1
|
Ning X, Xia B, Wang J, Gao R, Ren H. Host-adaptive mutations in Chikungunya virus genome. Virulence 2024; 15:2401985. [PMID: 39263937 PMCID: PMC11404619 DOI: 10.1080/21505594.2024.2401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF), and its primary vectors are the mosquitoes Aedes aegypti and Aedes albopictus. CHIKV was initially endemic to Africa but has spread globally in recent years and affected millions of people. According to a risk assessment by the World Health Organization, CHIKV has the potential seriously impact public health. A growing body of research suggests that mutations in the CHIKV gene that enhance viral fitness in the host are contributing to the expansion of the global CHIKF epidemic. In this article, we review the host-adapted gene mutations in CHIKV under natural evolution and laboratory transmission conditions, which can help improve our understanding of the adaptive evolution of CHIKV and provide a basis for monitoring and early warning of future CHIKV outbreaks.
Collapse
Affiliation(s)
- Xinhang Ning
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People's Republic of China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People's Republic of China
| | - Jiaqi Wang
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People's Republic of China
| | - Rong Gao
- Department of Respiratory Medicine, The People's Liberation Army Joint Logistic Support Force 943 Hospital, Wuwei, Gansu, People's Republic of China
| | - Hao Ren
- Department of Microbiology, Faculty of Naval Medicine, Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Chan SW. CRISPR-editing of the virus vector Aedes albopictus cell line C6/36, illustrated by prohibitin 2 gene knockout. MethodsX 2024; 13:102817. [PMID: 39049926 PMCID: PMC11267050 DOI: 10.1016/j.mex.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Aedes mosquitoes are important virus vectors. We provide a toolkit for CRISPR-Cas9-editing of difficult-to-knockdown gene previously shown to be refractory to siRNA silencing in mosquito cells, which is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations. Starting from database searches of Ae. albopictus and the C6/36 cell line whole genome shotgun sequences for the prohibitin 2 (PHB2) gene, primers were designed to confirm the gene sequence in our laboratory-passaged C6/36 cell line for the correct design and cloning of CRISPR RNA into an insect plasmid vector to create a single guide RNA for the PHB2 gene target. After transfection of this plasmid vector into the C6/36 cells, cell clones selected by puromycin and/or limiting dilution were analyzed for insertions and deletions (INDELs) using PCR, sequencing and computational sequence decomposition. From this, we have identified mono-allelic and bi-allelic knockout cell clones. Using a mono-allelic knockout cell clone as an example, we characterized its INDELs by molecular cloning and computational analysis. Importantly, mono-allelic knockout was sufficient to reduce >80 % of PHB2 expression, which led to phenotypic switching and the propensity to form foci but was insufficient to affect growth rate or to inhibit Zika virus infection.•We provide a toolkit for CRISPR-Cas9-editing of the virus vector, Aedes albopictus C6/36 cell line•We validate this using a difficult-to-knockdown gene prohibitin 2•This toolkit is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
3
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
4
|
Aynekulu Mersha DG, van der Sterren I, van Leeuwen LPM, Langerak T, Hakim MS, Martina B, van Lelyveld SFL, van Gorp ECM. The role of antibody-dependent enhancement in dengue vaccination. Trop Dis Travel Med Vaccines 2024; 10:22. [PMID: 39482727 DOI: 10.1186/s40794-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Dengue is the most rapidly spreading vector-borne disease worldwide, with over half the global population at risk for an infection. Antibody-dependent enhancement (ADE) is associated with increased disease severity and may also be attributable to the deterioration of disease in vaccinated people. Two dengue vaccines are approved momentarily, with more in development. The increasing use of vaccines against dengue, combined with the development of more, makes a thorough understanding of the processes behind ADE more important than ever. Above that, due to the lack of treatment options, this method of prevention is of great importance. This review aims to explore the impact of ADE in dengue vaccinations, with the goal of enhancing potential vaccination strategies in the fight against dengue.
Collapse
Affiliation(s)
- D G Aynekulu Mersha
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands.
| | - I van der Sterren
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - L P M van Leeuwen
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - T Langerak
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - M S Hakim
- Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - B Martina
- Artemis Bioservices and Athenavax B.V, Delft, the Netherlands
| | - S F L van Lelyveld
- Department of internal medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | - E C M van Gorp
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
5
|
Rai P, Webb EM, Paulson SL, Kang L, Weger-Lucarelli J. Obesity's Unexpected Influence: Reduced Alphavirus Transmission and Altered Immune Activation in the Vector. J Med Virol 2024; 96:e70032. [PMID: 39466902 DOI: 10.1002/jmv.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are emerging/re-emerging alphaviruses transmitted by Aedes spp. mosquitoes and responsible for recent disease outbreaks in the Americas. The capacity of these viruses to cause epidemics is frequently associated with increased mosquito transmission, which in turn is governed by virus-host-vector interactions. Although many studies have explored virus-vector interactions, significant gaps remain in understanding how vertebrate host factors influence alphavirus transmission by mosquitoes. We previously showed that obesity, a ubiquitous vertebrate host biological factor, reduces alphavirus transmission potential in mosquitoes. We hypothesized that alphavirus-infected obese bloodmeals altered immune genes and/or pathways in mosquitoes, thereby inhibiting virus transmission. To test this, we conducted RNA sequencing (RNA-seq) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) on midgut RNA from mosquitoes fed on alphavirus-infected lean and obese mice. This approach aimed to identify potential antiviral or proviral genes and pathways altered in mosquitoes after consuming infected obese bloodmeals. We found upregulation of the Toll pathway and downregulation of several metabolic and other genes in mosquitoes fed on alphavirus-infected obese bloodmeals. Through gene knockdown studies, we demonstrated the antiviral role of Toll pathway and proviral roles of AAEL009965 and fatty acid synthase (FASN) in the transmission of alphaviruses by mosquitoes. Therefore, this study utilized obesity to identify factors influencing alphavirus transmission by mosquitoes and this research approach may pave the way for designing broadly effective antiviral measures to combat mosquito-borne viruses, such as releasing transgenic mosquitoes deficient in the identified genes.
Collapse
Affiliation(s)
- Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| | - Emily M Webb
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
- Department of Entomology, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Sally L Paulson
- Department of Entomology, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Los Angeles, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, Los Angeles, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
6
|
Marques EM, Rocha RL, Brandão CM, Xavier JKAM, Camara MBP, Mendonça CDJS, de Lima RB, Souza MP, Costa EV, Gonçalves RS. Development of an Eco-Friendly Nanogel Incorporating Pectis brevipedunculata Essential Oil as a Larvicidal Agent Against Aedes aegypti. Pharmaceutics 2024; 16:1337. [PMID: 39458666 PMCID: PMC11510620 DOI: 10.3390/pharmaceutics16101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Arboviruses, transmitted by mosquitoes like Aedes aegypti, pose significant public health challenges globally, particularly in tropical regions. The rapid spread and adaptation of viruses such as Dengue, Zika, and Chikungunya have emphasized the need for innovative control methods. Essential oils from plants, such as Pectis brevipedunculata (Gardner) Sch.Bip. (Pb), have emerged as potential alternatives to conventional insecticides. METHODS In this work, we developed an eco-friendly nanogel using a low-energy, solvent-free method, incorporating the copolymer F127 and Carbopol 974p, enriched with a high concentration of essential oil from Pb (EOPb). The resulting nanogel displayed excellent physical stability, maintained under varying temperature conditions. Characterization techniques, including FTIR and DLS, confirmed the stable incorporation of EOPb within the nanogel matrix. RESULTS The in vitro assays against Aedes aegypti larvae revealed that at 500 μg/mL, the mortality rates were 96.0% ± 7.0 after 24 h and 100.0% ± 0.0 after 48 h. The positive control group treated with temefos, achieved 100% mortality at both time points, validating the experimental conditions and providing a benchmark for assessing the efficacy of the nGF2002Pb nanogel. CONCLUSIONS These results indicate that nGF2002Pb demonstrates a pronounced concentration-dependent larvicidal effect against Aedes aegypti, offering an innovative and sustainable approach to arbovirus vector control.
Collapse
Affiliation(s)
- Estela Mesquita Marques
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | - Raiene Lisboa Rocha
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | | | - Júlia Karla Albuquerque Melo Xavier
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | - Marcos Bispo Pinheiro Camara
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| | - Caritas de Jesus Silva Mendonça
- Center for Fuels, Catalysis, and Environment (NCCA), Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil;
| | | | - Melissa Pires Souza
- Postgraduate Program in Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, Brazil; (M.P.S.); (E.V.C.)
| | - Emmanoel Vilaça Costa
- Postgraduate Program in Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, Brazil; (M.P.S.); (E.V.C.)
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, Brazil
| | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil; (E.M.M.); (R.L.R.); (J.K.A.M.X.); (M.B.P.C.)
| |
Collapse
|
7
|
Chen J, Zhang Y, Zhang X, Zhang M, Yin X, Zhang L, Peng C, Fu B, Fang L, Liu W. Epidemiology and Ecology of Usutu Virus Infection and Its Global Risk Distribution. Viruses 2024; 16:1606. [PMID: 39459938 PMCID: PMC11512428 DOI: 10.3390/v16101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Usutu virus (USUV) is an emerging mosquito-transmitted flavivirus with increasing incidence of human infection and geographic expansion, thus posing a potential threat to public health. In this study, we established a comprehensive spatiotemporal database encompassing USUV infections in vectors, animals, and humans worldwide by an extensive literature search. Based on this database, we characterized the geographic distribution and epidemiological features of USUV infections. By employing boosted regression tree (BRT) models, we projected the distributions of three main vectors (Culex pipiens, Aedes albopictus, and Culiseta longiareolata) and three main hosts (Turdus merula, Passer domesticus, and Ardea cinerea) to obtain the mosquito index and bird index. These indices were further incorporated as predictors into the USUV infection models. Through an ensemble learning model, we achieved a decent model performance, with an area under the curve (AUC) of 0.992. The mosquito index contributed significantly, with relative contributions estimated at 25.51%. Our estimations revealed a potential exposure area for USUV spanning 1.80 million km2 globally with approximately 1.04 billion people at risk. This can guide future surveillance efforts for USUV infections, especially for countries located within high-risk areas and those that have not yet conducted surveillance activities.
