1
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
2
|
Chen XY, Yang W, Xue Y, Xie AM, Sun XR, Chen L. Orexin increases the neuronal excitability of several brain areas associated with maintaining of arousal. J Neurochem 2024; 168:2379-2390. [PMID: 39092633 DOI: 10.1111/jnc.16195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Orexin is exclusively produced in neurons localized within the lateral hypothalamic area (LHA) and perifornical area (PFA). Orexin has been identified as a key promotor of arousal. The selective loss of orexinergic neurons results in narcolepsy. It is known that the intrinsic electrophysiological properties are critical for neurons to perform their functions in corresponding brain regions. In addition to hypothalamic orexin, other brain nuclei are involved in the regulation of sleep and wakefulness. Quite a lot of studies focus on elucidating orexin-induced regulation of sleep-wake states and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that the orexinergic neurons exhibit spontaneous firing activity which is associated with the states of sleep-wake cycle. Orexin mainly exerts postsynaptic excitatory effects on multiple brain nuclei associated with the process of sleep and wakefulness. This review may provide a background to guide future research about the cellular mechanisms of orexin-induced maintaining of arousal.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wu Yang
- Department of Geriatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - An-Mu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang-Rong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Kaneko T, Oura A, Imai Y, Kusumoto-Yoshida I, Kanekura T, Okuno H, Kuwaki T, Kashiwadani H. Orexin neurons play contrasting roles in itch and pain neural processing via projecting to the periaqueductal gray. Commun Biol 2024; 7:290. [PMID: 38459114 PMCID: PMC10923787 DOI: 10.1038/s42003-024-05997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Pain and itch are recognized as antagonistically regulated sensations; pain suppresses itch, whilst pain inhibition enhances itch. The neural mechanisms at the central nervous system (CNS) underlying these pain-itch interactions still need to be explored. Here, we revealed the contrasting role of orexin-producing neurons (ORX neurons) in the lateral hypothalamus (LH), which suppresses pain while enhancing itch neural processing, by applying optogenetics to the acute pruritus and pain model. We also revealed that the circuit of ORX neurons from LH to periaqueductal gray regions served in the contrasting modulation of itch and pain processing using optogenetic terminal inhibition techniques. Additionally, by using an atopic dermatitis model, we confirmed the involvement of ORX neurons in regulating chronic itch processing, which could lead to a novel therapeutic target for persistent pruritus in clinical settings. Our findings provide new insight into the mechanism of antagonistic regulation between pain and itch in the CNS.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Asuka Oura
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiki Imai
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Kanekura
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Okuno
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
4
|
Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2023; 29:751-766. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Narcolepsy is a sleep disorder manifesting symptoms such as excessive daytime sleepiness and often cataplexy, a sudden and involuntary loss of muscle activity during wakefulness. The underlying neuropathological basis of narcolepsy is the loss of orexin neurons from the lateral hypothalamus. To date numerous animal models of narcolepsy have been produced in the laboratory, being invaluable tools for delineating the brain circuits of narcolepsy. This review will examine the evidence regarding the function of the orexin system, and how loss of this wake-promoting system manifests in excessive daytime sleepiness. This review will also outline the brain circuits controlling cataplexy, focusing on the contribution of orexin signaling loss in narcolepsy. Although our understanding of the brain circuits of narcolepsy has made great progress in recent years, much remains to be understood.
Collapse
Affiliation(s)
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ito H, Fukatsu N, Rahaman SM, Mukai Y, Izawa S, Ono D, Kilduff TS, Yamanaka A. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. Proc Natl Acad Sci U S A 2023; 120:e2301951120. [PMID: 37796986 PMCID: PMC10576136 DOI: 10.1073/pnas.2301951120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM-REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in "orexin intact" mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.
