1
|
Pereira AR, Gomes IB, Santos L, Simões M. Track of methylparaben in the bulk phase and on the extracellular matrix of dual-species biofilms: Biodegradation and bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136222. [PMID: 39447230 DOI: 10.1016/j.jhazmat.2024.136222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Methylparaben (MP) is a preservative considered an environmental contaminant of emerging concern due to its persistence in water sources, including drinking water (DW). This study assesses the interaction between MP and dual-species biofilms of Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. These biofilms were grown under realism-based conditions in a multiple-cylinder biofilm reactor on polypropylene (PPL) surfaces, for 7 days, and then exposed to MP at 0.5 mg/L for three consecutive days. S. maltophilia predominantly succeeds within these biofilms compared to A. calcoaceticus. Exposure to MP resulted in a 4-fold increase in the number of culturable cells and a 1.4-fold rise in polysaccharide content, suggesting that bacterial cells may utilize MP as a carbon source to enhance biofilm fitness. MP was found to adsorb to PPL with biofilms following a pseudo-second-order kinetic model. Circa 37 % of MP adsorbed to PPL after 3 days of exposure. Besides that, MP was biodegraded by biofilms following an apparent first-order kinetic model. Part (25 %) of the MP was biodegraded whereas only 0.02 % bioaccumulated on the biofilm matrix. Biodegradation was related to esterase and lipase activity. The results provide new insights into the interaction between MP with biofilms and materials used in DW industries.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
3
|
Prasad DK, Shukla R, Ahammad SZ. Pharmaceuticals and personal care products and heavy metals in the Ganga River, India: Distribution, ecological and human health risk assessment. ENVIRONMENTAL RESEARCH 2024; 263:119993. [PMID: 39276830 DOI: 10.1016/j.envres.2024.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In the present study, pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs), and heavy metals (HMs), were measured in water and sediment of the Ganga River during summer and winter seasons for two consecutive years. Additionally, this study estimated the ecological and human health risks associated with PPCPs, EDCs, and HMs. HMs detected in the range of not detected (n.d.) to 23.59 μg/L and 0.01-391.44 μg/g in water and sediment samples, respectively. All studied HMs were within the permissible limits, except for As in water, and Cr and Ni in sediment. The geo-accumulation index (Igeo) indicated that Cr (0.71-5.98) and Pb (0.90-3.90) had high Igeo compared to other metals in sediment samples. Pb showed the highest ecological risk, followed by Cd, Co, Ni, Cu, Cr, As, and Zn. The maximum potential ecological risk index was observed at site G8. The hazard index (HI) value for water (0.08-0.89) and sediment (0.02-0.29) intake by adults remained within the acceptable limits, except at sites G8 (1.27) and G9 (1.34) for water intake. However, for children, the HI value was above the acceptable limit for water intake at sites G4 to G13 and for sediment at site G8. Among the studied compounds, metformin, triclosan, triclocarban, diclofenac, and methylparaben were the most abundant compounds present in the Ganga River. PPCPs and EDCs detected in the range of n.d. to 5850.04 ng/L and n.d. to 1080.41 ng/g in water and sediment samples, respectively. The environmental risk assessment identifies the maximum ecological risk in water exhibited by triclocarban followed by 17α-ethinylestradiol (EE2), diclofenac, and triclosan, while in sediment, the maximum ecological risk exhibited by triclocarban, followed by EE2, 17 β-estradiol (E2), triclosan, and diclofenac. However, none of the compounds showed human health risk, except for EE2, E2, and atenolol.
Collapse
Affiliation(s)
- Deepak Kumar Prasad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
4
|
Ouyang J, Lin M, Wei F, Ling C, Lu T, Liu Y, Qi B, Hu J, He J, Zhuang G. Estimation of suspected estrogenic transformation products generated during preservative butylparaben chlorination using a simplified effect-based analysis approach. WATER RESEARCH 2024; 267:122414. [PMID: 39303581 DOI: 10.1016/j.watres.2024.122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Estrogenic transformation products (TPs) generated after water chlorination can be considered as an environmental and health concern, since they can retain and even increase the estrogenicity of the parent compound, thus posing possible risks to drinking water safety. Identification of the estrogenic TPs generated from estrogenic precursor during water chlorination is important. Herein, butylparaben (BuP), which was widely used as preservative in food, pharmaceuticals and personal care products (PPCPs), was selected for research. A simplified effect-based analysis (EDA) approach was applied for the identification of estrogenic TPs generated during BuP chlorination. Despite the removal of BuP corresponds to the decrease of estrogenicity in chlorinated samples, an significant increase of estrogenicity was observed (at T = 30 min, presented an estrogenicity equivalent to 17β-estradiol). Chemical analysis of the estrogenic chlorinated samples that have been previously subjected to biological analysis (in vitro assays), in combination with the principal component analysis (PCA) evaluation, followed by validating the estrogenic potency of most relevant estrogenic TPs through an in silico approach (molecular dynamics simulations), identified that the halogenated TP3 (3,5-Dichloro-butylparaben) increased by 62.5 % and 61.8 % of the estrogenic activity of the parent compound in samples chlorinated with 30 min and 1 h, respectively being classified as a potentially estrogenic activity driver after BuP chlorination. This study provides a scientific basis for the more comprehensive assessment of the environmental and health risk associated with BuP chlorination, highlighting the necessity of identifying the unknown estrogenic TPs generateded from estrogenic precursors chlorination.
Collapse
Affiliation(s)
- Jie Ouyang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Min Lin
- Hangzhou Jasu Environmental Monitoring Co., Ltd, Hangzhou, Zhejiang 310018, PR China
| | - Fang Wei
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Chen Ling
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, Zhejiang 310018, PR China
| | - Tingyu Lu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Yao Liu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Beimeng Qi
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Hu
- Eco-In-dustrial Innovation Institute ZJUT, Quzhou 324400, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
5
|
Akhter S, Bhat MA, Ahmed S, Siddiqui WA. Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:387. [PMID: 39167284 DOI: 10.1007/s10653-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic residues are widely recognized as major pollutants in the aquatic environment on a global scale. As a significant class of pharmaceutically active compounds (PhACs), antibiotics are extensively consumed worldwide. The primary sources of these residues include hospitals, municipal sewage, household disposal, and manures from animal husbandry. These residues are frequently detected in surface and drinking waters, sewage effluents, soils, sediments, and various plant species in countries such as China, Japan, South Korea, Europe, the USA, Canada, and India. Antibiotics are used medicinally in both humans and animals, with a substantial portion excreted into the environment as metabolites in feces and urine. With the advancement of sensitive and quantitative analytical techniques, antibiotics are consistently reported in environmental matrices at concentrations ranging from nanograms per liter (ng/L) to milligrams per liter (mg/L). Agricultural soils, in particular, serve as a significant reservoir for antibiotic residues due to their strong particle adsorption capacities. Plants grown in soils irrigated with PhAC-contaminated water can uptake and accumulate these pharmaceuticals in various tissues, such as roots, leaves, and fruits, raising serious concerns regarding their consumption by humans and animals. There is an increasing need for research to understand the potential human health risks associated with the accumulation of antibiotics in the food chain. The present reviews aims to shed light on the rising environmental pharmaceutical contamination concerns, their sources in the environment, and the potential health risks as well as remediation effort. To discuss the main knowledge gaps and the future research that should be prioritized to achieve the risk assessment. We examined and summarized the available data and information on the antibiotic resistance associated with antibiotic residues in the environment. As studies have indicated that vegetables can absorb, transport, and accumulate antibiotics in edible parts when irrigated with wastewater that is either inadequately treated or untreated. These residues and their metabolites can enter the food chain, with their persistence, bioaccumulation, and toxicity contributing to drug resistance and adverse health effects in living organisms.