Collapse
Affiliation(s)
- Jiahao Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Yuanyuan Zhang
- Department of Disease Control and Prevention, No. 926 Hospital of Joint Logistics Support Force, Kaiyuan 661600, China;
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Meiqi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Xiaohong Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Lei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Cong Peng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Bokang Fu
- School of Public Health, Anhui Medical University, Hefei 230022, China;
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, 20 Dong-Da Street, Fengtai District, Beijing 100071, China; (J.C.); (X.Z.); (M.Z.); (X.Y.); (L.Z.); (C.P.)
| |
Collapse
|
8
|
Morreale R, Stenhouse S, Carvalho DO, Hahn DA, Bourtzis K, Lloyd A, Gale TW, Hoel DF. Seasonal insights for integrative mosquito management from multi-year baseline entomological data on Aedes aegypti in Lee County, Florida. PLoS One 2024; 19:e0311407. [PMID: 39392849 PMCID: PMC11469506 DOI: 10.1371/journal.pone.0311407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
The spread of arboviruses like yellow fever, dengue, chikungunya, and Zika, transmitted by the invasive mosquito Aedes aegypti has led to the development of many strategies to suppress mosquito populations. Given the rapid development of resistance to common chemical larvicides and adulticides in some Ae. aegypti populations, as well as the ever-shrinking chemical options for mosquito control, there is a pressing need for new tools and deployment of those innovative tools as a component of integrative mosquito management programs. Prior to the adoption of any mosquito population intervention, be it conventional or innovative, understanding the baseline population is essential to evaluate the efficacy of the control measure. The Lee County Mosquito Control District in Florida has collected a three-year-long period of baseline entomological surveillance data collection for Ae. aegypti on Captiva and Sanibel Islands as foundational information prior to implementation of a new integrative mosquito management approach. We identified 18 mosquito species and described their population dynamics during the rainy and dry seasons. The two islands had no significant differences in species richness, diversity, dominance, or evenness overall. Yet, there were clear differences between the high rain season and low rain season in the Shannon diversity index, Simpson dominance index, and Pielou species evenness index within each site. Our data suggest that any innovative intervention should begin before mid to late April when the mosquito population is at its lowest and certainly before populations build up to their summer peak between June and September. These data also show the spatial distribution of Ae. aegypti is dynamic in space and time, identifying hotspots of mosquito abundance to focus on for future interventions. Overall, our study emphasizes the importance of entomological data collection to understand the population dynamics of Ae. aegypti mosquitoes, including the impact of environmental factors such as temperature and precipitation.
Collapse
Affiliation(s)
- Rachel Morreale
- Lee County Mosquito Control District, Lehigh Acres, FL, United States of America
| | - Steven Stenhouse
- Lee County Mosquito Control District, Lehigh Acres, FL, United States of America
| | - Danilo O. Carvalho
- Department of Entomology & Nematology, University of Florida, Gainesville, FL, United States of America
| | - Daniel A. Hahn
- Department of Entomology & Nematology, University of Florida, Gainesville, FL, United States of America
| | - Kostas Bourtzis
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, Vienna, Austria
| | - Aaron Lloyd
- Lee County Mosquito Control District, Lehigh Acres, FL, United States of America
| | - Thomas Wayne Gale
- Lee County Mosquito Control District, Lehigh Acres, FL, United States of America
| | - David F. Hoel
- Lee County Mosquito Control District, Lehigh Acres, FL, United States of America
| |
Collapse
|
9
|
Bouzidi HS, Sen S, Piorkowski G, Pezzi L, Ayhan N, Fontaine A, Canivez T, Geulen M, Amaral R, Grard G, Durand GA, de Lamballerie X, Touret F, Klitting R. Genomic surveillance reveals a dengue 2 virus epidemic lineage with a marked decrease in sensitivity to Mosnodenvir. Nat Commun 2024; 15:8667. [PMID: 39384752 PMCID: PMC11464713 DOI: 10.1038/s41467-024-52819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Dengue fever is the most important arbovirosis for public health, with more than 5 million cases worldwide in 2023. Mosnodenvir is the first anti-dengue compound with very high preclinical pan-serotype activity, currently undergoing phase 2 clinical evaluation. Here, by analyzing dengue virus (DENV) genomes from the 2023-2024 epidemic in the French Caribbean Islands, we show that they all exhibit mutation NS4B:V91A, previously associated with a marked decrease in sensitivity to mosnodenvir in vitro. Using antiviral activity tests on four clinical and reverse-genetic strains, we confirm a marked decrease in mosnodenvir sensitivity for DENV-2 ( > 1000 fold). Finally, combining phylogenetic analysis and experimental testing for resistance, we find that virus lineages with low sensitivity to mosnodenvir due to the V91A mutation likely emerged multiple times over the last 30 years in DENV-2 and DENV-3. These results call for increased genomic surveillance, in particular to track lineages with resistance mutations. These efforts should allow to better assess the activity profile of DENV treatments in development against circulating strains.
Collapse
Affiliation(s)
- Hawa Sophia Bouzidi
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Selin Sen
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Laura Pezzi
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Nazli Ayhan
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Albin Fontaine
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de virologie, Marseille, France
| | - Thomas Canivez
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Manon Geulen
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Rayane Amaral
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Gilda Grard
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Guillaume André Durand
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
| | - Raphaëlle Klitting
- Unité des Virus Émergents (Aix-Marseille Université, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France.
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France.
| |
Collapse
|
10
|
Lee Y, Seo M, Yun SH, Yu M, Kim HJ, Cho HW, Byeon HW, Park SO, Uyangaa E, Jeon H, Lee M, Kwon YD, Eo SK. Inhibitory peptides derived from Hepatitis C virus NS5A for reducing clinical symptoms of dengue virus infection. Antiviral Res 2024; 231:106018. [PMID: 39389166 DOI: 10.1016/j.antiviral.2024.106018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Lethal Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS) caused by Dengue virus (DENV) infection necessitate the development of effective treatments. Peptides derived from the N-terminal amphipathic α-helix of hepatitis C virus (HCV) NS5A exhibit antiviral activity by disrupting liposomes with high curvatures, such as virus envelopes. This study engineered five peptides from HCV genotype 3a NS5A N-terminal α-helix and screened them for neutralizing efficacy against three DENV serotypes. Two peptides, 3a 3/20 and DS-05, showed superior therapeutic efficacy against DENV and were further evaluated in treating DHF/DSS induced by mouse-adapted DENV infection. Administration of 3a 3/20 and DS-05 post-infection significantly improved mortality and weight loss associated with DHF/DSS in AG6 mice. These peptides reduced viral load in internal organs and viremia to levels comparable with the positive control drug, JNJ-A07, a DENV NS3-NS4B inhibitor. Additionally, they attenuated the cytokine storm in the blood and expression of inflammatory cytokines in internal organ tissues, ameliorating liver and kidney dysfunction after DENV infection. Histopathological analysis revealed significant suppression of damages in internal organs. These findings suggest that the 3a 3/20 and DS-05 peptides improve clinical symptoms of DHF/DSS induced by DENV infection, indicating their potential for clinical application.
Collapse
Affiliation(s)
- Younghoon Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Minjun Seo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk-Hyun Yun
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Minyeong Yu
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hye Won Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hyunjin Jeon
- BIO R&D Center, DaehanNupharm Co. Ltd., 20, Changeop-ro 57beon-gil, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| | - Minhyeong Lee
- BIO R&D Center, DaehanNupharm Co. Ltd., 20, Changeop-ro 57beon-gil, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| | - Young Do Kwon
- BIO R&D Center, DaehanNupharm Co. Ltd., 20, Changeop-ro 57beon-gil, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13449, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
11
|
Doeurk B, Marcombe S, Maquart PO, Boyer S. Review of dengue vectors in Cambodia: distribution, bionomics, vector competence, control and insecticide resistance. Parasit Vectors 2024; 17:424. [PMID: 39385238 PMCID: PMC11462738 DOI: 10.1186/s13071-024-06481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Dengue fever is one of the most prevalent mosquito-borne diseases in Cambodia. Until now, no specific vaccine nor antiviral treatment exists the virus causing Dengue fever. Consequently, its prevention relies only on vector control strategies. However, efficient vector control in turn relies on a good knowledge of the biology of the vector species. Therefore, this study aims to provide the first review of the distribution, ecology, meteorological impacts, trophic behavior, vector competence, vector control and insecticide resistance of dengue vector species in Cambodia. METHODS A systematic search of the Google Scholar and PubMed databases was conducted for relevant published articles. Of the 610 published articles originally identified, 70 articles were ultimately selected for inclusion in this review. We also included new data from unpublished research conducted in Cambodia between 2017 and 2023 related to dengue vector bionomics. RESULTS Eleven Aedes (Stegomyia) mosquito species have been recorded in Cambodia, including a new species described in 2024. Four species are associated with dengue virus transmission, among which Aedes aegypti and Ae. albopictus are the main vectors and Ae. malayensis and Ae. scutellaris are considered to be potential vectors. Aedes aegypti and Ae. albopictus are present in all provinces of Cambodia. Aedes albopictus shows a preference for forest, rural and suburban areas, while Ae. aegypti is mostly found in urban and suburban areas. The distribution of these two species is also influenced by meteorological factors, seasonality and the availability of breeding habitats and blood meals. Both species are predominant during the rainy season, and their respective density is impacted by precipitation and temperature. Aedes aegypti is characterized as anthropophilic, while Ae. albopictus exhibits zooanthropophilic behavior, and both species have been observed to be predominantly diurnal. In addition, they were found to be highly resistant to the insecticides used in Cambodia for their control, such as temephos for larvae and deltamethrin and permethrin for adult mosquitoes. CONCLUSIONS This review provides extensive and important knowledge on dengue vectors in Cambodia. This knowledge is derived not only from published research articles but also from many recent studies in Cambodia on the bionomics of dengue vector species. The review provides valuable information for use by public health authorities on dengue virus transmission and to develop better vector control strategies in the country.
Collapse
Affiliation(s)
- Bros Doeurk
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, PO Box 983, Phnom Penh, Cambodia.
| | | | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, PO Box 983, Phnom Penh, Cambodia
- IRD, UMR 247 Evolution, Génome, Comportement, Ecologie,, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, PO Box 983, Phnom Penh, Cambodia
- Ecology and Emergence of Arthropod-Borne Diseases, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Garamszegi LZ. Host diversity of Aedes albopictus in relation to invasion history: a meta-analysis of blood-feeding studies. Parasit Vectors 2024; 17:411. [PMID: 39363331 PMCID: PMC11448256 DOI: 10.1186/s13071-024-06490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The invasive mosquito Aedes albopictus is a major concern for human and animal health given its high potential to spread over large geographical distances, adapt to various habitats and food sources, and act as a vector for pathogens. It is crucial to understand how this species establishes ecological relationships at different locations, as it determines its role in transmission of diseases. METHODS Based on published blood meal surveys, a meta-analysis was performed to investigate how host diversity changes along the process of invasion at a large scale. For 48 independent localities, the Shannon diversity index was calculated and was then assessed against several moderator variables describing invasion status, habitat type, methodology, survey year and the year of introduction for invasive populations. RESULTS Diet diversity was higher in the invasive than in the native populations when the strong habitat effects were held constant. Furthermore, the year of introduction also had a significant role, as invasive populations that had been established earlier had wider diet diversity than more recent populations. CONCLUSIONS Invasive Ae. albopictus has considerable ecological flexibility. The species' ability to adapt to various food sources goes hand in hand with its successful worldwide dispersion, which has strong implications for its role in pathogen transmission.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Alkotmány u. 2-4, 2163, Vácrátót, Hungary.
- National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Budapest, Hungary.
| |
Collapse
|
13
|
Blyden K, Thomas J, Emami-Naeini P, Fashina T, Conrady CD, Albini TA, Carag J, Yeh S. Emerging Infectious Diseases and the Eye: Ophthalmic Manifestations, Pathogenesis, and One Health Perspectives. Int Ophthalmol Clin 2024; 64:39-54. [PMID: 39480207 PMCID: PMC11512616 DOI: 10.1097/iio.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Infectious diseases may lead to ocular complications including uveitis, an ocular inflammatory condition with potentially sight-threatening sequelae, and conjunctivitis, inflammation of the conjunctiva. Emerging infectious pathogens with known ocular findings include Ebola virus, Zika virus, Avian influenza virus, Nipah virus, severe acute respiratory syndrome coronaviruses, and Dengue virus. Re-emerging pathogens with ocular findings include Toxoplasma gondii and Plasmodium species that lead to malaria. The concept of One Health involves a collaborative and interdisciplinary approach to achieve optimal health outcomes by combining human, animal, and environmental health factors. This approach examines the interconnected and often complex human-pathogen-intermediate host interactions in infectious diseases that may also result in ocular disease, including uveitis and conjunctivitis. Through a comprehensive review of the literature, we review the ophthalmic findings of emerging infectious diseases, pathogenesis, and One Health perspectives that provide further insight into the disease state. While eye care providers and vision researchers may often focus on key local aspects of disease process and management, additional perspective on host-pathogen-reservoir life cycles and transmission considerations, including environmental factors, may offer greater insight to improve outcomes for affected individuals and stakeholders.
