF, Meuser TM, Kaye LW, Singer CM, Abedi A, Hayes MJ. Sleep movements and respiratory coupling as a biobehavioral metric for early Alzheimer's disease in independently dwelling adults. BMC Geriatr 2023; 23:252. [PMID: 37106470 PMCID: PMC10141904 DOI: 10.1186/s12877-023-03983-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Sleep disorder is often the first symptom of age-related cognitive decline associated with Alzheimer's disease (AD) observed in primary care. The relationship between sleep and early AD was examined using a patented sleep mattress designed to record respiration and high frequency movement arousals. A machine learning algorithm was developed to classify sleep features associated with early AD. METHOD Community-dwelling older adults (N = 95; 62-90 years) were recruited in a 3-h catchment area. Study participants were tested on the mattress device in the home bed for 2 days, wore a wrist actigraph for 7 days, and provided sleep diary and sleep disorder self-reports during the 1-week study period. Neurocognitive testing was completed in the home within 30-days of the sleep study. Participant performance on executive and memory tasks, health history and demographics were reviewed by a geriatric clinical team yielding Normal Cognition (n = 45) and amnestic MCI-Consensus (n = 33) groups. A diagnosed MCI group (n = 17) was recruited from a hospital memory clinic following diagnostic series of neuroimaging biomarker assessment and cognitive criteria for AD. RESULTS In cohort analyses, sleep fragmentation and wake after sleep onset duration predicted poorer executive function, particularly memory performance. Group analyses showed increased sleep fragmentation and total sleep time in the diagnosed MCI group compared to the Normal Cognition group. Machine learning algorithm showed that the time latency between movement arousals and coupled respiratory upregulation could be used as a classifier of diagnosed MCI vs. Normal Cognition cases. ROC diagnostics identified MCI with 87% sensitivity; 89% specificity; and 88% positive predictive value. DISCUSSION AD sleep phenotype was detected with a novel sleep biometric, time latency, associated with the tight gap between sleep movements and respiratory coupling, which is proposed as a corollary of sleep quality/loss that affects the autonomic regulation of respiration during sleep. Diagnosed MCI was associated with sleep fragmentation and arousal intrusion.
Collapse
Affiliation(s)
- Somayeh Khosroazad
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Christopher F Gilbert
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Jessica B Aronis
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Katrina M Daigle
- Psychology Department, Suffolk University, 73 Tremont St., Boston, MA, 02108, USA
| | | | - Ahmed Almaghasilah
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Fayeza S Ahmed
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Merrill F Elias
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
| | - Thomas M Meuser
- Center for Excellence On Aging, University of New England, 11 Hills Beach Rd., Biddeford, ME, 04005, USA
| | - Leonard W Kaye
- Center On Aging, University of Maine, 327 Camden Hall, Orono, ME, 04469, USA
| | - Clifford M Singer
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA
- Mood and Memory Clinic, Northern Light Health, 269 Stillwater Ave., Bangor, ME, 04402, USA
| | - Ali Abedi
- Electrical and Computer Engineering, University of Maine, 5708 Barrows Hall, Orono, ME, 04469, USA
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA
| | - Marie J Hayes
- Activas Diagnostics, LLC, 20 Godfrey Dr., Orono, ME, 04473, USA.
- Psychology Department, University of Maine, 5740 Beryl Warner Williams Hall, Orono, ME, 5740-04469, USA.
- Graduate School of Biomedical Science & Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA.
| |
Collapse
|
27
|
Lee MH, Sin S, Lee S, Wagshul ME, Zimmerman ME, Arens R. Cortical thickness and hippocampal volume in adolescent children with obstructive sleep apnea. Sleep 2023; 46:zsac201. [PMID: 36006869 PMCID: PMC9995789 DOI: 10.1093/sleep/zsac201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/07/2022] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Intermittent hypoxia and sleep fragmentation due to obstructive sleep apnea (OSA) may contribute to oxidative tissue damage and apoptotic neuronal cell death, inflammation, and intracellular edema in the brain. We examined whether OSA in overweight and obese adolescent children is associated with cortical thickness and hippocampal structure compared to overweight and obese controls and whether OSA severity is associated with measures of brain integrity. METHODS We calculated cortical thickness and hippocampal subfield volumes from T1-weighted images of 45 controls (age 15.43 ± 1.73 years, 21 male) and 53 adolescent children with OSA (age 15.26 ± 1.63 years, 32 male) to investigate the association of childhood OSA with the alteration of cortical structure and hippocampal subfield structural changes. In addition, we investigated the correlation between OSA severity and cortical thickness or hippocampal subfield volume using Pearson's correlation analysis. RESULTS We found cortical thinning in the right superior parietal area of adolescent children with OSA (cluster size 32.29 mm2, cluster-wise corrected p-value = .030) that was negatively correlated with apnea-hypopnea index (AHI) (R=-0.27, p-value = .009) and arousal index (R=-0.25, p-value = .014). In addition, the volume of the right subiculum-head area of the hippocampus of adolescent children with OSA was larger than controls (0.19 ± 0.02 ml vs. 0.18 ± 0.02 ml, β = 13.79, false discovery rate corrected p-value = .044), and it was positively correlated with AHI (R = 0.23, p-value = .026) and arousal index (R = 0.31, p-value = .002). CONCLUSIONS Our findings provide evidence for OSA-associated brain structure alterations in adolescent children prior to the onset of treatment that likely have important implications for timely intervention and continued monitoring of health outcomes.
Collapse
Affiliation(s)
- Min-Hee Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Sanghun Sin
- Division of Respiratory and Sleep Medicine, Children’s Hospital at Montefiore/ Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Seonjoo Lee
- Department of Biostatistics and Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mark E Wagshul
- Department of Radiology, Albert Einstein College of Medicine, Gruss MRRC, Bronx, NY 10467, USA
| | | | - Raanan Arens
- Division of Respiratory and Sleep Medicine, Children’s Hospital at Montefiore/ Albert Einstein College of Medicine, Bronx, NY 10467, USA
| |
Collapse
|
28
|
Namsrai T, Ambikairajah A, Cherbuin N. Poorer sleep impairs brain health at midlife. Sci Rep 2023; 13:1874. [PMID: 36725955 PMCID: PMC9892039 DOI: 10.1038/s41598-023-27913-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
Sleep is an emerging risk factor for dementia but its association with brain health remains unclear. This study included UK Biobank (n = 29,545; mean age = 54.65) participants at imaging visit with sleep measures and brain scans, and a subset (n = 14,206) with cognitive measures. Multiple linear regression analyses were conducted to study the associations between sleep and brain health. Every additional hour of sleep above 7 h/day was associated with 0.10-0.25% lower brain volumes. In contrast, a negative non-linear association was observed between sleep duration, grey matter, and hippocampal volume. Both longer (> 9 h/day) and shorter sleep (< 6 h/day) durations were associated with lower brain volumes and cognitive measures (memory, reaction time, fluid intelligence). Additionally, daytime dozing was associated with lower brain volumes (grey matter and left hippocampus volume) and lower cognitive measures (reaction time and fluid intelligence). Poor sleep (< 6 h/day, > 9 h/day, daytime dozing) at midlife was associated with lower brain health. Sleep may be an important target to improve brain health into old age and delay the onset of dementia.