Collapse
Affiliation(s)
- Hiroto Ito
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Japan Society for the Promotion of Science Research Fellowship for Young Scientists, Tokyo102-0083, Japan
| | - Noriaki Fukatsu
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Sheikh Mizanur Rahaman
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Shuntaro Izawa
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA94025
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Chinese Institute for Brain Research, Beijing102206, China
- National Institute for Physiological Sciences, Aichi444-8585, Japan
- National Institutes of Natural Sciences, Aichi444-8585, Japan
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo160-8582, Japan
| |
Collapse
|
6
|
Hung C, Yamanaka A. The role of orexin neuron activity in sleep/wakefulness regulation. Peptides 2023; 165:171007. [PMID: 37030519 DOI: 10.1016/j.peptides.2023.171007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
Orexin (also known as hypocretin) is a neuropeptide exclusively synthesized in the neurons of the lateral hypothalamus (LH). Initially orexin was thought to be involved in the regulation of feeding behavior. However, it is now known to also be a critical regulator of sleep/wakefulness, especially the maintenance of wakefulness. Although the somas of orexin neurons are exclusively located in the LH, these neurons send axons throughout the brain and spinal cord. Orexin neurons integrate inputs from various brain regions and project to neurons that are involved in the regulation of sleep/wakefulness. Orexin knockout mice have a fragmentation of sleep/wakefulness and cataplexy-like behavior arrest, which is similar to the sleep disorder narcolepsy. Recent progress with manipulation of neural activity of targeted neurons, using experimental tools such as optogenetics and chemogenetics, has emphasized the role of orexin neuron activity on the regulation of sleep/wakefulness. Recording of orexin neuron activity in vivo using electrophysiological and gene-encoded calcium indicator proteins revealed that these cells have specific activity patterns across sleep/wakefulness state changes. Here, we also discuss not only the role of the orexin peptide, but also the role of other co-transmitters that are synthesized and released from orexin neurons and involved in sleep/wakefulness regulation.
Collapse
Affiliation(s)
- Chijung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akihiro Yamanaka
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, 102206, China; National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585 Japan; Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
7
|
Ito H, Navratilova E, Vagnerova B, Watanabe M, Kopruszinski C, Moreira de Souza LH, Yue X, Ikegami D, Moutal A, Patwardhan A, Khanna R, Yamazaki M, Guerrero M, Rosen H, Roberts E, Neugebauer V, Dodick DW, Porreca F. Chronic pain recruits hypothalamic dynorphin/kappa opioid receptor signalling to promote wakefulness and vigilance. Brain 2023; 146:1186-1199. [PMID: 35485490 PMCID: PMC10169443 DOI: 10.1093/brain/awac153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Increased vigilance in settings of potential threats or in states of vulnerability related to pain is important for survival. Pain disrupts sleep and conversely, sleep disruption enhances pain, but the underlying mechanisms remain unknown. Chronic pain engages brain stress circuits and increases secretion of dynorphin, an endogenous ligand of the kappa opioid receptor (KOR). We therefore hypothesized that hypothalamic dynorphin/KOR signalling may be a previously unknown mechanism that is recruited in pathological conditions requiring increased vigilance. We investigated the role of KOR in wakefulness, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep in freely moving naïve mice and in mice with neuropathic pain induced by partial sciatic nerve ligation using EEG/EMG recordings. Systemic continuous administration of U69,593, a KOR agonist, over 5 days through an osmotic minipump decreased the amount of NREM and REM sleep and increased sleep fragmentation in naïve mice throughout the light-dark sleep cycle. We used KORcre mice to selectively express a Gi-coupled designer receptor activated by designer drugs (Gi-DREADD) in KORcre neurons of the hypothalamic paraventricular nucleus, a key node of the hypothalamic-pituitary-adrenal stress response. Sustained activation of Gi-DREADD with clozapine-N-oxide delivered in drinking water over 4 days, disrupted sleep in these mice in a similar way as systemic U69,593. Mice with chronic neuropathic pain also showed disrupted NREM and total sleep that was normalized by systemic administration of two structurally different KOR antagonists, norbinaltorphimine and NMRA-140, currently in phase II clinical development, or by CRISPR/Cas9 editing of paraventricular nucleus KOR, consistent with endogenous KOR activation disrupting sleep in chronic pain. Unexpectedly, REM sleep was diminished by either systemic KOR antagonist or by CRISPR/Cas9 editing of paraventricular nucleus KOR in sham-operated mice. Our findings reveal previously unknown physiological and pathophysiological roles of dynorphin/KOR in eliciting arousal. Physiologically, dynorphin/KOR signalling affects transitions between sleep stages that promote REM sleep. Furthermore, while KOR antagonists do not promote somnolence in the absence of pain, they normalized disrupted sleep in chronic pain, revealing a pathophysiological role of KOR signalling that is selectively recruited to promote vigilance, increasing chances of survival. Notably, while this mechanism is likely beneficial in the short-term, disruption of the homeostatic need for sleep over longer periods may become maladaptive resulting in sustained pain chronicity. A novel approach for treatment of chronic pain may thus result from normalization of chronic pain-related sleep disruption by KOR antagonism.