Collapse
Affiliation(s)
- K’Mani Blyden
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Joanne Thomas
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Parisa Emami-Naeini
- Department of Ophthalmology, University of California, Davis, Sacramento, CA
| | - Tolulope Fashina
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher D. Conrady
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | - Steven Yeh
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
14
|
Martins DOS, Ruiz UEA, Santos IA, Oliveira IS, Guevara-Vega M, de Paiva REF, Abbehausen C, Sabino-Silva R, Corbi PP, Jardim ACG. Exploring the antiviral activities of the FDA-approved drug sulfadoxine and its derivatives against Chikungunya virus. Pharmacol Rep 2024; 76:1147-1159. [PMID: 39150661 DOI: 10.1007/s43440-024-00635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.
Collapse
Affiliation(s)
- Daniel Oliveira Silva Martins
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
- Institute of Bioscience, Language and Exact Sciences - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Uriel Enrique Aquino Ruiz
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | | | - Marco Guevara-Vega
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | | | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil.
- Institute of Bioscience, Language and Exact Sciences - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
15
|
de Souza Leandro A, de Oliveira F, Lopes RD, Rivas AV, Martins CA, Silva I, Villela DAM, Teixeira MG, Xavier SCDC, Maciel-de-Freitas R. The fuzzy system ensembles entomological, epidemiological, demographic and environmental data to unravel the dengue transmission risk in an endemic city. BMC Public Health 2024; 24:2587. [PMID: 39334102 PMCID: PMC11430332 DOI: 10.1186/s12889-024-19942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The effectiveness of dengue control interventions depends on an effective integrated surveillance system that involves analysis of multiple variables associated with the natural history and transmission dynamics of this arbovirus. Entomological indicators associated with other biotic and abiotic parameters can assertively characterize the spatiotemporal trends related to dengue transmission risk. However, the unpredictability of the non-linear nature of the data, as well as the uncertainty and subjectivity inherent in biological data are often neglected in conventional models. METHODS As an alternative for analyzing dengue-related data, we devised a fuzzy-logic approach to test ensembles of these indicators across categories, which align with the concept of degrees of truth to characterize the success of dengue transmission by Aedes aegypti mosquitoes in an endemic city in Brazil. We used locally gathered entomological, demographic, environmental and epidemiological data as input sources using freely available data on digital platforms. The outcome variable, risk of transmission, was aggregated into three categories: low, medium, and high. Spatial data was georeferenced and the defuzzified values were interpolated to create a map, translating our findings to local public health managers and decision-makers to direct further vector control interventions. RESULTS The classification of low, medium, and high transmission risk areas followed a seasonal trend expected for dengue occurrence in the region. The fuzzy approach captured the 2020 outbreak, when only 14.06% of the areas were classified as low risk. The classification of transmission risk based on the fuzzy system revealed effective in predicting an increase in dengue transmission, since more than 75% of high-risk areas had an increase in dengue incidence within the following 15 days. CONCLUSIONS Our study demonstrated the ability of fuzzy logic to characterize the city's spatiotemporal heterogeneity in relation to areas at high risk of dengue transmission, suggesting it can be considered as part of an integrated surveillance system to support timely decision-making.
Collapse
Affiliation(s)
- André de Souza Leandro
- Centro de Controle de Zoonoses da Secretaria Municipal de Saúde de Foz do Iguaçu,, Foz do Iguaçu, PR, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz - IOC, Rio de Janeiro, RJ, Brazil
| | - Felipe de Oliveira
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz - IOC, Rio de Janeiro, RJ, Brazil
| | - Renata Defante Lopes
- Centro de Controle de Zoonoses da Secretaria Municipal de Saúde de Foz do Iguaçu,, Foz do Iguaçu, PR, Brazil
- Universidade Federal Latino-Americana, Foz do Iguaçu, PR, Brazil
| | - Açucena Veleh Rivas
- Fundação Itaiguapy, Instituto de Ensino e Pesquisa, Laboratório de Saúde Única do Centro de Medicina Tropical da Tríplice Fronteira,, Foz do Iguaçu, PR, Brazil
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Caroline Amaral Martins
- Centro de Controle de Zoonoses da Secretaria Municipal de Saúde de Foz do Iguaçu,, Foz do Iguaçu, PR, Brazil
| | - Isaac Silva
- Centro de Controle de Zoonoses da Secretaria Municipal de Saúde de Foz do Iguaçu,, Foz do Iguaçu, PR, Brazil
| | - Daniel A M Villela
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz - IOC, Rio de Janeiro, RJ, Brazil.
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
16
|
Vinauger C, Chandrasegaran K. Context-specific variation in life history traits and behavior of Aedes aegypti mosquitoes. FRONTIERS IN INSECT SCIENCE 2024; 4:1426715. [PMID: 39386346 PMCID: PMC11461241 DOI: 10.3389/finsc.2024.1426715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
Aedes aegypti, the vector for dengue, chikungunya, yellow fever, and Zika, poses a growing global epidemiological risk. Despite extensive research on Ae. aegypti's life history traits and behavior, critical knowledge gaps persist, particularly in integrating these findings across varied experimental contexts. The plasticity of Ae. aegypti's traits throughout its life cycle allows dynamic responses to environmental changes, yet understanding these variations within heterogeneous study designs remains challenging. A critical aspect often overlooked is the impact of using lab-adapted lines of Ae. aegypti, which may have evolved under laboratory conditions, potentially altering their life history traits and behavioral responses compared to wild populations. Therefore, incorporating field-derived populations in experimental designs is essential to capture the natural variability and adaptability of Ae. aegypti. The relationship between larval growing conditions and adult traits and behavior is significantly influenced by the specific context in which mosquitoes are studied. Laboratory conditions may not replicate the ecological complexities faced by wild populations, leading to discrepancies in observed traits and behavior. These discrepancies highlight the need for ecologically relevant experimental conditions, allowing mosquito traits and behavior to reflect field distributions. One effective approach is semi-field studies involving field-collected mosquitoes housed for fewer generations in the lab under ecologically relevant conditions. This growing trend provides researchers with the desired control over experimental conditions while maintaining the genetic diversity of field populations. By focusing on variations in life history traits and behavioral plasticity within these varied contexts, this review highlights the intricate relationship between larval growing conditions and adult traits and behavior. It underscores the significance of transstadial effects and the necessity of adopting study designs and reporting practices that acknowledge plasticity in adult traits and behavior, considering variations due to larval rearing conditions. Embracing such approaches paves the way for a comprehensive understanding of contextual variations in mosquito life history traits and behavior. This integrated perspective enables the synthesis of research findings across laboratory, semi-field, and field-based investigations, which is crucial for devising targeted intervention strategies tailored to specific ecological contexts to combat the health threat posed by this formidable disease vector effectively.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | |
Collapse
|
17
|
Watkins JM, Burke JM. RNase L-induced bodies sequester subgenomic flavivirus RNAs to promote viral RNA decay. Cell Rep 2024; 43:114694. [PMID: 39196777 DOI: 10.1016/j.celrep.2024.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
Subgenomic flavivirus RNAs (sfRNAs) are structured RNAs encoded by flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze sfRNA production and localization using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) throughout West Nile virus, Zika virus, or dengue virus serotype 2 infection. We observe that sfRNAs are generated during the RNA replication phase of viral infection in the cytosol and accumulate in processing bodies (P-bodies), which contain RNA decay machinery such as XRN1 and Dcp1b. However, upon activation of the host antiviral endoribonuclease, ribonuclease L (RNase L), sfRNAs re-localize to ribonucleoprotein complexes known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a functional role for RLBs in enhancing the cell-mediated decay of viral RNA by sequestering functional viral RNA decay products.
Collapse
Affiliation(s)
- J Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - James M Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| |
Collapse
|
18
|
Bisia M, Balatsos G, Beleri S, Tegos N, Zavitsanou E, LaDeau SL, Sotiroudas V, Patsoula E, Michaelakis A. Mitigating the Threat of Invasive Mosquito Species Expansion: A Comprehensive Entomological Surveillance Study on Kastellorizo, a Remote Greek Island. INSECTS 2024; 15:724. [PMID: 39336692 PMCID: PMC11432031 DOI: 10.3390/insects15090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
The expansion of the tiger mosquito, a vector that can transmit diseases such as dengue, chikungunya, and Zika virus, poses a growing threat to global health. This study focuses on the entomological surveillance of Kastellorizo, a remote Greek island affected by its expansion. This research employs a multifaceted approach, combining KAP survey (knowledge, attitude, practices), mosquito collection using adult traps and human landing catches, and morphological and molecular identification methods. Results from questionnaires reveal community awareness and preparedness gaps, emphasizing the need for targeted education. Mosquito collections confirm the presence of the Aedes albopictus, Aedes cretinus, and Culex pipiens mosquitoes, highlighting the importance of surveillance. This study underscores the significance of community engagement in entomological efforts and proposes a citizen science initiative for sustained monitoring. Overall, this research provides essential insights for developing effective mosquito control programs in remote island settings, thereby emphasizing the importance of adopting a One Health approach to mitigate the spread of vector-borne diseases.
Collapse
Affiliation(s)
- Marina Bisia
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | - Georgios Balatsos
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | - Stavroula Beleri
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Nikolaos Tegos
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Evangelia Zavitsanou
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | | | - Vasilis Sotiroudas
- AgroSpeCom, 7th klm National Road Thessaloniki-Katerini, Kalochori, 570 09 Thessaloniki, Greece;
| | - Eleni Patsoula
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| |
Collapse
|
19
|
Njaime FCBFP, Máspero RC, Leandro ADS, Maciel-de-Freitas R. Automated classification of mixed populations of Aedes aegypti and Culex quinquefasciatus mosquitoes under field conditions. Parasit Vectors 2024; 17:399. [PMID: 39300572 DOI: 10.1186/s13071-024-06417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika (ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve surveillance systems and provide valuable information regarding mosquito vector catches in real time. METHODS We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained using European populations of Aedes albopictus and Culex pipiens. RESULTS The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-target insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%). CONCLUSIONS The data reported herein show high accuracy, sensitivity, specificity and precision of an automated optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European populations of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically relevant mosquito species.
Collapse
Affiliation(s)
| | - Renato Cesar Máspero
- Programa de Pós-graduação em Vigilância e Controle de Vetores, Instituto Oswaldo Cruz, Fiocruz - IOC, Rio de Janeiro, RJ, Brazil
| | - André de Souza Leandro
- Centro de Controle de Zoonoses da Secretaria Municipal de Saúde de Foz do Iguaçu, Paraná, Brazil
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz-IOC, Rio de Janeiro, RJ, Brasil
| | - Rafael Maciel-de-Freitas
- Centro de Controle de Zoonoses da Secretaria Municipal de Saúde de Foz do Iguaçu, Paraná, Brazil.
