1
|
Guillen-Parra M, Lin J, Prather AA, Wolkowitz OM, Picard M, Epel ES. The relationship between mitochondrial health, telomerase activity and longitudinal telomere attrition, considering the role of chronic stress. Sci Rep 2024; 14:31589. [PMID: 39738205 DOI: 10.1038/s41598-024-77279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/21/2024] [Indexed: 01/01/2025] Open
Abstract
Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance. In this observational longitudinal study, we examined in peripheral blood mononuclear cells (PBMCs), whether MHI predicted changes in telomerase activity over a 9-month period, thus impacting telomere maintenance over this same period of time. We secondarily examined the role of chronic stress, by comparing these relationships in mothers of children with an autism spectrum disorder (caregivers) vs. mothers of a neurotypical child (controls). Here we show that both chronic stress exposure and lower MHI independently predicted decreases in telomerase activity over the subsequent 9 months. Finally, changes in telomere length were directly related with changes in telomerase activity, and indirectly with MHI and chronic stress, as revealed by a path analysis. These results highlight the potential role of chronic stress and MHI as drivers of telomere attrition in human PBMCs, through an impairment of both energy-transformation capacity and telomerase production.
Collapse
Affiliation(s)
- Mauricio Guillen-Parra
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94107, USA
| | - Aric A Prather
- Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA.
| |
Collapse
|
2
|
Martinez-Usatorre A, Ciarloni L, Angelino P, Wosika V, Conforte AJ, Fonseca Costa SS, Durandau E, Monnier-Benoit S, Satizabal HF, Despraz J, Perez-Uribe A, Delorenzi M, Morgenthaler S, Hashemi B, Hadadi N, Hosseinian-Ehrensberger S, Romero PJ. Human blood cell transcriptomics unveils dynamic systemic immune modulation along colorectal cancer progression. J Immunother Cancer 2024; 12:e009888. [PMID: 39577870 PMCID: PMC11590809 DOI: 10.1136/jitc-2024-009888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/26/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. CRC deaths can be reduced with prevention and early diagnosis. Circulating tumor DNA-based liquid biopsies, are emerging tools for cancer detection. However, the tumor-signal-dependent nature of this approach results in low sensitivity in precancerous and early CRC stages. Here we propose the host immune response to the onset of cancer as an alternative approach for early detection of CRC. METHODS We perform whole transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from individuals with CRC, precancerous lesions or negative colonoscopy in two independent cohorts using next-generation sequencing. RESULTS We discover and validate novel early CRC RNA biomarkers. Taking into account, and adjusting for, the sensitivity of PBMCs transcriptomes to processing times, we report distinct transcriptomic changes in the periphery related to specific CRC stages. Activation of innate immunity is already detectable in the peripheral blood of individuals with pre-malignant advanced adenomas. This immune response is followed by signs of transient B-cell activation and sustained inhibition of T-cell responses along CRC progression, whereby at late stages, protumoral myeloid cells, wound healing and coagulation processes prevail. Moreover, some biomarkers show similar dysregulation in tumors and are implicated in known pathways of CRC pathophysiology. CONCLUSIONS The strong systemic immune modulation triggered during CRC progression leads to previously unnoticed alterations detectable in PBMCs, paving the way for the development of an early CRC screening blood test, incorporating 226 validated biomarkers identified through immunotranscriptomics.
Collapse
Affiliation(s)
| | | | - Paolo Angelino
- University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | | | | | - Hector Fabio Satizabal
- Institute of Information and Communication Technologies, HEIG-VD, Yverdon-les-Bains, Switzerland
| | - Jérémie Despraz
- Institute of Information and Communication Technologies, HEIG-VD, Yverdon-les-Bains, Switzerland
| | - Andres Perez-Uribe
- Institute of Information and Communication Technologies, HEIG-VD, Yverdon-les-Bains, Switzerland
| | - Mauro Delorenzi
- University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
3
|
Li R, Yang J, Wang N, Zang Y, Liu J, Wu E, Wu R, Sun H. Inference of forensic body fluids/tissues based on mitochondrial DNA copy number: a preliminary study. Int J Legal Med 2024; 138:2315-2324. [PMID: 39164574 DOI: 10.1007/s00414-024-03317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The inference of body fluids and tissues is critical in reconstructing crime scenes and inferring criminal behaviors. Nevertheless, present methods are incompatible with conventional DNA genotyping, and additional testing might result in excessive consumption of forensic scene materials. This study aims to investigate the feasibility of distinguishing common body fluids/tissues through the difference in mitochondrial DNA copy number (mtDNAcn). Four types of body fluids/tissues were analyzed in this study - hair, saliva, semen, and skeletal muscle. MtDNAcn was estimated by dividing the read counts of mitochondrial DNA to that of nuclear DNA (RRmt/nu). Results indicated that there were significant differences in RRmt/nu between different body fluids/tissues. Specifically, hair samples exhibited the highest RRmt/nu (log10RRmt/nu: 4.3 ± 0.28), while semen samples showed the lowest RRmt/nu (log10RRmt/nu: -0.1 ± 0.28). RRmt/nu values for DNA samples without extraction were notably higher (approximately 2.9 times) than those obtained after extraction. However, no significant difference in RRmt/nu was observed between various age and gender groups. Hierarchical clustering and Kmeans clustering analyses showed that body fluids/tissues of the same type clustered closely to each other and could be inferred with high accuracy. In conclusion, this study demonstrated that the simultaneous detection of nuclear and mitochondrial DNA made it possible to perform conventional DNA analyses and body fluid/tissue inference at the same time, thus killing two birds with one stone. Furthermore, mtDNAcn has the potential to serve as a novel and promising biomarker for the identification of body fluids/tissues.
Collapse
Affiliation(s)
- Ran Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- School of Medicine, Jiaying University, Meizhou, 514015, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yu Zang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Enlin Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2024:S0300-9084(24)00239-6. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
5
|
Sugasawa T, Nguyen KDM, Otani N, Maehara K, Kamiya F, Hirokawa A, Takemasa T, Watanabe K, Nishi T, Sato K, Shimmura S, Takahashi Y, Kanki Y. Whole Mitochondrial DNA Sequencing Using Fecal Samples from Domestic Dogs. Animals (Basel) 2024; 14:2872. [PMID: 39409821 PMCID: PMC11475539 DOI: 10.3390/ani14192872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Medical care for domestic dogs is now respected worldwide as being at a similar level to that of humans. We previously established a test method to determine whole mitochondrial DNA (mtDNA) using oral mucosal DNA that may be useful for medical care and welfare. However, the sample types tested in dogs are not limited to those obtained from the oral mucosa. Therefore, in the present study, we attempted to establish a test method to determine whole mtDNA sequences using feces, which represents the least invasive specimen. Two Japanese domestic dogs were used in the present study. DNA was extracted from approximately 100 mg of fresh feces from each dog, and PCRs were performed using four primer pairs that can amplify whole mtDNA. Following PCR, amplicons were pooled to create a DNA library using an experimental robot with an original program. Data were then acquired via NGS and data analysis was performed. The results showed that the whole mtDNA sequence of the two dogs was determined with high accuracy. Our results suggest that feces can be adapted for mitochondrial disease and individual identification testing and could serve as a useful testing method for the future medical care and welfare of domestic dogs.