Collapse
Affiliation(s)
- Hisakatsu Ito
- Department of Pharmacology, University of Arizona, Tucson, USA
- Department of Anesthesiology, University of Toyama, Toyama, Japan
| | - Edita Navratilova
- Department of Pharmacology, University of Arizona, Tucson, USA
- Department of Collaborative Research, Mayo Clinic, Scottsdale, USA
| | | | - Moe Watanabe
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | | | - Xu Yue
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Daigo Ikegami
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Amol Patwardhan
- Department of Pharmacology, University of Arizona, Tucson, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, USA
| | | | - Miguel Guerrero
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Hugh Rosen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Ed Roberts
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, USA
| | | | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, USA
- Department of Collaborative Research, Mayo Clinic, Scottsdale, USA
| |
Collapse
|
8
|
Kaneko T, Kuwaki T. The opposite roles of orexin neurons in pain and itch neural processing. Peptides 2023; 160:170928. [PMID: 36566840 DOI: 10.1016/j.peptides.2022.170928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Pain and itch are antagonistically regulated sensations; pain suppresses itch, and inhibition of pain enhances itch. Understanding the central neural circuit of antagonistic regulation between pain and itch is required to develop new therapeutics better to manage these two feelings in a clinical situation. However, evidence of the neural mechanism underlying the pain-itch interaction in the central nervous system (CNS) is still insufficient. To pave the way for this research area, our laboratory has focused on orexin (ORX) producing neurons in the hypothalamus, which is known as a master switch that induces various defense responses when animals face a stressful environment. This review article summarized the previous evidence and our latest findings to argue the neural regulation between pain and itch and the bidirectional roles of ORX neurons in processing these two sensations. i.e., pain relief and itch exacerbation. Further, we discussed the possible neural circuit mechanism for the opposite controlling of pain and itch by ORX neurons. Focusing on the roles of ORX neurons would provide a new perspective to understand the antagonistic regulation of pain and itch in CNS.
Collapse
Affiliation(s)
- Tatsuroh Kaneko
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
9
|
Knez R, Niksic M, Omerovic E. Orexin/hypocretin system dysfunction in patients with Takotsubo syndrome: A novel pathophysiological explanation. Front Cardiovasc Med 2022; 9:1016369. [PMID: 36407467 PMCID: PMC9670121 DOI: 10.3389/fcvm.2022.1016369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Takotsubo syndrome (TTS) is an acute heart failure syndrome. Emotional or physical stressors are believed to precipitate TTS, while the pathophysiological mechanism is not yet completely understood. During the coronavirus disease (COVID-19) pandemic, an increased incidence of TTS has been reported in some countries; however, the precise pathophysiological mechanism for developing TTS with acute COVID-19 infection is unknown. Nevertheless, observing the symptoms of COVID-19 might lead to new perspectives in understanding TTS pathophysiology, as some of the symptoms of the COVID-19 infection could be assessed in the context of an orexin/hypocretin-system dysfunction. Orexin/hypocretin is a cardiorespiratory neuromodulator that acts on two orexin receptors widely distributed in the brain and peripheral tissues. In COVID-19 patients, autoantibodies against one of these orexin receptors have been reported. Orexin-system dysfunction affects a variety of systems in an organism. Here, we review the influence of orexin-system dysfunction on the cardiovascular system to propose its connection with TTS. We propose that orexin-system dysfunction is a potential novel explanation for the pathophysiology of TTS due to direct or indirect dynamics of orexin signaling, which could influence cardiac contractility. This is in line with the conceptualization of TTS as a cardiovascular syndrome rather than merely a cardiac abnormality or cardiomyopathy. To the best of our knowledge, this is the first publication to present a plausible connection between TTS and orexin-system dysfunction. We hope that this novel hypothesis will inspire comprehensive studies regarding orexin's role in TTS pathophysiology. Furthermore, confirmation of this plausible pathophysiological mechanism could contribute to the development of orexin-based therapeutics in the treatment and prevention of TTS.