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
20
|
Ajayi OM, Susanto EE, Wang L, Kennedy J, Ledezma A, Harris A, Smith ES, Chakraborty S, Wynne NE, Sylla M, Akorli J, Otoo S, Rose NH, Vinauger C, Benoit JB. Intra-species quantification reveals differences in activity and sleep levels in the yellow fever mosquito, Aedes aegypti. MEDICAL AND VETERINARY ENTOMOLOGY 2024. [PMID: 39300685 DOI: 10.1111/mve.12747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024]
Abstract
Aedes aegypti is an important mosquito vector of human disease with a wide distribution across the globe. Climatic conditions and ecological pressure drive differences in the biology of several populations of this mosquito species, including blood-feeding behaviour and vector competence. However, no study has compared activity and/or sleep among different populations/lineages of Ae. aegypti. Having recently established sleep-like states in three mosquito species with observable differences in timing and amount of sleep among species, we investigated differences in activity and sleep levels among 17 Ae. aegypti lines drawn from both its native range in Africa and its invasive range across the global tropics. Activity monitoring indicates that all the lines show consistent diurnal activity, but significant differences in activity level, sleep amount, number of sleep bouts and bout duration were observed among the lines. The variation in day activity was associated with differences in host preference and ancestry for the lineages collected in Africa. This study provides evidence that the diurnal sleep and activity profiles for Ae. aegypti are consistent, but there are significant population differences for Ae. aegypti sleep and activity levels and interactions with host species may significantly impact mosquito activity.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Emily E Susanto
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lyn Wang
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jasmine Kennedy
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Arturo Ledezma
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Angeli'c Harris
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Evan S Smith
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques, Sine Saloum University El Hadji Ibrahima NIASS (SSUEIN) Kaffrine Campus, Kaffrine, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Noah H Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
- Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Varamballi P, Babu N N, Mudgal PP, Shetty U, Jayaram A, Karunakaran K, Arumugam S, Mukhopadhyay C. Spatial heterogeneity in the potential distribution of Aedes mosquitoes in India under current and future climatic scenarios. Acta Trop 2024; 260:107403. [PMID: 39278522 DOI: 10.1016/j.actatropica.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Aedes is the most globally distributed mosquito genus in the 21st century and transmits various arboviral diseases. The rapid expansion of Ae. Aegypti and Ae. albopictus breeding habitats is a significant threat to global public health, driven by temperature and precipitation changes. In this study, bioclimatic variables were employed to predict the spatial distribution of Ae. aegypti and Ae. albopictus in India. The reference coordinate points of (n = 583) Aedes occurrences at a scale of ∼1 km and nineteen bioclimatic factors were retrieved to train SDM (Species Distribution Models) for both species. Maximum entropy modelling was used to predict the species' fundamental climatic niche distributions. Future projections were made using global climate models for 2021-2040 and 2081-2100 separately. The models performed reasonably well (AUC > 0.77). Both species thrived in reduced diurnal temperature and higher annual mean temperatures, with suitability increasing alongside precipitation. Ae. aegypti's projected present and future distribution was broader than that of Ae. Albopictus. The expansion of Aedes suitability varied under different future climatic scenarios. Suitability for Ae. aegypti could expand from between 17.6 and 41.1 % in 2100 under SSP (shared socioeconomic pathways) scenarios 1 and 3, respectively, whereas for Ae. albopictus suitability increased from between 10.2 and 25 % under SSP scenarios 1 and 3 respectively. Preparing for future epidemics and outbreaks requires robust vector distribution models to identify high-risk areas, allocate resources for surveillance and control, and implement prevention strategies.
Collapse
Affiliation(s)
- Prasad Varamballi
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India
| | - Naren Babu N
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India.
| | - Piya Paul Mudgal
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India
| | - Ujwal Shetty
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India
| | - Anup Jayaram
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India
| | - Kavitha Karunakaran
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India
| | - Sathishkumar Arumugam
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
22
|
Nyathi S, Rezende IM, Walter KS, Thongsripong P, Mutuku F, Ndenga B, Mbakaya JO, Aswani P, Musunzaji PS, Chebii PK, Maina PW, Mutuku PS, Ng'ang'a CM, Malumbo SL, Jembe Z, Vu DM, Mordecai EA, Bennett S, Andrews JR, LaBeaud AD. Molecular epidemiology and evolutionary characteristics of dengue virus 2 in East Africa. Nat Commun 2024; 15:7832. [PMID: 39244569 PMCID: PMC11380673 DOI: 10.1038/s41467-024-51018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing burden of dengue, the regional emergence of the virus in Kenya has not been examined. This study investigates the genetic structure and regional spread of dengue virus-2 in Kenya. Viral RNA from acutely ill patients in Kenya was enriched and sequenced. Six new dengue-2 genomes were combined with 349 publicly available genomes and phylogenies used to infer gene flow between Kenya and other countries. Analyses indicate two dengue-2 Cosmopolitan genotype lineages circulating in Kenya, linked to recent outbreaks in coastal Kenya and Burkina Faso. Lineages circulating in Western, Southern, and Eastern Africa exhibiting similar evolutionary features are also reported. Phylogeography suggests importation of dengue-2 into Kenya from East and Southeast Asia and bidirectional geneflow. Additional lineages circulating in Africa are also imported from East and Southeast Asia. These findings underscore how intermittent importations from East and Southeast Asia drive dengue-2 circulation in Kenya and Africa more broadly.
Collapse
Affiliation(s)
- Sindiso Nyathi
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Izabela M Rezende
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katharine S Walter
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Panpim Thongsripong
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joel O Mbakaya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter Aswani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Philip K Chebii
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Paul S Mutuku
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Said L Malumbo
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - David M Vu
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Shannon Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
Athni TS, Childs ML, Glidden CK, Mordecai EA. Temperature dependence of mosquitoes: Comparing mechanistic and machine learning approaches. PLoS Negl Trop Dis 2024; 18:e0012488. [PMID: 39283940 PMCID: PMC11460681 DOI: 10.1371/journal.pntd.0012488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/08/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Mosquito vectors of pathogens (e.g., Aedes, Anopheles, and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.87). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming. Our results indicate that lab-based and field-based studies are highly complementary; performing the analyses in concert can help to more comprehensively understand vector response to climate change.
Collapse
Affiliation(s)
- Tejas S. Athni
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Marissa L. Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, United States of America
- Center for the Environment, Harvard University, Cambridge, Massachusetts, United States of America
| | - Caroline K. Glidden
- Department of Biology, Stanford University, Stanford, California, United States of America
- Stanford Institute for Human-centered Artificial Intelligence, Stanford University, Stanford, California, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
24
|
García-Suárez O, Tolsá-García MJ, Arana-Guardia R, Rodríguez-Valencia V, Talaga S, Pontifes PA, Machain-Williams C, Suzán G, Roiz D. Seasonal mosquito (Diptera: Culicidae) dynamics and the influence of environmental variables in a land use gradient from Yucatan, Mexico. Acta Trop 2024; 257:107275. [PMID: 38851624 DOI: 10.1016/j.actatropica.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Mosquito-borne diseases constitute a significant global impact on public and animal health. Climatic variables are recognized as major drivers in the mosquitoes' life history, principally rainfall and temperature, which directly influence mosquito abundance. Likewise, urbanization changes environmental conditions, and understanding how environmental variables and urbanization influence mosquito dynamics is crucial for the integrated management of mosquito-borne diseases, especially in the context of climate change. In this study, our aim was to observe the effect of temperature, rainfall, and the percentage of impervious surface on the abundance of mosquito species over a temporal scale of one complete year of fortnightly samplings, spanning from June 2021 to June 2022 in Yucatan, Mexico. We selected nine localities along an urbanization gradient (three natural, three rural, and three urban) from Mérida City to Reserva de la Biosfera Ría Celestún. Using BG-traps, mosquitoes were collected biweekly at each locality. Additionally, we estimated the percentage of impervious surface. Daily data of the maximum, mean and minimum temperatures, diurnal temperature range and rainfall were accumulated weekly. We calculated the accumulated quantities of temperatures and rainfall and lagged from one to four weeks before sampling for each locality. Generalized linear mixed models were then performed to study the influence of environmental variables and percentage of impervious surfaces on each of the 15 most abundant species. A total of 131,525 mosquitoes belonging to 11 genera and 49 species were sampled with BG-Sentinel traps baited with BG-lure and dry ice. The most frequently significative variable is the accumulated precipitation four weeks before the sampling. We observed a positive relationship between Cx. quinquefasciatus and Cx. thriambus with the diurnal temperature range. For Ae. aegypti, we observed a positive relationship with minimum temperature. Conversely, the percentage of impervious surface serves as a proxy of anthropogenic influence and helped us to distinguishing species exhibiting habitat preference for urban and rural environments, versus those preferring natural habitats. Our results characterize the species-specific effects of environmental variables (temperature, rainfall and impervious surface) on mosquito abundance.
Collapse
Affiliation(s)
- O García-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - M J Tolsá-García
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - R Arana-Guardia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - V Rodríguez-Valencia
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - S Talaga
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 23 Avenue Pasteur Guiana, Cayenne 97300, French
| | - P A Pontifes
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - C Machain-Williams
- Unidad Profesional Interdisciplinaria de Ingeniería Palenque (UPIIP), Instituto Politécnico Nacional, Carretera Federal 199, Nueva Esperanza, Palenque, Chiapas 29960, Mexico
| | - G Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - D Roiz
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
25
|
Ma Z, Liu Q, Wang M, Du YT, Xie JW, Yi ZG, Cai JH, Zhao TY, Zhang HD. Detection and population genetic analysis of Aedes albopictus (Diptera: Culicidae) based on knockdown resistance (kdr) mutations in the Yangtze River basin of China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105634. [PMID: 38950667 DOI: 10.1016/j.meegid.2024.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Aedes albopictus is an important vector of chikungunya, dengue, yellow fever and Zika viruses. Insecticides are often the most effective tools for rapidly decreasing the density of vector populations, especially during arbovirus disease outbreaks. However, the intense use of insecticides, particularly pyrethroids, has led to the selection of resistant mosquito populations worldwide. Mutations in the voltage-gated sodium channel (VGSC) gene are one of the main drivers of insecticide resistance in Ae. albopictus and are also known as "knockdown resistance" (kdr) mutations. Knowledge about genetic mutations associated with insecticide resistance is a prerequisite for developing techniques for rapid resistance diagnosis. Here, we report studies on the origin and dispersion of kdr haplotypes in samples of Ae. albopictus from the Yangtze River Basin, China; METHODS: Here, we report the results of PCR genotyping of kdr mutations in 541 Ae. albopictus specimens from 22 sampling sites in 7 provinces and municipalities in the Yangtze River Basin. Partial DNA sequences of domain II and domain III of the VGSC gene were amplified. These DNA fragments were subsequently sequenced to discover the possible genetic mutations mediating knockdown resistance (kdr) to pyrethroids. The frequency and distribution of kdr mutations were assessed in 22 Ae. albopictus populations. Phylogenetic relationships among the haplotypes were used to infer whether the kdr mutations had a single or multiple origins; RESULTS: The kdr mutation at the 1016 locus had 2 alleles with 3 genotypes: V/V (73.38%), V/G (26.43%) and G/G (0.18%). The 1016G homozygous mutation was found in only one case in the CQSL strain in Chongqing, and no 1016G mutations were detected in the SHJD (Shanghai), NJDX (Jiangsu) or HBQN (Hubei) strains. A total of 1532 locus had two alleles and three genotypes, I/I (88.35%), I/T (8.50%) and T/T (3.14%). A total of 1534 locus had four alleles and six genotypes: F/F (49.35%), F/S (19.96%), F/C (1.48%) and F/L (0.18%); S/S (23.66%); and C/C (5.36%). Haplotypes with the F1534C mutation were found only in Ae. albopictus populations in Chongqing and Hubei, and C1534C was found only in three geographic strains in Chongqing. Haplotypes with the 1534S mutation were found only in Ae. albopictus populations in Sichuan and Shanghai. F1534L was found only in HBYC. The Ae. albopictus populations in Shanghai were more genetically differentiated from those in the other regions (except Sichuan), and the genetic differentiation between the populations in Chongqing and those in the middle-lower reaches of the Yangtze River (Huber, Jiangsu, Jiangxi, and Anhui) was lower. Shanghai and Sichuan displayed low haplotype diversity and low nucleotide diversity. Phylogenetic analysis and sequence comparison revealed that the 1016 locus was divided into three branches, with the Clade A and Clade B branches bearing the 1016 mutation occurring mostly in Jiangsu and the Clade C branch bearing the 1016 mutation occurring mostly in Chongqing, suggesting at least two origins for 1016G. IIIS6 phylogenetic analysis and sequence comparison revealed that F1534S, F1534C and I1532T can be divided into two branches, indicating that IIIS6 has two origins; CONCLUSIONS: Combined with the distribution of kdr mutations and the analysis of population genetics, we infer that besides the local selection of pyrethroid resistance mutations, dispersal and colonization of Ae. albopictus from other regions may explain why kdr mutations are present in some Ae. albopictus populations in the Yangtze River Basin.