Collapse
Affiliation(s)
- Suriyah Akhter
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Aadil Bhat
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Sirajuddin Ahmed
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Weqar Ahmed Siddiqui
- Department of Applied Science and Humanities Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
6
|
Alqarni AM. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024; 29:3900. [PMID: 39202981 PMCID: PMC11357415 DOI: 10.3390/molecules29163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Among the various compounds regarded as emerging contaminants (ECs), pharmaceuticals and personal care products (PPCPs) are of particular concern. Their continuous release into the environment has a negative global impact on human life. This review summarizes the sources, occurrence, persistence, consequences of exposure, and toxicity of PPCPs, and evaluates the various analytical methods used in the identification and quantification of PPCPs in a variety of solid and liquid environmental matrices. The current techniques of choice for the analysis of PPCPs are state-of-the-art liquid chromatography coupled to mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS2). However, the complexity of the environmental matrices and the trace levels of micropollutants necessitate the use of advanced sample treatments before these instrumental analyses. Solid-phase extraction (SPE) with different sorbents is now the predominant method used for the extraction of PPCPs from environmental samples. This review also addresses the ongoing analytical method challenges, including sample clean-up and matrix effects, focusing on the occurrence, sample preparation, and analytical methods presently available for the determination of environmental residues of PPCPs. Continuous development of innovative analytical methods is essential for overcoming existing limitations and ensuring the consistency and diversity of analytical methods used in investigations of environmental multi-class compounds.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
7
|
Kumar G, Kumar S, Paul T, Pal P, Shukla SP, Kumar K, Jha AK, Pradeep S. Ecotoxicological risk assessment of triclosan, an emerging pollutant in a riverine and estuarine ecosystems: A comparative study. MARINE POLLUTION BULLETIN 2024; 205:116667. [PMID: 38972216 DOI: 10.1016/j.marpolbul.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Triclosan (TCS), an antibacterial biocide, pervades water and sediment matrices globally, posing a threat to aquatic life. In densely populated cities like Mumbai, rivers and coastal bodies demand baseline TCS data for ecotoxicological assessment due to the excessive use of personal care products comprising TCS. This pioneering study compares spatiotemporal TCS variations and risks in freshwater and marine ecosystems employing multivariate analysis of physicochemical parameters. Over five months (January to May 2022), Mithi River exhibited higher TCS concentrations (water: 1.68 μg/L, sediment: 3.19 μg/kg) than Versova Creek (water: 0.49 μg/L, sediment: 0.69 μg/kg). Principal component analysis revealed positive correlations between TCS and physicochemical parameters. High-risk quotients (>1) underscore TCS threats in both water bodies. This study furnishes crucial baseline data, emphasizing the need for effective treatment plans for TCS in effluent waters released into the adjacent aquatic systems.
Collapse
Affiliation(s)
- Ganesh Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India.
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, Bihar 855107, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura 799210, India
| | - Satya Prakash Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Ashish Kumar Jha
- ICAR-Central Institute of Fisheries Technology, Veraval Research Centre, Gujarat 362265, India
| | - Shilpa Pradeep
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| |
Collapse
|
8
|
Jiang Y, Liu L, Jin B, Liu Y, Liang X. Critical review on the environmental behaviors and toxicity of triclosan and its removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173013. [PMID: 38719041 DOI: 10.1016/j.scitotenv.2024.173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
As a highly effective broad-spectrum antibacterial agent, triclosan (TCS) is widely used in personal care and medical disinfection products, resulting in its widespread occurrence in aquatic and terrestrial environments, and even in the human body. Notably, the use of TCS surged during the COVID-19 outbreak, leading to increasing environmental TCS pollution pressure. From the perspective of environmental health, it is essential to systematically understand the environmental occurrence and behavior of TCS, its toxicological effects on biota and humans, and technologies to remove TCS from the environment. This review comprehensively summarizes the current knowledge regarding the sources and behavior of TCS in surface water, groundwater, and soil systems, focusing on its toxicological effects on aquatic and terrestrial organisms. Effluent from wastewater treatment plants is the primary source of TCS in aquatic systems, whereas sewage application and/or wastewater irrigation are the major sources of TCS in soil. Human exposure pathways to TCS and associated adverse outcomes were also analyzed. Skin and oral mucosal absorption, and dietary intake are important TCS exposure pathways. Reducing or completely degrading TCS in the environment is important for alleviating environmental pollution and protecting public health. Therefore, this paper reviews the removal mechanisms, including adsorption, biotic and abiotic redox reactions, and the influencing factors. In addition, the advantages and disadvantages of the different techniques are compared, and development prospects are proposed. These findings provide a basis for the management and risk assessment of TCS and are beneficial for the application of treatment technology in TCS removal.
Collapse
Affiliation(s)
- Yanhong Jiang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| | - Biao Jin
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yi Liu
- Shandong Vocational College of Light Industry, Zibo 255300, PR China.
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
9
|
Sudarsan JS, Dogra K, Kumar R, Raval NP, Leifels M, Mukherjee S, Trivedi MH, Jain MS, Zang J, Barceló D, Mahlknecht J, Kumar M. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104389. [PMID: 38941876 DOI: 10.1016/j.jconhyd.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This paper aims to emphasize the occurrence of various emerging contaminant (EC) mixtures in natural ecosystems and highlights the primary concern arising from the unregulated release into soil and water, along with their impacts on human health. Emerging contaminant mixtures, including pharmaceuticals, personal care products, dioxins, polychlorinated biphenyls, pesticides, antibiotics, biocides, surfactants, phthalates, enteric viruses, and microplastics (MPs), are considered toxic contaminants with grave implications. MPs play a crucial role in transporting pollutants to aquatic and terrestrial ecosystems as they interact with the various components of the soil and water environments. This review summarizes that major emerging contaminants (ECs), like trimethoprim, diclofenac, sulfamethoxazole, and 17α-Ethinylestradiol, pose serious threats to public health and contribute to antimicrobial resistance. In addressing human health concerns and remediation techniques, this review critically evaluates conventional methods for removing ECs from complex matrices. The diverse physiochemical properties of surrounding environments facilitate the partitioning of ECs into sediments and other organic phases, resulting in carcinogenic, teratogenic, and estrogenic effects through active catalytic interactions and mechanisms mediated by aryl hydrocarbon receptors. The proactive toxicity of ECs mixture complexation and, in part, the yet-to-be-identified environmental mixtures of ECs represent a blind spot in current literature, necessitating conceptual frameworks for assessing the toxicity and risks with individual components and mixtures. Lastly, this review concludes with an in-depth exploration of future scopes, knowledge gaps, and challenges, emphasizing the need for a concerted effort in managing ECs and other organic pollutants.
Collapse
Affiliation(s)
- Jayaraman Sethuraman Sudarsan
- School of Energy and Environment, NICMAR (National Institute of Construction Management and Research) University, Pune 411045, India
| | - Kanika Dogra
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Nirav P Raval
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh 522 240, India
| | - Mats Leifels
- Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Mrugesh H Trivedi
- Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370001, India
| | - Mayur Shirish Jain
- Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, 453552, India
| | - Jian Zang
- School of Civil Engineering, Chongqing University, Chongqing, China
| | - Damià Barceló
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico
| | - Manish Kumar
- School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
10
|
Nikhil J, Maneesha P, Chitra KC. Neurotoxic effects of carbamazepine on the mosquitofish Gambusia affinis. Drug Chem Toxicol 2024:1-15. [PMID: 38804213 DOI: 10.1080/01480545.2024.2356048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
In recent years, the presence of pharmaceuticals in the aquatic environment has gained a significant attention. Carbamazepine, a commonly prescribed antiepileptic drug, has been consistently found in aquatic environments at concentrations ranging from nanograms to micrograms, raising concerns about its potential negative impacts on aquatic organisms. The study examined the acute and chronic neurotoxic effects of environmentally relevant and sublethal concentrations of carbamazepine in the mosquitofish Gambusia affinis. After a 96-hour exposure period, the median lethal concentration (LC50) of carbamazepine for G. affinis was determined as 24 mg L - 1. For the current study, sublethal concentrations i.e., one-tenth (2.4 mg L - 1) and one-fifth (4.8 mg L - 1) of the LC50 value were chosen for assessing the neurotoxic effects along with the environmentally relevant concentration (13 ng L - 1). The research findings indicated that carbamazepine had a disruptive impact on the typical growth and behavior of the fish. During the acute exposure phase, physical deformities were observed in the fish, resulting in neonatal and postneonatal fatalities. Furthermore, the neurotoxic effects of carbamazepine were clearly demonstrated through alterations in various neurological parameters, including acetylcholinesterase, dopamine, gamma-aminobutyric acid, serotonin, monoamine oxidase, 5-hydroxyindole acetic acid, adrenaline, and nor-adrenaline. These findings raise concerns about the survival of fish populations in their natural environment.