Collapse
Affiliation(s)
- Rajna Knez
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research and Development, Department of Women's and Child Health, Skaraborg Hospital, Skövde, Sweden
- Institution for Health, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Milan Niksic
- Department of Cardiology, Skaraborg Hospital, Skövde, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Tsuneki H, Maeda T, Takata S, Sugiyama M, Otsuka K, Ishizuka H, Onogi Y, Tokai E, Koshida C, Kon K, Takasaki I, Hamashima T, Sasahara M, Rudich A, Koya D, Sakurai T, Yanagisawa M, Yamanaka A, Wada T, Sasaoka T. Hypothalamic orexin prevents non-alcoholic steatohepatitis and hepatocellular carcinoma in obesity. Cell Rep 2022; 41:111497. [PMID: 36261021 DOI: 10.1016/j.celrep.2022.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
|
11
|
Precocious puberty in narcolepsy type 1: Orexin loss and/or neuroinflammation, which is to blame? Sleep Med Rev 2022; 65:101683. [PMID: 36096986 DOI: 10.1016/j.smrv.2022.101683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 10/14/2022]
Abstract
Narcolepsy type 1 (NT1) is a rare neurological sleep disorder triggered by postnatal loss of the orexin/hypocretin neuropeptides. Overweight/obesity and precocious puberty are highly prevalent comorbidities of NT1, with a close temporal correlation with disease onset, suggesting a common origin. However, the underlying mechanisms remain unknown and merit further investigation. The main question we address in this review is whether the occurrence of precocious puberty in NT1 is due to the lack of orexin/hypocretin or rather to a wider hypothalamic dysfunction in the context of neuroinflammation, which is likely to accompany the disease given its autoimmune origins. Our analysis suggests that the suspected generalized neuroinflammation of the hypothalamus in NT1 would tend to delay puberty rather than hastening it. In contrast, that the brutal loss of orexin/hypocretin would favor an early reactivation of gonadotropin-releasing hormone (GnRH) secretion during the prepubertal period in vulnerable children, leading to early puberty onset. Orexin/hypocretin replacement could thus be envisaged as a potential treatment for precocious puberty in NT1. Additionally, we put forward an alternative hypothesis regarding the concomitant occurrence of sleepiness, weight gain and early puberty in NT1.