Collapse
Affiliation(s)
- Zu Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Qing Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Ming Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Yu-Tong Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jing-Wen Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Zi-Ge Yi
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Jing-Hong Cai
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| |
Collapse
|
26
|
Touray M, Ulug D, Gulsen SH, Cimen H, Hazir C, Bode HB, Hazir S. Natural products from Xenorhabdus and Photorhabdus show promise as biolarvicides against Aedes albopictus. PEST MANAGEMENT SCIENCE 2024; 80:4231-4242. [PMID: 38619291 DOI: 10.1002/ps.8127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND In the perpetual struggle to manage mosquito populations, there has been increasing demand for the development of biopesticides to supplant/complement current products. The insecticidal potential of Xenorhabdus and Photorhabdus has long been recognized and is of interest for the control of important mosquitoes like Aedes albopictus which vectors over 20 different arboviruses of global public health concern. RESULTS The larvicidal effects of cell-free supernatants, cell growth cultures and cell mass of an extensive list of Xenorhabdus and Photorhabdus spp. was investigated. They were quite effective against Ae. albopictus causing larval mortality ranging between 52-100%. Three Photorhabdus spp. and 13 Xenorhabdus spp. release larvicidal compounds in cell-free supernatants. Cell growth culture of all tested species exhibited larvicidal activity, except for Xenorhabdus sp. TS4. Twenty-one Xenorhabdus and Photorhabdus bacterial cells (pellet) exhibited oral toxicity (59-91%) against exposed larvae. The effect of bacterial supernatants on the mosquito eggs were also assessed. Bacterial supernatants inhibited the hatching of mosquito eggs; when unhatched eggs were transferred to clean water, they all hatched. Using the easyPACId approach, the larvicidal compounds in bacterial supernatant were identified as fabclavine from X. szentirmaii and xencoumacin from X. nematophila (causing 98 and 70% mortality, respectively, after 48 h). Xenorhabdus cabanillasii and X. hominickii fabclavines were as effective as commercial Bacillus thuringiensis subsp. israelensis and spinosad products within 5 days post-application (dpa). CONCLUSION Fabclavine and xenocoumacin can be developed into novel biolarvicides, can be used as a model to synthesize other compounds or/and can be combined with other commercial biolarvicides. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mustapha Touray
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
| | - Derya Ulug
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
| | - Sebnem Hazal Gulsen
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
- Department of Plant and Animal Production, Kocarli Vocational School, Aydin Adnan Menderes University, Aydın, Turkey
| | - Harun Cimen
- Recombinant DNA and Recombinant Protein Center, Aydın Adnan Menderes University, Aydın, Turkey
| | - Canan Hazir
- Aydin Health Services Vocational School, Adnan Menderes University, Aydın, Turkey
| | - Helge B Bode
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, Marburg, Germany
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt, Germany
- Center for Synthetic Microbiology, Phillips University Marburg, Marburg, Germany
- Department of Chemistry, Phillips University Marburg, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Selcuk Hazir
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydın, Turkey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
27
|
Dutra HLC, Marshall DJ, Comerford B, McNulty BP, Diaz AM, Jones MJ, Mejia AJ, Bjornstad ON, McGraw EA. Larval crowding enhances dengue virus loads in Aedes aegypti, a relationship that might increase transmission in urban environments. PLoS Negl Trop Dis 2024; 18:e0012482. [PMID: 39255310 DOI: 10.1371/journal.pntd.0012482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/20/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Climate change and urbanization will alter the global distribution of disease vectors, changing the disease burden in yet unpredictable ways. Aedes aegypti is a mosquito responsible for transmitting dengue, Zika, chikungunya, and yellow fever viruses that breeds in containers associated with urban environments. We sought to understand how ambient temperature and larval densities in the immature aquatic phases determine adult life history traits and dengue virus loads post-infection. We predicted that larval crowding and high temperatures would both lead to smaller mosquitoes that might struggle to invest in an immune response and, hence, would exhibit high viral loads. METHODS We first examined larval densities from urban and rural areas via a meta-analysis. We then used these data to inform a laboratory-based 2x2 design examining the interacting effects of temperature (21 vs. 26°C) and density (0.2 vs. 0.4 larvae/mL) on adult life history and dengue virus loads. RESULTS We found that urban areas had an ~8-fold increase in larval densities compared to more rural sites. In the lab, we found that crowding had more impact on mosquito traits than temperature. Crowding led to slower development, smaller mosquitoes, less survival, lower fecundity, and higher viral loads, as predicted. The higher temperature led to faster development, reduced fecundity, and lower viral loads. The virus-reducing effect of higher temperature rearing was, however, overwhelmed by the impact of larval crowding when both factors were present. CONCLUSIONS These data reveal complex interactions between the environmental effects experienced by immature mosquitoes and adult traits. They especially highlight the importance of crowding with respect to adult viral loads. Together, these data suggest that urban environments might enhance dengue virus loads and, therefore, possibly transmission, a concerning result given the increasing rates of urbanization globally.
Collapse
Affiliation(s)
- Heverton L C Dutra
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dustin J Marshall
- The School of Life Sciences, Monash University, Melbourne, Australia
| | - Belinda Comerford
- The School of Life Sciences, Monash University, Melbourne, Australia
| | - Brianna P McNulty
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anastacia M Diaz
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J Jones
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Austin J Mejia
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ottar N Bjornstad
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Elizabeth A McGraw
- The Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Entomology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
28
|
Leelagud P, Wang HL, Lu KH, Dai SM. Pseudomonas mosselii: a potential alternative for managing pyrethroid-resistant Aedes aegypti. PEST MANAGEMENT SCIENCE 2024; 80:4344-4351. [PMID: 38634536 DOI: 10.1002/ps.8139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Aedes aegypti is a widespread mosquito in tropical and subtropical regions that causes significant mortality and morbidity in humans by transmitting diseases, such as dengue fever and Zika virus disease. Synthetic insecticides, such as pyrethroids, have been used to control Ae. aegypti, but these insecticides can also affect nontarget organisms and contaminate soil and water. This study aimed to investigate the mosquitocidal activity of Pseudomonas mosselii isolated from pond sludge against larvae of Ae. aegypti. RESULTS Based on the initial results, similar time-course profiles were obtained for the mosquitocidal activity of the bacterial culture and its supernatant, and the pellet resuspended in Luria-Bertani (LB) medium also showed delayed toxicity. These results imply that the toxic component can be released into the medium from live bacteria. Further research indicated that the toxic component appeared in the supernatant approximately 4 h after a 3-mL stock was cultured in 200 mL of LB medium. The stabilities of the P. mosselii culture and supernatant stored at different temperatures were also evaluated, and the best culture stability was obtained at 28 °C and supernatant stability at 4 °C. The bacterial culture and supernatant were toxic to larvae and pupae of not only susceptible Ae. aegypti but also pyrethroid-resistant strains. CONCLUSION This study highlights the value of the mosquitocidal activity of P. mosselii, which has potential as an alternative insecticide to control pyrethroid-resistant Ae. aegypti in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Piyatida Leelagud
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Liang Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Kuang-Hui Lu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Mei Dai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
29
|
Padonou GG, Konkon AK, Zoungbédji DM, Salako AS, Sovi A, Oussou O, Sidick A, Ahouandjinou J, Towakinou L, Ossé R, Baba-Moussa L, Akogbéto MC. Detection of DENV-1, DENV-3, and DENV-4 Serotypes in Aedes aegypti and Aedes albopictus, and Epidemic Risk in the Departments of Oueme and Plateau, South-Eastern Benin. Vector Borne Zoonotic Dis 2024; 24:614-624. [PMID: 38686519 DOI: 10.1089/vbz.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background: This study conducted in the departments of Oueme and Plateau aims to assess the presence of the dengue virus and its different serotypes in Aedes aegypti and Aedes albopictus, as well as the epidemic risk incurred by the populations. Methods: Collections of adult mosquitoes using human landing catches (HLC) were carried out in six communes, three (Porto-Novo, Adjarra, and Avrankou) in the Oueme department and the rest (Ifangni, Kétou, and Pobè) in the Plateau department. Pools of ten Aedes mosquitoes were formed, and stored at -80°C in RNA later. RT-PCR was used to detect dengue virus, and conventional PCR for the different serotypes. Inspection of water containers and collection of Aedes larvae was performed inside and around each house to calculate the stegomyan indices. Results: In the six communes, the dengue virus was present both in Ae. aegypti and Ae. albopictus. Combined data of the two Aedes species at the communes level revealed infection rates ranging from 80.00% (95% CI: 61.43-92.29) to 96.67% (95% CI: 82.78-99.92). In all the communes, the values of stegomyan indices reached the WHO threshold, which indicates the existence of the risk of an arbovirus epidemic. In addition, the infection rates were similar for Ae. aegypti [88.19% (95% CI: 81.27-93.24)] and Ae. albopictus [86.79% (95% CI: 74.66-94.52)]. The three virus serotypes detected in the pools of Aedes were DENV-1, DENV-3, and DENV-4, with a high prevalence for the first two. Conclusion: This study revealed that three serotypes (DENV-1, DENV-3, and DENV-4) of dengue virus circulate in Ae. aegypti and Ae. albopictus in the departments of Oueme and Plateau. Moreover, the risk of transmission of arboviruses was globally high and variable from commune to commune. This information is essential for informed decision-making in the preventive control of the disease.
