1
|
Malavazos AE, Di Vincenzo A, Iacobellis G, Basilico S, Dubini C, Morricone L, Menicanti L, Luca T, Giordano A, Castorina S, Carruba M, Nisoli E, Del Prato S, Cinti S. The density of crown-like structures in epicardial adipose tissue could play a role in cardiovascular diseases. Eat Weight Disord 2022; 27:2905-2910. [PMID: 35678980 DOI: 10.1007/s40519-022-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The visceral fat of patients affected by abdominal obesity is inflamed, and the main histopathologic feature is the high density of crown-like structures (CLS). Epicardial adipose tissue (EAT) is a visceral fat of paramount importance for its relationships with coronary vessels and myocardium. Its inflammation in patients with abdominal obesity could be of clinical relevance, but histopathological studies on CLS density in EAT are lacking. This study aimed to assess the histopathology of EAT biopsies obtained from patients undergoing open-heart surgery. METHODS We collected EAT biopsies from 10 patients undergoing open-heart surgery for elective coronary artery bypass grafting (CABG) (n = 5) or valvular replacement (VR) (n = 5). Biopsies were treated for light microscopy and immunohistochemistry. We quantify the CLS density in each EAT sample. RESULTS Despite all patients having abdominal obesity, in EAT samples, no CLS were detected in the VR group; in contrast, CLS were detected in the CABG group (about 17 CLS/104 adipocytes vs. 0.0 CLS/104 adipocytes, CABG vs. VR group, respectively). An impressive density of CLS (100 times that of other patients) was found in one patient (LS) in the CABG group that had a relevant anamnestic aspect: relatively rapid increase of weight gain, especially in abdominal adipose tissue, coincident with myocardial infarction. CONCLUSIONS CLS density could be an important predictive tool for cardiovascular diseases. Furthermore, the LS case implies a role for timing in weight gain. LEVEL OF EVIDENCE No level of evidence; this is a basic science study.
Collapse
Affiliation(s)
- Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milan, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto 10a, Ancona, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, Miami, FL, USA
| | - Sara Basilico
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Milan, Italy
| | - Carola Dubini
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Milan, Italy
| | - Lelio Morricone
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Milan, Italy
| | - Lorenzo Menicanti
- Cardiac Surgery Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.,Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto 10a, Ancona, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.,Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | - Michele Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto 10a, Ancona, Italy.
| |
Collapse
|
2
|
Abstract
Obesity is a complex, multifactorial, and relapsing disease whose prevalence has tripled during the last decades and whose incidence is expected to further increase. For these reasons, obesity is considered as a real pandemic, deeply burdening the global health-care systems. From a pathophysiological standpoint obesity is the result of a chronic-positive energy balance which in turn leads to an excessive accumulation of lipids, not only within the adipose organ, but also in different cytotypes, a phenomenon leading to lipotoxicity that deeply compromises several cellular and organs functions. Obesity is therefore associated with over 200 medical complications, including insulin resistance and type 2 diabetes mellitus (T2DM) and represents the fifth leading cause of death worldwide. In this review, we describe the main pathophysiological mechanisms linking obesity-induced adipose organ dysfunction to insulin resistance and T2DM.
Collapse
|
3
|
Belloni A, Furlani M, Greco S, Notarstefano V, Pro C, Randazzo B, Pellegrino P, Zannotti A, Carpini GD, Ciavattini A, Di Lillo F, Giorgini E, Giuliani A, Cinti S, Ciarmela P. Uterine leiomyoma as useful model to unveil morphometric and macromolecular collagen state and impairment in fibrotic diseases: An ex-vivo human study. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166494. [PMID: 35850176 DOI: 10.1016/j.bbadis.2022.166494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 10/18/2022]
Abstract
Collagen is one of the main components of the extracellular matrix (ECM), involved, among all, in the maintenance of the structural support of tissues. In fibrotic diseases, collagen is overexpressed, and its production determines the formation of a significantly stiffer ECM. The cross-linking of high-resolution analytical tools, able to investigate both the tridimensional organization and the secondary structure of collagen in fibrotic diseases, could be useful to identify defined markers correlating the status of this protein with specific pathological conditions. To this purpose, an innovative multidisciplinary approach based on Phase-Contrast MicroComputed Tomography, Transmission Electron Microscopy, and Fourier Transform Infrared Imaging Spectroscopy was exploited on leiomyoma samples and adjacent myometrium to characterize microstructural collagen features. Uterine leiomyoma is a common gynecological disorder affecting women in fertile age. It is characterized by a massive collagen production due to the repairing processes occurring at myometrium level, and, hence, it represents a valuable model to investigate collagen self-organization in a pathological condition. Moreover, to evaluate the sensitivity of this multidisciplinary approach, the effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) omega-3 fatty acids in collagen reduction were also investigated.
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Michele Furlani
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Chiara Pro
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Basilio Randazzo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| | - Alessandro Zannotti
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Giovanni Delli Carpini
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Andrea Ciavattini
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | | | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Alessandra Giuliani
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center of Obesity, Università Politecnica delle Marche, Ancona, Italy.