Collapse
|
12
|
Arthaud S, Villalba M, Blondet C, Morel AL, Peyron C. Effects of sex and estrous cycle on sleep and cataplexy in narcoleptic mice. Sleep 2022; 45:6569391. [DOI: 10.1093/sleep/zsac089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Narcolepsy type 1 (NT1) is a rare neurology disorder caused by the loss of orexin/hypocretin neurons. NT1 is characterized by excessive daytime sleepiness, sleep and wake fragmentation, and cataplexy. These symptoms have been equally described in both women and men, although influences of gender and hormonal cycles have been poorly studied. Unfortunately, most studies with NT1 preclinical mouse models, use only male mice to limit potential variations due to the hormonal cycle. Therefore, whether gender and/or hormonal cycles impact the expression of narcoleptic symptoms remains to be determined. To address this question, we analyzed vigilance states and cataplexy in 20 female and 17 male adult orexin knock-out narcoleptic mice, with half of the females being recorded over multiple days. Mice had access to chocolate to encourage the occurrence of cataplectic episodes. A vaginal smear was performed daily in female mice to establish the state of the estrous cycle (EC) of the previous recorded night. We found that vigilance states were more fragmented in males than females, and that females had less paradoxical sleep (p = 0.0315) but more cataplexy (p = 0.0375). Interestingly, sleep and wake features were unchanged across the female EC, but the total amount of cataplexy was doubled during estrus compared to other stages of the cycle (p = 0.001), due to a large increase in the number of cataplexy episodes (p = 0.0002). Altogether these data highlight sex differences in the expression of narcolepsy symptoms in orexin knock-out mice. Notably, cataplexy occurrence was greatly influenced by estrous cycle. Whether it is due to hormonal changes would need to be further explored.
Collapse
Affiliation(s)
- Sébastien Arthaud
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| | - Manon Villalba
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| | | | - Anne-Laure Morel
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| | - Christelle Peyron
- Center for Research in Neuroscience of Lyon (CRNL), SLEEP Team, CNRS UMR 5292, INSERM U1028, Centre Hospitalier le Vinatier—Bâtiment 462—Neurocampus Michel Jouvet , Bron Cedex , France
- University Lyon1 , Lyon , France
| |
Collapse
|
13
|
In utero electroporation and cranial window implantation for in vivo wide-field two-photon calcium imaging using G-CaMP9a transgenic mice. STAR Protoc 2022; 3:101421. [PMID: 35693213 PMCID: PMC9185017 DOI: 10.1016/j.xpro.2022.101421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We present a protocol to prepare mouse cranial window implantation for in vivo two-photon wide-field calcium imaging. This protocol uses G-CaMP9a transgenic mice, which express a genetically encoded calcium indicator with high signal-to-noise ratio. We describe in utero electroporation, followed by headplate fixation and cranial window implantation. This protocol can be used for measuring neural activity and is suitable for long-term imaging in large populations. Moreover, this protocol does not require preparation of Flp-expressing transgenic mice. For complete details on the use and execution of this protocol, please refer to Sakamoto et al. (2022). Preparation of G-CaMP9a knock-in mice for in vivo calcium imaging In utero electroporation to introduce Flp recombinase in G-CaMP9a mice Implantation of cranial window for in vivo two-photon calcium imaging
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
14
|
Yamagata T, Kahn MC, Prius-Mengual J, Meijer E, Šabanović M, Guillaumin MCC, van der Vinne V, Huang YG, McKillop LE, Jagannath A, Peirson SN, Mann EO, Foster RG, Vyazovskiy VV. The hypothalamic link between arousal and sleep homeostasis in mice. Proc Natl Acad Sci U S A 2021; 118:e2101580118. [PMID: 34903646 PMCID: PMC8713782 DOI: 10.1073/pnas.2101580118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep-wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state "quality") and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep-wake states.