Collapse
Affiliation(s)
- Germain Gil Padonou
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Alphonse Keller Konkon
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - David Mahouton Zoungbédji
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Albert Sourou Salako
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Arthur Sovi
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculty of Agronomy, Université de Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, Disease Control Department, The London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Olivier Oussou
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Aboubakar Sidick
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Juvénal Ahouandjinou
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Linda Towakinou
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Razaki Ossé
- Ministère de la Santé, Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | | |
Collapse
|
30
|
Ullah H, Ullah S, Li J, Yang F, Tan L. An In Silico Design of a Vaccine against All Serotypes of the Dengue Virus Based on Virtual Screening of B-Cell and T-Cell Epitopes. BIOLOGY 2024; 13:681. [PMID: 39336108 PMCID: PMC11428656 DOI: 10.3390/biology13090681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024]
Abstract
Dengue virus poses a significant global health challenge, particularly in tropical and subtropical regions. Despite the urgent demand for vaccines in the control of the disease, the two approved vaccines, Dengvaxia and TV003/TV005, there are current questions regarding their effectiveness due to an increased risk of antibody-dependent enhancement (ADE) and reduced protection. These challenges have underscored the need for further development of improved vaccines for Dengue Virus. This study presents a new design using an in silico approach to generate a more effective dengue vaccine. Initially, our design process began with the collection of Dengue polyprotein sequences from 10 representative countries worldwide. And then conserved fragments of viral proteins were retrieved as the bases for epitope screening. The selection of epitopes was then carried out with criteria such as antigenicity, immunogenicity, and binding affinity with MHC molecules, while the exclusion criteria were according to their allergenicity, toxicity, and potential for antibody-dependent enhancement. We then constructed a core antigen with the selected epitopes and linked the outcomes with distinct adjuvant proteins, resulting in three candidate vaccines: PSDV-1, PSDV-2, and PSDV-3. Among these, PSDV-2 was selected for further validation due to its superior physicochemical and structural properties. Extensive simulations demonstrated that PSDV-2 exhibited strong binding to pattern recognition receptors, high stability, and robust immune induction, confirming its potential as a high-quality vaccine candidate. For its recombinant expression, a plasmid was subsequently designed. Our new vaccine design offers a promising additional option for Dengue virus protection. Further experimental validations will be conducted to confirm its protective efficacy and safety.
Collapse
Affiliation(s)
- Hikmat Ullah
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaukat Ullah
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinze Li
- School of Basic Medicine and Life Sciences, Hainan Medical University, Longhua, Haikou 571199, China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Protein Cell-Based Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Lei Tan
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
32
|
Vajdi A, Cohnstaedt LW, Scoglio CM. Assessing dengue risk globally using non-Markovian models. J Theor Biol 2024; 591:111865. [PMID: 38823767 DOI: 10.1016/j.jtbi.2024.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we contribute to existing research by developing a mechanistic model for the mosquito life cycle that accurately captures its non-Markovian nature. Beginning with integral equations to track the mosquito population across different life cycle stages, we demonstrate how to derive the corresponding differential equations using phase-type distributions. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area.
Collapse
Affiliation(s)
- Aram Vajdi
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, United States of America
| | - Lee W Cohnstaedt
- United States Department of Agriculture, Agricultural Research Service, Foreign Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS, United States of America.
| | - Caterina M Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
33
|
Wouters RM, Beukema W, Schrama M, Biesmeijer K, Braks MAH, Helleman P, Schaffner F, van Slobbe J, Stroo A, van der Beek JG. Local environmental factors drive distributions of ecologically-contrasting mosquito species (Diptera: Culicidae). Sci Rep 2024; 14:19315. [PMID: 39164289 PMCID: PMC11336062 DOI: 10.1038/s41598-024-64948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 08/22/2024] Open
Abstract
Mosquitoes are important vectors of disease pathogens and multiple species are undergoing geographical shifts due to global changes. As such, there is a growing need for accurate distribution predictions. Ecological niche modelling (ENM) is an effective tool to assess mosquito distribution patterns and link these to underlying environmental preferences. Typically, macroclimatic variables are used as primary predictors of mosquito distributions. However, they likely undervalue local conditions and intraspecific variation in environmental preferences. This is problematic, as mosquito control takes place at the local scale. Utilising high-resolution (10 × 10 m) Maxent ENMs on the island of Bonaire as model system, we explore the influence of local environmental variables on mosquito distributions. Our results show a distinct set of environmental variables shape distribution patterns across ecologically-distinct species, with urban variables strongly associated with introduced species like Aedes aegypti and Culex quinquefasciatus, while native species show habitat preferences for either mangroves, forests, or ephemeral water habitats. These findings underscore the importance of distinct local environmental factors in shaping distributions of different mosquitoes, even on a small island. As such, these findings warrant further studies aimed at predicting high-resolution mosquito distributions, opening avenues for preventative management of vector-borne disease risks amidst ongoing global change and ecosystem degradation.
Collapse
Grants
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- Pandemics and Disaster Preparedness Center
Collapse
Affiliation(s)
- Roel M Wouters
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands.
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands.
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czechia.
| | - Wouter Beukema
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- RAVON, Reptile, Amphibian and Fish Conservation Netherlands, 6501 BK, Nijmegen, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Koos Biesmeijer
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Marieta A H Braks
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA, Bilthoven, The Netherlands
| | - Pepijn Helleman
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | | | - Joey van Slobbe
- Bonaire Public Health Department, Public Body Bonaire, 4PXG+GH4, Kralendijk, Dutch Caribbean, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), Netherlands Food and Consumer Product Safety Authority (NVWA), 6706 EA, Wageningen, The Netherlands
| | - Jordy G van der Beek
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Hou W, Zhou Y, Luo W, Wang L, Kwan MP, Cook AR. Mapping environmental suitability changes for arbovirus mosquitoes in Southeast Asia: 1960-2020. iScience 2024; 27:110498. [PMID: 39165847 PMCID: PMC11334785 DOI: 10.1016/j.isci.2024.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
Spatial epidemiology recognizes the impact of environmental factors on human infectious diseases through disease vectors. The expansion of Aedes aegypti and Aedes albopictus raises concerns about health risks due to their changing distribution. However, current mosquito mapping methods have low spatial resolution and limited focus on long-term trends and factors. This study develops a high-resolution framework (500 m) to map mosquito distribution in Southeast Asia from 1960 to 2020. It includes a species distribution model, a spatial autocorrelation model, and a geographical detector model. The study produces Southeast Asia's first 500 m resolution map of mosquito suitability, revealing significant increases in mosquito suitability in most cities over the past 60 years. The analysis indicates a shift in high-suitability areas from coastal to inland regions, with nighttime land surface temperature playing a key role. These findings are crucial for regional risk assessments and mitigation strategies related to vector-borne diseases.
Collapse
Affiliation(s)
- Weitao Hou
- Department of Biological Sciences, National University of Singapore, Singapore
- School of Design and the Built Environment, Curtin University, Perth, Australia
- School of Earth and Planetary Sciences, Discipline of Spatial Sciences, Curtin University, Perth, Australia
| | - Yuxuan Zhou
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China
- GeoSpatialX Lab, Department of Geography, National University of Singapore, Singapore, Singapore
| | - Wei Luo
- GeoSpatialX Lab, Department of Geography, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Lin Wang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Mei-Po Kwan
- Department of Geography and Resource Management and Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex R. Cook
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Soto-López JD, Barrios-Izás MA, Vieira Lista MC, Muro A. Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production. Life (Basel) 2024; 14:1013. [PMID: 39202755 PMCID: PMC11355553 DOI: 10.3390/life14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Aedes mosquitoes play a pivotal role as vectors of several arboviral diseases, presenting significant public health challenges worldwide. Their invasive success in tropical regions has raised substantial medical concerns. In Guatemala, Aedes mosquitoes are widely distributed and are the primary vectors of the dengue virus. Efforts to control and monitor Aedes populations have evolved over time, incorporating strategies such as spatial repellents, larvicides, genetic modifications, and targeted interventions. Previous research has shown the heterogeneous spatial-temporal distribution of these mosquitoes within each season, influenced by temperature variations and favorable environmental conditions for breeding. This study analyzed hot-spot patterns of spatiotemporal egg density in Santa Elena de la Cruz, Petén, Guatemala, from March to September 2022. The aim was to determine whether these patterns were influenced by non-residential larval habitats with plant cover that are not treated by healthcare entities, as well as the proximity between such habitats. Our findings include the collection and registration of over 16,000 Aedes eggs during the study period. Local analyses revealed hot-spot patterns in egg densities associated with non-residential larval habitats and their proximity. These insights highlight critical focal points where targeted interventions could be implemented more effectively, resulting in cost-efficient mosquito vector control.
Collapse
Affiliation(s)
- Julio D. Soto-López
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (J.D.S.-L.); (M.C.V.L.)
- Research Institute, University Center of Zacapa, University of San Carlos of Guatemala, Zacapa 01019, Guatemala;
| | - Manuel A. Barrios-Izás
- Research Institute, University Center of Zacapa, University of San Carlos of Guatemala, Zacapa 01019, Guatemala;
| | - María Carmen Vieira Lista
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (J.D.S.-L.); (M.C.V.L.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (J.D.S.-L.); (M.C.V.L.)
| |
Collapse
|
36
|
Wei LLL, Tom R, Kim YC. Mayaro Virus: An Emerging Alphavirus in the Americas. Viruses 2024; 16:1297. [PMID: 39205271 PMCID: PMC11359717 DOI: 10.3390/v16081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mayaro virus (MAYV) is an arbovirus first isolated in Trinidad and Tobago in 1954. MAYV is the causative agent of Mayaro fever, which is characterised by high fever, maculopapular rash, myalgia and arthralgia. The potential for chronic arthralgia is of particular clinical concern. Currently, MAYV outbreaks are restricted to South and Central America, with some cases reported in Africa as well as several imported cases in Europe. However, in recent years, MAYV has become a growing global concern due to its potential to emerge into urban transmission cycles. Challenges faced with diagnostics, as well as a lack of specific antivirals or licensed vaccines further exacerbate the potential global health threat posed by MAYV. In this review, we discuss this emerging arboviral threat with a particular focus on the current treatment and vaccine development efforts. Overall, MAYV remains a neglected arbovirus due to its limited area of transmission. However, with the potential of its urbanisation and expanding circulation, the threat MAYV poses to global health cannot be overlooked. Further research into the improvement of current diagnostics, as well as the development of efficacious antivirals and vaccines will be crucial to help prevent and manage potential MAYV outbreaks.