Collapse
Affiliation(s)
- Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kieu D. M. Nguyen
- Human Biology Program, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Norihiro Otani
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kiyoshi Maehara
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Fuka Kamiya
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Atsushi Hirokawa
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Tohru Takemasa
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
| | - Koichi Watanabe
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan
| | - Takeki Nishi
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Ken Sato
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Suzuka Shimmura
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yasuharu Kanki
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| |
Collapse
|
6
|
Verhoeven JE, Wolkowitz OM, Barr Satz I, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Söderberg Veibäck G, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LKM, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, California, USA
- Center for Health and Community, University of California, San Francisco, California, USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, California, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura K M Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Kristoffer N T Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Devine J, Monzel AS, Shire D, Rosenberg AM, Junker A, Cohen AA, Picard M. Brain-body mitochondrial distribution patterns lack coherence and point to tissue-specific and individualized regulatory mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614152. [PMID: 39345381 PMCID: PMC11430016 DOI: 10.1101/2024.09.20.614152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Energy transformation capacity is generally assumed to be a coherent individual trait driven by genetic and environmental factors. This predicts that some individuals should have high and others low mitochondrial oxidative phosphorylation (OxPhos) capacity across organ systems. Here, we test this assumption using multi-tissue molecular and enzymatic activities in mice and humans. Across up to 22 mouse tissues, neither mitochondrial OxPhos capacity nor mtDNA density were correlated between tissues (median r = -0.01-0.16), indicating that animals with high mitochondrial capacity in one tissue can have low capacity in other tissues. Similarly, the multi-tissue correlation structure of RNAseq-based indices of mitochondrial gene expression across 45 tissues from 948 women and men (GTEx) showed small to moderate coherence between only some tissues (regions of the same brain), but not between brain-body tissue pairs in the same person (median r = 0.01). Mitochondrial DNA copy number (mtDNAcn) also lacked coherence across organs and tissues. Mechanistically, tissue-specific differences in mitochondrial gene expression were attributable in part to i) tissue-specific activation of canonical energy sensing pathways including the transcriptional coactivator PGC-1 and the integrated stress response (ISR), and ii) proliferative activity across tissues. Finally, we identify subgroups of individuals with high mitochondrial gene expression in some tissues (e.g., heart) but low expression in others (e.g., skeletal muscle) who display different clinical phenotypic patterns. Taken together, these data raise the possibility that tissue-specific energy sensing pathways may contribute to the idiosyncratic mitochondrial distribution patterns associated with the inter-organ heterogeneity and phenotypic diversity among individuals.
Collapse
Affiliation(s)
- Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - David Shire
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Ayelet M Rosenberg
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
9
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
10
|
Lyu XY, Tsui YM, Tam IKK, Li PM, Cheung GCH, Lee JMF, Ng IOL, Ho DWH. Resolution of Optimal Mitochondrial and Nuclear DNA Enrichment in Target-Panel Sequencing and Physiological Mitochondrial DNA Copy Number Estimation in Liver Cancer and Non-Liver Cancer Subjects. Cancers (Basel) 2024; 16:3012. [PMID: 39272870 PMCID: PMC11393944 DOI: 10.3390/cancers16173012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria generate energy to support cells. They are important organelles that engage in key biological pathways. The dysfunction of mitochondria can be linked to hepatocarcinogenesis, which has been actively explored in recent years. To investigate the mitochondrial dysfunction caused by genetic variations, target-panel sequencing is a flexible and promising strategy. However, the copy number of mitochondria generally exceeds nuclear DNA, which raises a concern that uneven target enrichment of mitochondrial DNA (mtDNA) and nuclear DNA (ncDNA) in target-panel sequencing would lead to an undesirably biased representation of them. To resolve this issue, we evaluated the optimal pooling of mtDNA probes and ncDNA probes by a series of dilutions of mtDNA probes in both genomic DNA (gDNA) and cell-free DNA (cfDNA) samples. The evaluation was based on read count, average sequencing depth and coverage of targeted regions. We determined that an mtDNA:ncDNA probe ratio of around 1:10 would offer a good balance of sequencing performance and cost effectiveness. Moreover, we estimated the median physiological mtDNA:ncDNA copy ratio as 38.1 and 2.9 in cfDNA and gDNA samples of non-liver cancer subjects, respectively, whereas they were 20.0 and 2.1 in the liver cancer patients. Taken together, this study revealed the appropriate pooling strategy of mtDNA probes and ncDNA probes in target-panel sequencing and suggested the normal range of physiological variation of the mtDNA:ncDNA copy ratio in non-liver cancer individuals. This can serve as a useful reference for future target-panel sequencing investigations of the mitochondrial genome in liver cancer.
Collapse
Affiliation(s)
- Xue-Ying Lyu
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Man Tsui
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Ivan Ka-Kit Tam
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Po-Man Li
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Gary Cheuk-Hang Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Wai-Hung Ho
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
12
|
Trumpff C, Monzel AS, Sandi C, Menon V, Klein HU, Fujita M, Lee A, Petyuk VA, Hurst C, Duong DM, Seyfried NT, Wingo AP, Wingo TS, Wang Y, Thambisetty M, Ferrucci L, Bennett DA, De Jager PL, Picard M. Psychosocial experiences are associated with human brain mitochondrial biology. Proc Natl Acad Sci U S A 2024; 121:e2317673121. [PMID: 38889126 PMCID: PMC11228499 DOI: 10.1073/pnas.2317673121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Hans-Ulrich Klein
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Masashi Fujita
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Annie Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University, Atlanta, GA 30329
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, GA 30329
| | | | - Aliza P Wingo
- Department of Neurology and Human Genetics, School of Medicine, Emory University, Atlanta, GA 30329
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, School of Medicine, Emory University, Atlanta, GA 30329
| | - Yanling Wang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, NY 10032
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY 10032
| |
Collapse
|
13
|
Sharapova G, Sabirova S, Gomzikova M, Brichkina A, Barlev NA, Kalacheva NV, Rizvanov A, Markov N, Simon HU. Mitochondrial Protein Density, Biomass, and Bioenergetics as Predictors for the Efficacy of Glioma Treatments. Int J Mol Sci 2024; 25:7038. [PMID: 39000148 PMCID: PMC11241254 DOI: 10.3390/ijms25137038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The metabolism of glioma cells exhibits significant heterogeneity and is partially responsible for treatment outcomes. Given this variability, we hypothesized that the effectiveness of treatments targeting various metabolic pathways depends on the bioenergetic profiles and mitochondrial status of glioma cells. To this end, we analyzed mitochondrial biomass, mitochondrial protein density, oxidative phosphorylation (OXPHOS), and glycolysis in a panel of eight glioma cell lines. Our findings revealed considerable variability: mitochondrial biomass varied by up to 3.2-fold, the density of mitochondrial proteins by up to 2.1-fold, and OXPHOS levels by up to 7.3-fold across the cell lines. Subsequently, we stratified glioma cell lines based on their mitochondrial status, OXPHOS, and bioenergetic fitness. Following this stratification, we utilized 16 compounds targeting key bioenergetic, mitochondrial, and related pathways to analyze the associations between induced changes in cell numbers, proliferation, and apoptosis with respect to their steady-state mitochondrial and bioenergetic metrics. Remarkably, a significant fraction of the treatments showed strong correlations with mitochondrial biomass and the density of mitochondrial proteins, suggesting that mitochondrial status may reflect glioma cell sensitivity to specific treatments. Overall, our results indicate that mitochondrial status and bioenergetics are linked to the efficacy of treatments targeting metabolic pathways in glioma.
Collapse
Affiliation(s)
- Gulnaz Sharapova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (N.V.K.); (A.R.)
| | - Sirina Sabirova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Laboratory of Intercellular Communication, Kazan Federal University, 420111 Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Laboratory of Intercellular Communication, Kazan Federal University, 420111 Kazan, Russia
| | - Anna Brichkina
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Institute of Systems Immunology, Center for Tumor Biology and Immunology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Nick A Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Gene Expression Program, Institute of Cytology RAS, 194064 Saint-Petersburg, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Natalia V Kalacheva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (N.V.K.); (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (N.V.K.); (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
- I.K. Akhunbaev Kyrgyz State Medical Academy, Bishkek 720020, Kyrgyzstan
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.S.); (S.S.); (M.G.); (A.B.); (N.A.B.)