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
4
|
Cinti F, Cinti S. The Endocrine Adipose Organ: A System Playing a Central Role in COVID-19. Cells 2022; 11:cells11132109. [PMID: 35805193 PMCID: PMC9265618 DOI: 10.3390/cells11132109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
In the last 30 years the adipose cell has been object of several studies, turning its reputation from an inert cell into the main character involved in the pathophysiology of multiple diseases, including the ongoing COVID-19 pandemic, which has changed the clinical scenario of the last two years. Composed by two types of tissue (white and brown), with opposite roles, the adipose organ is now classified as a real endocrine organ whose dysfunction is involved in different diseases, mainly obesity and type 2 diabetes. In this mini-review we aim to retrace the adipose organ history from physiology to physiopathology, to provide therapeutic perspectives for the prevention and treatment of its two main related diseases (obesity and type 2 diabetes) and to summarize the most recent discoveries linking adipose tissue to COVID-19.
Collapse
Affiliation(s)
- Francesca Cinti
- UOS Centro Malattie Endocrine e Metaboliche, UOC Endocrinologia e Diabetologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Saverio Cinti
- Center of Obesity, Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
- Correspondence: or ; Tel.: +39-3396936172
| |
Collapse
|
5
|
Perugini J, Di Mercurio E, Giuliani A, Sabbatinelli J, Bonfigli AR, Tortato E, Severi I, Cinti S, Olivieri F, le Roux CW, Gesuita R, Giordano A. Ciliary neurotrophic factor is increased in the plasma of patients with obesity and its levels correlate with diabetes and inflammation indices. Sci Rep 2022; 12:8331. [PMID: 35585213 DOI: 10.1038/s41598-022-11942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
To establish whether obesity involves activation of endogenous ciliary neurotrophic factor (CNTF) signalling, we evaluated its plasma levels in patients with obesity and correlated its values with the major clinical and haematological indices of obesity, insulin resistance and systemic inflammation. This study involved 118 subjects: 39 healthy controls (19 men), 39 subjects with obesity (19 men) and 40 subjects with obesity and diabetes (20 men). Plasma CNTF and CNTF receptor α (CNTFRα) were measured using commercial ELISA kits. The results showed that plasma CNTF was significantly higher in males and females with obesity with and without diabetes than in healthy subjects. Women consistently exhibited higher levels of circulating CNTF. In both genders, CNTF levels correlated significantly and positively with obesity (BMI, WHR, leptin), diabetes (fasting insulin, HOMA index and HbA1c) and inflammation (IL-6 and hsCRP) indices. Circulating CNTFRα and the CNTF/CNTFRα molar ratio tended to be higher in the patient groups than in controls. In conclusion, endogenous CNTF signalling is activated in human obesity and may help counteract some adverse effects of obesity. Studies involving a higher number of selected patients may reveal circulating CNTF and/or CNTFRα as potential novel diagnostic and/or prognostic markers of obesity, diabetes and associated diseases.
Collapse
|
6
|
Affiliation(s)
- Saverio Cinti
- Scientific Director Center of Obesity, Marche Polytechnic University, Via Tronto 10a, 60126, Ancona, Italy.
| |
Collapse
|
7
|
Annunziata C, Pirozzi C, Lama A, Senzacqua M, Comella F, Bordin A, Monnolo A, Pelagalli A, Ferrante MC, Mollica MP, Iossa A, De Falco E, Mattace Raso G, Cinti S, Giordano A, Meli R. Palmitoylethanolamide Promotes White-to-Beige Conversion and Metabolic Reprogramming of Adipocytes: Contribution of PPAR-α. Pharmaceutics 2022; 14:pharmaceutics14020338. [PMID: 35214069 PMCID: PMC8880285 DOI: 10.3390/pharmaceutics14020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The potential role of brown and beige adipose tissue against obesity has been recognized. Browning, or beiging of white adipose tissue (WAT) is associated with the remodeling of adipocytes and the improvement of their metabolic and secretory functions. Here, palmitoylethanolamide (PEA) restore the plasticity of brown and white adipocytes impaired in mice on a high-fat diet (HFD). Young male C57Bl/6J mice were fed with control (STD) diet or HFD for 12 weeks. Ultramicronized PEA (30 mg/kg/die p.o.) was administered for an additional 7 weeks, together with HFD. PEA recovered interscapular brown fat morphology and function, increasing UCP1 positivity, noradrenergic innervation, and inducing the mRNA transcription of several specialized thermogenic genes. PEA promotes the beige-conversion of the subcutaneous WAT, increasing thermogenic markers and restoring leptin signaling and tissue hormone sensitivity. The pivotal role of lipid-sensing peroxisome proliferator-activated receptor (PPAR)-α in PEA effects was determined in mature 3T3-L1. Moreover, PEA improved mitochondrial bioenergetics in mature adipocytes measured by a Seahorse analyzer and induced metabolic machinery via AMPK phosphorylation. All these outcomes were dampened by the receptor antagonist GW6471. Finally, PEA induced adipogenic differentiation and increased AMPK phosphorylation in human adipose-derived stromal cells (ASCs) obtained from subcutaneous WAT of normal-weight patients and patients with obesity. We identify PEA and PPAR-α activation as the main mechanism by which PEA can rewire energy-storing white into energy-consuming brown-like adipocytes via multiple and converging effects that restore WAT homeostasis and metabolic flexibility.