Collapse
Affiliation(s)
- Tergel Namsrai
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia
| | - Ananthan Ambikairajah
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia.,Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, ACT, 2617, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Australian National University, 54 Mills Road, Canberra, ACT, 2601, Australia.
| |
Collapse
|
29
|
Zhang N, Chen F, Wang C, Yan P. Incidence of cognitive impairment after hypothetical interventions on depression, nighttime sleep duration, and leisure activity engagement among older Chinese adults: An application of the parametric g-formula. Front Public Health 2023; 11:1088833. [PMID: 36875389 PMCID: PMC9975736 DOI: 10.3389/fpubh.2023.1088833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Background Cognitive impairment is an age-relevant intermediate stage where cognition declines to a state between the normal aging process and dementia. Earlier studies reported that depression, inappropriate nighttime sleep duration (NSD), and limited leisure activity engagement are cognitive impairment risk factors among older adults. Thus, we postulated that interventions on depression, sleep duration, and leisure activity engagement can reduce cognitive impairment risk. However, no earlier research ever explored this. Methods The data of 4,819 respondents aged 60 years and above, without cognitive impairment at baseline and with no prior history of memory-related diseases, including Alzheimer's disease, Parkinson's disease, and encephalatrophy, were obtained from the China Health and Retirement Longitudinal Study (CHARLS) between 2011 and 2018. The parametric g-formula, an analytic tool for estimating standardized outcome distributions using covariate (exposure and confounders)-specific estimates of the outcome distribution, was used to estimate 7-year cumulative cognitive impairment risks among older Chinese adults, under independent hypothetical interventions on depression, NSD, and leisure activity engagement, which was subdivided into social activity (SA) and intellectual activity (IA) for the different intervention combinations. Results The observed cognitive impairment risk was 37.52%. Independent intervention on IA was the most effective factor in reducing incident cognitive impairment, with a risk ratio (RR) of 0.75 (95% confidence interval [CI]: 0.67-0.82), followed by depression (RR: 0.89, 95% CI: 0.85-0.93) and NSD (RR: 0.88, 95% CI: 0.80-0.95). The joint intervention combining depression, NSD, and IA interventions could reduce the risk by 17.11%, with an RR of 0.56 (95% CI: 0.48-0.65). In subgroup analyses, independent interventions on depression and IA had analogously significant effects on men and women. However, interventions on depression and IA had stronger effects on literate than illiterate individuals. Conclusions Hypothetical interventions on depression, NSD, and IA reduced cognitive impairment risks among older Chinese adults, both independently and jointly. The findings of the present study suggest that the intervention measures on depression, inappropriate NSD, limited intellectual activities, and their combination may prove to be effective strategies for preventing cognitive impairment among older adults.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Surgical Nursing, School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Fenghui Chen
- Department of Internal Medicine Nursing, School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cui Wang
- Department of Health Science, School of Nursing, Peking University, Beijing, China
| | - Ping Yan
- Department of Surgical Nursing, School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
30
|
Fauria K, Minguillon C, Knezevic I, Tort-Colet N, Stankeviciute L, Hernández L, Rădoi A, Deulofeu C, Fuentes-Julián S, Turull I, Fusté D, Sánchez-Benavides G, Arenaza-Urquijo EM, Suárez-Calvet M, Holst SC, Garcés P, Mueggler T, Zetterberg H, Blennow K, Arqueros A, Iranzo Á, Domingo Gispert J, Molinuevo JL, Grau-Rivera O. Exploring cognitive and biological correlates of sleep quality and their potential links with Alzheimer's disease (ALFASleep project): protocol for an observational study. BMJ Open 2022; 12:e067159. [PMID: 36585141 PMCID: PMC9809234 DOI: 10.1136/bmjopen-2022-067159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The growing worldwide prevalence of Alzheimer's disease (AD) and the lack of effective treatments pose a dire medical challenge. Sleep disruption is also prevalent in the ageing population and is increasingly recognised as a risk factor and an early sign of AD. The ALFASleep project aims to characterise sleep with subjective and objective measurements in cognitively unimpaired middle/late middle-aged adults at increased risk of AD who are phenotyped with fluid and neuroimaging AD biomarkers. This will contribute to a better understanding of the pathophysiological mechanisms linking sleep with AD, thereby paving the way for the development of non-invasive biomarkers and preventive strategies targeting sleep. METHODS AND ANALYSIS We will invite 200 participants enrolled in the ALFA+ (for ALzheimer and FAmilies) prospective observational study to join the ALFASleep study. ALFA+ participants are cognitively unimpaired middle-aged/late middle-aged adults who are followed up every 3 years with a comprehensive set of evaluations including neuropsychological tests, blood and cerebrospinal fluid (CSF) sampling, and MRI and positron emission tomography acquisition. ALFASleep participants will be additionally characterised with actigraphy and CSF-orexin-A measurements, and a subset (n=90) will undergo overnight polysomnography. We will test associations of sleep measurements and CSF-orexin-A with fluid biomarkers of AD and glial activation, neuroimaging outcomes and cognitive performance. In case we found any associations, we will test whether changes in AD and/or glial activation markers mediate the association between sleep and neuroimaging or cognitive outcomes and whether sleep mediates associations between CSF-orexin-A and AD biomarkers. ETHICS AND DISSEMINATION The ALFASleep study protocol has been approved by the independent Ethics Committee Parc de Salut Mar, Barcelona (2018/8207/I). All participants have signed a written informed consent before their inclusion (approved by the same ethics committee). Study findings will be presented at national and international conferences and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04932473.