Collapse
Affiliation(s)
- John Nikhil
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Kerala
| | - Pootheri Maneesha
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Kerala
| | | |
Collapse
|
11
|
Silva MLD, Andrade TS, Villacis RAR, Sousa-Moura D, Domingues I, Lisboa CA, Camargo NS, Pic-Taylor A, Oliveira RD, Grisolia CK. Multilevel assessment of carbamazepine effects: An integrative approach using zebrafish early-life stages. CHEMOSPHERE 2024; 355:141772. [PMID: 38548084 DOI: 10.1016/j.chemosphere.2024.141772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Carbamazepine (CBZ) is the most commonly used drug in epilepsy treatment, and its metabolites are commonly detected among persistent pharmaceuticals in the aquatic environment. This study aimed to investigate CBZ effects on early-life-stage zebrafish (Danio rerio) (from 2 to 168 hpf) by employing of an integrative approach linking endpoints from molecular to individual level: (i) development; (ii) locomotor activity; (iii) biochemical markers (lactate dehydrogenase, glutathione-S-transferase, acetylcholinesterase and catalase) and (iv) transcriptome analysis using microarray. A 168 h - LC50 of 73.4 mg L-1 and a 72 h - EC50 of 66.8 mg L-1 for hatching were calculated while developmental effects (oedemas and tail deformities) were observed at CBZ concentrations above 37.3 mg L-1. At the biochemical level, AChE activity proved to be the most sensitive parameter, as evidenced by its decrease across all concentrations tested (∼25% maximum reduction, LOEC (lowest observed effect concentration) < 0.6 μg L-1). Locomotor behaviour seemed to be depressed by CBZ although this effect was only evident at the highest concentration tested (50 mg L-1). Molecular analysis revealed a dose-dependent effect of CBZ on gene expression. Although only 25 genes were deregulated in organisms exposed to CBZ when compared to controls, both 0.6 and 2812 μg L-1 treatments impaired gene expression related to development (e.g. crygmxl1, org, klf2a, otos, stx16 and tob2) and the nervous system (e.g. Rtn3, Gdf10, Rtn3), while activated genes were associated with behavioural response (e.g. prlbr and taar). Altogether, our results indicate that environmentally relevant CBZ concentrations might affect biochemical and genetic traits of fish. Thus, the environmental risk of CBZ cannot be neglected, especially in a realistic scenario of constant input of domestic effluents into aquatic systems.
Collapse
Affiliation(s)
- Muriel Lopes da Silva
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil
| | - Thayres Sousa Andrade
- Universidade Federal do Ceará, Campus de Crateús- PPGEC, Av. Profa. Machadinha Lima, 63700-000 Crateus, CE, Brazil
| | - Rolando André Rios Villacis
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil
| | - Diego Sousa-Moura
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil
| | - Inês Domingues
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carolina Almeida Lisboa
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil
| | - Níchollas Serafim Camargo
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil
| | - Aline Pic-Taylor
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil
| | - Rhaul de Oliveira
- Instituto Federal do Norte de Minas, Campus de Arinos, Minas Gerais, Brazil
| | - Cesar Koppe Grisolia
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
12
|
Chokki Veettil P, Nikarthil Sidhick J, Kavungal Abdulkhader S, Ms SP, Kumari Chidambaran C. Triclosan, an antimicrobial drug, induced reproductive impairment in the freshwater fish, Anabas testudineus (Bloch, 1792). Toxicol Ind Health 2024; 40:254-271. [PMID: 38518096 DOI: 10.1177/07482337241242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Triclosan (TCS), an antimicrobial drug, is known to occupy different compartments in aquatic ecosystems. The present study focused to evaluate the reproductive toxicity of triclosan, at environmentally relevant (0.009 and 9 μg L-1) and sublethal (176.7 μg L-1) concentrations for 90 days in the pre-spawning phase of the fish, Anabas testudineus. The reproductive biomarkers, namely, gonadal steroidogenic enzymes, expression of aromatic genes, levels of serum gonadotropins, sex hormones, and histology of gonads were analyzed. The weight of the animal, brain weights along with gonadosomatic index decreased while mucus deposition increased significantly at all concentrations of triclosan as the primary defensive mechanism to prevent the entry of toxicants. Triclosan disrupted gonadal steroidogenesis as evidenced by a reduction in the activities of gonadal steroidogenic enzymes. The expressions of cyp19a1a and cyp19a1b genes were up-regulated in the brain of both sexes and testis, while down-regulated in the ovary indicating estrogenic effects of the compound. The endocrine-disrupting effects of triclosan were confirmed. The current results suggest that chronic exposure to triclosan altered reproductive endpoints thereby impairing normal reproductive functions in fish.
Collapse
Affiliation(s)
| | | | | | - Siva Prasad Ms
- Department of Forensic Science, University of Calicut, Kerala Police Academy, Thrissur, India
| | - Chitra Kumari Chidambaran
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram, India
| |
Collapse
|
13
|
Jin H, Yu C, Lin L, Cheng J, Qin H, Tao J, Deng S. Pollution levels and ecological risks of PPCPs in water and sediment samples of Danjiangkou Reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30163-30173. [PMID: 38602636 DOI: 10.1007/s11356-024-32739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
The concentrations and distribution patterns of three typical pharmaceuticals and personal care products (PPCPs) in water and sediment samples obtained from Danjiangkou Reservoir during two seasonal sampling periods were studied to determine their impact on water quality. The temporal and spatial variations in concentrations measured were analyzed and related to ecological risks with data obtained during the mean-flow period (in June) and the dry period (in November). We found a high detection rate of ketoprofen (KTP) in water samples from Danjiangkou Reservoir; the concentrations ranged from not detected (ND) to 46.80 ng/L with the highest values measured in the Hanku tributary samples followed by the samples collected in the main body of Danjiangkou Reservoir. The KTP concentrations in the Danku tributary samples were the lowest measured in this study. In addition, the concentrations of KTP in the Shending River, Sihe River, Jianghe River, Guanshan River, and Jianhe River water samples were relatively high in the mean-flow period. The water sample detection rates and concentrations of triclosan (TCS) and triclocarban (TCC) were low in both the mean-flow period and the dry period. All three kinds of PPCPs were detected in the sediment samples with the concentrations of KTP, TCS, and TCC ranging from 0.76 to 7.89 μg/kg, 0.01 to 0.59 μg/kg, and 0.01 to 11.36 μg/kg, respectively. Overall, the concentrations of the three measured PPCPs in the water and sediment samples were all relatively low compared to results reported in the recent literature. The dry period concentrations of PPCPs in the water samples were lower than the concentrations measured in the mean-flow period. However, dry period concentrations were higher in the sediment samples compared to those in the mean-flow period samples. Our interpretation of the spatial and temporal patterns of PPCPs in Danjiangkou Reservoir suggests that these compounds were likely mainly derived from wastewater discharge in the upper reaches of the reservoir. The risk quotient (RQ) method was used for an ecological risk assessment of the detected PPCPs in this study. We found that TCS in water and sediment posed medium ecological risks to algae at different times of the year. In view of the extreme importance of water safety in Danjiangkou Reservoir, the ecological risks of PPCPs require additional attention.
Collapse
Affiliation(s)
- Haiyang Jin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
- Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, China
| | - Chan Yu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China.
- Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, China.