Collapse
Affiliation(s)
- Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (C.P.); (A.L.); (F.C.); (G.M.R.)
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (C.P.); (A.L.); (F.C.); (G.M.R.)
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (C.P.); (A.L.); (F.C.); (G.M.R.)
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60020 Ancona, Italy; (M.S.); (S.C.); (A.G.)
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (C.P.); (A.L.); (F.C.); (G.M.R.)
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 04100 Latina, Italy; (A.B.); (A.I.); (E.D.F.)
| | - Anna Monnolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (A.M.); (M.C.F.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Biostructure and Bioimaging, National Research Council (CNR), 80134 Naples, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (A.M.); (M.C.F.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angelo Iossa
- Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 04100 Latina, Italy; (A.B.); (A.I.); (E.D.F.)
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 04100 Latina, Italy; (A.B.); (A.I.); (E.D.F.)
- Mediterranea Cardiocenter, 80122 Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (C.P.); (A.L.); (F.C.); (G.M.R.)
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60020 Ancona, Italy; (M.S.); (S.C.); (A.G.)
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60020 Ancona, Italy; (M.S.); (S.C.); (A.G.)
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (C.A.); (C.P.); (A.L.); (F.C.); (G.M.R.)
- Correspondence: ; Tel.: +39-08-167-8413 (ext. 80131)
| |
Collapse
|
8
|
Colleluori G, Graciotti L, Pesaresi M, Di Vincenzo A, Perugini J, Di Mercurio E, Caucci S, Bagnarelli P, Zingaretti CM, Nisoli E, Menzo S, Tagliabracci A, Ladoux A, Dani C, Giordano A, Cinti S. Visceral fat inflammation and fat embolism are associated with lung’s lipidic hyaline membranes in subjects with COVID-19. Int J Obes (Lond) 2022; 46:1009-1017. [PMID: 35082385 PMCID: PMC8790008 DOI: 10.1038/s41366-022-01071-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
|
9
|
Watanabe M, Risi R, Tafuri MA, Silvestri V, D'Andrea D, Raimondo D, Rea S, Di Vincenzo F, Profico A, Tuccinardi D, Sciuto R, Basciani S, Mariani S, Lubrano C, Cinti S, Ottini L, Manzi G, Gnessi L. Bone density and genomic analysis unfold cold adaptation mechanisms of ancient inhabitants of Tierra del Fuego. Sci Rep 2021; 11:23290. [PMID: 34857816 PMCID: PMC8639971 DOI: 10.1038/s41598-021-02783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
The Fuegians, ancient inhabitants of Tierra del Fuego, are an exemplary case of a cold-adapted population, since they were capable of living in extreme climatic conditions without any adequate clothing. However, the mechanisms of their extraordinary resistance to cold remain enigmatic. Brown adipose tissue (BAT) plays a crucial role in this kind of adaptation, besides having a protective role on the detrimental effect of low temperatures on bone structure. Skeletal remains of 12 adult Fuegians, collected in the second half of XIX century, were analyzed for bone mineral density and structure. We show that, despite the unfavorable climate, bone mineral density of Fuegians was close to that seen in modern humans living in temperate zones. Furthermore, we report significant differences between Fuegians and other cold-adapted populations in the frequency of the Homeobox protein Hox-C4 (HOXC4) rs190771160 variant, a gene involved in BAT differentiation, whose identified variant is predicted to upregulate HOXC4 expression. Greater BAT accumulation might therefore explain the Fuegians extreme cold-resistance and the protection against major cold-related damage. These results increase our understanding of how ecological challenges have been important drivers of human–environment interactions during Humankind history.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | - Renata Risi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mary Anne Tafuri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | - Daniel D'Andrea
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sandra Rea
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Di Vincenzo
- Natural History Museum-University of Florence, Florence, Italy.,Italian Institute of Human Paleontology (IsIPU), Anagni-Rome, Italy
| | - Antonio Profico
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, 00128, Rome, Italy
| | - Rosa Sciuto
- Nuclear Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Basciani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Mariani
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Lubrano
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Saverio Cinti
- Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Acín-Perez R, Petcherski A, Veliova M, Benador IY, Assali EA, Colleluori G, Cinti S, Brownstein AJ, Baghdasarian S, Livhits MJ, Yeh MW, Krishnan KC, Vergnes L, Winn NC, Padilla J, Liesa M, Sacks HS, Shirihai OS. Recruitment and remodeling of peridroplet mitochondria in human adipose tissue. Redox Biol 2021; 46:102087. [PMID: 34411987 PMCID: PMC8377484 DOI: 10.1016/j.redox.2021.102087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/31/2023] Open
Abstract
Beige adipocyte mitochondria contribute to thermogenesis by uncoupling and by ATP-consuming futile cycles. Since uncoupling may inhibit ATP synthesis, it is expected that expenditure through ATP synthesis is segregated to a disparate population of mitochondria. Recent studies in mouse brown adipocytes identified peridroplet mitochondria (PDM) as having greater ATP synthesis and pyruvate oxidation capacities, while cytoplasmic mitochondria have increased fatty acid oxidation and uncoupling capacities. However, the occurrence of PDM in humans and the processes that result in their expansion have not been elucidated. Here, we describe a novel high-throughput assay to quantify PDM that is successfully applied to white adipose tissue from mice and humans. Using this approach, we found that PDM content varies between white and brown fat in both species. We used adipose tissue from pheochromocytoma (Pheo) patients as a model of white adipose tissue browning, which is characterized by an increase in the capacity for energy expenditure. In contrast with control subjects, PDM content was robustly increased in the periadrenal fat of Pheo patients. Remarkably, bioenergetic changes associated with browning were primarily localized to PDM compared to cytoplasmic mitochondria (CM). PDM isolated from periadrenal fat of Pheo patients had increased ATP-linked respiration, Complex IV content and activity, and maximal respiratory capacity. We found similar changes in a mouse model of re-browning where PDM content in whitened brown adipose tissue was increased upon re-browning induced by decreased housing temperature. Taken together, this study demonstrates the existence of PDM as a separate functional entity in humans and that browning in both mice and humans is associated with a robust expansion of peri-droplet mitochondria characterized by increased ATP synthesis linked respiration.