Collapse
Affiliation(s)
- Karine Fauria
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Iva Knezevic
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Andreea Rădoi
- Barcelonaβeta Brain Research Center, Barcelona, Spain
| | | | | | - Israel Turull
- Barcelonaβeta Brain Research Center, Barcelona, Spain
| | - David Fusté
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Pasqual Maragall Foundation, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Aurora Arqueros
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Álex Iranzo
- Neurology Service, Hospital Clínic de Barcelona and Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
31
|
Burke S, Grudzien A, Li T, Abril M, Spadola C, Barnes C, Hanson K, Grandner M, DeKosky S. Correlations between sleep disturbance and brain structures associated with neurodegeneration in the National Alzheimer's Coordinating Center Uniform Data Set. J Clin Neurosci 2022; 106:204-212. [PMID: 35970678 PMCID: PMC9671822 DOI: 10.1016/j.jocn.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
This study aimed to 1) determine the association between sleep disturbance and brain structure volumes, 2) the moderation effect of apolipoprotein ε4 genotype on sleep disturbance and brain structures, and 3) the moderation effect of sleep disturbance on cognitive status and regional brain volumes. Using the National Alzheimer's Coordinating Center Uniform Data Set (n = 1,533), multiple linear regressions were used to evaluate the association between sleep disturbance and brain volumes. Sleep disturbance was measured using one question from the NPI-Q. After controlling for intracranial volume, age, sex, years of education, race, ethnicity, and applying the FDR correction, total cerebrospinal fluid volume, left lateral ventricle volume, total lateral ventricle volume, and total third ventricle volume demonstrated significantly higher means for those with sleep disturbance. Total brain volume, total white and gray matter volume, total cerebrum brain volume (including gray but not white matter), left hippocampus volume, total hippocampal volume, the left, right, and total frontal lobe cortical gray matter volume, and the left, right, and total temporal lobe cortical gray matter volume demonstrated significantly lower mean volumes for those with sleep disturbance. Sleep disturbance moderated the association between cognitive status and lateral ventricular volumes. These findings suggest that disrupted sleep is associated with atrophy across multiple brain regions and ventricular hydrocephalus ex vacuo.
Collapse
Affiliation(s)
- Shanna Burke
- School of Social Work, Florida International University, Robert Stempel College of Public Health and Social Work, 11200 SW 8th St. Miami, FL 33199, United States.
| | - Adrienne Grudzien
- School of Social Work, Florida International University, Robert Stempel College of Public Health and Social Work, 11200 SW 8th St. Miami, FL 33199, United States.
| | - Tan Li
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, United States.
| | - Marlou Abril
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, United States.
| | - Christine Spadola
- The University of Texas at Arlington, School of Social Work, 211 S. Cooper Street, Box 19129, Arlington, TX 76019-0129, United States.
| | - Christopher Barnes
- Clinical and Translational Science Informatics and Technology, University of Florida Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, FL 32610, United States.
| | - Kevin Hanson
- Clinical and Translational Science Institute, Integrated Data Repository, College of Medicine, University of Florida, Gainesville, FL 32610, United States.
| | - Michael Grandner
- Behavioral Sleep Medicine Clinic, University of Arizona College of Medicine, 1501 N Campbell Avenue, Tucson, AZ 85724-5002, United States.
| | - Steven DeKosky
- McKnight Brain Institute, Aerts-Cosper Professor of Alzheimer's Research, Associate Director, 1Florida Alzheimer's Disease Center, Professor of Neurology and Neuroscience, University of Florida, College of Medicine, United States.
| |
Collapse
|
32
|
Ukawa S, Zhao W, Okabayashi S, Kimura T, Ando M, Wakai K, Tsushita K, Kawamura T, Tamakoshi A. Association between daily sleep duration and the risk of incident dementia according to the presence or absence of diseases among older Japanese individuals in the New Integrated Suburban Seniority Investigation (NISSIN) project. Sleep Med 2022; 100:190-195. [PMID: 36113230 DOI: 10.1016/j.sleep.2022.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study aimed to investigate the association between daily sleep duration and incident dementia among physically and socially independent older people with/without diseases (hypertension, diabetes mellitus, cardiovascular diseases) in a Japanese age-specific cohort. METHODS We carried out a prospective cohort study including 1954 (1006 men and 948 women) Japanese individuals aged 64/65 years. Information on daily sleep duration, medical status, demographics, and lifestyle characteristics was collected by a baseline questionnaire survey and health checkup (2000-2005). Dates of incident dementia were confirmed using the nationally standardized dementia scale proposed by the Ministry of Health, Labor, and Welfare. A competing risk model was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for incident dementia. We treated censored cases due to death as competing events. RESULTS During a median of 15.6 years of follow-up, 260 participants reported incident dementia. Compared with participants without diseases and who slept 6-7.9 h/day, those with a shorter daily sleep duration of <6 h/day, presence of disease and shorter, moderate, or longer daily sleep duration ≥8 h/day had an increased risk of incident dementia (HR 1.73; 95% CI 1.04-2.88, HR 1.98; 95% CI 1.14-3.44, HR 1.44; 95% CI 1.03-2.00, and HR 2.09; 95% CI 1.41-3.09, respectively) with a significant interaction between the presence of diseases and sleep duration (p < 0.001). CONCLUSIONS The present findings suggest that habitual sleep duration predicts future risk of dementia.
Collapse
Affiliation(s)
- Shigekazu Ukawa
- Department of Social Welfare Science and Clinical Psychology, Osaka Metropolitan University Graduate School of Human Life and Ecology, Osaka, Japan.