Collapse
Affiliation(s)
- Lily Li Lin Wei
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Rufaro Tom
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK; (L.L.L.W.); (R.T.)
| | - Young Chan Kim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
- Centre for Human Genetics, Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
37
|
Jansen van Vuren P, Parry RH, Pawęska JT. Detection of Dengue Virus 1 and Mammalian Orthoreovirus 3, with Novel Reassortments, in a South African Family Returning from Thailand, 2017. Viruses 2024; 16:1274. [PMID: 39205247 PMCID: PMC11358982 DOI: 10.3390/v16081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all family members suggested recent exposure to arthropod-borne viruses. Dengue virus 1 (Genus Orthoflavivirus) was isolated (isolate no. SA397) from the serum of the 45-year-old female via intracerebral injection in neonatal mice and subsequent passage in VeroE6 cells. Phylogenetic analysis of this strain indicated close genetic identity with cosmopolitan genotype 1 DENV1 strains from Southeast Asia, assigned to major lineage K, minor lineage 1 (DENV1I_K.1), such as GZ8H (99.92%) collected in November 2018 from China, and DV1I-TM19-74 isolate (99.72%) identified in Bangkok, Thailand, in 2019. Serum samples from the 46-year-old male yielded a virus isolate that could not be confirmed as DENV1, prompting unbiased metagenomic sequencing for virus identification and characterization. Illumina sequencing identified multiple segments of a mammalian orthoreovirus (MRV), designated as Human/SA395/SA/2017. Genomic and phylogenetic analyses classified Human/SA395/SA/2017 as MRV-3 and assigned a tentative genotype, MRV-3d, based on the S1 segment. Genomic analyses suggested that Human/SA395/SA/2017 may have originated from reassortments of segments among swine, bat, and human MRVs. The closest identity of the viral attachment protein σ1 (S1) was related to a human isolate identified from Tahiti, French Polynesia, in 1960. This indicates ongoing circulation and co-circulation of Southeast Asian and Polynesian strains, but detailed knowledge is hampered by the limited availability of genomic surveillance. This case represents the rare concurrent detection of two distinct viruses with different transmission routes in the same family with similar clinical presentations. It highlights the complexity of diagnosing diseases with similar sequelae in travelers returning from tropical areas.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Australian Centre for Disease Preparedness, CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa;
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
38
|
Leles LFDO, Alvarez MVN, Cortes JJC, Alonso DP, Ribolla PEM, Luz SLB. Impact of Long-Term Pyriproxyfen Exposure on the Genetic Structure and Diversity of Aedes aegypti and Aedes albopictus in Manaus, Amazonas, Brazil. Genes (Basel) 2024; 15:1046. [PMID: 39202406 PMCID: PMC11353645 DOI: 10.3390/genes15081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aedes aegypti and Aedes albopictus are responsible for transmitting major human arboviruses such as Dengue, Zika, and Chikungunya, posing a global threat to public health. The lack of etiological treatments and efficient vaccines makes vector control strategies essential for reducing vector population density and interrupting the pathogen transmission cycle. This study evaluated the impact of long-term pyriproxyfen exposure on the genetic structure and diversity of Ae. aegypti and Ae. albopictus mosquito populations. The study was conducted in Manaus, Amazonas, Brazil, where pyriproxyfen dissemination stations have been monitored since 2014 up to the present day. Double digest restriction-site associated DNA sequencing was performed, revealing that despite significant local population reductions by dissemination stations with pyriproxyfen in various locations in Brazil, focal intervention has no significant impact on the population stratification of these vectors in urban scenarios. The genetic structuring level of Ae. aegypti suggests it is more stratified and directly affected by pyriproxyfen intervention, while for Ae. albopictus exhibits a more homogeneous and less structured population. The results suggest that although slight differences are observed among mosquito subpopulations, intervention focused on neighborhoods in a capital city is not efficient in terms of genetic structuring, indicating that larger-scale pyriproxyfen interventions should be considered for more effective urban mosquito control.
Collapse
Affiliation(s)
- Lorena Ferreira de Oliveira Leles
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus 69027-070, Brazil; (L.F.d.O.L.); (J.J.C.C.); (S.L.B.L.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz (IOC), Rio de Janeiro 21040-900, Brazil
| | - Marcus Vinícius Niz Alvarez
- Laboratório de Pesquisa em Análises Genéticas, Instituto de Biotecnologia e Biociências, Universidade do Estado de São Paulo (UNESP), Botucatu 18607-440, Brazil; (M.V.N.A.); (D.P.A.)
| | - Jose Joaquin Carvajal Cortes
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus 69027-070, Brazil; (L.F.d.O.L.); (J.J.C.C.); (S.L.B.L.)
| | - Diego Peres Alonso
- Laboratório de Pesquisa em Análises Genéticas, Instituto de Biotecnologia e Biociências, Universidade do Estado de São Paulo (UNESP), Botucatu 18607-440, Brazil; (M.V.N.A.); (D.P.A.)
| | - Paulo Eduardo Martins Ribolla
- Laboratório de Pesquisa em Análises Genéticas, Instituto de Biotecnologia e Biociências, Universidade do Estado de São Paulo (UNESP), Botucatu 18607-440, Brazil; (M.V.N.A.); (D.P.A.)
| | - Sérgio Luiz Bessa Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus 69027-070, Brazil; (L.F.d.O.L.); (J.J.C.C.); (S.L.B.L.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz (IOC), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
39
|
Petersen V, Santana M, Karina-Costa M, Nachbar JJ, Martin-Martin I, Adelman ZN, Burini BC. Aedes ( Ochlerotatus) scapularis, Aedes japonicus japonicus, and Aedes ( Fredwardsius) vittatus (Diptera: Culicidae): Three Neglected Mosquitoes with Potential Global Health Risks. INSECTS 2024; 15:600. [PMID: 39194805 DOI: 10.3390/insects15080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
More than 3550 species of mosquitoes are known worldwide, and only a fraction is involved in the transmission of arboviruses. Mosquitoes in sylvatic and semi-sylvatic habitats may rapidly adapt to urban parks and metropolitan environments, increasing human contact. Many of these mosquitoes have been found naturally infected with arboviruses from the Alphaviridae, Flaviviridae, and Bunyaviridae families, with many being the cause of medically important diseases. However, there is a gap in knowledge about the vector status of newly invasive species and their potential threat to human and domestic animal populations. Due to their rapid distribution, adaptation to urban environments, and anthropophilic habits, some neglected mosquito species may deserve more attention regarding their role as secondary vectors. Taking these factors into account, we focus here on Aedes (Ochlerotatus) scapularis (Rondani), Aedes japonicus japonicus (Theobald), and Aedes (Fredwardsius) vittatus (Bigot) as species that have the potential to become important disease vectors. We further discuss the importance of these neglected mosquitoes and how factors such as urbanization, climate change, and globalization profoundly alter the dynamics of disease transmission and may increase the participation of neglected species in propagating diseases.
Collapse
Affiliation(s)
- Vivian Petersen
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Micael Santana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Maria Karina-Costa
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Julia Jardim Nachbar
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Ines Martin-Martin
- National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Bianca C Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| |
Collapse
|
40
|
Sun Y, Li T, Zhou G, Zhou Y, Wu Y, Xu J, Chen J, Zhong S, Zhong D, Liu R, Lu G, Li Y. Relationship between deltamethrin resistance and gut symbiotic bacteria of Aedes albopictus by 16S rDNA sequencing. Parasit Vectors 2024; 17:330. [PMID: 39103931 DOI: 10.1186/s13071-024-06421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes' metabolic resistance against insecticides. METHODS We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies.
Collapse
Affiliation(s)
- Yingbo Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yunfei Zhou
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Yuhong Wu
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Jiabao Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiarong Chen
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Saifeng Zhong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92617, USA
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China.
| | - Yiji Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Tropical Diseases Research Center, Department of Pathogen Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China.
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
41
|
de Souza WM, Weaver SC. Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol 2024; 22:476-491. [PMID: 38486116 DOI: 10.1038/s41579-024-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Vector-borne diseases are transmitted by haematophagous arthropods (for example, mosquitoes, ticks and sandflies) to humans and wild and domestic animals, with the largest burden on global public health disproportionately affecting people in tropical and subtropical areas. Because vectors are ectothermic, climate and weather alterations (for example, temperature, rainfall and humidity) can affect their reproduction, survival, geographic distribution and, consequently, ability to transmit pathogens. However, the effects of climate change on vector-borne diseases can be multifaceted and complex, sometimes with ambiguous consequences. In this Review, we discuss the potential effects of climate change, weather and other anthropogenic factors, including land use, human mobility and behaviour, as possible contributors to the redistribution of vectors and spread of vector-borne diseases worldwide.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Global Virus Network, Baltimore, MD, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Global Virus Network, Baltimore, MD, USA.
| |
Collapse
|
42
|
Flandes X, Hansen CA, Palani S, Abbas K, Bennett C, Caro WP, Hutubessy R, Khazhidinov K, Lambach P, Maure C, Marshall C, Rojas DP, Rosewell A, Sahastrabuddhe S, Tufet M, Wilder-Smith A, Beasley DWC, Bourne N, Barrett ADT. Vaccine value profile for Chikungunya. Vaccine 2024; 42:S9-S24. [PMID: 38407992 DOI: 10.1016/j.vaccine.2023.07.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 02/28/2024]
Abstract
Chikungunya virus (CHIKV) a mosquito-borne alphavirus is the causative agent of Chikungunya (CHIK), a disease with low mortality but high acute and chronic morbidity resulting in a high overall burden of disease. After the acute disease phase, chronic disease including persistent arthralgia is very common, and can cause fatigue and pain that is severe enough to limit normal activities. On average, around 40% of people infected with CHIKV will develop chronic arthritis, which may last for months or years. Recommendations for protection from CHIKV focus on infection control through preventing mosquito proliferation. There is currently no licensed antiviral drug or vaccine against CHIKV. Therefore, one of the most important public health impacts of vaccination would be to decrease burden of disease and economic losses in areas impacted by the virus, and prevent or reduce chronic morbidity associated with CHIK. This benefit would particularly be seen in Low and Middle Income Countries (LMIC) and socio-economically deprived areas, as they are more likely to have more infections and more severe outcomes. This 'Vaccine Value Profile' (VVP) for CHIK is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic and societal value of vaccines in the development pipeline and vaccine-like products.This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations. All contributors have extensive expertise on various elements of the CHIK VVP and collectively aimed to identify current research and knowledge gaps.The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Ximena Flandes
- Department of Preventative Medicine and Population Health and University of Texas Medical Branch, Galveston, TX, United States
| | - Clairissa A Hansen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunil Palani
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kaja Abbas
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | - Clara Maure
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | | | | | - Marta Tufet
- Gavi the Vaccine Alliance, Geneva, Switzerland
| | | | - David W C Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
43
|
Schmidt TL, Endersby-Harshman NM, van Rooyen ARJ, Katusele M, Vinit R, Robinson LJ, Laman M, Karl S, Hoffmann AA. Global, asynchronous partial sweeps at multiple insecticide resistance genes in Aedes mosquitoes. Nat Commun 2024; 15:6251. [PMID: 39048545 PMCID: PMC11269687 DOI: 10.1038/s41467-024-49792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Aedes aegypti (yellow fever mosquito) and Ae. albopictus (Asian tiger mosquito) are globally invasive pests that confer the world's dengue burden. Insecticide-based management has led to the evolution of insecticide resistance in both species, though the genetic architecture and geographical spread of resistance remains incompletely understood. This study investigates partial selective sweeps at resistance genes on two chromosomes and characterises their spread across populations. Sweeps at the voltage-sensitive sodium channel (VSSC) gene on chromosome 3 correspond to one resistance-associated nucleotide substitution in Ae. albopictus and three in Ae. aegypti, including two substitutions at the same nucleotide position (F1534C) that have evolved and spread independently. In Ae. aegypti, we also identify partial sweeps at a second locus on chromosome 2. This locus contains 15 glutathione S-transferase (GST) epsilon class genes with significant copy number variation among populations and where three distinct genetic backgrounds have spread across the Indo-Pacific region, the Americas, and Australia. Local geographical patterns and linkage networks indicate VSSC and GST backgrounds probably spread at different times and interact locally with different genes to produce resistance phenotypes. These findings highlight the rapid global spread of resistance and are evidence for the critical importance of GST genes in resistance evolution.