Collapse
Affiliation(s)
- Rebeca Acín-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Michaela Veliova
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Ilan Y Benador
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Essam A Assali
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, 60020, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, 60020, Italy
| | - Alexandra J Brownstein
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Molecular Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Siyouneh Baghdasarian
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Masha J Livhits
- Section of Endocrine Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Michael W Yeh
- Section of Endocrine Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Karthickeyan Chella Krishnan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, OH, USA
| | - Laurent Vergnes
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Nathan C Winn
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Molecular Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA.
| | - Harold S Sacks
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Endocrine and Diabetes Division, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118, USA; Molecular Cellular Integrative Physiology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
De Caro R, Boscolo-Berto R, Artico M, Bertelli E, Cannas M, Cappello F, Carpino G, Castorina S, Cataldi A, Cavaletti GA, Cinti S, Cocco LI, Cremona O, Crivellato E, De Luca A, Falconi M, Familiari G, Ferri GL, Fornai F, Gesi M, Geuna S, Gibelli DM, Giordano A, Gobbi P, Guerra G, Gulisano M, Macchi V, Macchiarelli G, Manzoli L, Michetti F, Miscia S, Montagnani S, Montella ACM, Morini S, Onori P, Palumbo C, Papa M, Porzionato A, Quacci DE, Raspanti M, Rende M, Rezzani R, Ribatti D, Ripani M, Rodella LF, Rossi P, Sbarbati A, Secchiero P, Sforza C, Stecco C, Toni R, Vercelli A, Vitale M, Zancanaro C, Zauli G, Zecchi S, Anastasi GP, Gaudio E. The Italian law on body donation: A position paper of the Italian College of Anatomists. Ann Anat 2021; 238:151761. [PMID: 34139280 DOI: 10.1016/j.aanat.2021.151761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
In Italy, recent legislation (Law No. 10/2020) has tuned regulations concerning the donation of one's postmortem body and tissues for study, training, and scientific research purposes. This study discusses several specific issues to optimise the applicability and effectiveness of such an important, novel regulatory setting. Critical issues arise concerning the learners, the type of training and teaching activities that can be planned, the position of academic anatomy institutes, the role of family members in the donation process, the time frame of the donation process, the eligibility of partial donation, or the simultaneous donation of organs and tissues to patients awaiting transplantation. In particular, a universal time limit for donations (i.e., one year) makes it impossible to plan the long-term use of specific body parts, which could be effectively preserved for the advanced teaching and training of medical students and surgeons. The abovementioned conditions lead to the limited use of corpses, thus resulting in the inefficiency of the whole system of body donation. Overall, the donors' scope for the donation of their body could be best honoured by a more flexible and tuneable approach that can be used on a case-by-case basis. Furthermore, it is deemed necessary to closely monitor the events scheduled for corpses in public nonacademic institutions or private enterprises. This paper presents useful insights from Italian anatomists with the hope of providing inspiration for drafting the regulations. In conclusion, this paper focuses on the critical issues derived from the recently introduced Italian law on the donation and use of the body after death and provides suggestions to lawmakers for future implementations.