| | - Wenjing Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Satoe Okabayashi
- Agency for Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Takashi Kimura
- Department of Public Health, Faculty of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Aichi, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | - Takashi Kawamura
- Agency for Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
33
|
Chylinski D, Narbutas J, Balteau E, Collette F, Bastin C, Berthomier C, Salmon E, Maquet P, Carrier J, Phillips C, Lina JM, Vandewalle G, Van Egroo M. Frontal grey matter microstructure is associated with sleep slow waves characteristics in late midlife. Sleep 2022; 45:zsac178. [PMID: 35869626 PMCID: PMC9644125 DOI: 10.1093/sleep/zsac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/13/2022] [Indexed: 07/25/2023] Open
Abstract
STUDY OBJECTIVES The ability to generate slow waves (SW) during non-rapid eye movement (NREM) sleep decreases as early as the 5th decade of life, predominantly over frontal regions. This decrease may concern prominently SW characterized by a fast switch from hyperpolarized to depolarized, or down-to-up, state. Yet, the relationship between these fast and slow switcher SW and cerebral microstructure in ageing is not established. METHODS We recorded habitual sleep under EEG in 99 healthy late midlife individuals (mean age = 59.3 ± 5.3 years; 68 women) and extracted SW parameters (density, amplitude, frequency) for all SW as well as according to their switcher type (slow vs. fast). We further used neurite orientation dispersion and density imaging (NODDI) to assess microstructural integrity over a frontal grey matter region of interest (ROI). RESULTS In statistical models adjusted for age, sex, and sleep duration, we found that a lower SW density, particularly for fast switcher SW, was associated with a reduced orientation dispersion of neurites in the frontal ROI (p = 0.018, R2β* = 0.06). In addition, overall SW frequency was positively associated with neurite density (p = 0.03, R2β* = 0.05). By contrast, we found no significant relationships between SW amplitude and NODDI metrics. CONCLUSIONS Our findings suggest that the complexity of neurite organization contributes specifically to the rate of fast switcher SW occurrence in healthy middle-aged individuals, corroborating slow and fast switcher SW as distinct types of SW. They further suggest that the density of frontal neurites plays a key role for neural synchronization during sleep. TRIAL REGISTRATION NUMBER EudraCT 2016-001436-35.
Collapse
Affiliation(s)
- Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | | | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Julie Carrier
- CARSM, CIUSSS of Nord-de l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, University of Montreal, Canada
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- GIGA-In Silico Medicine, University of Liège, Liège, Belgium
| | - Jean-Marc Lina
- CARSM, CIUSSS of Nord-de l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, University of Montreal, Canada
| | - Gilles Vandewalle
- Corresponding authors. Gilles Vandewalle, GIGA-Cyclotron Research Centre-In Vivo Imaging, Bâtiment B30, Université de Liège, Allée du Six Août, 8, 4000 Liège, Belgium.
| | - Maxime Van Egroo
- Maxime Van Egroo, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Vo TT, Pahlen S, Kremen WS, McGue M, Dahl Aslan A, Nygaard M, Christensen K, Reynolds CA. Does sleep duration moderate genetic and environmental contributions to cognitive performance? Sleep 2022; 45:zsac140. [PMID: 35727734 PMCID: PMC9548666 DOI: 10.1093/sleep/zsac140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
While prior research has demonstrated a relationship between sleep and cognitive performance, how sleep relates to underlying genetic and environmental etiologies contributing to cognitive functioning, regardless of the level of cognitive function, is unclear. The present study assessed whether the importance of genetic and environmental contributions to cognition vary depending on an individual's aging-related sleep characteristics. The large sample consisted of twins from six studies within the Interplay of Genes and Environment across Multiple Studies (IGEMS) consortium spanning mid- to late-life (Average age [Mage] = 57.6, range = 27-91 years, N = 7052, Female = 43.70%, 1525 complete monozygotic [MZ] pairs, 2001 complete dizygotic [DZ] pairs). Quantitative genetic twin models considered sleep duration as a primary moderator of genetic and environmental contributions to cognitive performance in four cognitive abilities (Semantic Fluency, Spatial-Visual Reasoning, Processing Speed, and Episodic Memory), while accounting for age moderation. Results suggested genetic and both shared and nonshared environmental contributions for Semantic Fluency and genetic and shared environmental contributions for Episodic Memory vary by sleep duration, while no significant moderation was observed for Spatial-Visual Reasoning or Processing Speed. Results for Semantic Fluency and Episodic Memory illustrated patterns of higher genetic influences on cognitive function at shorter sleep durations (i.e. 4 hours) and higher shared environmental contributions to cognitive function at longer sleep durations (i.e. 10 hours). Overall, these findings may align with associations of upregulation of neuroinflammatory processes and ineffective beta-amyloid clearance in short sleep contexts and common reporting of mental fatigue in long sleep contexts, both associated with poorer cognitive functioning.
Collapse
Affiliation(s)
- Tina T Vo
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Shandell Pahlen
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Anna Dahl Aslan
- School of Health Sciences, University of Skövde, Skövde, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Marianne Nygaard
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Chandra A Reynolds
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
35
|
Alfini AJ, Won J, Weiss LR, Nyhuis CC, Zipunnikov V, Spira AP, Liu-Ambrose T, Shackman AJ, Smith JC. Cardiorespiratory Fitness as a Moderator of Sleep-Related Associations with Hippocampal Volume and Cognition. Brain Sci 2022; 12:1360. [PMID: 36291294 PMCID: PMC9599432 DOI: 10.3390/brainsci12101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to understand the associations of sleep and cardiorespiratory fitness with hippocampal volume and global cognition among older adults (n = 30, age = 65.8 years, female = 73.3%). Wrist actigraphy provided objective measures of nighttime sleep including sleep duration, average wake bout length (WBL; sleep disturbance), and wake-to-sleep transition probability (WTSP; sleep consolidation). Cardiorespiratory fitness was quantified via cycle exercise using a modified heart rate recovery approach. Magnetic resonance imaging was used to determine hippocampal volume and the Mini-Mental State Examination was used to assess global cognition. Fitness moderated associations of sleep with hippocampal volume and cognitive performance, whereby the association of WBL-an index of poor sleep-with hippocampal atrophy was stronger among less-fit individuals, and the association of sleep duration with cognitive performance was stronger among more-fit individuals. Across the fitness levels, a longer WBL was associated with lower cognitive performance, and a higher WTSP-an index of more consolidated sleep-was associated with greater hippocampal volume. Sleep and fitness were unrelated to the volume of an amygdala control region, suggesting a degree of neuroanatomical specificity. In conclusion, higher cardiorespiratory fitness may attenuate sleep disturbance-related hippocampal atrophy and magnify the cognitive benefits of good sleep. Prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Alfonso J. Alfini
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20817, USA
| | - Junyeon Won
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, USA
| | - Lauren R. Weiss
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Casandra C. Nyhuis
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Center on Aging and Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - Alexander J. Shackman
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
- Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
- Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
36
|
Hsu CL, Falck RS, Backhouse D, Chan P, Dao E, Ten Brinke LF, Manor B, Liu-Ambrose T. Objective Sleep Quality and the Underlying Functional Neural Correlates Among Older Adults with Possible Mild Cognitive Impairment. J Alzheimers Dis 2022; 89:1473-1482. [PMID: 36057822 DOI: 10.3233/jad-220457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Poor sleep quality is common among older individuals with mild cognitive impairment (MCI) and may be a consequence of functional alterations in the brain; yet few studies have investigated the underlying neural correlates of actigraphy-measured sleep quality in this cohort. OBJECTIVE The objective of this study was to examine the relationship between brain networks and sleep quality measured by actigraphy. METHODS In this cross-sectional analysis, sleep efficiency and sleep fragmentation were estimated using Motionwatch8 (MW8) over a period of 14 days in 36 community-dwelling older adults with possible MCI aged 65-85 years. All 36 participants underwent resting-state functional magnetic resonance imaging (fMRI) scanning. Independent associations between network connectivity and MW8 measures of sleep quality were determined using general linear modeling via FSL. Networks examined included the somatosensory network (SMN), frontoparietal network (FPN), and default mode network (DMN). RESULTS Across the 36 participants (mean age 71.8 years; SD = 5.2 years), mean Montreal Cognitive Assessment score was 22.5 (SD = 2.7) and Mini-Mental State Examination score was 28.3 (SD = 1.5). Mean sleep efficiency and fragmentation index was 80.1% (SD = 10.0) and 31.8 (SD = 10.4) respectively. Higher sleep fragmentation was significantly correlated with increased connectivity between the SMN and insula, the SMN and posterior cingulate, as well as FPN and primary motor area (FDR-corrected, p < 0.004). CONCLUSION Functional connectivity between brain regions involved in attentional and somatosensory processes may be associated with disrupted sleep in older adults with MCI.