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
14
|
Ding P, Gao C, Zhou J, Mei J, Li G, Liu D, Li H, Liao P, Yao M, Wang B, Lu Y, Peng X, Jiang C, Yin J, Huang Y, Zheng M, Gao Y, Zhang C, Gao J. Mitochondria from osteolineage cells regulate myeloid cell-mediated bone resorption. Nat Commun 2024; 15:5094. [PMID: 38877020 PMCID: PMC11178781 DOI: 10.1038/s41467-024-49159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Interactions between osteolineage cells and myeloid cells play important roles in maintaining skeletal homeostasis. Herein, we find that osteolineage cells transfer mitochondria to myeloid cells. Impairment of the transfer of mitochondria by deleting MIRO1 in osteolineage cells leads to increased myeloid cell commitment toward osteoclastic lineage cells and promotes bone resorption. In detail, impaired mitochondrial transfer from osteolineage cells alters glutathione metabolism and protects osteoclastic lineage cells from ferroptosis, thus promoting osteoclast activities. Furthermore, mitochondrial transfer from osteolineage cells to myeloid cells is involved in the regulation of glucocorticoid-induced osteoporosis, and glutathione depletion alleviates the progression of glucocorticoid-induced osteoporosis. These findings reveal an unappreciated mechanism underlying the interaction between osteolineage cells and myeloid cells to regulate skeletal metabolic homeostasis and provide insights into glucocorticoid-induced osteoporosis progression.
Collapse
Affiliation(s)
- Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Chenyi Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jimin Yin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
15
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Prenatal arsenic metabolite exposure is associated with increased newborn mitochondrial DNA copy number: evidence from a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38142-38152. [PMID: 38789711 DOI: 10.1007/s11356-024-32933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 05/26/2024]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhangpeng Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
16
|
Valencia AP, Pharaoh G, Brandao AF, Marcinek DJ. High-Resolution Fluorespirometry to Assess Dynamic Changes in Mitochondrial Membrane Potential in Human Immune Cells. J Vis Exp 2024:10.3791/66863. [PMID: 38856231 PMCID: PMC11257029 DOI: 10.3791/66863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.
Collapse
Affiliation(s)
- Ana P Valencia
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington;
| | | | - Arthur F Brandao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington
| | - David J Marcinek
- Department of Radiology, University of Washington; Department of Laboratory Medicine and Pathology, University of Washington;
| |
Collapse
|
17
|
Alsved J, Rezayati Charan M, Ohlsson P, Urbansky A, Augustsson P. Label-free separation of peripheral blood mononuclear cells from whole blood by gradient acoustic focusing. Sci Rep 2024; 14:8748. [PMID: 38627566 PMCID: PMC11021555 DOI: 10.1038/s41598-024-59156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Efficient techniques for separating target cells from undiluted blood are necessary for various diagnostic and research applications. This paper presents acoustic focusing in dense media containing iodixanol to purify peripheral blood mononuclear cells (PBMCs) from whole blood in a label-free and flow-through format. If the blood is laminated or mixed with iodixanol solutions while passing through the resonant microchannel, all the components (fluids and cells) rearrange according to their acoustic impedances. Red blood cells (RBCs) have higher effective acoustic impedance than PBMCs. Therefore, they relocate to the pressure node despite the dense medium, while PBMCs stay near the channel walls due to their negative contrast factor relative to their surrounding medium. By modifying the medium and thus tuning the contrast factor of the cells, we enriched PBMCs relative to RBCs by a factor of 3600 to 11,000 and with a separation efficiency of 85%. That level of RBC depletion is higher than most other microfluidic methods and similar to that of density gradient centrifugation. The current acoustophoretic chip runs up to 20 µl/min undiluted whole blood and can be integrated with downstream analysis.
Collapse
Affiliation(s)
- Julia Alsved
- AcouSort AB, Medicon Village, S-223 81, Lund, Sweden
| | - Mahdi Rezayati Charan
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 22363, Lund, Sweden
| | - Pelle Ohlsson
- AcouSort AB, Medicon Village, S-223 81, Lund, Sweden
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 22363, Lund, Sweden
| | - Anke Urbansky
- AcouSort AB, Medicon Village, S-223 81, Lund, Sweden
| | - Per Augustsson
- Department of Biomedical Engineering, Lund University, Ole Römers väg 3, 22363, Lund, Sweden.
| |
Collapse
|
18
|
Buescher FM, Schmitz MT, Frett T, Kramme J, de Boni L, Elmenhorst EM, Mulder E, Moestl S, Heusser K, Frings-Meuthen P, Jordan J, Rittweger J, Pesta D. Effects of 30 days bed rest and exercise countermeasures on PBMC bioenergetics. Acta Physiol (Oxf) 2024; 240:e14102. [PMID: 38294173 DOI: 10.1111/apha.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
AIM Altered mitochondrial function across various tissues is a key determinant of spaceflight-induced physical deconditioning. In comparison to tissue biopsies, blood cell bioenergetics holds promise as a systemic and more readily accessible biomarker, which was evaluated during head-down tilt bed rest (HDTBR), an established ground-based analog for spaceflight-induced physiological changes in humans. More specifically, this study explored the effects of HDTBR and an exercise countermeasure on mitochondrial respiration in peripheral blood mononuclear cells (PBMCs). METHODS We subjected 24 healthy participants to a strict 30-day HDTBR protocol. The control group (n = 12) underwent HDTBR only, while the countermeasure group (n = 12) engaged in regular supine cycling exercise followed by veno-occlusive thigh cuffs post-exercise for 6 h. We assessed routine blood parameters 14 days before bed rest, the respiratory capacity of PBMCs via high-resolution respirometry, and citrate synthase activity 2 days before and at day 30 of bed rest. We confirmed PBMC composition by flow cytometry. RESULTS The change of the PBMC maximal oxidative phosphorylation capacity (OXPHOS) amounted to an 11% increase in the countermeasure group, while it decreased by 10% in the control group (p = 0.04). The limitation of OXPHOS increased in control only while other respiratory states were not affected by either intervention. Correlation analysis revealed positive associations between white blood cells, lymphocytes, and basophils with PBMC bioenergetics in both groups. CONCLUSION This study reveals that a regular exercise countermeasure has a positive impact on PBMC mitochondrial function, confirming the potential application of blood cell bioenergetics for human spaceflight.
Collapse
Affiliation(s)
- F-M Buescher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - M T Schmitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - T Frett
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - J Kramme
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - L de Boni
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - E M Elmenhorst
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - E Mulder
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - S Moestl
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - K Heusser
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - P Frings-Meuthen
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - J Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - J Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - D Pesta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Haage V, Tuddenham JF, Comandante-Lou N, Bautista A, Monzel A, Chiu R, Fujita M, Garcia FG, Bhattarai P, Patel R, Buonfiglioli A, Idiarte J, Herman M, Rinderspacher A, Mela A, Zhao W, Argenziano MG, Furnari JL, Banu MA, Landry DW, Bruce JN, Canoll P, Zhang Y, Nuriel T, Kizil C, Sproul AA, de Witte LD, Sims PA, Menon V, Picard M, De Jager PL. A pharmacological toolkit for human microglia identifies Topoisomerase I inhibitors as immunomodulators for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579103. [PMID: 38370689 PMCID: PMC10871172 DOI: 10.1101/2024.02.06.579103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.