Collapse
Affiliation(s)
- Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, Padua, Italy.
| | - Rafael Boscolo-Berto
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, Padua, Italy.
| | - Marco Artico
- Department of Sensory Organs, "Sapienza" University of Rome, Rome, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mario Cannas
- Department of Health Sciences, Laboratory of Human Anatomy, University of Piemonte Orientale, Novara, Italy
| | - Francesco Cappello
- Department of Biomedicine and Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Sergio Castorina
- Department of Biomedical and Technological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Guido Angelo Cavaletti
- School of Medicine and Surgery, Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | | | - Ottavio Cremona
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Crivellato
- Department of Medicine, Section of Human Anatomy, University of Udine, Udine, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, Italy
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Cagliari, Italy
| | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marco Gesi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Veronica Macchi
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, Italy
| | - Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sebastiano Miscia
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefania Montagnani
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Sergio Morini
- Laboratory of Microscopical and Ultrastructural Anatomy, "Campus Bio-Medico di Roma" University, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Papa
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, Padua, Italy
| | | | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mario Rende
- Department of Surgery and Biomedical Sciences, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, Anatomy and Physiopathology Division, University of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Maurizio Ripani
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luigi Fabrizio Rodella
- Department of Clinical and Experimental Sciences, Anatomy and Physiopathology Division, University of Brescia, Brescia, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Chiarella Sforza
- Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padua, Padua, Italy
| | - Roberto Toni
- Department of Medicine and Surgery, Section of Human Anatomy, University of Parma, Parma, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, Section of Human Anatomy, University of Parma, Parma, Italy
| | - Carlo Zancanaro
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sandra Zecchi
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Florence, Italy
| | - Giuseppe Pio Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Abstract
The mammary gland (MG) is an exocrine gland present in female mammals responsible for the production and secretion of milk during the process of lactation. It is mainly composed by epithelial cells and adipocytes. Among the features that make the MG unique there are 1) its highly plastic properties displayed during pregnancy, lactation and involution (all steps belonging to the lactation cycle) and 2) its requirement to grow in close association with adipocytes which are absolutely necessary to ensure MG's proper development at puberty and remodeling during the lactation cycle. Although MG adipocytes play such a critical role for the gland development, most of the studies have focused on its epithelial component only, leaving the role of the neighboring adipocytes largely unexplored. In this review we aim to describe evidences regarding MG's adipocytes role and properties in physiologic conditions (gland development and lactation cycle), obesity and breast cancer, emphasizing the existing gaps in the literature which deserve further investigation.
Collapse
Affiliation(s)
- Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto, 10A 60020, Ancona, Italy.
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto, 10A 60020, Ancona, Italy
| | - Giorgio Barbatelli
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto, 10A 60020, Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Via Tronto, 10A 60020, Ancona, Italy.
| |
Collapse
|
13
|
Abstract
Since the outbreak of COVID-19, clinicians have tried every effort to fight the disease, and multiple drugs have been proposed. However, no proven effective therapies currently exist, and different clinical phenotypes complicate the situation. In clinical practice, many severe or critically ill COVID-19 patients developed gastrointestinal (GI) disturbances, including vomiting, diarrhoea, or abdominal pain, even in the absence of cough and dyspnea. Understanding the mechanism of GI disturbances is warranted for exploring better clinical care for COVID-19 patients. With evidence collected from clinical studies on COVID-19 and basic research on a rare genetic disease (i.e., Hartnup disorder), we put forward a novel hypothesis to elaborate an effective nutritional therapy. We hypothesize that SARS-CoV-2 spike protein, binding to intestinal angiotensin-converting enzyme 2, negatively regulates the absorption of neutral amino acids, and this could explain not only the GI, but also systemic disturbances in COVID-19. Amino acid supplements could be recommended.Level of evidence No level of evidence: Hypothesis article.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Biomedical Technology and Translational Medicine, Center for Study and Research on Obesity, University of Milan, Milan, 20129, Italy.
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy.
| |
Collapse
|
14
|
Bonifazi M, Mei F, Skrami E, Latini LL, Amico D, Balestro E, Bini F, Bonifazi F, Caminati A, Candoli P, Cinti S, Contucci S, Di Marco Berardino A, Harari S, Levi G, Lococo S, Menditto V, Marchetti G, Piciucchi S, Poletti V, Ravaglia C, Saetta M, Svegliati-Baroni G, Tomassetti S, Tamburrini M, Zanforlin A, Zuccon U, Zuccatosta L, Gasparini S, Carle F. Predictors of Worse Prognosis in Young and Middle-Aged Adults Hospitalized with COVID-19 Pneumonia: A Multi-Center Italian Study (COVID-UNDER50). J Clin Med 2021; 10:1218. [PMID: 33804084 DOI: 10.3390/jcm10061218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity as well as metabolic and cardiovascular comorbidities are established, significant predictors of worse prognosis in the overall COVID-19 population, but limited information is available on their roles in young and middle-aged adults (aged ≤ 50 years). The main objectives of the present Italian multi-center study were to describe clinical characteristics and role of selected prognostic predictors in a large cohort of young and middle-aged hospitalized patients. Nine pulmonology units, across north and center of Italy, were involved in this retrospective study. Comorbidities were classified according to their known or potential association with COVID-19. A total of 263 subjects were included. The prevalence of obesity was 25.9%, mechanical ventilation (MV) was needed in 27.7%, and 28 in-hospital deaths occurred (10.6%). Obesity and older age were the only independent, significant predictors for MV. Comorbidities, such as hypertension, diabetes, asthma, and increased D-dimer levels were significantly associated with higher mortality risk, regardless of age, body mass index, and MV. Obesity in young and middle-aged adults is a strong predictor of a more complicated COVID-19, without, however, evidence of a significant effect on in-hospital mortality. Selected comorbidities, including hypertension, diabetes and asthma, significantly impact survival even in a younger population, suggesting the need for prompt recognition of these conditions.