| | - Jinghua Cheng
- North Water Diversion Project Limited Liability Company, Danjiangkou, 442700, China
| | - He Qin
- North Water Diversion Project Limited Liability Company, Danjiangkou, 442700, China
| | - Jingxiang Tao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Shengfei Deng
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| |
Collapse
|
14
|
Mao W, Jin H, Guo R, Chen P, Zhong S, Wu X. Distribution of parabens and 4-HB in human blood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169874. [PMID: 38185174 DOI: 10.1016/j.scitotenv.2024.169874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Human blood has been commonly and routinely analyzed to determine internal human exposure to parabens. However, data on the occurrence of parabens and their common metabolite, p-hydroxybenzoic acid (4-HB), in different human blood matrixes is still limited. In this study, 139 pairs of serum and whole blood samples were collected from Chinese adults, and then analyzed them for 5 parabens and 4-HB. Methylparaben (MeP) and propylparaben (PrP) were consistently the predominant parabens in human serum (mean 2.3 and 2.1 ng/mL, respectively) and whole blood (1.9 and 1.3 ng/mL, respectively). Mean concentrations of 4-HB in human serum and whole blood were 7.7 and 12 ng/mL, respectively. Concentrations of parabens, except benzylparaben (BzP), and 4-HB in human serum were significantly (p < 0.01) correlated with that in whole blood. Distribution pattern of parabens and 4-HB in human blood was evaluated, for the first time, based on their partitioning between human serum and whole blood (Kp). Mean Kp values of parabens, except BzP, increased with the alkyl chain length from 0.83 to 1.6. BzP (mean 1.4) had a comparable mean Kp value to PrP (mean 1.4). Among target analytes, 4-HB had the lowest mean Kp value (0.75). These data are important to select appropriate blood matrixes for conducting human exposure assessment and epidemiological studies on parabens.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Ping Chen
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Songyang Zhong
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Xilin Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| |
Collapse
|
15
|
Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120170. [PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Sarawak, Miri, 98009, Malaysia
| | - Tung Chiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| |
Collapse
|
16
|
Pang Q, Xie L, Shen C, Zhu X, Wang L, Ni L, Peng F, Yu J, Wang L, He F. Triclosan disturbs nitrogen removal in constructed wetlands: Responses of microbial structure and functions. ENVIRONMENTAL RESEARCH 2024; 243:117847. [PMID: 38065393 DOI: 10.1016/j.envres.2023.117847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
This study investigated the influence of wetland types (vertical and tidal flow constructed wetlands [CWs] [VFCW and TFCW, respectively]) and concentrations of triclosan (TCS) on the removal of pollutants (TCS and nitrogen) and microbial characteristics. The efficiency of TCS removal was significantly higher with 5 μg/L TCS (Phase B) than with 30 μg/L (Phase C) in the two CWs. The efficiencies of removal of NH4+-N and NO3--N were significantly inhibited in Phase C. Compared with the VFCW, the TFCW removed more NH4+-N at the same concentration of TCS, whereas less NO3--N was removed, and it even accumulated. Saccharimondales, an important functional genus with the highest abundance and more node connections with other genera, had a sharp decrease in relative abundance as the increasing concentrations of TCS of the two CWs conformed with its relative abundance and significantly negatively correlated with the concentration of TCS. Differentiated Roseobacter_Clade_CHAB-I-5_Lineage and Sphaerotilus were enriched in the VFCW and TFCW, respectively. The abundance of enzymes that catalyzed nitritation was significantly inhibited by TCS, whereas nitrate reductase (EC 1.7.99.4) catalyzed both denitrification and dissimilatory nitrate reduction to ammonium (DNRA), and nitrite reductase (NADH) (EC 1.7.1.15) that catalyzed DNRA comprised a larger proportion in the two CWs. Simultaneously, the abundances of two enzymes were higher in the TFCW than in the VFCW. The network analysis indicated that the main genera were promoted more by TCS in the VFCW, while inhibited in the TFCW. Moreover, the concentrations of nitrogen (NH4+-N, NO3--N, and TN) significantly positively correlated with TCS-resistant bacteria, and negatively correlated with most nitrogen-transforming bacteria with species that varied between the VFCW and TFCW. The results of this study provide a reference for the molecular biological mechanism of the simultaneous removal of nitrogen and TCS in the CWs.
Collapse
Affiliation(s)
- Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lei Xie
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Caofeng Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Lixiao Ni
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ling Wang
- Xinjiang Tianxi Environmental Protection Technology Co., LTD., Urumqi, 830000, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
17
|
Do SD, Haque MN, Kim J, Im DH, Rhee JS. Acute and chronic effects of triclosan on the behavior, physiology, and multigenerational characteristics of the water flea Moina macrocopa. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109810. [PMID: 38061617 DOI: 10.1016/j.cbpc.2023.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
Triclosan, a chlorinated biphenyl ether is widely used in industrial products and cosmetics due to its antibiotic activity. Although relatively levels of triclosan have been detected in aquatic ecosystems, limited information is available regarding the acute and chronic impacts of triclosan on aquatic invertebrates, especially planktonic crustaceans. In this study, we analyzed the acute (24 h) and chronic (14 days exposure across three generations) effects of different concentrations of triclosan [1/10 of the no observed effect concentration (NOEC), the NOEC, and 1/10 of the LC50] calculated from the 24 h acute toxicity value, on the water flea Moina macrocopa. In the acute exposure experiment, the 1/10 LC50 value of triclosan significantly reduced survival, feeding rate, thoracic limb activity, heart activity, and acetylcholinesterase activity. In response to the 1/10 LC50 value, intracellular reactive oxygen species increased along with elevated levels of malondialdehyde and glutathione. Enzymatic activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase were significantly increased by the 1/10 LC50 value, suggesting active protection of the antioxidant defense system against oxidative stress. Chronic exposure to the 1/10 NOEC and NOEC values revealed multigenerational adverse impacts of triclosan. The second generation was found to be the most sensitive to triclosan, as the NOEC value significantly reduced the survival rate, body length, and the number of neonates per brood, along with a delayed hatching period. Taken together, these results indicate that even sublethal levels of triclosan can have detrimental effects on the water flea population's maintenance through intergenerational toxicity.
Collapse
Affiliation(s)
- Seong Duk Do
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Md Niamul Haque
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jaehee Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Dong-Hoon Im
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea; Yellow Sea Research Institute, Incheon 22012, South Korea.
| |
Collapse
|
18
|
Fu L, Sun Y, Zhou J, Li H, Liang SX. Parabens, Triclosan and Bisphenol A in Surface Waters and Sediments of Baiyang Lake, China: Occurrence, Distribution, and Potential Risk Assessment. TOXICS 2023; 12:31. [PMID: 38250987 PMCID: PMC10819025 DOI: 10.3390/toxics12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
The extensive use of the parabens triclosan (TCS) and bisphenol A (BPA) has potential adverse effects on human health and aquatic organisms. However, their monitoring information in freshwater lakes is still limited. This study simultaneously summarized the concentrations, spatial distribution characteristics, and correlations of four types of parabens, TCS, and BPA in the surface water and sediment of Baiyang Lake. Finally, the potential risks of target pollutants were evaluated from two aspects: human health risks and ecological risks. The average contaminations of target compounds in surface water and sediment-BPA, TCS, and ∑4 parabens-was 33.1, 26.1, 0.7 ng/L and 24.5, 32.5, 2.5 ng/g, respectively. The total concentration of target compounds at the inlet of the upstream Fu River and Baigouyin River is significantly higher than that near Hunan and the outlet. In addition, Spearman's correlation analysis showed a significant positive correlation between compounds. The health hazards of target compounds in surface water were all within safe limits. However, the risk quotient results indicate that in some locations in surface water, TCS poses a high risk to algae and a moderate risk to invertebrates and fish, and appropriate attention should be paid to these areas.
Collapse
Affiliation(s)
- Liguo Fu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (L.F.); (Y.S.)
- Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Yaxue Sun
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (L.F.); (Y.S.)
- Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Jingbo Zhou
- Baiyangdian Basin Eco-Environmental Support Center, Shijiazhuang 050056, China; (J.Z.)
| | - Hongbo Li
- Baiyangdian Basin Eco-Environmental Support Center, Shijiazhuang 050056, China; (J.Z.)
| | - Shu-xuan Liang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (L.F.); (Y.S.)
- Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| |
Collapse
|
19
|
Pereira AR, Simões M, Gomes IB. Parabens as environmental contaminants of aquatic systems affecting water quality and microbial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167332. [PMID: 37758132 DOI: 10.1016/j.scitotenv.2023.167332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Among different pollutants of emerging concern, parabens have gained rising interest due to their widespread detection in water sources worldwide. This occurs because parabens are used in personal care products, pharmaceuticals, and food, in which residues are generated and released into aquatic environments. The regulation of the use of parabens varies across different geographic regions, resulting in diverse concentrations observed globally. Concentrations of parabens exceeding 100 μg/L have been found in wastewater treatment plants and surface waters while drinking water (DW) sources typically exhibit concentrations below 6 μg/L. Despite their low levels, the presence of parabens in DW is a potential exposure route for humans, raising concerns for both human health and environmental microbiota. Although a few studies have reported alterations in the functions and characteristics of microbial communities following exposure to emerging contaminants, the impact of the exposure to parabens by microbial communities, particularly biofilm colonizers, remains largely understudied. This review gathers the most recent information on the occurrence of parabens in water sources, as well as their effects on human health and aquatic organisms. The interactions of parabens with microbial communities are reviewed for the first time, filling the knowledge gaps on the effects of paraben exposure on microbial ecosystems and their impact on disinfection tolerance and antimicrobial resistance, with potential implications for public health.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
20
|
Subramanian A, Saravanan M, Rajasekhar B, Chakraborty S, Sivagami K, Tamizhdurai P, Mangesh VL, Selvaraj M, Kumar NS, Al-Fatesh AS. Comparative risk assessment studies estimating the hazard posed by long-term consumption of PPCPs in river water. Food Chem Toxicol 2023; 182:114169. [PMID: 37940032 DOI: 10.1016/j.fct.2023.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
This study assesses the risk due to Emerging Contaminants (ECs), present in Indian rivers - Ganga (650 million inhabitants), Yamuna (57 million inhabitants), and Musi (7,500,000 inhabitants), 13 ECs in total, have been used for risk assessment studies. Their concentrations (e.g., Fluconazole: 236950 μg/l, Ciprofloxacin: 31000 μg/l, Caffeine: 21.57 μg/l, etc.) were higher than the threshold concentrations for safe consumption (e.g. Fluconazole allowable level is 3.8 μg/l, and Ciprofloxacin allowable level is 0.51 μg/l). Three different pathways of emerging contaminants (ECs) transfer (oral water ingestion, oral fish ingestion, and dermal water contact) have been considered and the study is carried out in 2 ways: (i) deterministic and (ii) probabilistic approaches (using Monte Carlo iterative methods with 10000 simulations) with the aid of a software - Risk (version 7.5). The risk value, quantified by Hazard Quotient (HQ) is higher than the allowable limit of 1 for several compounds in the three rivers like Fluconazole (HQ = 18276.713), Ciprofloxacin (HQ = 278.675), Voriconazole (HQ = 14.578), Cetirizine (HQ = 1006.917), Moxifloxacin (HQ = 8.076), Caffeine (HQ = 55.150), and Ibuprofen (HQ = 9.503). Results show that Fluconazole and Caffeine pose the maximum risk in the rivers via the "oral pathway" that allows maximum transfer of the ECs present in the river (93% and 82% contribution to total risk). The risk values vary from nearly 25 times to 19000 times the United States Environmental Protection Agency (USEPA) threshold limit of 1 (e.g., Caffeine Infant Risk = 25.990 and Fluconazole Adult Risk = 18276.713). The most susceptible age group, from this study, is "Adults" (19-70 years old), who stand the chance of experiencing the adverse health hazards associated with prolonged over-exposure to the ECs present in the river waters. Musi has the maximum concentration of pollutants and requires immediate remediation measures. Further, both methods indicate that nearly 60-70% of the population in all the three study areas are at risk of developing health hazards associated with over-exposure to ECs regularly, making the areas inhabitable.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Mridula Saravanan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Bokam Rajasekhar
- Research Associate, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Samarshi Chakraborty
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - Krishanasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| | - Perumal Tamizhdurai
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai, 600 106, Tamil Nadu, India.
| | - V L Mangesh
- Department of Marine Engineering, Indian Maritime University, 600119, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Nadavala Siva Kumar
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
21
|
Shafi M, Jan R, Gani KM. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. CHEMOSPHERE 2023; 341:139976. [PMID: 37657704 DOI: 10.1016/j.chemosphere.2023.139976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The challenge of emerging contaminants (ECs) in global surface water bodies and particularly in low- and middle-income countries such as India, Pakistan, Bangladesh, and Sri Lanka, is evident from the literature. The complexity arises from the high costs involved in EC analysis and the extensive list of ECs, which complicates the selection of essential compounds for scientific and regulatory investigations. Consequently, monitoring programs often include ECs that may have minimal significance within a region and do not pose known or suspected ecological or human health risks. This study aims to address this issue by employing a multi-risk assessment approach to identify priority ECs in the surface waters of the aforementioned countries. Through an analysis of occurrence levels and frequency data gathered from published literature, an optimized risk quotient (RQ) was derived. The findings reveal a priority list of 38 compounds that exhibit potential environmental risks and merit consideration in future water quality monitoring programs. Furthermore, the majority of antibiotics in India (12 out of 17) and Pakistan (7 out of 17) exhibit a risk quotient for antimicrobial resistance selection (RQAMR) greater than 1, highlighting the need for devising effective strategies to mitigate the escalation of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Mozim Shafi
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ruby Jan
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India.
| |
Collapse
|
22
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
23
|
Alimi OS, Claveau-Mallet D, Lapointe M, Biu T, Liu L, Hernandez LM, Bayen S, Tufenkji N. Effects of weathering on the properties and fate of secondary microplastics from a polystyrene single-use cup. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131855. [PMID: 37478596 DOI: 10.1016/j.jhazmat.2023.131855] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
In this work, we probed the changes to some physicochemical properties of polystyrene microplastics generated from a disposable cup as a result of UV-weathering, using a range of spectroscopy, microscopy, and profilometry techniques. Thereafter, we aimed to understand how these physicochemical changes affect the microplastic transport potential and contaminant sorption ability in model freshwaters. Exposure to UV led to measured changes in microplastic hydrophobicity (20-23 % decrease), density (3% increase), carbonyl index (up to 746 % increase), and microscale roughness (24-86 % increase). The settling velocity of the microplastics increased by 53 % after weathering which suggests that UV aging can increase microplastic deposition to sediments. This impact of aging was greater than the effect of the water temperature. Weathered microplastics exhibited reduced sorption capacity (up to 52 % decrease) to a model hydrophobic contaminant (triclosan) compared to unaged ones. The adsorption of triclosan to both microplastics was slightly reversible with notable desorption hysteresis. These combined effects of weathering could potentially increase the transport potential while decreasing the contaminant transport abilities of microplastics. This work provides new insights on the sorption capacity and mobility of a secondary microplastic, advances our knowledge about their risks in aquatic environments, and the need to use environmentally relevant microplastics.
Collapse
Affiliation(s)
- Olubukola S Alimi
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, T6G 1H9 Canada.
| | - Dominique Claveau-Mallet
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2900 Edouard-Montpetit, Montreal, Canada
| | - Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Construction Engineering, École de technologie supérieure - University of Québec, Montreal, Quebec, H3C 1K3, Canada
| | - Thinh Biu
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Montreal, Canada
| | - Laura M Hernandez
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Montreal, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| |
Collapse
|
24
|
Das MK, Das S, Srivastava PK. An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1015. [PMID: 37530878 DOI: 10.1007/s10661-023-11569-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
India at present is one of the leading countries in antimicrobial drug production and use, leading to increasing antimicrobial resistance (AMR) and public health problems. Attention has mainly been focused on the human and food animals' contribution to AMR neglecting the potential contribution of the perceptibly degraded aquatic environment in India. The paper reviews the available published literature in India on the prevalence of antimicrobial residues and their dissemination pathways in wastewater of pharmaceutical industries, sewage treatment plants, hospitals, riverine, community pond water, and groundwater. The prevalence of antimicrobial residue concentration, pathogenic and non-pathogenic bacteria antimicrobial resistant bacteria (ARB), their drug resistance levels, and their specific antimicrobial resistant genes (ARGs) occurring in various water matrices of India have been comprehensively depicted from existing literature. The concentration of some widely used antimicrobials recorded from the sewage treatment plants and hospital wastewater and rivers in India has been compared with other countries. The ecotoxicological risk posed by these antimicrobials in the various water matrices in India indicated high hazard quotient (HQ) values for pharmaceutical effluents, hospital effluents, and river water. The degraded aquatic environment exhibited the selection of a wide array of co-existent resistant genes for antibiotics and metals. The review revealed improper use of antibiotics and inadequate wastewater treatment as major drivers of AMR contaminating water bodies in India and suggestion for containing the challenges posed by AMR in India has been proposed.
Collapse
Affiliation(s)
- Manas Kumar Das
- Central Inland Fisheries Research Institute, Kolkata, West Bengal, 700120, India.
| | - Subhasree Das
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata, West Bengal, 700037, India
| | - Pankaj Kumar Srivastava
- Department of Aquaculture, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| |
Collapse
|
25
|
Wahab RA, Omar TFT, Nurulnadia MY, Rozulan NNA. Occurrence, distribution, and risk assessment of parabens in the surface water of Terengganu River, Malaysia. MARINE POLLUTION BULLETIN 2023; 192:115036. [PMID: 37207388 DOI: 10.1016/j.marpolbul.2023.115036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The concentration, distribution, and risk assessment of parabens were determined in the surface water of the Terengganu River, Malaysia. Target chemicals were extracted via solid-phase extraction, followed by high-performance liquid chromatography analysis. Method optimization produced a high percentage recovery for methylparaben (MeP, 84.69 %), ethylparaben (EtP, 76.60 %), and propylparaben (PrP, 76.33 %). Results showed that higher concentrations were observed for MeP (3.60 μg/L) as compared with EtP (1.21 μg/L) and PrP (1.00 μg/L). Parabens are ubiquitously present in all sampling stations, with >99 % of detection. Salinity and conductivity were the major factors influencing the level of parabens in the surface water. Overall, we found no potential risk of parabens in the Terengganu River ecosystem due to low calculated risk assessment values (risk quotient < 1). In conclusion, parabens are present in the river, but their levels are too low to pose risks to aquatic organisms.