Collapse
Affiliation(s)
- Tomoko Yamagata
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - José Prius-Mengual
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Merima Šabanović
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Mathilde C C Guillaumin
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vincent van der Vinne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Yi-Ge Huang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
15
|
Alvente S, Berteotti C, Bastianini S, Lo Martire V, Matteoli G, Silvani A, Zoccoli G. Autonomic mechanisms of blood pressure alterations during sleep in orexin/hypocretin-deficient narcoleptic mice. Sleep 2021; 44:6124750. [PMID: 33517440 DOI: 10.1093/sleep/zsab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Increase in arterial pressure (AP) during sleep and smaller differences in AP between sleep and wakefulness have been reported in orexin (hypocretin)-deficient mouse models of narcolepsy type 1 (NT1) and confirmed in NT1 patients. We tested whether these alterations are mediated by parasympathetic or sympathetic control of the heart and/or resistance vessels in an orexin-deficient mouse model of NT1. METHODS Thirteen orexin knock-out (ORX-KO) mice were compared with 12 congenic wild-type (WT) mice. The electroencephalogram, electromyogram, and AP of the mice were recorded in the light (rest) period during intraperitoneal infusion of atropine methyl nitrate, atenolol, or prazosin to block muscarinic cholinergic, β 1-adrenergic, or α 1-adrenergic receptors, respectively, while saline was infused as control. RESULTS AP significantly depended on a three-way interaction among the mouse group (ORX-KO vs WT), the wake-sleep state, and the drug or vehicle infused. During the control vehicle infusion, ORX-KO had significantly higher AP values during REM sleep, smaller decreases in AP from wakefulness to either non-rapid-eye-movement (non-REM) sleep or REM sleep, and greater increases in AP from non-REM sleep to REM sleep compared to WT. These differences remained significant with atropine methyl nitrate, whereas they were abolished by prazosin and, except for the smaller AP decrease from wakefulness to REM sleep in ORX-KO, also by atenolol. CONCLUSIONS Sleep-related alterations of AP due to orexin deficiency significantly depend on alterations in cardiovascular sympathetic control in a mouse model of NT1.
Collapse
Affiliation(s)
- Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Coffey AA, Joyal AA, Yamanaka A, Scammell TE. The Impacts of Age and Sex in a Mouse Model of Childhood Narcolepsy. Front Neurosci 2021; 15:644757. [PMID: 33746708 PMCID: PMC7969886 DOI: 10.3389/fnins.2021.644757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Narcolepsy is a sleep disorder caused by selective death of the orexin neurons that often begins in childhood. Orexin neuron loss disinhibits REM sleep during the active period and produces cataplexy, episodes of paralysis during wakefulness. Cataplexy is often worse when narcolepsy develops in children compared to adults, but the reason for this difference remains unknown. We used orexin-tTA; TetO DTA mice to model narcolepsy at different ages. When doxycycline is removed from the diet, the orexin neurons of these mice express diphtheria toxin A and die within 2-3 weeks. We removed doxycycline at 4 weeks (young-onset) or 14 weeks (adult-onset) of age in male and female mice. We implanted electroencephalography (EEG) and electromyography (EMG) electrodes for sleep recordings two weeks later and then recorded EEG/EMG/video for 24 h at 3 and 13 weeks after removal of doxycycline. Age-matched controls had access to doxycycline diet for the entire experiment. Three weeks after doxycycline removal, both young-onset and adult-onset mice developed severe cataplexy and the sleep-wake fragmentation characteristic of narcolepsy. Cataplexy and maintenance of wake were no worse in young-onset compared to adult-onset mice, but female mice had more bouts of cataplexy than males. Orexin neuron loss was similarly rapid in both young- and adult-onset mice. As age of orexin neuron loss does not impact the severity of narcolepsy symptoms in mice, the worse symptoms in children with narcolepsy may be due to more rapid orexin neuron loss than in adults.
Collapse
Affiliation(s)
- Alissa A. Coffey
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Adam A. Joyal
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Thomas E. Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Harris T, Bugescu R, Kelly J, Makela A, Sotzen M, Sisk C, Atkin G, Pratt R, Crockett E, Leinninger G. DLK1 Expressed in Mouse Orexin Neurons Modulates Anxio-Depressive Behavior but Not Energy Balance. Brain Sci 2020; 10:brainsci10120975. [PMID: 33322758 PMCID: PMC7764426 DOI: 10.3390/brainsci10120975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Lateral hypothalamic area (LHA) neurons expressing the neuropeptide orexin (OX) are implicated in obesity and anxio-depression. However, these neurons release OX as well as a host of other proteins that might contribute to normal physiology and disease states. We hypothesized that delta-like homolog 1 (DLK1), a protein reported to be co-expressed by all OX neurons, contributes to the regulation of energy balance and/or anxio-depression. Consistent with previous reports, we found that all rat OX neurons co-express DLK1. Yet, in mice and humans only a subset of OX neurons co-expressed DLK1. Since human OX-DLK1 distribution is more similar to mice than rats, mice are a comparable model to assess the human physiologic role of DLK1. We therefore used a viral lesion strategy to selectively delete DLK1 within the LHA of adult mice (DLK1Null) to reveal its role in body weight and behavior. Adult-onset DLK1 deletion had no impact on body weight or ingestive behavior. However, DLK1Null mice engaged in more locomotor activity than control mice and had decreased anxiety and depression measured via the elevated plus maze and forced swim tests. These data suggest that DLK1 expression via DLK1-expressing OX neurons primarily contributes to anxio-depression behaviors without impacting body weight.