Collapse
|
15
|
Cinti F, Mezza T, Severi I, Suleiman M, Cefalo CMA, Sorice GP, Moffa S, Impronta F, Quero G, Alfieri S, Mari A, Pontecorvi A, Marselli L, Cinti S, Marchetti P, Giaccari A. Noradrenergic fibers are associated with beta-cell dedifferentiation and impaired beta-cell function in humans. Metabolism 2021; 114:154414. [PMID: 33129839 DOI: 10.1016/j.metabol.2020.154414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes (T2D) is characterized by a progressive loss of beta-cell function, and the "disappearance" of beta-cells in T2D may also be caused by the process of beta -cell dedifferentiation. Since noradrenergic innervation inhibits insulin secretion and density of noradrenergic fibers is increased in type 2 diabetes mouse models, we aimed to study the relation between islet innervation, dedifferentiation and beta-cell function in humans. METHODS Using immunohistochemistry and electron microscopy, we analyzed pancreata from organ donors and from patients undergoing pancreatic surgery. In the latter, a pre-surgical detailed metabolic characterization by oral glucose tolerance test (OGTT) and hyperglycemic clamp was performed before surgery, thus obtaining in vivo functional parameters of beta-cell function and insulin secretion. RESULTS The islets of diabetic subjects were 3 times more innervated than controls (0.91 ± 0.21 vs 0.32 ± 0.10, n.fibers/islet; p = 0.01), and directly correlated with the dedifferentiation score (r = 0.39; p = 0.03). In vivo functional parameters of insulin secretion, assessed by hyperglycemic clamp, negatively correlated with the increase in fibers [beta-cell Glucose Sensitivity (r = -0.84; p = 0.01), incremental second-phase insulin secretion (r = -0.84, p = 0.03) and arginine-stimulated insulin secretion (r = -0.76, p = 0.04)]. Moreover, we observed a progressive increase in fibers, paralleling worsening glucose tolerance (from NGT through IGT to T2D). CONCLUSIONS/INTERPRETATION Noradrenergic fibers are significantly increased in the islets of diabetic subjects and this positively correlates with beta-cell dedifferentiation score. The correlation between in vivo insulin secretion parameters and the density of pancreatic noradrenergic fibers suggests a significant involvement of these fibers in the pathogenesis of the disease, and indirectly, in the islet dedifferentiation process.
Collapse
Affiliation(s)
- F Cinti
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - T Mezza
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - I Severi
- Department of Clinical and Experimental Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - M Suleiman
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - C M A Cefalo
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G P Sorice
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - S Moffa
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Impronta
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Quero
- Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Istituto di Semeiotica Chirurgica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - S Alfieri
- Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Istituto di Semeiotica Chirurgica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - A Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - A Pontecorvi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - S Cinti
- Department of Clinical and Experimental Medicine, Center of Obesity, Università Politecnica delle Marche, Ancona, Italy
| | - P Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - A Giaccari
- Centro per le Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
16
|
Neess D, Kruse V, Marcher AB, Wæde MR, Vistisen J, Møller PM, Petersen R, Brewer JR, Ma T, Colleluori G, Severi I, Cinti S, Gerhart-Hines Z, Mandrup S, Færgeman NJ. Epidermal Acyl-CoA-binding protein is indispensable for systemic energy homeostasis. Mol Metab 2021; 44:101144. [PMID: 33346070 DOI: 10.1016/j.molmet.2020.101144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The skin is the largest sensory organ of the human body and plays a fundamental role in regulating body temperature. However, adaptive alterations in skin functions and morphology have only vaguely been associated with physiological responses to cold stress or sensation of ambient temperatures. We previously found that loss of acyl-CoA-binding protein (ACBP) in keratinocytes upregulates lipolysis in white adipose tissue and alters hepatic lipid metabolism, suggesting a link between epidermal barrier functions and systemic energy metabolism. METHODS To assess the physiological responses to loss of ACBP in keratinocytes in detail, we used full-body ACBP-/- and skin-specific ACBP-/- knockout mice to clarify how loss of ACBP affects 1) energy expenditure by indirect calorimetry, 2) response to high-fat feeding and a high oral glucose load, and 3) expression of brown-selective gene programs by quantitative PCR in inguinal WAT (iWAT). To further elucidate the role of the epidermal barrier in systemic energy metabolism, we included mice with defects in skin structural proteins (ma/ma Flgft/ft) in these studies. RESULTS We show that the ACBP-/- mice and skin-specific ACBP-/- knockout mice exhibited increased energy expenditure, increased food intake, browning of the iWAT, and resistance to diet-induced obesity. The metabolic phenotype, including browning of the iWAT, was reversed by housing the mice at thermoneutrality (30 °C) or pharmacological β-adrenergic blocking. Interestingly, these findings were phenocopied in flaky tail mice (ma/ma Flgft/ft). Taken together, we demonstrate that a compromised epidermal barrier induces a β-adrenergic response that increases energy expenditure and browning of the white adipose tissue to maintain a normal body temperature. CONCLUSIONS Our findings show that the epidermal barrier plays a key role in maintaining systemic metabolic homeostasis. Thus, regulation of epidermal barrier functions warrants further attention to understand the regulation of systemic metabolism in further detail.