Collapse
Affiliation(s)
- Rohaya Abd Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tuan Fauzan Tuan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mohd Yusoff Nurulnadia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Najaa Nur Atiqah Rozulan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
26
|
Wang F, Liu H, Liu F. Analysis of the effect of triclosan on gonadal differentiation of zebrafish based on metabolome. CHEMOSPHERE 2023; 331:138856. [PMID: 37149099 DOI: 10.1016/j.chemosphere.2023.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Although the previous research confirmed that triclosan (TCS) affects the female proportion at the early stage of zebrafish (Danio rerio) and has an estrogen effect, the mechanism by which TCS affects the sex differentiation of zebrafish is not entirely clear. In this study, zebrafish embryos were exposed to different concentrations of TCS (0, 2, 10, and 50 μg/L) for 50 consecutive days. The expression of sex differentiation related genes and metabolites were then determined in larvae using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Liquid Chromatography-Mass Spectrometer (LC-MS), respectively. TCS upregulated the expression of the sox9a, dmrt1a and amh genes, down-regulating the expression of wnt4a, cyp19a1b, cyp19a1a, and vtg2 gene. The overlapped classification of Significant Differential Metabolites (SDMs) between the control group and three TCS treated groups related to gonadal differentiation was Steroids and steroid derivatives, including 24 down-regulated SDMs. The enriched pathways related to gonadal differentiation were Steroid hormone biosynthesis, Retinol metabolism, Metabolism of xenobiotics by cytochrome P450, and Cortisol synthesis and secretion. Moreover, SDMs were significantly enriched in Steroid hormone biosynthesis in the 2 μg/L TCS group, which included Dihydrotestosterone, Cortisol, 11beta-hydroxyandrost-4-ene-3, 17-dione, 21-Hydroxypregnenolone, Androsterone, Androsterone glucuronide, Estriol, Estradiol, 19-Hydroxytestosterone, Cholesterol, Testosterone, and Cortisone acetate. Results showed that TCS affects the female proportion mainly through Steroid hormone biosynthesis, in which aromatase plays a key role in zebrafish. Retinol metabolism, metabolism of xenobiotics by cytochrome P450, and cortisol synthesis and secretion may also participate in TCS-mediated sex differentiation. These findings reveal the molecular mechanisms of TCS-induced sex differentiation, and provide theoretical guidance for the maintenance of water ecological balance.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang, 471022, China.
| | - Haifang Liu
- School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang, 471022, China
| |
Collapse
|
27
|
Sun C, Zhang T, Zhou Y, Liu ZF, Zhang Y, Bian Y, Feng XS. Triclosan and related compounds in the environment: Recent updates on sources, fates, distribution, analytical extraction, analysis, and removal techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161885. [PMID: 36731573 DOI: 10.1016/j.scitotenv.2023.161885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) has been widely used in daily life because of its broad-spectrum antibacterial activities. The residue of TCS and related compounds in the environment is one of the critical environmental safety problems, and the pandemic of COVID-19 aggravates the accumulation of TCS and related compounds in the environment. Therefore, detecting TCS and related compound residues in the environment is of great significance to human health and environmental safety. The distribution of TCS and related compounds are slightly different worldwide, and the removal methods also have advantages and disadvantages. This paper summarized the research progress on the source, distribution, degradation, analytical extraction, detection, and removal techniques of TCS and related compounds in different environmental samples. The commonly used analytical extraction methods for TCS and related compounds include solid-phase extraction, liquid-liquid extraction, solid-phase microextraction, liquid-phase microextraction, and so on. The determination methods include liquid chromatography coupled with different detectors, gas chromatography and related methods, sensors, electrochemical method, capillary electrophoresis. The removal techniques in various environmental samples mainly include biodegradation, advanced oxidation, and adsorption methods. Besides, both the pros and cons of different techniques have been compared and summarized, and the development and prospect of each technique have been given.
Collapse
Affiliation(s)
- Chen Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
28
|
Nozaki K, Tanoue R, Kunisue T, Tue NM, Fujii S, Sudo N, Isobe T, Nakayama K, Sudaryanto A, Subramanian A, Bulbule KA, Parthasarathy P, Tuyen LH, Viet PH, Kondo M, Tanabe S, Nomiyama K. Pharmaceuticals and personal care products (PPCPs) in surface water and fish from three Asian countries: Species-specific bioaccumulation and potential ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161258. [PMID: 36587684 DOI: 10.1016/j.scitotenv.2022.161258] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In Asian developing countries, undeveloped and ineffective sewer systems are causing surface water pollution by a lot of contaminants, especially pharmaceuticals and personal care products (PPCPs). Therefore, the risks for freshwater fauna need to be assessed. The present study aimed at: i) elucidating the contamination status; ii) evaluating the bioaccumulation; and iii) assessing the potential risks of PPCP residues in surface water and freshwater fish from three Asian countries. We measured 43 PPCPs in the plasma of several fish species as well as ambient water samples collected from India (Chennai and Bengaluru), Indonesia (Jakarta and Tangerang), and Vietnam (Hanoi and Hoa Binh). In addition, the validity of the existing fish blood-water partitioning model based solely on the lipophilicity of chemicals is assessed for ionizable and readily metabolizable PPCPs. When comparing bioaccumulation factors calculated from the PPCP concentrations measured in the fish and water (BAFmeasured) with bioconcentration factors predicted from their pH-dependent octanol-water partition coefficient (BCFpredicted), close values (within an order of magnitude) were observed for 58-91 % of the detected compounds. Nevertheless, up to 110 times higher plasma BAFmeasured than the BCFpredicted were found for the antihistamine chlorpheniramine in tilapia but not in other fish species. The plasma BAFmeasured values of the compound were significantly different in the three fish species (tilapia > carp > catfish), possibly due to species-specific differences in toxicokinetics (e.g., plasma protein binding and hepatic metabolism). Results of potential risk evaluation based on the PPCP concentrations measured in the fish plasma suggested that chlorpheniramine, triclosan, haloperidol, triclocarban, diclofenac, and diphenhydramine can pose potential adverse effects on wild fish. Results of potential risk evaluation based on the PPCP concentrations measured in the surface water indicated high ecological risks of carbamazepine, sulfamethoxazole, erythromycin, and triclosan on Asian freshwater ecosystems.
Collapse
Affiliation(s)
- Kazusa Nozaki
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Sadahiko Fujii
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nao Sudo
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Tomohiko Isobe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305 8506, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Building 820, Puspiptek Serpong, South Tangerang, Banten, Indonesia
| | - Annamalai Subramanian
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Keshav A Bulbule
- KLE Society's S. Nijalingappa College, 2nd Block, Rajajinagar, Bangaluru 560 010, India
| | - Peethambaram Parthasarathy
- E-Parisaraa Pvt. Ltd., Plot No. 30-P3, Karnataka Industrial Area Development Board, Dobaspet Industrial Area, Bengaluru 562 111, India
| | - Le Huu Tuyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi 759 6595, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| |
Collapse
|
29
|
Lee JS, Oh Y, Lee JS, Kim HS. Acute toxicity, oxidative stress, and apoptosis due to short-term triclosan exposure and multi- and transgenerational effects on in vivo endpoints, antioxidant defense, and DNA damage response in the freshwater water flea Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160925. [PMID: 36543274 DOI: 10.1016/j.scitotenv.2022.160925] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
In this study, we measured the acute toxicity of triclosan (TCS) in neonate and adult Daphnia magna water fleas. The median lethal concentrations were 184.689 and 349.511 μg/L, respectively. Oxidative stress induced by TCS was analyzed based on changes in reactive oxygen species (ROS) content and antioxidant enzymatic activities in D. magna. Based on these endpoints, TCS concentrations of 50 and 100 μg/L induced oxidative stress. However, several apoptosis-mediated proteins showed TCS-induced oxidative-stress damage in response to 25 μg/L, indicating that apoptotic proteins were the most sensitive mediators. We also evaluated the multi- and transgenerational effects of TCS on D. magna over three generations in terms of various in vivo endpoints, DNA damage responses, and biochemical reactions. The transgenerational group exposed to TCS exhibited greater negative impacts on antioxidant responses, DNA fragmentation status, and biological endpoints compared with the multigenerational exposure group, leading to decreased reproductive rates and higher ROS content. The transcriptional expression levels of glutathione S-transferase genes in the transgenerational exposure group were upregulated compared to those in the multigenerational group but were fully recovered in F2 offspring. Our findings provide an in-depth understanding of the adaptive effects of multigenerational exposure to TCS.