Collapse
Affiliation(s)
- Chun Liang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Roslindale, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA.,Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Ryan S Falck
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Daniel Backhouse
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Patrick Chan
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Elizabeth Dao
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Lisanne F Ten Brinke
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Roslindale, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Kara O, Elibol T, Koc Okudur S, Smith L, Soysal P. Associations between anemia and insomnia or excessive daytime sleepiness in older adults. Acta Clin Belg 2022; 78:223-228. [PMID: 36036443 DOI: 10.1080/17843286.2022.2116895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVE Sleep disorders including excessive daytime sleepiness (EDS), insomnia and anemia are both common. The aim of this study is to investigate associations between anemia and insomnia/EDS in the elderly. METHODS A total of 744 older outpatients were included in this cross-sectional study. Anemia was defined as a hemoglobin concentration below 12 g/dL in females and <13 g/dl in males. Patients were divided into two groups as anemic and non-anemic. The Epworth Sleepiness Scale score of ≥11 points indicates EDS. Insomnia Severity Index with scores of ≥8 indicates insomnia. RESULTS The mean age was 79.8±7.7 years. The prevalence of insomnia, EDS and anemia was 62.1%, 23.8%, and 47.2%, respectively. Insomnia (66.3% vs 58.5%) and EDS (29.6% vs 18.6%) were more common in patients with anemia compared to those without anemia (p<0.05). In univariate analysis, there were significant associations between anemia and insomnia [odds ratio (OR):1.4, 95% confidence interval (CI):1.0-1.9], and EDS (OR:1.8,95% CI:1.3-2.6). In multivariate analysis, the relationship between insomnia and nocturia, chronic obstructive pulmonary disease (COPD), and number of drugs used persisted, whereas being male, of an older age, coronary arterial disease, COPD, Parkinson's disease, dementia, and urinary incontinence were associated with EDS (p<0.05), but there was no significant relationships between anemia and insomnia/EDS (p>0.05). CONCLUSION The present data suggests that an elderly who has anemia is 1.4 times more likely to experience insomnia and 1.8 times more likely to experience EDS than those without anemia.
Collapse
Affiliation(s)
- Osman Kara
- Department of Hematology, Bahcesehir University Medical Park Goztepe Hospital, Istanbul, Turkey
| | - Tayfun Elibol
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Saadet Koc Okudur
- Department of Geriatric Medicine, Manisa State Hospital, Manisa, Turkey
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Pinar Soysal
- Department of Geriatric Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
38
|
Boa Sorte Silva NC, Falck RS, Chan PCY, Tai D, Backhouse D, Stein R, Liu-Ambrose T. The association of sleep and cortical thickness in mild cognitive impairment. Exp Gerontol 2022; 167:111923. [PMID: 35963454 DOI: 10.1016/j.exger.2022.111923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 07/12/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022]
Abstract
We investigated whether device-measured sleep parameters are associated with cortical thickness in older adults with probable mild cognitive impairment (MCI). We performed a cross-sectional, exploratory analysis of sleep and structural MRI data. Sleep data were collected with MotionWatch8© actigraphy over 7 days. We computed average and variability for sleep duration, sleep efficiency, and fragmentation index. T1-weighted MRI scans were used to measure cortical thickness in FreeSurfer. We employed surface-based analysis to determine the association between sleep measures and cortical thickness, adjusting for age, sex, Montreal Cognitive Assessment (MoCA) score, and sleep medication use. Our sample included 113 participants (age = 73.1 [5.7], female = 72 [63.7 %]). Higher fragmentation index variability predicted lower cortical thickness in the left superior frontal gyrus (cluster size = 970.9 mm2, cluster-wise p = 0.017, cortical thickness range = 2.1 mm2 to 3.0 mm2), adjusting for age, sex, MoCA, and sleep medication. Our results suggest that higher variability in sleep fragmentation, an indicator of irregular sleep pattern, is linked to lower cortical thickness. Future longitudinal studies are needed to determine the directionality of these associations.