Collapse
Affiliation(s)
- Tatiyana Harris
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Jaylyn Kelly
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Anna Makela
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Morgan Sotzen
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
| | - Cheryl Sisk
- Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
| | - Graham Atkin
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Rebecca Pratt
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA;
| | - Elahé Crockett
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (T.H.); (R.B.); (J.K.); (A.M.); (M.S.)
- Correspondence:
| |
Collapse
|
18
|
Faesel N, Kolodziejczyk MH, Koch M, Fendt M. Orexin deficiency affects sociability and the acquisition, expression, and extinction of conditioned social fear. Brain Res 2020; 1751:147199. [PMID: 33160959 DOI: 10.1016/j.brainres.2020.147199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Accumulating evidence indicates that the central orexin (hypocretin) system plays an important role in regulating emotional processes in both humans and rodents. Thus, the orexin system has been repeatedly implicated in the pathophysiology of several neuropsychiatric disorders, such as anxiety disorders. Among others, symptoms like social fear and social withdrawal are frequently observed in these disorders. Based on this, we investigated the role of orexin deficiency in social (fear) behavior. For that, female and male orexin-deficient mice were tested for (1) sociability and social novelty, and (2) acquisition, expression, and extinction of conditioned social fear. We found that female orexin-deficient mice displayed reduced sociability and decreased preference for social novelty compared to their wild-type littermates. These effects of orexin deficiency were not observed in males. Moreover, orexin deficiency facilitated the acquisition and/or expression of conditioned social fear and impaired the extinction of social fear in both sexes. Taken together, our results indicate an important, partly sex-dependent, regulatory role of the orexin system in social (fear) behavior. Our findings support the hypothesis of orexin being an integrator of motivation, affect, and emotion.
Collapse
Affiliation(s)
- Nadine Faesel
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany.
| | - Malgorzata H Kolodziejczyk
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| |
Collapse
|
19
|
Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A. The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. SCIENCE ADVANCES 2020; 6:eabd0384. [PMID: 33158870 PMCID: PMC7673716 DOI: 10.1126/sciadv.abd0384] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
In mammals, the daily rhythms of physiological functions are timed by the central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Although the importance of the SCN for the regulation of sleep/wakefulness has been suggested, little is known about the neuronal projections from the SCN, which regulate sleep/wakefulness. Here, we show that corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus mediate circadian rhythms in the SCN and regulate wakefulness. Optogenetic activation of CRF neurons promoted wakefulness through orexin/hypocretin neurons in the lateral hypothalamus. In vivo Ca2+ recording showed that CRF neurons were active at the initiation of wakefulness. Furthermore, chemogenetic suppression and ablation of CRF neurons decreased locomotor activity and time in wakefulness. Last, a combination of optical manipulation and Ca2+ imaging revealed that neuronal activity of CRF neurons was negatively regulated by GABAergic neurons in the SCN. Our findings provide notable insights into circadian regulation of sleep/wakefulness in mammals.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
- JSPS Research Fellowship for Young Scientists, Tokyo 102-0083, Japan
| | - Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
- JSPS Research Fellowship for Young Scientists, Tokyo 102-0083, Japan
| | - Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
| | | | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- CREST, JST, Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
20
|
Fenno LE, Ramakrishnan C, Kim YS, Evans KE, Lo M, Vesuna S, Inoue M, Cheung KYM, Yuen E, Pichamoorthy N, Hong ASO, Deisseroth K. Comprehensive Dual- and Triple-Feature Intersectional Single-Vector Delivery of Diverse Functional Payloads to Cells of Behaving Mammals. Neuron 2020; 107:836-853.e11. [PMID: 32574559 PMCID: PMC7687746 DOI: 10.1016/j.neuron.2020.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 01/12/2023]
Abstract
The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.