Collapse
|
17
|
Castorina S, Barresi V, Luca T, Privitera G, De Geronimo V, Lezoche G, Cosentini I, Di Vincenzo A, Barbatelli G, Giordano A, Taus M, Nicolai A, Condorelli DF, Cinti S. Gastric ghrelin cells in obese patients are hyperactive. Int J Obes (Lond) 2020; 45:184-194. [PMID: 33230309 DOI: 10.1038/s41366-020-00711-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES Distribution and activity of ghrelin cells in the stomach of obese subjects are controversial. SUBJECTS/METHODS We examined samples from stomachs removed by sleeve gastrectomy in 49 obese subjects (normoglycemic, hyperglycemic and diabetic) and quantified the density of ghrelin/chromogranin endocrine cells by immunohistochemistry. Data were compared with those from 13 lean subjects evaluated by gastroscopy. In 44 cases (11 controls and 33 obese patients) a gene expression analysis of ghrelin and its activating enzyme ghrelin O-acyl transferase (GOAT) was performed. In 21 cases (4 controls and 17 obese patients) the protein levels of unacylated and acylated-ghrelin were measured by ELISA tests. In 18 cases (4 controls and 14 obese patients) the morphology of ghrelin-producing cells was evaluated by electron microscopy. RESULTS The obese group, either considered as total population or divided into subgroups, did not show any significant difference in ghrelin cell density when compared with control subjects. Inter-glandular smooth muscle fibres were increased in obese patients. In line with a positive trend of the desacylated form found by ELISA, Ghrelin and GOAT mRNA expression in obese patients was significantly increased. The unique ghrelin cell ultrastructure was maintained in all obese groups. In the hyperglycemic obese patients, the higher ghrelin expression matched with ultrastructural signs of endocrine hyperactivity, including expanded rough endoplasmic reticulum and reduced density, size and electron-density of endocrine granules. A positive correlation between ghrelin gene expression and glycemic values, body mass index and GOAT was also found. All obese patients with type 2 diabetes recovered from diabetes at follow-up after 5 months with a 16.5% of weight loss. CONCLUSIONS Given the known inhibitory role on insulin secretion of ghrelin, these results suggest a possible role for gastric ghrelin overproduction in the complex architecture that takes part in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.,Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Tonia Luca
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | | | | | - Giovanni Lezoche
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Ilaria Cosentini
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Giorgio Barbatelli
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Marina Taus
- Dietetic Unit and Clinical Nutrition, United Hospitals of Ancona, Ancona, Italy
| | - Albano Nicolai
- Dietetic Unit and Clinical Nutrition, United Hospitals of Ancona, Ancona, Italy
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Saverio Cinti
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy. .,Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy. .,Dietetic Unit and Clinical Nutrition, United Hospitals of Ancona, Ancona, Italy.
| |
Collapse
|
18
|
Blasetti Fantauzzi C, Iacobini C, Menini S, Vitale M, Sorice GP, Mezza T, Cinti S, Giaccari A, Pugliese G. Galectin-3 gene deletion results in defective adipose tissue maturation and impaired insulin sensitivity and glucose homeostasis. Sci Rep 2020; 10:20070. [PMID: 33208796 PMCID: PMC7675972 DOI: 10.1038/s41598-020-76952-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adiposopathy is a pathological adipose tissue (AT) response to overfeeding characterized by reduced AT expandability due to impaired adipogenesis, which favors inflammation, insulin resistance (IR), and abnormal glucose regulation. However, it is unclear whether defective adipogenesis causes metabolic derangement also independently of an increased demand for fat storage. As galectin-3 has been implicated in both adipocyte differentiation and glucose homeostasis, we tested this hypothesis in galectin-3 knockout (Lgal3−/−) mice fed a standard chow. In vitro, Lgal3−/− adipocyte precursors showed impaired terminal differentiation (maturation). Two-month-old Lgal3−/− mice showed impaired AT maturation, with reduced adipocyte size and expression of adipogenic genes, but unchanged fat mass and no sign of adipocyte degeneration/death or ectopic fat accumulation. AT immaturity was associated with AT and whole-body inflammation and IR, glucose intolerance, and hyperglycemia. Five-month-old Lgal3−/− mice exhibited a more mature AT phenotype, with no difference in insulin sensitivity and expression of inflammatory cytokines versus WT animals, though abnormal glucose homeostasis persisted and was associated with reduced β-cell function. These data show that adipogenesis capacity per se affects AT function, insulin sensitivity, and glucose homeostasis independently of increased fat intake, accumulation and redistribution, thus uncovering a direct link between defective adipogenesis, IR and susceptibility to diabetes.