Collapse
Affiliation(s)
- Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yunmoon Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
30
|
Milanović M, Đurić L, Milošević N, Milić N. Comprehensive insight into triclosan-from widespread occurrence to health outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25119-25140. [PMID: 34741734 PMCID: PMC8571676 DOI: 10.1007/s11356-021-17273-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
Humans are exposed to the variety of emerging environmental pollutant in everyday life. The special concern is paid to endocrine disrupting chemicals especially to triclosan which could interfere with normal hormonal functions. Triclosan could be found in numerous commercial products such as mouthwashes, toothpastes and disinfectants due to its antibacterial and antifungal effects. Considering the excessive use and disposal, wastewaters are recognized as the main source of triclosan in the aquatic environment. As a result of the incomplete removal, triclosan residues reach surface water and even groundwater. Triclosan has potential to accumulate in sediment and aquatic organisms. Therefore, the detectable concentrations of triclosan in various environmental and biological matrices emerged concerns about the potential toxicity. Triclosan impairs thyroid homeostasis and could be associated with neurodevelopment impairment, metabolic disorders, cardiotoxicity and the increased cancer risk. The growing resistance of the vast groups of bacteria, the evidenced toxicity on different aquatic organisms, its adverse health effects observed in vitro, in vivo as well as the available epidemiological studies suggest that further efforts to monitor triclosan toxicity at environmental levels are necessary. The safety precaution measures and full commitment to proper legislation in compliance with the environmental protection are needed in order to obtain triclosan good ecological status. This paper is an overview of the possible negative triclosan effects on human health. Sources of exposure to triclosan, methods and levels of detection in aquatic environment are also discussed.
Collapse
Affiliation(s)
- Maja Milanović
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia.
| | - Larisa Đurić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| | - Nataša Milić
- University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
| |
Collapse
|
31
|
Pullaguri N, Umale A, Bhargava A. Neurotoxic mechanisms of triclosan: The antimicrobial agent emerging as a toxicant. J Biochem Mol Toxicol 2023; 37:e23244. [PMID: 36353933 DOI: 10.1002/jbt.23244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Several scientific studies have suggested a link between increased exposure to pollutants and a rise in the number of neurodegenerative disorders of unknown origin. Notably, triclosan (an antimicrobial agent) is used in concentrations ranging from 0.3% to 1% in various consumer products. Recent studies have also highlighted triclosan as an emerging toxic pollutant due to its increasing global use. However, a definitive link is missing to associate the rising use of triclosan and the growing number of neurodegenerative disorders or neurotoxicity. In this article, we present systematic scientific evidence which are otherwise scattered to suggest that triclosan can indeed induce neurotoxic effects, especially in vertebrate organisms including humans. Mechanistically, triclosan affected important developmental and differentiation genes, structural genes, genes for signaling receptors and genes for neurotransmitter controlling enzymes. Triclosan-induced oxidative stress impacting cellular proteins and homeostasis which triggers apoptosis. Though the scientific evidence collated in this article unequivocally indicates that triclosan can cause neurotoxicity, further epidemiological studies may be needed to confirm the effects on humans.
Collapse
Affiliation(s)
- Narasimha Pullaguri
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Ashwini Umale
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| |
Collapse
|
32
|
Yan X, An J, Zhang L, Zhang L, Zhou X, Wei S. Ecotoxicological effects and bioaccumulation in Eichhornia crassipes induced by long-term exposure to triclosan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:90-98. [PMID: 36343464 DOI: 10.1016/j.plaphy.2022.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In this study, the ecotoxicological effects and bioaccumulation of triclosan (TCS) in Eichhornia crassipes (E. crassipes) were investigated with 28 d exposure experiments. The results showed that chlorophyll content was increased after 7 d exposure to 0.05-0.1 mg L-1 TCS, while it was inhibited significantly by 0.5 mg L-1 TCS after 21 d exposure. The concentrations of soluble protein in the leaves increased during the initial stage (7 d and 14 d), whereas they decreased during 21 d and 28 d. The concentrations of soluble protein in the roots gradually reduced during the exposure time. The antioxidant enzyme activities in roots decreased continually with the exposure time. However, the antioxidant enzyme (SOD and CAT) activities in leaves decreased after exposure longer than 14 d. Moreover, differentially expressed genes (DEGs) were observed in the root of E. crassipes after a 28 d exposure to 0.5 mg L-1 TCS, with 11023 DEGs down-regulated and 3947 DEGs up-regulated. 5 SOD down-regulated genes and 3 CAT down-regulated genes were identified from transport and catabolism in cellular processes. After 28 d exposure, the TCS content in roots and leaves stressed by 0.5 mg L-1 TCS were up to 13.04 μg g-1 and 1.97 μg g-1, respectively. SOD in leaves was negatively correlated with TCS content in leaves, CAT in roots was negatively correlated with TCS content in roots. These results provide experimental data to assess the ecological risk of TCS with long exposure in aquatic systems.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, New Jersey, 07102, USA
| | - Lingyan Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xu Zhou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
33
|
Vimalkumar K, Mayilsamy M, Arun E, Gobinath B, Prasanth S, Nikhil PN, Krishna-Kumar S, Srimurali S, Mkandawire M, Babu-Rajendran R. Screening of antimicrobials, fragrances, UV stabilizers, plasticizers and preservatives in sewage treatment plants (STPs) and their risk assessment in India. CHEMOSPHERE 2022; 308:136452. [PMID: 36116630 DOI: 10.1016/j.chemosphere.2022.136452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/16/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Community/industrial wastewater is the prime source of anthropogenic chemicals, its treatment is often a daunting task and unaffordable for many countries. Emerging Contaminants (ECs) have been drained into wastewater after continuous use/misuse and Conventional treatments in STPs do not remove them completely. ECs including antimicrobial agents, synthetic musks, Benzotriazole UV stabilizers (BUVSs), plasticizers, and preservatives are frequently reported in environment, and cause health effects to non-target organisms. Monitoring of ECs is important to understand their status in aquatic environment. Hence, it was aimed to monitor ECs (n = 21) from 11 STPs in Tamil Nadu, India. The detection frequency of most of these analytes was >90%. Antimicrobials ranged from 247 to 22,714 ng/L and 11-14,369 ng/L in influents and effluents, respectively. The synthetic musks were in the order of Tonalide > Galaxolide > Musk Ketone. BUVSs ranged from 4 to 1632 ng/L (influents) and < LOD to 29,853 ng/L (effluents). Concentration of phthalates in influents and effluents were < LOD - 11,311 ng/L and < LOD - 17,618 ng/L, respectively. Parabens were found in the order of Prophyl > Methyl > Ethyl > Butyl in influents and Methyl > Prophyl > Butyl > Ethyl in effluents. Mass loads of ECs through STPs were found as antimicrobials > plasticizers > fragrances > BUVSs > Preservatives. This study reveals increasing usage of ECs and inadequate treatment processes at STPs in India. Also helps to adopt suitable treatment processes to remove ECs from wastewater and to reuse the wastewater.