Collapse
Affiliation(s)
- Thomas L Schmidt
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia.
| | | | | | - Michelle Katusele
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Rebecca Vinit
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Leanne J Robinson
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Moses Laman
- PNG Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Stephan Karl
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
- Burnet Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
44
|
Setlur AS, Niranjan V, Karunakaran C, Sambanni VS, Sharma D, Pai K. Unified Aedes aegypti Protein Resource Database (UAAPRD): An Integrated High-Throughput In Silico Platform for Comprehensive Protein Structure Modeling and Functional Target Analysis to Enhance Vector Control Strategies. Mol Biotechnol 2024:10.1007/s12033-024-01241-3. [PMID: 39044065 DOI: 10.1007/s12033-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
A comprehensive examination of Aedes aegypti's proteome to detect key proteins that can be targeted with small molecules can disrupt blood feeding and disease transmission. However, research currently only focuses on finding repellent-like compounds, limiting studies on identifying unexplored proteins in its proteome. High-throughput analysis generates vast amounts of data, raising concerns about accessibility and usability. Establishing a dedicated database is a solution, centralizing information on identified proteins, functions, and modeled structures for easy access and research. This study focuses on scrutinizing key proteins in A. aegypti, modeling their structures using RaptorX standalone tool, identification of druggable binding sites using BiteNet, validating the models via Ramachandran plot studies and refining them via 50-ns molecular dynamic simulations using Schrodinger Maestro. By analyzing ~ 18 k proteins in the proteome of A. aegypti in our previous studies, all proteins involved in the light and dark circadian rhythm of the mosquito, inclusive of proteins in blood feeding, metabolism, etc. were chosen for the current study. The outcome is UAAPRD, a unique repository housing information on hundreds of previously unmodeled and un-simulated mosquito proteins. This robust MYSQL database ( https://uaaprd.onrender.com/user ) houses data on 309 modeled & simulated proteins of A. aegypti. It allows users to obtain protein data, view evolutionary analysis data of the protein categories, visualize proteins of interest, and send request to screen against the pharmacophore models present in UAAPRD against ligand of interest. This study offers crucial insights for developing targeted studies, which will ultimately contribute to more effective vector control strategies.
Collapse
Affiliation(s)
- Anagha S Setlur
- Department of Biotechnology, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India.
| | - Chandrashekar Karunakaran
- Department of Biotechnology, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Varun S Sambanni
- Department of Computer Science and Engineering, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Dileep Sharma
- Department of Information Science and Engineering, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| | - Karthik Pai
- Department of Information Science and Engineering, RV College of Engineering affiliated to Visvesvaraya Technological University (VTU), Belagavi, 590018, India
| |
Collapse
|
45
|
Doets K, Pijlman GP. Subgenomic flavivirus RNA as key target for live-attenuated vaccine development. J Virol 2024; 98:e0010023. [PMID: 38808973 PMCID: PMC11265276 DOI: 10.1128/jvi.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.
Collapse
Affiliation(s)
- Kristel Doets
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| |
Collapse
|
46
|
Kanga S, Roy P, Singh SK, Meraj G, Kumar P, Debnath J. Delineating dengue risk zones in Jaipur: An interdisciplinary approach to inform public health strategies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 38987233 DOI: 10.1111/risa.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Dengue fever (DF) is a pervasive public health concern in tropical climates, with densely populated regions, such as India, disproportionately affected. Addressing this issue requires a multifaceted understanding of the environmental and sociocultural factors that contribute to the risk of dengue infection. This study aimed to identify high-risk zones for DF in Jaipur, Rajasthan, India, by integrating physical, demographic, and epidemiological data in a comprehensive risk analysis framework. We investigated environmental variables, such as soil type and plant cover, to characterize the potential habitats of Aedes aegypti, the primary dengue vector. Concurrently, demographic metrics were evaluated to assess the population's susceptibility to dengue outbreaks. High-risk areas were systematically identified through a comparative analysis that integrated population density and incidence rates per ward. The results revealed a significant correlation between high population density and an increased risk of dengue, predominantly facilitated by vertical transmission. Spatially, these high-risk zones are concentrated in the northern and southern sectors of Jaipur, with the northern and southwestern wards exhibiting the most acute risk profiles. This study underscores the importance of targeted public health interventions and vaccination campaigns in vulnerable areas. It further lays the groundwork for future research to evaluate the effectiveness of such interventions, thereby contributing to the development of robust evidence-based strategies for dengue risk mitigation.
Collapse
Affiliation(s)
- Shruti Kanga
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Priyanka Roy
- Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Suraj Kumar Singh
- Centre for Sustainable Development, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Gowhar Meraj
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Pankaj Kumar
- Institute for Global Environmental Strategies, Hayama, Japan
| | - Jatan Debnath
- Department of Geography, Gauhati University, Jalukbari, Assam, India
| |
Collapse
|
47
|
Bursali F, Ulug D, Touray M. Clash of mosquito wings: Larval interspecific competition among the mosquitoes, Culex pipiens, Aedes albopictus and Aedes aegypti reveals complex population dynamics in shared habitats. MEDICAL AND VETERINARY ENTOMOLOGY 2024. [PMID: 38980066 DOI: 10.1111/mve.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Globalisation, climate change and international trade are the factors contributing to the spread of Aedes albopictus (Diptera: Culicidae) and Ae. aegypti into new areas. In newly invaded habitats, these non-native species can serve as arbovirus disease vectors or increase the risk of disease spill over. These mosquitoes continue to emerge in new areas where they have or will have overlapping ranges with other resident mosquito species. The study investigates how invasive Aedes mosquitoes compete with the native Culex pipiens in Türkiye, which might affect the overall mosquito population dynamics and disease transmission risks. Both Aedes species exhibited contrasting responses to interspecific competition with Cx. pipiens. While Ae. albopictus suffers reduced emergence primarily in larger containers with abundant food, Ae. aegypti surprisingly thrives in mixed cultures under all food conditions. Adult Cx. pipiens emergence drops by half against Ae. albopictus and under specific conditions with Ae. aegypti. Competition influences mosquito size differently across species and life stages. Culex pipiens females grow larger when competing with Ae. aegypti, potentially indicating resource advantage or compensatory strategies. However, Ae. albopictus size shows more nuanced responses, suggesting complex interactions at play. Understanding how invasive and native mosquitoes interact with each other can provide insights into how they adapt and coexist in shared habitats. This knowledge can inform effective control strategies. The study highlights the differential responses of invasive Aedes species and the potential for managing populations based on their competitive interactions with the native Cx. pipiens. It can contribute to improved monitoring and prediction systems for the spread of invasive mosquitoes and the associated disease risks.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Derya Ulug
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Mustapha Touray
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
48
|
Veiga J, Garrido M, Garrigós M, Chagas CRF, Martínez-de la Puente J. A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites. Animals (Basel) 2024; 14:2019. [PMID: 39061481 PMCID: PMC11274142 DOI: 10.3390/ani14142019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an invasive mosquito species with a global distribution. This species has populations established in most continents, being considered one of the 100 most dangerous invasive species. Invasions of mosquitoes such as Ae. albopictus could facilitate local transmission of pathogens, impacting the epidemiology of some mosquito-borne diseases. Aedes albopictus is a vector of several pathogens affecting humans, including viruses such as dengue virus, Zika virus and Chikungunya virus, as well as parasites such as Dirofilaria. However, information about its competence for the transmission of parasites affecting wildlife, such as avian malaria parasites, is limited. In this literature review, we aim to explore the current knowledge about the relationships between Ae. albopictus and avian Plasmodium to understand the role of this mosquito species in avian malaria transmission. The prevalence of avian Plasmodium in field-collected Ae. albopictus is generally low, although studies have been conducted in a small proportion of the affected countries. In addition, the competence of Ae. albopictus for the transmission of avian malaria parasites has been only proved for certain Plasmodium morphospecies under laboratory conditions. Therefore, Ae. albopictus may play a minor role in avian Plasmodium transmission in the wild, likely due to its mammal-biased blood-feeding pattern and its reduced competence for the development of different avian Plasmodium. However, further studies considering other avian Plasmodium species and lineages circulating under natural conditions should be carried out to properly assess the vectorial role of Ae. albopictus for the Plasmodium species naturally circulating in its distribution range.
Collapse
Affiliation(s)
- Jesús Veiga
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | - Mario Garrido
- Department of Parasitology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
| | - Marta Garrigós
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | | | - Josué Martínez-de la Puente
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
49
|
Yamashita S, Uruma K, Yang C, Higa Y, Minakawa N, Cuamba N, Futami K. The origin and insecticide resistance of Aedes albopictus mosquitoes established in southern Mozambique. Parasit Vectors 2024; 17:292. [PMID: 38978086 PMCID: PMC11229193 DOI: 10.1186/s13071-024-06375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.
Collapse
Affiliation(s)
- Sarina Yamashita
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kawane Uruma
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chao Yang
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinkuku-Ku, Tokyo, 162-8640, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinkuku-Ku, Tokyo, 162-8640, Japan
| | - Noboru Minakawa
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nelson Cuamba
- Instituto Nacional de Saúde, Ministério da Saúde, C.P. 264, Maputo, Mozambique
| | - Kyoko Futami
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
50
|
Teillet C, Devillers R, Tran A, Catry T, Marti R, Dessay N, Rwagitinywa J, Restrepo J, Roux E. Exploring fine-scale urban landscapes using satellite data to predict the distribution of Aedes mosquito breeding sites. Int J Health Geogr 2024; 23:18. [PMID: 38972982 PMCID: PMC11229250 DOI: 10.1186/s12942-024-00378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models. METHODS We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available. RESULTS Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available. CONCLUSION This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.
Collapse
Affiliation(s)
- Claire Teillet
- ESPACE-DEV, Univ Montpellier, IRD, Univ Guyane, Univ Reunion, Univ Antilles, Univ Avignon, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier Cedex, F‑34093, France.
| | - Rodolphe Devillers
- ESPACE-DEV, Univ Montpellier, IRD, Univ Guyane, Univ Reunion, Univ Antilles, Univ Avignon, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier Cedex, F‑34093, France
| | - Annelise Tran
- CIRAD, UMR TETIS, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier, Cedex, F‑34093, France
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier, Cedex, F‑34093, France
| | - Thibault Catry
- ESPACE-DEV, Univ Montpellier, IRD, Univ Guyane, Univ Reunion, Univ Antilles, Univ Avignon, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier Cedex, F‑34093, France
| | - Renaud Marti
- TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier, Cedex, F‑34093, France
| | - Nadine Dessay
- ESPACE-DEV, Univ Montpellier, IRD, Univ Guyane, Univ Reunion, Univ Antilles, Univ Avignon, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier Cedex, F‑34093, France
| | - Joseph Rwagitinywa
- Direction de la Démoustication, Collectivité Territoriale de Guyane (CTG), 4179 Route de Montabo, Cayenne, Guyane française, 97300, France
| | - Johana Restrepo
- Direction de la Démoustication, Collectivité Territoriale de Guyane (CTG), 4179 Route de Montabo, Cayenne, Guyane française, 97300, France
| | - Emmanuel Roux
- ESPACE-DEV, Univ Montpellier, IRD, Univ Guyane, Univ Reunion, Univ Antilles, Univ Avignon, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier Cedex, F‑34093, France.
- International Joint laboratory Sentinela, FIOCRUZ, UnB, IRD, Maison de la Télédétection, 500 rue Jean‑François Breton, Montpellier, Cedex, F‑34093, France.
| |
Collapse
|