Collapse
Affiliation(s)
- Verena Haage
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - John F. Tuddenham
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Natacha Comandante-Lou
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alex Bautista
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Anna Monzel
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Rebecca Chiu
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Frankie G. Garcia
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Prabesh Bhattarai
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ronak Patel
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Juan Idiarte
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mathieu Herman
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | | | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia L. Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donald W. Landry
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Tal Nuriel
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Caghan Kizil
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Lotje D. de Witte
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
20
|
Vega-Vásquez T, Langgartner D, Wang JY, Reber SO, Picard M, Basualto-Alarcón C. Mitochondrial morphology in the mouse adrenal cortex: Influence of chronic psychosocial stress. Psychoneuroendocrinology 2024; 160:106683. [PMID: 38086320 PMCID: PMC10872515 DOI: 10.1016/j.psyneuen.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 01/02/2024]
Abstract
Mitochondria within the adrenal cortex play a key role in synthesizing steroid hormones. The adrenal cortex is organized in three functionally specialized zones (glomerulosa, fasciculata, and reticularis) that produce different classes of steroid hormones in response to various stimuli, including psychosocial stress. Given that the functions and morphology of mitochondria are dynamically related and respond to stress, we applied transmission electron microscopy (TEM) to examine potential differences in mitochondrial morphology under basal and chronic psychosocial stress conditions. We used the chronic subordinate colony housing (CSC) paradigm, a murine model of chronic psychosocial stress. Our findings quantitatively define how mitochondrial morphology differs among each of the three adrenal cortex zones under basal conditions, and show that chronic psychosocial stress mainly affected mitochondria in the zona glomerulosa, shifting their morphology towards the more typical glucocorticoid-producing zona fasciculata mitochondrial phenotype. Analysis of adrenocortical lipid droplets that provide cholesterol for steroidogenesis showed that chronic psychosocial stress altered lipid droplet diameter, without affecting droplet number or inter-organellar mitochondria-lipid droplet interactions. Together, our findings support the hypothesis that each adrenal cortex layer is characterized by morphologically distinct mitochondria and that this adrenal zone-specific mitochondrial morphology is sensitive to environmental stimuli, including chronic psychosocial stressors. Further research is needed to define the role of these stress-induced changes in mitochondrial morphology, particularly in the zona glomerulosa, on stress resilience and related behaviors.
Collapse
Affiliation(s)
- Tamara Vega-Vásquez
- Laboratory of Cellular Physiology and Metabolism, Health Sciences Department, University of Aysén, Coyhaique, Chile
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Jennifer Y Wang
- School of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA
| | - Carla Basualto-Alarcón
- Laboratory of Cellular Physiology and Metabolism, Health Sciences Department, University of Aysén, Coyhaique, Chile; Anatomy and Legal Medicine Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
21
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
22
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Altered cord blood mitochondrial DNA content and prenatal exposure to arsenic metabolites in low-arsenic areas. RESEARCH SQUARE 2023:rs.3.rs-3414865. [PMID: 37961501 PMCID: PMC10635372 DOI: 10.21203/rs.3.rs-3414865/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether arsenic metabolism in different trimesters was related to cord blood mtDNAcn alteration. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters using HPLC-ICPMS. We decided on cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each two-fold increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the 3rd trimester were related to 8.43% (95% CI: 1.13%, 16.26%) and 12.15% (95% CI:4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the 3rd trimester with mtDNAcn. These findings may prove the relationships between arsenic species and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Xin Wang
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhenxian Jia
- Huazhong University of Science and Technology Tongji Medical College
| | - Yujie He
- Huazhong University of Science and Technology Tongji Medical College
| | - Yi Wu
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhangpeng Li
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Wei Xia
- Huazhong University of Science and Technology Tongji Medical College
| | - Shunqing Xu
- Huazhong University of Science and Technology Tongji Medical College
| | - Yuanyuan Li
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College
| |
Collapse
|
23
|
Lynch MT, Taub MA, Farfel JM, Yang J, Abadir P, De Jager PL, Grodstein F, Bennett DA, Mathias RA. Evaluating genomic signatures of aging in brain tissue as it relates to Alzheimer's disease. Sci Rep 2023; 13:14747. [PMID: 37679407 PMCID: PMC10484923 DOI: 10.1038/s41598-023-41400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomere length (TL) attrition, epigenetic age acceleration, and mitochondrial DNA copy number (mtDNAcn) decline are established hallmarks of aging. Each has been individually associated with Alzheimer's dementia, cognitive function, and pathologic Alzheimer's disease (AD). Epigenetic age and mtDNAcn have been studied in brain tissue directly but prior work on TL in brain is limited to small sample sizes and most studies have examined leukocyte TL. Importantly, TL, epigenetic age clocks, and mtDNAcn have not been studied jointly in brain tissue from an AD cohort. We examined dorsolateral prefrontal cortex (DLPFC) tissue from N = 367 participants of the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP). TL and mtDNAcn were estimated from whole genome sequencing (WGS) data and cortical clock age was computed on 347 CpG sites. We examined dementia, MCI, and level of and change in cognition, pathologic AD, and three quantitative AD traits, as well as measures of other neurodegenerative diseases and cerebrovascular diseases (CVD). We previously showed that mtDNAcn from DLPFC brain tissue was associated with clinical and pathologic features of AD. Here, we show that those associations are independent of TL. We found TL to be associated with β-amyloid levels (beta = - 0.15, p = 0.023), hippocampal sclerosis (OR = 0.56, p = 0.0015) and cerebral atherosclerosis (OR = 1.44, p = 0.0007). We found strong associations between mtDNAcn and clinical measures of AD. The strongest associations with pathologic measures of AD were with cortical clock and there were associations of mtDNAcn with global AD pathology and tau tangles. Of the other pathologic traits, mtDNAcn was associated with hippocampal sclerosis, macroscopic infarctions and CAA and cortical clock was associated with Lewy bodies. Multi-modal age acceleration, accelerated aging on both mtDNAcn and cortical clock, had greater effect size than a single measure alone. These findings highlight for the first time that age acceleration determined on multiple genomic measures, mtDNAcn and cortical clock may have a larger effect on AD/AD related disorders (ADRD) pathogenesis than single measures.
Collapse
Affiliation(s)
- Megan T Lynch
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peter Abadir
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Rasika A Mathias
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Escrig-Larena JI, Delgado-Pulido S, Mittelbrunn M. Mitochondria during T cell aging. Semin Immunol 2023; 69:101808. [PMID: 37473558 DOI: 10.1016/j.smim.2023.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of aging that contributes to inflammaging. It is characterized by alterations of the mitochondrial DNA, reduced respiratory capacity, decreased mitochondrial membrane potential and increased reactive oxygen species production. These primary alterations disrupt other interconnected and important mitochondrial-related processes such as metabolism, mitochondrial dynamics and biogenesis, mitophagy, calcium homeostasis or apoptosis. In this review, we gather the current knowledge about the different mitochondrial processes which are altered during aging, with special focus on their contribution to age-associated T cell dysfunction and inflammaging.
Collapse
Affiliation(s)
- Jose Ignacio Escrig-Larena
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sandra Delgado-Pulido
- Departamento de Biología Molecular, Facultad de Ciencias (UAM), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molcular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
25
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
26
|
Rosenberg AM, Saggar M, Monzel AS, Devine J, Rogu P, Limoges A, Junker A, Sandi C, Mosharov EV, Dumitriu D, Anacker C, Picard M. Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice. Nat Commun 2023; 14:4726. [PMID: 37563104 PMCID: PMC10415311 DOI: 10.1038/s41467-023-39941-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Anna S Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Rogu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron Limoges
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Junker
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne, Switzerland
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Dani Dumitriu
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Christoph Anacker
- Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
27
|
Ofori EA, Garcia-Senosiain A, Naghizadeh M, Kana IH, Dziegiel MH, Adu B, Singh S, Theisen M. Human blood neutrophils generate ROS through FcγR-signaling to mediate protection against febrile P. falciparum malaria. Commun Biol 2023; 6:743. [PMID: 37463969 PMCID: PMC10354059 DOI: 10.1038/s42003-023-05118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Blood phagocytes, such as neutrophils and monocytes, generate reactive oxygen species (ROS) as a part of host defense response against infections. We investigated the mechanism of Fcγ-Receptor (FcγR) mediated ROS production in these cells to understand how they contribute to anti-malarial immunity. Plasmodium falciparum merozoites opsonized with naturally occurring IgG triggered both intracellular and extracellular ROS generation in blood phagocytes, with neutrophils being the main contributors. Using specific inhibitors, we show that both FcγRIIIB and FcγRIIA acted synergistically to induce ROS production in neutrophils, and that NADPH oxidase 2 and the PI3K intracellular signal transduction pathway were involved in this process. High levels of neutrophil ROS were also associated with protection against febrile malaria in two geographically diverse malaria endemic regions from Ghana and India, stressing the importance of the cooperation between anti-malarial IgG and neutrophils in triggering ROS-mediated parasite killing as a mechanism for naturally acquired immunity against malaria.