Collapse
Affiliation(s)
- Nárlon C Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Ryan S Falck
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Patrick C Y Chan
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Daria Tai
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Daniel Backhouse
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Ryan Stein
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
39
|
Lai VKY, Fung AWT, Lam LCW, Lee ATC. Is sleep quality a potential predictor of neurocognitive disorders? A 6-year follow-up study in Chinese older adults. Int J Geriatr Psychiatry 2022; 37. [PMID: 35844091 DOI: 10.1002/gps.5783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the longitudinal association of sleep quality with incidence of neurocognitive disorders in 6 years. METHODS This was a 6-year follow-up study of community-living older adults who scored a Clinical Dementia Rating (CDR) of 0 at baseline. Sleep quality was assessed by the self-rated Pittsburgh Sleep Quality Index (PSQI) questionnaire, where higher scores indicated poorer sleep quality, and a cutoff score of 5 or above was suggestive of sleep disorder. The study outcome was incident neurocognitive disorders in 6 years, as identified by a CDR of 0.5 or above. Poisson regression analysis was conducted to test if baseline sleep quality was independently associated with risk of incident neurocognitive disorders in 6 years. RESULTS Of the 290 participants in this study, 166 (57.2%) developed neurocognitive disorders in 6 years. They had poorer sleep quality (mean [SD] total PSQI score: 6.2 [3.8] vs. 4.9 [3.2], p = 0.001) and higher prevalence of sleep disorder (100 [60.2%] vs. 56 [45.2%], p = 0.01) at baseline than those who remained free of neurocognitive disorder. After controlling for age, gender, education, and physical and psychiatric morbidities, the risk ratios (RRs) for incident neurocognitive disorders were 1.05 (95% confidence interval (CI) = 1.00-1.11, p < 0.05) for PSQI total score and 1.50 (95% CI = 1.05-2.14, p = 0.03) for sleep disorder at baseline. CONCLUSIONS Sleep quality might predict the development of neurocognitive disorders. From a clinical perspective, enquiry of sleep quality and screening for sleep disorder should be promoted as part of the neurocognitive disorder risk assessment in older adults.
Collapse
Affiliation(s)
- Vivian K Y Lai
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ada W T Fung
- Department of Applied Social Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - Linda C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Allen T C Lee
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Sleep habits are associated with cognition decline in physically robust, but not in frail participants: a longitudinal observational study. Sci Rep 2022; 12:11595. [PMID: 35804185 PMCID: PMC9270465 DOI: 10.1038/s41598-022-15915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Frail older adults are vulnerable to stressors; thus, sleep related cognition impairment might more greatly affect frail than healthy older adults. In the present study, we investigated whether the association between sleep problems and cognition varies with physical frailty status (modified from Fried et al.). Participants 55 years and older who completed a baseline and follow-up questionnaire (median follow-up: 5.5 years), were included in the analysis. Sleep parameters were evaluated in an interview at the baseline. Cognitive decline was defined as a loss of 3 or more points on the Mini-Mental State Examination (MMSE) at follow-up. Associations between sleep problems and cognitive decline were examined using logistic regression and were stratified by baseline physical frailty status, adjusted for potential confounders. A short total sleep duration (< 5 vs. 7-9 h, odds ratio (OR) = 1.88, 95% confidence interval (CI) 1.18-3.00), excessive daytime sleepiness (OR = 1.49, 95% CI 1.04-2.13), low sleep efficiency (< 65% vs. ≥ 85%, OR = 1.62, 95% CI 1.07-2.46), and insomnia complaints (OR = 2.34, 95% CI 1.23-4.43) were associated with MMSE decline in physically robust. The association was stronger for the sleep summary score, which summarized abnormal sleep duration, excessive daytime sleepiness, and insomnia complaints ([Formula: see text] 2 vs. 0, OR = 3.79, 95% CI 2.10-6.85, p < 0.0001). Due to the low prevalence of frailty in this community-dwelling population, the statistical power to detect an association was low. More evidence is needed to clarify the role of sleep in the progression of cognitive decline in frail individuals.
Collapse
|
41
|
Zahid U, Hedges EP, Dimitrov M, Murray RM, Barker GJ, Kempton MJ. Impact of physiological factors on longitudinal structural MRI measures of the brain. Psychiatry Res 2022; 321:111446. [PMID: 35131573 PMCID: PMC8924876 DOI: 10.1016/j.pscychresns.2022.111446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Longitudinal MRI is used in clinical research studies to examine illness progression, neurodevelopment, and the effect of medical interventions. Such studies typically report changes in brain volume of less than 5%. However, there is a concern that these findings could be obscured or confounded by small changes in brain volume estimates caused by physiological factors such as, dehydration, blood pressure, caffeine levels, and circadian rhythm. In this study, MRI scans using the ADNI-III protocol were acquired from 20 participants (11 female) at two time points (mean interval = 20.3 days). Hydration, systolic and diastolic blood pressure, caffeine intake, and time of day were recorded at both visits. Images were processed using FreeSurfer. Three a priori hypothesised brain regions (hippocampus, lateral ventricles, and total brain) were selected, and an exploratory analysis was conducted on FreeSurfer's auto-segmented brain regions. There was no significant effect of the physiological factors on changes in the hypothesised brain regions. We provide estimates for the maximum percentage change in regional brain volumes that could be expected to occur from normal variation in each of the physiological measures. In this study, normal variations in physiological parameters did not have a detectable effect on longitudinal changes in brain volume.
Collapse
Affiliation(s)
- Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| | - Emily P Hedges
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Mihail Dimitrov
- Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
42
|
Tai XY, Chen C, Manohar S, Husain M. Impact of sleep duration on executive function and brain structure. Commun Biol 2022; 5:201. [PMID: 35241774 PMCID: PMC8894343 DOI: 10.1038/s42003-022-03123-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Sleep is essential for life, including daily cognitive processes, yet the amount of sleep required for optimal brain health as we grow older is unclear. Poor memory and increased risk of dementia is associated with the extremes of sleep quantity and disruption of other sleep characteristics. We examined sleep and cognitive data from the UK Biobank (N = 479,420) in middle-to-late life healthy individuals (age 38-73 years) and the relationship with brain structure in a sub-group (N = 37,553). Seven hours of sleep per day was associated with the highest cognitive performance which decreased for every hour below and above this sleep duration. This quadratic relationship remained present in older individuals (>60 years, N = 212,006). Individuals who sleep between six-to-eight hours had significantly greater grey matter volume in 46 of 139 different brain regions including the orbitofrontal cortex, hippocampi, precentral gyrus, right frontal pole and cerebellar subfields. Several brain regions showed a quadratic relationship between sleep duration and volume while other regions were smaller only in individuals who slept longer. These findings highlight the important relationship between the modifiable lifestyle factor of sleep duration and cognition as well as a widespread association between sleep and structural brain health.