Collapse
Affiliation(s)
- Claudia Blasetti Fantauzzi
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Gian Pio Sorice
- Centre for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Teresa Mezza
- Centre for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| | - Andrea Giaccari
- Centre for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.
| |
Collapse
|
19
|
Ruocco C, Ragni M, Rossi F, Carullo P, Ghini V, Piscitelli F, Cutignano A, Manzo E, Ioris RM, Bontems F, Tedesco L, Greco CM, Pino A, Severi I, Liu D, Ceddia RP, Ponzoni L, Tenori L, Rizzetto L, Scholz M, Tuohy K, Bifari F, Di Marzo V, Luchinat C, Carruba MO, Cinti S, Decimo I, Condorelli G, Coppari R, Collins S, Valerio A, Nisoli E. Manipulation of Dietary Amino Acids Prevents and Reverses Obesity in Mice Through Multiple Mechanisms That Modulate Energy Homeostasis. Diabetes 2020; 69:2324-2339. [PMID: 32778569 PMCID: PMC7576563 DOI: 10.2337/db20-0489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Pierluigi Carullo
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
| | - Veronica Ghini
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Rafael Maciel Ioris
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franck Bontems
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Annachiara Pino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Luisa Ponzoni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
- Institute of Neuroscience, National Research Council, Milan, Italy
| | - Leonardo Tenori
- FiorGen Foundation, Sesto Fiorentino, Italy
- Center of Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Matthias Scholz
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Vincenzo Di Marzo
- Canada Excellence Research Chair Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
- Joint International Research Unit for Chemical and Biochemical Research on the Microbiome and Its Impact on Metabolic Health and Nutrition, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy and Université Laval, Quebec City, Canada
| | - Claudio Luchinat
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Ilaria Decimo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gianluigi Condorelli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
- Humanitas University, Rozzano, Italy
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Sun W, Dong H, Balaz M, Slyper M, Drokhlyansky E, Colleluori G, Giordano A, Kovanicova Z, Stefanicka P, Balazova L, Ding L, Husted AS, Rudofsky G, Ukropec J, Cinti S, Schwartz TW, Regev A, Wolfrum C. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 2020; 587:98-102. [PMID: 33116305 DOI: 10.1038/s41586-020-2856-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
|
21
|
Cangiotti AM, Pifferi M, Fonnesu R, Gracci S, Cinti S. Cytoplasmic ciliary inclusions can reflect an abnormal ciliogenesis in respiratory epithelium. Pediatr Pulmonol 2020; 55:1874-1875. [PMID: 32453895 DOI: 10.1002/ppul.24859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Angela M Cangiotti
- Department of Experimental and Clinical Medicine, Biology of Obesity-Electron Microscopy Unit, Center of Obesity, United Hospitals-Marche Polytechnic University, Ancona, Italy
| | - Massimo Pifferi
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Rossella Fonnesu
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Serena Gracci
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Biology of Obesity-Electron Microscopy Unit, Center of Obesity, United Hospitals-Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
22
|
Efremova A, Colleluori G, Thomsky M, Perugini J, Protasoni M, Reguzzoni M, Faragalli A, Carle F, Giordano A, Cinti S. Biomarkers of Browning in Cold Exposed Siberian Adults. Nutrients 2020; 12:E2162. [PMID: 32707748 DOI: 10.3390/nu12082162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cold-exposure promotes energy expenditure by inducing brown adipose tissue (BAT) thermogenesis, which over time, is also sustained by browning, the appearance, or increase, of brown-like cells into white fat depots. Identification of circulating markers reflecting BAT activity and browning is crucial to study this phenomenon and its triggers, also holding possible implications for the therapy of obesity and metabolic diseases. Using RT-qPCR, we evaluated the peripheral blood mononuclear cells (PBMC) expression profile of regulators of BAT activity (CIDEA, PRDM16), white adipocytes browning (HOXC9 and SLC27A1), and fatty acid β-oxidation (CPT1A) in 150 Siberian healthy miners living at extremely cold temperatures compared to 29 healthy subjects living in thermoneutral conditions. Anthropometric parameters, glucose, and lipid profiles were also assessed. The cold-exposed group showed significantly lower weight, BMI, hip circumference, and PBMC expression of CIDEA, but higher expression of HOXC9 and higher circulating glucose compared to controls. Within the cold-exposed group, BMI, total cholesterol, and the atherogenic coefficient were lower in individuals exposed to low temperatures for a longer time. In conclusion, human PBMC expresses the brown adipocytes marker CIDEA and the browning marker HOXC9, which, varying according to cold-exposure, possibly reflect changes in BAT activation and white fat browning.
Collapse
|
23
|
Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, Sinton MC, Ramage LE, McDougald WA, Lovdel A, Sulston RJ, Thomas BJ, Nicholson BM, Drake AJ, Alcaide-Corral CJ, Said D, Poloni A, Cinti S, Macpherson GJ, Dweck MR, Andrews JPM, Williams MC, Wallace RJ, van Beek EJR, MacDougald OA, Morton NM, Stimson RH, Cawthorn WP. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun 2020; 11:3097. [PMID: 32555194 DOI: 10.1038/s41467-020-16878-2] [Citation(s) in RCA: 64] |