Collapse
Affiliation(s)
- Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Blood Bank KI 2034, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Subhash Singh
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Zaidi AA, Verma A, Morse C, Ritchie MD, Mathieson I. The genetic and phenotypic correlates of mtDNA copy number in a multi-ancestry cohort. HGG ADVANCES 2023; 4:100202. [PMID: 37255673 PMCID: PMC10225932 DOI: 10.1016/j.xhgg.2023.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Mitochondrial DNA copy number (mtCN) is often treated as a proxy for mitochondrial (dys-) function and disease risk. Pathological changes in mtCN are common symptoms of rare mitochondrial disorders, but reported associations between mtCN and common diseases vary across studies. To understand the biology of mtCN, we carried out genome- and phenome-wide association studies of mtCN in 30,666 individuals from the Penn Medicine BioBank (PMBB)-a diverse cohort of largely African and European ancestry. We estimated mtCN in peripheral blood using exome sequence data, taking cell composition into account. We replicated known genetic associations of mtCN in the PMBB and found that their effects are highly correlated between individuals of European and African ancestry. However, the heritability of mtCN was much higher among individuals of largely African ancestry ( h 2 = 0.3 ) compared with European ancestry individuals( h 2 = 0.1 ) . Admixture mapping suggests that there are undiscovered variants underlying mtCN that are differentiated in frequency between individuals with African and European ancestry. We show that mtCN is associated with many health-related phenotypes. We discovered robust associations between mtDNA copy number and diseases of metabolically active tissues, such as cardiovascular disease and liver damage, that were consistent across African and European ancestry individuals. Other associations, such as epilepsy and prostate cancer, were only discovered in either individuals with European or African ancestry but not both. We show that mtCN-phenotype associations can be sensitive to blood cell composition and environmental modifiers, explaining why such associations are inconsistent across studies. Thus, mtCN-phenotype associations must be interpreted with care.
Collapse
Affiliation(s)
- Arslan A. Zaidi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen Morse
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Penn Medicine BioBank
- Center for Translational Bioinformatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
30
|
Smith AR, Hinojosa Briseño A, Picard M, Cardenas A. The prenatal environment and its influence on maternal and child mitochondrial DNA copy number and methylation: A review of the literature. ENVIRONMENTAL RESEARCH 2023; 227:115798. [PMID: 37001851 PMCID: PMC10164709 DOI: 10.1016/j.envres.2023.115798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is sensitive to environmental stressors and associated with human health. We reviewed epidemiological literature examining associations between prenatal environmental, dietary, and social exposures and alterations in maternal/child mtDNA copy number (mtDNAcn) and mtDNA methylation. Evidence exists that prenatal maternal exposures are associated with alterations in mtDNAcn for air pollution, chemicals (e.g. metals), cigarette smoke, human immunodeficiency virus (HIV) infection and treatment. Evidence for their associations with mtDNA methylation was limited. Given its potential implications as a disease pathway biomarker, studies with sufficient biological specificity should examine the long-term implications of prenatal and early-life mtDNA alterations in response to prenatal exposures.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Alejandra Hinojosa Briseño
- Department of Environmental and Occupational Health, California State University, Northridge, Northridge, CA, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Singh P, Gollapalli K, Mangiola S, Schranner D, Yusuf MA, Chamoli M, Shi SL, Bastos BL, Nair T, Riermeier A, Vayndorf EM, Wu JZ, Nilakhe A, Nguyen CQ, Muir M, Kiflezghi MG, Foulger A, Junker A, Devine J, Sharan K, Chinta SJ, Rajput S, Rane A, Baumert P, Schönfelder M, Iavarone F, Lorenzo GD, Kumari S, Gupta A, Sarkar R, Khyriem C, Chawla AS, Sharma A, Sarper N, Chattopadhyay N, Biswal BK, Settembre C, Nagarajan P, Targoff KL, Picard M, Gupta S, Velagapudi V, Papenfuss AT, Kaya A, Ferreira MG, Kennedy BK, Andersen JK, Lithgow GJ, Ali AM, Mukhopadhyay A, Palotie A, Kastenmüller G, Kaeberlein M, Wackerhage H, Pal B, Yadav VK. Taurine deficiency as a driver of aging. Science 2023; 380:eabn9257. [PMID: 37289866 PMCID: PMC10630957 DOI: 10.1126/science.abn9257] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
Collapse
Affiliation(s)
- Parminder Singh
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Kishore Gollapalli
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Stefano Mangiola
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
- Olivia Newton-John Cancer Research Institute; Heidelberg, Australia
| | - Daniela Schranner
- Exercise Biology Group, Technical University of Munich; Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University; Lucknow, India
| | - Manish Chamoli
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Sting L. Shi
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Bruno Lopes Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN); Nice, France
| | - Tripti Nair
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Annett Riermeier
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | - Elena M. Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Judy Z. Wu
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Aishwarya Nilakhe
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Christina Q. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael Muir
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Anna Foulger
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Alex Junker
- Department of Neurology, Columbia University; New York, USA
| | - Jack Devine
- Department of Neurology, Columbia University; New York, USA
| | - Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
| | | | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute; Lucknow, India
| | - Anand Rane
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Philipp Baumert
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | | | | | | | - Swati Kumari
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Alka Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Rajesh Sarkar
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Costerwell Khyriem
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Amanpreet S. Chawla
- Immunobiology Laboratory, National Institute of Immunology; New Delhi, India
- MRC-Protein Phosphorylation and Ubiquitination Unit, University of Dundee; Dundee, UK
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Nazan Sarper
- Pediatrics and Pediatric Hematology, Kocaeli University Hospital; Kocaeli, Turkey
| | | | - Bichitra K. Biswal
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University; Naples, Italy
| | - Perumal Nagarajan
- Primate Research Facility, National Institute of Immunology; New Delhi, India
- Small Animal Research Facility, National Institute of Immunology; New Delhi, India
| | - Kimara L. Targoff
- Division of Cardiology, Department of Pediatrics, Columbia University; New York, USA
| | - Martin Picard
- Department of Neurology, Columbia University; New York, USA
| | - Sarika Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
| | | | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University; Virginia, USA
| | | | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
- Centre for Healthy Longevity, National University Health System; Singapore, Singapore
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
| | | | | | - Abdullah Mahmood Ali
- Department of Medicine, Columbia University Irving Medical Center; New York, USA
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Aarno Palotie
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
- Broad Institute of Harvard and MIT; Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital; Boston, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | | | - Bhupinder Pal
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
| | - Vijay K. Yadav
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
- Department of Genetics and Development, Columbia University; New York, USA
| |
Collapse
|
32
|
Seegren PV, Harper LR, Downs TK, Zhao XY, Viswanathan SB, Stremska ME, Olson RJ, Kennedy J, Ewald SE, Kumar P, Desai BN. Reduced mitochondrial calcium uptake in macrophages is a major driver of inflammaging. NATURE AGING 2023:10.1038/s43587-023-00436-8. [PMID: 37277641 DOI: 10.1038/s43587-023-00436-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Mitochondrial dysfunction is linked to age-associated inflammation or inflammaging, but underlying mechanisms are not understood. Analyses of 700 human blood transcriptomes revealed clear signs of age-associated low-grade inflammation. Among changes in mitochondrial components, we found that the expression of mitochondrial calcium uniporter (MCU) and its regulatory subunit MICU1, genes central to mitochondrial Ca2+ (mCa2+) signaling, correlated inversely with age. Indeed, mCa2+ uptake capacity of mouse macrophages decreased significantly with age. We show that in both human and mouse macrophages, reduced mCa2+ uptake amplifies cytosolic Ca2+ oscillations and potentiates downstream nuclear factor kappa B activation, which is central to inflammation. Our findings pinpoint the mitochondrial calcium uniporter complex as a keystone molecular apparatus that links age-related changes in mitochondrial physiology to systemic macrophage-mediated age-associated inflammation. The findings raise the exciting possibility that restoring mCa2+ uptake capacity in tissue-resident macrophages may decrease inflammaging of specific organs and alleviate age-associated conditions such as neurodegenerative and cardiometabolic diseases.