Collapse
Affiliation(s)
- Xin You Tai
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK.
| | - Cheng Chen
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sanjay Manohar
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Ramduny J, Bastiani M, Huedepohl R, Sotiropoulos SN, Chechlacz M. The Association Between Inadequate Sleep and Accelerated Brain Ageing. Neurobiol Aging 2022; 114:1-14. [PMID: 35344818 PMCID: PMC9084918 DOI: 10.1016/j.neurobiolaging.2022.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Jivesh Ramduny
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK; School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham, UK
| | - Robin Huedepohl
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham, UK.
| | - Magdalena Chechlacz
- School of Psychology, University of Birmingham, Birmingham, UK; Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
44
|
Izci-Balserak B, Zhu B, Wang H, Bronas UG, Gooneratne NS. Independent associations between sleep duration, gamma gap, and cognitive function among older adults: Results from the NHANES 2013-2014. Geriatr Nurs 2022; 44:1-7. [PMID: 34998076 DOI: 10.1016/j.gerinurse.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
Abstract
This study examined whether gamma gap mediated the association between sleep and cognitive function. Data from NHANES 2013-2014 were used. Three tests were used to measure cognitive function. Sleep was measured by three single questions. Gamma gap was calculated by subtracting albumin from total protein. Participants were 1392 older adults (53.2% females). Approximately 12% reported being told having sleep disorder, 1/3 reported having trouble sleeping, 25.9% had short sleep, and 12.5% had long sleep. Sleep disorders and sleep quality were not associated with cognitive function. Long sleep duration was an independent risk factor of reduced cognitive function on immediate recall, delayed recall, and executive function. Elevated gamma gap was also an independent risk factor of lower cognitive function. In a representative sample of older adults in the US, gamma gap and sleep duration were independent predictors of cognitive function. This study highlights the need for sleep assessment among older adults.
Collapse
Affiliation(s)
- Bilgay Izci-Balserak
- Department of Biobehavioral Health Sciences, College of Nursing, University of Illinois at Chicago, Chicago, IL, USA
| | - Bingqian Zhu
- School of Nursing, Shanghai Jiao Tong University, 227 S Chongqing Rd, Shanghai 200025, China.
| | - Heng Wang
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Ulf G Bronas
- Department of Biobehavioral Health Sciences, College of Nursing, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
45
|
Kim H, Levine A, Cohen D, Gehrman P, Zhu X, Devanand DP, Lee S, Goldberg TE. The Role of Amyloid, Tau, and APOE Genotype on the Relationship Between Informant-Reported Sleep Disturbance and Alzheimer's Disease Risks. J Alzheimers Dis 2022; 87:1567-1580. [PMID: 35491776 PMCID: PMC9644449 DOI: 10.3233/jad-215417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The association between sleep and Alzheimer's disease (AD) biomarkers are well-established, but little is known about how they interact to change the course of AD. OBJECTIVE To determine the potential interaction between sleep disturbance and Aβ, tau, and APOE4 on brain atrophy and cognitive decline. METHODS Sample included 351 participants (mean age 72.01 ± 6.67, 50.4%female) who were followed for approximately 5 years as part of the Alzheimer's Disease Neuroimaging Initiative. Informant-reported sleep disturbance (IRSD) was measured using the Neuropsychiatric Inventory (NPI). Changes in magnetic resonance imaging (MRI)-measured AD signature brain regions and cognitive performance and IRSD's interaction with cerebrospinal fluid amyloid-β (Aβ42) and p-Tau depositions and APOE4 status were examined using the linear mixed models. RESULTS Baseline IRSD was not significantly associated with the rate of atrophy after adjusting for covariates (age, sex, education, total NPI severity score, and sleep medications). However, there was a significant interaction between IRSD and AD biomarkers on faster atrophy rates in multiple brain regions, including the cortical and middle temporal volumes. Post-hoc analyses indicated that Aβ and p-Tau/Aβ predicted a faster decline in these regions/domains in IRSD, compared with biomarker-negative individuals with IRSD (ps≤0.001). There was a significant IRSD*APOE4 interaction for brain atrophy rate (ps≤0.02) but not for cognition. CONCLUSION IRSD may increase the future risk of AD by contributing to faster brain atrophy and cognitive decline when combined with the presence of AD biomarkers and APOE4. Early intervention for sleep disturbance could help reduce the risk of developing AD.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Alina Levine
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Daniel Cohen
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Philip Gehrman
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Anxiety, Mood, Eating, and Related Disorder, New York State Psychiatric Institute, New York, NY, USA
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
46
|
Kim REY, Abbott RD, Kim S, Thomas RJ, Yun CH, Kim H, Johnson H, Shin C. Sleep Duration, Sleep Apnea, and Gray Matter Volume. J Geriatr Psychiatry Neurol 2022; 35:47-56. [PMID: 33511901 DOI: 10.1177/0891988720988918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.
Collapse
Affiliation(s)
- Regina Eun Young Kim
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea.,Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Robert Douglas Abbott
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| | - Soriul Kim
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| | - Robert Joseph Thomas
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si Gyeonggi-do, South Korea
| | - Chang-Ho Yun
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center and the Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Hyun Kim
- Department of Clinical Psychology, Boston University, Boston, MA, USA
| | - Hans Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Chol Shin
- Institute of Human Genomic Study, Korea University College of Medicine, Ansan City, South Korea
| |
Collapse
|
47
|
Kokošová V, Filip P, Kec D, Baláž M. Bidirectional Association Between Sleep and Brain Atrophy in Aging. Front Aging Neurosci 2021; 13:726662. [PMID: 34955805 PMCID: PMC8693777 DOI: 10.3389/fnagi.2021.726662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Human brain aging is characterized by the gradual deterioration of its function and structure, affected by the interplay of a multitude of causal factors. The sleep, a periodically repeating state of reversible unconsciousness characterized by distinct electrical brain activity, is crucial for maintaining brain homeostasis. Indeed, insufficient sleep was associated with accelerated brain atrophy and impaired brain functional connectivity. Concurrently, alteration of sleep-related transient electrical events in senescence was correlated with structural and functional deterioration of brain regions responsible for their generation, implying the interconnectedness of sleep and brain structure. This review discusses currently available data on the link between human brain aging and sleep derived from various neuroimaging and neurophysiological methods. We advocate the notion of a mutual relationship between the sleep structure and age-related alterations of functional and structural brain integrity, pointing out the position of high-quality sleep as a potent preventive factor of early brain aging and neurodegeneration. However, further studies are needed to reveal the causality of the relationship between sleep and brain aging.