Collapse
Affiliation(s)
- Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E Evans
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Maisie Lo
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kathy Y M Cheung
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Elle Yuen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Alice S O Hong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. eLife 2020; 9:54275. [PMID: 32314734 PMCID: PMC7173968 DOI: 10.7554/elife.54275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/03/2020] [Indexed: 12/25/2022] Open
Abstract
Orexin/hypocretin-producing and melanin-concentrating hormone-producing (MCH) neurons are co-extensive in the hypothalamus and project throughout the brain to regulate sleep/wakefulness. Ablation of orexin neurons decreases wakefulness and results in a narcolepsy-like phenotype, whereas ablation of MCH neurons increases wakefulness. Since it is unclear how orexin and MCH neurons interact to regulate sleep/wakefulness, we generated transgenic mice in which both orexin and MCH neurons could be ablated. Double-ablated mice exhibited increased wakefulness and decreased both rapid eye movement (REM) and non-REM (NREM) sleep. Double-ablated mice showed severe cataplexy compared with orexin neuron-ablated mice, suggesting that MCH neurons normally suppress cataplexy. Double-ablated mice also showed frequent sleep attacks with elevated spectral power in the delta and theta range, a unique state that we call 'delta-theta sleep'. Together, these results indicate a functional interaction between orexin and MCH neurons in vivo that suggests the synergistic involvement of these neuronal populations in the sleep/wakefulness cycle.
Collapse
Affiliation(s)
- Chi Jung Hung
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, United States
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| |
Collapse
|
22
|
Chowdhury S, Matsubara T, Miyazaki T, Ono D, Fukatsu N, Abe M, Sakimura K, Sudo Y, Yamanaka A. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. eLife 2019; 8:44928. [PMID: 31159923 PMCID: PMC6548506 DOI: 10.7554/elife.44928] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Sleep/wakefulness cycle is regulated by coordinated interactions between sleep- and wakefulness-regulating neural circuitry. However, the detailed mechanism is far from understood. Here, we found that glutamic acid decarboxylase 67-positive GABAergic neurons in the ventral tegmental area (VTAGad67+) are a key regulator of non-rapid eye movement (NREM) sleep in mice. VTAGad67+ project to multiple brain areas implicated in sleep/wakefulness regulation such as the lateral hypothalamus (LH). Chemogenetic activation of VTAGad67+ promoted NREM sleep with higher delta power whereas optogenetic inhibition of these induced prompt arousal from NREM sleep, even under highly somnolescent conditions, but not from REM sleep. VTAGad67+ showed the highest activity in NREM sleep and the lowest activity in REM sleep. Moreover, VTAGad67+ directly innervated and inhibited wake-promoting orexin/hypocretin neurons by releasing GABA. As such, optogenetic activation of VTAGad67+ terminals in the LH promoted NREM sleep. Taken together, we revealed that VTAGad67+ play an important role in the regulation of NREM sleep.
Collapse
Affiliation(s)
- Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation,Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Takanori Matsubara
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation,Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Toh Miyazaki
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation,Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan.,Research Fellowship for Young Scientist, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation,Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| | - Noriaki Fukatsu
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Manabu Abe
- Department of Animal Model development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation,Graduate School of Medicine, Nagoya University, Nagoya, Japan.,CREST, JST, Honcho Kawaguchi, Saitama, Japan
| |
Collapse
|