Collapse
Affiliation(s)
- Philip V Seegren
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Logan R Harper
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Taylor K Downs
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Marta E Stremska
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rachel J Olson
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joel Kennedy
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pankaj Kumar
- Biochemistry and Molecular Genetics Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia, Bioinformatics Core, Charlottesville, VA, USA
| | - Bimal N Desai
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Stampley JE, Cho E, Wang H, Theall B, Johannsen NM, Spielmann G, Irving BA. Impact of maximal exercise on immune cell mobilization and bioenergetics. Physiol Rep 2023; 11:e15753. [PMID: 37312242 DOI: 10.14814/phy2.15753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Acute aerobic exercise increases the number and proportions of circulating peripheral blood mononuclear cells (PMBC) and can alter PBMC mitochondrial bioenergetics. In this study, we aimed to examine the impact of a maximal exercise bout on immune cell metabolism in collegiate swimmers. Eleven (7 M/4F) collegiate swimmers completed a maximal exercise test to measure anaerobic power and capacity. Pre- and postexercise PBMCs were isolated to measure the immune cell phenotypes and mitochondrial bioenergetics using flow cytometry and high-resolution respirometry. The maximal exercise bout increased circulating levels of PBMCs, particularly in central memory (KLRG1+/CD57-) and senescent (KLRG1+/CD57+) CD8+ T cells, whether measured as a % of PMBCs or as absolute concentrations (all p < 0.05). At the cellularlevel, the routine oxygen flow (IO2 [pmol·s-1 ·106 PBMCs-1 ]) increased following maximal exercise (p = 0.042); however, there were no effects of exercise on the IO2 measured under the LEAK, oxidative phosphorylation (OXPHOS), or electron transfer (ET) capacities. There were exercise-induced increases in the tissue-level oxygen flow (IO2-tissue [pmol·s-1 ·mL blood-1 ]) for all respiratory states (all p < 0.01), except for the LEAK state, after accounting for the mobilization of PBMCs. Future subtype-specific studies are needed to characterize further maximal exercise's true impact on immune cell bioenergetics.
Collapse
Affiliation(s)
- James E Stampley
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Eunhan Cho
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Haoyan Wang
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Bailey Theall
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Neil M Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
34
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
35
|
Monzel AS, Enríquez JA, Picard M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 2023; 5:546-562. [PMID: 37100996 PMCID: PMC10427836 DOI: 10.1038/s42255-023-00783-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2023]
Abstract
Mitochondria have cell-type specific phenotypes, perform dozens of interconnected functions and undergo dynamic and often reversible physiological recalibrations. Given their multifunctional and malleable nature, the frequently used terms 'mitochondrial function' and 'mitochondrial dysfunction' are misleading misnomers that fail to capture the complexity of mitochondrial biology. To increase the conceptual and experimental specificity in mitochondrial science, we propose a terminology system that distinguishes between (1) cell-dependent properties, (2) molecular features, (3) activities, (4) functions and (5) behaviours. A hierarchical terminology system that accurately captures the multifaceted nature of mitochondria will achieve three important outcomes. It will convey a more holistic picture of mitochondria as we teach the next generations of mitochondrial biologists, maximize progress in the rapidly expanding field of mitochondrial science, and also facilitate synergy with other disciplines. Improving specificity in the language around mitochondrial science is a step towards refining our understanding of the mechanisms by which this unique family of organelles contributes to cellular and organismal health.
Collapse
Affiliation(s)
- Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
36
|
Chu LE, Davis KM, Murdock KW. Mitochondrial oxygen respiration is associated with loneliness in a sample of community-dwelling adults. Mitochondrion 2023:S1567-7249(23)00031-4. [PMID: 36958676 DOI: 10.1016/j.mito.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/29/2022] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Loneliness, a distressing perception of insufficient social support, is associated with physical illness and premature mortality that may be explained by reduced mitochondrial efficiency. In this human study (n = 50), loneliness was associated with less efficient mitochondrial functioning, indicated by the bioenergetic health index (BHI; r = -.39, p = .009), coupling efficiency (r = -.34, p = .021), and phosphorylating respiration (r = .39, p = .009). These findings remained significant when controlling for age, sex, and body mass index. The association between loneliness and mitochondrial functioning is important, given that both have been associated with age-related diseases.
Collapse
Affiliation(s)
- Lauren E Chu
- The Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kristin M Davis
- The Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyle W Murdock
- The Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America.
| |
Collapse
|
37
|
Tolle I, Tiranti V, Prigione A. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids. EMBO Rep 2023; 24:e55678. [PMID: 36876467 PMCID: PMC10074100 DOI: 10.15252/embr.202255678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Tolle
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
38
|
Raggio V, Graña M, Winiarski E, Mansilla S, Simoes C, Rodríguez S, Brandes M, Tapié A, Rodríguez L, Cibils L, Alonso M, Martínez J, Fernández-Calero T, Domínguez F, Mezquida MR, Castro L, Cerisola A, Naya H, Cassina A, Quijano C, Spangenberg L. Computational and mitochondrial functional studies of novel compound heterozygous variants in SPATA5 gene support a causal link with epileptogenic encephalopathy. Hum Genomics 2023; 17:14. [PMID: 36849973 PMCID: PMC9972848 DOI: 10.1186/s40246-023-00463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.