Collapse
Affiliation(s)
- Viktória Kokošová
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Pavel Filip
- Department of Neurology, First Faculty of Medicine, General University Hospital Prague and Charles University, Prague, Czechia.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - David Kec
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne and Masaryk University, Brno, Czechia
| |
Collapse
|
48
|
Xu W, Bai A, Huang X, Gao Y, Liu L. Association Between Sleep and Motoric Cognitive Risk Syndrome Among Community-Dwelling Older Adults: Results From the China Health and Retirement Longitudinal Study. Front Aging Neurosci 2021; 13:774167. [PMID: 34867301 PMCID: PMC8641045 DOI: 10.3389/fnagi.2021.774167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Sleep is increasingly recognized as an important lifestyle contributor to health; however, its relationship with Motoric cognitive risk syndrome (MCR) is still unclear. The present study aimed to examine the associations between sleep duration, sleep quality, and MCR among community-dwelling Chinese older adults. Methods: We recruited 5,387 participants aged ≥60 years from the China Health and Retirement Longitudinal Study (CHARLS). Sleep-related variables including night sleep duration and sleep quality were assessed via self-reported questionnaires. MCR syndrome was defined as cognitive complaints and slow gait speed without dementia or impaired mobility. Multivariate logistic regression analysis was performed to explore the associations between sleep-related variables and MCR after controlling for all potential confounders including demographic characteristics, lifestyle factors, and comorbidities. Results: We found that sleep duration was significantly associated with MCR, and the multivariate-adjusted odds ratios (OR) were highest for those with the shortest (<6 h OR = 1.55, 95% CI = 1.18–2.04) and longest (≥10 h OR = 1.73, 95% CI = 1.03–2.91) sleep durations. Moreover, an increasing frequency of self-perceived poor sleep quality was significantly associated with MCR in the adjusted model (3–4 days OR = 1.58, 95% CI = 1.16–2.17; 5–7 days OR = 1.81, 95% CI = 1.37–2.40). Conclusions: Our study indicated an inverted U-shaped association between night sleep duration and MCR. Poor sleep quality was also associated with higher odds of MCR in community-dwelling Chinese elders. Longitudinal studies with a larger population size are needed to establish causality in the future and further explore potential action mechanisms.
Collapse
Affiliation(s)
- Weihao Xu
- Haikou Cadre's sanitarium of Hainan Military Region, Haikou, China
| | - Anying Bai
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Huang
- Department of Geriatric Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yinghui Gao
- PKU-UPenn Sleep Center, Peking University International Hospital, Beijing, China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
49
|
Cabrera-Mino C, Roy B, Woo MA, Freeby MJ, Kumar R, Choi SE. Poor Sleep Quality Linked to Decreased Brain Gray Matter Density in Adults with Type 2 Diabetes. SLEEP AND VIGILANCE 2021; 5:289-297. [PMID: 35243203 PMCID: PMC8887871 DOI: 10.1007/s41782-021-00170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Poor sleep is common in adults with Type 2 Diabetes Mellitus (T2DM), which may contribute to brain tissue changes. However, the impact of sleep quality on brain tissue in T2DM individuals is unclear. We aimed to evaluate differential sleep quality with brain changes, and brain tissue integrity in T2DM patients. METHODS Data were collected from 34 patients with T2DM and included sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], and high-resolution T1-weighted brain images using a 3.0-Tesla MRI scanner. Gray matter density (GMD) maps were compared between subjects with good vs poor sleep quality as assessed by PSQI (covariates: age, sex, BMI). RESULTS Of 34 T2DM patients, 17 showed poor sleep quality. Multiple brain sites, including the hippocampus, cerebellum, prefrontal, amygdala, thalamus, hypothalamus, insula, cingulate, and temporal areas, showed reduced gray matter in T2DM patients with poor sleep quality over patients with good sleep quality. Negative associations emerged between PSQI scores and gray matter density in multiple areas. CONCLUSIONS T2DM patients with poor sleep quality show brain tissue changes in sites involved in sleep regulation. Findings indicate that improving sleep may help mitigate brain tissue damage, and thus, improve brain function in T2DM patients.
Collapse
Affiliation(s)
| | - Bhaswati Roy
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Mary A. Woo
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA
| | - Matthew J. Freeby
- Department of Medicine, Division of Endocrinology, Diabetes, & Metabolism, University of California Los Angeles, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA
- David Geffen School of Medicine at UCLA, Brain Research Institute, University of California Los Angeles, Los Angeles, CA
| | - Sarah E. Choi
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
50
|
Zhang H, Ma W, Chen Y, Wang F, Wang J, Han P, Wang Y, Zhang C, Xie F, Niu S, Hu H, Wang H, Guo Q. Long Sleep Duration Associated With Cognitive Impairment in Chinese Community-Dwelling Older Adults. J Nerv Ment Dis 2021; 209:925-932. [PMID: 34333503 DOI: 10.1097/nmd.0000000000001401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We aimed to examine the association between sleep duration and impaired cognitive function in different cognitive domains in Chinese community-dwelling older adults. A total of 1591 participants (≥60 years) were divided into five groups: ≤6 hours (very short sleep duration), >6 to 7 hours (short sleep duration), ≥7 to 8 hours (moderate sleep duration), >8 to 9 hours (moderately long sleep duration), and >9 hours (long sleep duration), according to sleep duration. Cognitive function was assessed using the Mini-Mental State Examination. Long sleep duration significantly increased the likelihood of cognitive impairment. In addition to attention, long sleep duration was negatively related to poorer global cognition and other cognitive domain functions. With the stratification of age groups, long sleep duration was negatively associated with other cognitive domain functions except delayed recall in older elderly (≥75 years) people, but not in younger elderly (60-74 years) people. Long sleep duration was associated with higher rates of cognitive impairment, poorer global cognition, and declined orientation, memory, language ability, and executive function in Chinese community-dwelling older adults, which was more significant in older elderly people.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital
| | - Weibo Ma
- Shanghai University of Traditional Chinese Medicine
| | - Yaoxin Chen
- Shanghai University of Traditional Chinese Medicine
| | - Feng Wang
- Shanghai University of Traditional Chinese Medicine
| | - Jingru Wang
- Shanghai University of Traditional Chinese Medicine
| | - Peipei Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yiwen Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chenyu Zhang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fandi Xie
- Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital
| | - Shumeng Niu
- Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital
| | - Hao Hu
- Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital
| | - Hong Wang
- Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital
| | - Qi Guo
- Shanghai University of Medicine and Health Science Affiliated First Rehabilitation Hospital
| |
Collapse
|