Collapse
Affiliation(s)
- Víctor Raggio
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martín Graña
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Erik Winiarski
- grid.11630.350000000121657640Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mansilla
- grid.11630.350000000121657640Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Camila Simoes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Soledad Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mariana Brandes
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandra Tapié
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Rodríguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Cibils
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martina Alonso
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tamara Fernández-Calero
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XDepartment of Exact and Natural Sciences, Universidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Fernanda Domínguez
- grid.11630.350000000121657640Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,grid.442041.70000 0001 2188 793XUniversidad Católica del Uruguay, 11600 Montevideo, Uruguay
| | - Melania Rosas Mezquida
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alfredo Cerisola
- grid.11630.350000000121657640Departamento de Neuropediatría, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Naya
- grid.418532.90000 0004 0403 6035Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Celia Quijano
- grid.11630.350000000121657640Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
39
|
Mohareer K, Banerjee S. Mycobacterial infection alters host mitochondrial activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
40
|
Taylor HA, Finkel T, Gao Y, Ballinger SW, Campo R, Chen R, Chen SH, Davidson K, Iruela-Arispe ML, Jaquish C, LeBrasseur NK, Odden MC, Papanicolaou GJ, Picard M, Srinivas P, Tjurmina O, Wolz M, Galis ZS. Scientific opportunities in resilience research for cardiovascular health and wellness. Report from a National Heart, Lung, and Blood Institute workshop. FASEB J 2022; 36:e22639. [PMID: 36322029 PMCID: PMC9703084 DOI: 10.1096/fj.202201407r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Exposure of biological systems to acute or chronic insults triggers a host of molecular and physiological responses to either tolerate, adapt, or fully restore homeostasis; these responses constitute the hallmarks of resilience. Given the many facets, dimensions, and discipline-specific focus, gaining a shared understanding of "resilience" has been identified as a priority for supporting advances in cardiovascular health. This report is based on the working definition: "Resilience is the ability of living systems to successfully maintain or return to homeostasis in response to physical, molecular, individual, social, societal, or environmental stressors or challenges," developed after considering many factors contributing to cardiovascular resilience through deliberations of multidisciplinary experts convened by the National Heart, Lung, and Blood Institute during a workshop entitled: "Enhancing Resilience for Cardiovascular Health and Wellness." Some of the main emerging themes that support the possibility of enhancing resilience for cardiovascular health include optimal energy management and substrate diversity, a robust immune system that safeguards tissue homeostasis, and social and community support. The report also highlights existing research challenges, along with immediate and long-term opportunities for resilience research. Certain immediate opportunities identified are based on leveraging existing high-dimensional data from longitudinal clinical studies to identify vascular resilience measures, create a 'resilience index,' and adopt a life-course approach. Long-term opportunities include developing quantitative cell/organ/system/community models to identify resilience factors and mechanisms at these various levels, designing experimental and clinical interventions that specifically assess resilience, adopting global sharing of resilience-related data, and cross-domain training of next-generation researchers in this field.
Collapse
Affiliation(s)
- Herman A. Taylor
- Cardiovascular Research Institute Morehouse School of Medicine, Atlanta, Georgia, USA
- Morehouse-Emory Cardiovascular Center for Health Equity, Atlanta, Georgia, USA
- Harvard Chan School of Public Health, Atlanta, Georgia, USA
- Emory School of Medicine, Atlanta, Georgia, USA
| | - Toren Finkel
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott W. Ballinger
- University of Alabama Heersink School of Medicine, Birmingham, Alabama, USA
| | - Rebecca Campo
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rong Chen
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Shu Hui Chen
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karina Davidson
- Feinstein Institutes for Medical Research, Northwell Health, New York, New York, USA
| | | | - Cashell Jaquish
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - George J. Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Picard
- Columbia University Irving Medical Center, New York, New York, USA
- New York State Psychiatric Institute, New York, New York, USA
| | - Pothur Srinivas
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olga Tjurmina
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Wolz
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Memon AA, Vats S, Sundquist J, Li Y, Sundquist K. Mitochondrial DNA Copy Number: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1168-1190. [PMID: 36169625 DOI: 10.1089/ars.2022.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent Advances: Various studies have suggested that mitochondrial DNA copy number (mtDNA-CN), a surrogate biomarker of mitochondrial dysfunction, is an easily quantifiable biomarker for chronic diseases, including diabetes and cancer. However, current knowledge is limited, and the results are controversial. This has been attributed mainly to methodology and study design. Critical Issues: The incidence of diabetes and cancer has increased significantly in recent years. Moreover, type 2 diabetes (T2D) has been shown to be a risk factor for cancer. mtDNA-CN has been associated with both T2D and cancer. However, it is not known whether mtDNA-CN plays any role in the association between T2D and cancer. Significance: In this review, we have discussed mtDNA-CN in diabetes and cancer, and reviewed the literature and methodology used in published studies so far. Based on the literature review, we have speculated how mtDNA-CN may act as a link between diabetes and cancer. Furthermore, we have provided some recommendations for reliable translation of mtDNA-CN as a biomarker. Future Directions: Further research is required to elucidate the role of mtDNA-CN in the association between T2D and cancer. If established, early lifestyle interventions, such as physical activity and diet control that improve mitochondrial function, may help preventing cancer in patients with T2D. Antioxid. Redox Signal. 37, 1168-1190.
Collapse
Affiliation(s)
- Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Sakshi Vats
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Yanni Li
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
42
|
Bobba-Alves N, Juster RP, Picard M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 2022; 146:105951. [PMID: 36302295 PMCID: PMC10082134 DOI: 10.1016/j.psyneuen.2022.105951] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Chronic psychosocial stress increases disease risk and mortality, but the underlying mechanisms remain largely unclear. Here we outline an energy-based model for the transduction of chronic stress into disease over time. The energetic model of allostatic load (EMAL) emphasizes the energetic cost of allostasis and allostatic load, where the "load" is the additional energetic burden required to support allostasis and stress-induced energy needs. Living organisms have a limited capacity to consume energy. Overconsumption of energy by allostatic brain-body processes leads to hypermetabolism, defined as excess energy expenditure above the organism's optimum. In turn, hypermetabolism accelerates physiological decline in cells, laboratory animals, and humans, and may drive biological aging. Therefore, we propose that the transition from adaptive allostasis to maladaptive allostatic states, allostatic load, and allostatic overload arises when the added energetic cost of stress competes with longevity-promoting growth, maintenance, and repair. Mechanistically, the energetic restriction of growth, maintenance and repair processes leads to the progressive wear-and-tear of molecular and organ systems. The proposed model makes testable predictions around the physiological, cellular, and sub-cellular energetic mechanisms that transduce chronic stress into disease risk and mortality. We also highlight new avenues to quantify allostatic load and its link to health across the lifespan, via the integration of systemic and cellular energy expenditure measurements together with classic allostatic load biomarkers.
Collapse
Affiliation(s)
- Natalia Bobba-Alves
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Center on Sex⁎Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, Montreal, QC, Canada; Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
43
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Moriconi C, Dzieciatkowska M, Roy M, D'Alessandro A, Roingeard P, Lee JY, Gibb DR, Tredicine M, McGill MA, Qiu A, La Carpia F, Francis RO, Hod EA, Thomas T, Picard M, Akpan IJ, Luckey CJ, Zimring JC, Spitalnik SL, Hudson KE. Retention of functional mitochondria in mature red blood cells from patients with sickle cell disease. Br J Haematol 2022; 198:574-586. [PMID: 35670632 PMCID: PMC9329257 DOI: 10.1111/bjh.18287] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder characterized by sickled red blood cells (RBCs), which are more sensitive to haemolysis and can contribute to disease pathophysiology. Although treatment of SCD can include RBC transfusion, patients with SCD have high rates of alloimmunization. We hypothesized that RBCs from patients with SCD have functionally active mitochondria and can elicit a type 1 interferon response. We evaluated blood samples from more than 100 patients with SCD and found elevated frequencies of mitochondria in reticulocytes and mature RBCs, as compared to healthy blood donors. The presence of mitochondria in mature RBCs was confirmed by flow cytometry, electron microscopy, and proteomic analysis. The mitochondria in mature RBCs were metabolically competent, as determined by enzymatic activities and elevated levels of mitochondria-derived metabolites. Metabolically-active mitochondria in RBCs may increase oxidative stress, which could facilitate and/or exacerbate SCD complications. Coculture of mitochondria-positive RBCs with neutrophils induced production of type 1 interferons, which are known to increase RBC alloimmunization rates. These data demonstrate that mitochondria retained in mature RBCs are functional and can elicit immune responses, suggesting that inappropriate retention of mitochondria in RBCs may play an underappreciated role in SCD complications and be an RBC alloimmunization risk factor.
Collapse
Affiliation(s)
- Chiara Moriconi
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Micaela Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philippe Roingeard
- INSERM U1259 and Electron Microscopy Facility, Université de Tours and CHRU de Tours, Tours, France
| | - June Young Lee
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David R Gibb
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marlon A McGill
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Annie Qiu
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Francesca La Carpia
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Richard O Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Eldad A Hod
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Tiffany Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Imo J Akpan
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Carter Immunology Center, University of Virginia, Charlottesville, Virginia, USA
| | - Steven L Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Krystalyn E Hudson
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, New York, USA
| |
Collapse
|
45
|
Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson's disease. Parkinsonism Relat Disord 2022; 101:1-5. [PMID: 35728366 DOI: 10.1016/j.parkreldis.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Altered levels of mitochondrial DNA copy number (mtDNA-CN) have been proposed as a proxy for mitochondrial dysfunction. Following reports of mtDNA depletion in the blood and substantia nigra of Parkinson's disease (PD) cases, mtDNA-CN was also suggested as a possible biomarker for PD. Therefore, this study aimed to investigate whether blood mtDNA-CN levels of African ancestry PD cases would be altered compared to controls, as previously reported in individuals of Asian and European ancestry. METHODS Droplet digital polymerase chain reaction (ddPCR) was performed to quantify blood-derived mtDNA-CN levels as a ratio of a mitochondrial gene (MT-TL1) to a nuclear gene (B2M) in 72 PD cases and 79 controls of African ancestry (i.e. individuals with African mtDNA haplogroups) from South Africa. mtDNA-CN per cell was calculated by the formula 2 × MT-TL1/B2M. RESULTS Accepting study limitations, we report significantly higher mtDNA-CN in whole blood of our PD cases compared to controls (median difference = 81 copies/cell), independent of age (95% CI [64, 98]; P < 0.001]). These findings contradict previous reports of mtDNA depletion in PD cases. CONCLUSIONS We caution that the observed differences in mtDNA-CN between the present and past studies may be a result of unaccounted-for factors and variability in study designs. Consequently, larger well-designed investigations may help determine whether mtDNA-CN is consistently altered in the blood of PD cases across different ancestries and whether it can serve as a viable biomarker for PD.
Collapse
|
46
|
Picard M. Why Do We Care More About Disease than Health? PHENOMICS (CHAM, SWITZERLAND) 2022; 2:145-155. [PMID: 36939781 PMCID: PMC9590501 DOI: 10.1007/s43657-021-00037-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 04/30/2023]
Abstract
Modern Western biomedical research and clinical practice are primarily focused on disease. This disease-centric approach has yielded an impressive amount of knowledge around what goes wrong in illness. However, in comparison, researchers and physicians know little about health. What is health? How do we quantify it? And how do we improve it? We currently do not have good answers to these questions. Our lack of fundamental knowledge about health is partly driven by three main factors: (i) a lack of understanding of the dynamic processes that cause variations in health/disease states over time, (ii) an excessive focus on genes, and (iii) a pervasive psychological bias towards additive solutions. Here I briefly discuss potential reasons why scientists and funders have generally adopted a gene- and disease-centric framework, how medicine has ended up practicing "diseasecare" rather than healthcare, and present cursory evidence that points towards an alternative energetic view of health. Understanding the basis of human health with a similar degree of precision that has been deployed towards mapping disease processes could bring us to a point where we can actively support and promote human health across the lifespan, before disease shows up on a scan or in bloodwork.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032 USA
- Department of Neurology, Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032 USA
- New York State Psychiatric Institute, New York, NY 10032 USA
| |
Collapse
|
47
|
Bordoni L, Malinowska AM, Petracci I, Szwengiel A, Gabbianelli R, Chmurzynska A. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Mol Nutr Food Res 2022; 66:e2200003. [PMID: 35490412 DOI: 10.1002/mnfr.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/14/2022] [Indexed: 12/11/2022]
Abstract
SCOPE Mitochondrial DNA copy number (mtDNAcn) and its methylation level in the D-loop area have been correlated with metabolic health and are suggested to vary in response to environmental stimuli, including diet. Circulating levels of trimethylamine-n-oxide (TMAO), which is an oxidative derivative of the trimethylamine (TMA) produced by the gut microbiome from dietary precursors, have been associated with chronic diseases and are suggested to have an impact on mitochondrial dynamics. This study is aimed to investigate the relationship between diet, TMA, TMAO, and mtDNAcn, as well as DNA methylation. METHODS AND RESULTS Two hundred subjects with extreme (healthy and unhealthy) dietary patterns are recruited. Dietary records are collected to assess their nutrient intake and diets' quality (Healthy Eating Index). Blood levels of TMA and TMAO, circulating levels of TMA precursors and their dietary intakes are measured. MtDNAcn, nuclear DNA methylation long interspersed nuclear element 1 (LINE-1), and strand-specific D-loop methylation levels are assessed. There is no association between dietary patterns and mtDNAcn. The TMAO/TMA ratio is negatively correlated with d-loop methylation levels but positively with mtDNAcn. CONCLUSIONS These findings suggest a potential association between TMA metabolism and mitochondrial dynamics (and mtDNA), indicating a new avenue for further research.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Anna M Malinowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, 62032, MC, Italy
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| |
Collapse
|
48
|
Weiss SL, Henrickson SE, Lindell RB, Sartori LF, Zhang D, Bush J, Farooqi S, Starr J, Deutschman CS, McGowan FX, Becker L, Tuluc F, Wherry EJ, Picard M, Wallace DC. Influence of Immune Cell Subtypes on Mitochondrial Measurements in Peripheral Blood Mononuclear Cells From Children with Sepsis. Shock 2022; 57:630-638. [PMID: 34966070 PMCID: PMC9117409 DOI: 10.1097/shk.0000000000001903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Peripheral blood mononuclear cells (PBMCs) are commonly used to compare mitochondrial function in patients with versus without sepsis, but how these measurements in this mixed cell population vary by composition of immune cell subtypes is not known, especially in children. We determined the effect of changing immune cell composition on PBMC mitochondrial respiration and content in children with and without sepsis. METHODS PBMC mitochondrial respiration and citrate synthase (CS) activity, a marker of mitochondrial content, were measured in 167 children with sepsis at three timepoints (day 1-2, 3-5, and 8-14) and once in 19 nonseptic controls. The proportion of lymphocytes and monocytes and T, B, and NK cells was measured using flow cytometry. More specific CD4+ and CD8+ T cell subsets were measured from 13 sepsis patients and 6 controls. Spearman's correlation and simple and mixed effects linear regression were used to determine the association of PBMC mitochondrial measures with proportion of immune cell subtypes. RESULTS PBMC mitochondrial respiration and CS activity were correlated with proportion of monocytes, lymphocytes, T B, and NK cells in controls, but not in sepsis patients. PBMC mitochondrial respiration was correlated with CD4+ and CD8+ T cell subsets in both groups. After controlling for differences in immune cell composition between groups using linear regression models, PBMC respiration and CS activity remained lower in sepsis patients than controls. CONCLUSIONS Mitochondrial measurements from PBMCs varied with changes in immune cell composition in children with and without sepsis. However, differences in PBMC mitochondrial measurements between sepsis patients and controls were at least partially attributable to the effects of sepsis rather than solely an epiphenomena of variable immune cell composition.
Collapse
Affiliation(s)
- Scott L. Weiss
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pediatric Sepsis Program at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Robert B. Lindell
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pediatric Sepsis Program at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Laura F. Sartori
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donglan Zhang
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jenny Bush
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sumera Farooqi
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan Starr
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Clifford S. Deutschman
- Feinstein Institute for Medical Research at Hofstra-Northwell School of Medicine, NY, USA
| | - Francis X. McGowan
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance Becker
- Department of Emergency Medicine at Hofstra-Northwell School of Medicine, NY, USA
| | - Florin Tuluc
- Flow Cytometry Research Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - E. John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Martin Picard
- Departments of Psychiatry and Neurology, Division of Behavioral Medicine and Merritt Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
49
|
|
50
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|