Collapse
Affiliation(s)
- Krishnamoorthi Vimalkumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Department of Environmental Medicine and Pediatrics, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Murugasamy Mayilsamy
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Hiyoshi India Ecological Services Private Limited, TICEL Biopark Ltd., Chennai, Tamil Nadu, India
| | - Elayaraja Arun
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Balasubramanian Gobinath
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Saravanan Prasanth
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Patil Nishikant Nikhil
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Selvaraj Krishna-Kumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; School of Geography, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China
| | - Sampath Srimurali
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Food Chemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, Sydney, Novo Scotia, B1P 6L2, Canada
| | - Ramaswamy Babu-Rajendran
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; Research Center for Inland Seas (KURCIS), Kobe University, Kobe, 658-0022, Japan.
| |
Collapse
|
34
|
Ranjan N, Singh PK, Maurya NS. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114220. [PMID: 36332401 DOI: 10.1016/j.ecoenv.2022.114220] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The wastewaters from pharmaceutical manufacturing units, hospitals, and domestic sewage contaminated with excretal matters of medicine users are the prime sources of pharmaceutical pollutants (PPs) in natural water bodies. In the present study, PPs have been considered one of the emerging pollutants (EPs) and a cause of concern in river health assessment. Beyond the reported increase in antibiotic-resistant bacteria (ABRB), PPs have been found adversely affecting the biotic diversity in such water environments. Considering Algae, Macroinvertebrates, and Fishes as three distinct trophic level indicators, the present study puts forward a framework for showing River Health Condition (RHC) based on the calculation of a River Health Index (RHI). The RHI is calculated using six Indicator Group Scores (IGS) which individually reflect river health in a defined category of water quality characteristics. While Dissolved Oxygen Related Parameters (DORP), Nutrients (NT), and PPs are taken as causative agents affecting RHCs, scores of Algal-Bacterial (AB) symbiosis, Macroinvertebrates (MI), and Fishes (F) are considered as an effect of such environmental conditions. Current wastewater treatment technologies are also not very effective in the removal of PPs. The objective of the present study is to review the harmful effects of PPs on the aquatic environment, particularly on the chemical and biotic indicators of river health. Based on predicted no-effect concentrations (PNEC) for algae, macroinvertebrates, and fishes in the aquatic environment and measured environmental concentration (MEC) in the river, the estimated risk quotient (RQ) for norfloxacin in the Isakavagu-Nakkavagu stream of river Godavari, Hyderabad is found 293 for algae, 39 for MI, and 335 for fish. Among PPs, in Indian rivers, the presence of caffeine is the most frequent, with algae at the highest level of risk (RQmax= 24.5). Broadly six PPs, including azithromycin, caffeine, diclofenac, naproxen, norfloxacin, and sulfamethoxazole are found above PNEC values in Indian rivers. The application of IGS and RHI in understanding and presenting the river health condition (RHC) through colored hexagons has been demonstrated for the river Ganga near Varanasi (India) as an example. Identification of critical indicator groups, based on IGS provides a scientific basis for planned intervention for river health restoration to achieve an acceptable category.
Collapse
Affiliation(s)
- Nitin Ranjan
- Department of Civil Engineering, IIT(BHU), Varanasi 221005, India.
| | | | | |
Collapse
|
35
|
Elaiyaraja A, Mayilsamy M, Vimalkumar K, Nikhil NP, Noorani PM, Bommuraj V, Thajuddin N, Mkandawire M, Rajendran RB. Aquatic and human health risk assessment of Humanogenic Emerging Contaminants (HECs), Phthalate Esters from the Indian Rivers. CHEMOSPHERE 2022; 306:135624. [PMID: 35810861 DOI: 10.1016/j.chemosphere.2022.135624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PEs) one of the widely used plasticizers, and are known for their environmental contamination and endocrine disruption. Hence, it is important to study their distribution in a riverine environment. This study was aimed to determine the Spatio-temporal trends of 16 PEs in surface water, sediment and fish from rivers in southern India, and to assess their environmental health risks. Phthalates were quantified in all matrices with the mean concentrations (∑16PEs) in water, sediment and fish as 35.6 μg/L, 1.25 μg/kg and 17.0 μg/kg, respectively. The Kaveri River is highly loaded with PEs compared to the Thamiraparani and Vellar Rivers. PEs such as DBP, DEHP, DCHP and DiBP were most frequently detected in all matrices, and at elevated concentrations in the dry season. The risk quotient (RQ < 1) suggests that the health risk of PEs from river water and fish to humans is negligible. However, DBP and DEHP from the Kaveri River pose some risk to aquatic organisms (HQ > 1). DEHP from the Vellar River may pose risks to algae and crustaceans. Non-priority phthalate (DiBP) may pose risks to Kaveri and Vellar River fish. The bioaccumulation factor of DCHP and DEHP was found to be very high in Sardinella longiceps and in Centropristis striata, and also exceeded the threshold limit of 5000 suggesting that PEs in the riverine environment may pose some health concerns. This is the first study to assess the spatio-temporal distribution, riverine flux and potential ecological effects of 16 PEs from the southern Indian Rivers.
Collapse
Affiliation(s)
- Arun Elaiyaraja
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Murugasamy Mayilsamy
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Hiyoshi India Ecological Services Private Limited, TICEL Biopark Ltd., Taramani Road (CSIR Road), Chennai, India
| | - Krishnamoorthi Vimalkumar
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Nishikant Patil Nikhil
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Peer Muhamed Noorani
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Vijayakumar Bommuraj
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Nooruddin Thajuddin
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Ramaswamy Babu Rajendran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Research Center for Inland Seas, Kobe University, Kobe, 658-0022, Japan.
| |
Collapse
|
36
|
Ding T, Wei L, Hou Z, Lin S, Li J. Biological responses of alga Euglena gracilis to triclosan and galaxolide and the regulation of humic acid. CHEMOSPHERE 2022; 307:135667. [PMID: 35835236 DOI: 10.1016/j.chemosphere.2022.135667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Although the toxicity of triclosan (TCS) and galaxolide (HHCB) in freshwater has been reported, little study is shed light on their molecular toxicity mechanism and the regulation of humic acid (HA). In this work, freshwater algae E. gracilis was selected to explore these processes, and the molecular toxicity mechanism was analyzed by metabolomics. TCS was more toxic to E. gracilis than HHCB at 1 d exposure with the EC50 value of 0.76 mg L-1, but HHCB showed a higher toxicity as the exposure time prolonged. HA could alleviate the toxicity of TCS and HHCB, mainly due to the inhibition of TCS uptake and oxidative stress, respectively. The perturbations on a number of antioxidant defense-related metabolites in response to TCS or HHCB also indicated oxidative stress was a main toxicity mechanism. However, the exposure to HHCB resulted in more pronounced perturbations in the purine metabolism than TCS, implying that HHCB may pose a genetic toxicity on algae. It may explain the higher toxicity of HHCB to algae as the exposure time increased. These findings provide a comprehensive understanding on the ecological risks of TCS or HHCB in natural waters.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Liyan Wei
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhangming Hou
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Lin
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
37
|
Fan Z, Yang Y, Hu P, Huang Y, He L, Hu R, Zhao K, Zhang H, Liu C. Molecular mechanism of ethylparaben on zebrafish embryo cardiotoxicity based on transcriptome analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156785. [PMID: 35752233 DOI: 10.1016/j.scitotenv.2022.156785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Ethylparaben (EP), one of the parabens, a ubiquitous food and cosmetic preservatives, has caused widespread concern due to its health risks. Recently, studies have found that parabens exposure during pregnancy is negatively correlated with fetal and early childhood development. However, studies about EP on embryo development are few. In this study, the cardiotoxicity effects of EP concentrations ranging from 0 to 20 mg/L on zebrafish embryo development were explored. Results showed that EP exposure induce abnormal cardiac function and morphology, mainly manifested as pericardial effusion and abnormal heart rate in early-stage development of zebrafish embryos. Through transcriptome sequencing followed by Gene Ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, we further confirmed that EP exposure ultimately leads to cardiac morphologic abnormalities via the following three mechanisms: 1. Disruption of the retinoic acid signaling pathway related to original cardiac catheter development; 2. Inhibition of gene expression related to myocardial contraction; 3. Orientation development disturbance of heart tube. Moreover, O-Dianisidine staining, whole-mount in situ hybridization at 30 and 48 hours post fertilization (hpf) and hematoxylin-eosin staining results all confirmed the decreased heart's return blood volume, misoriented heart tubes toward either the right or the middle side, and heart loop defects. For the first time, we explored the mechanism by which EP exposure causes abnormal heart development in zebrafish embryos, laying the foundation for further revealing of the EP toxicity on embryonic development.
Collapse
Affiliation(s)
- Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Henan Province Key Laboratory for Reproduction and Genetics, Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Yunyi Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Peixuan Hu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yaochen Huang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Liting He
- The Second People's Hospital of Guiyang, Guiyang 550000, People's Republic of China
| | - Rui Hu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518047, People's Republic of China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
38
|
Pronschinske MA, Corsi SR, DeCicco LA, Furlong ET, Ankley GT, Blackwell BR, Villeneuve DL, Lenaker PL, Nott MA. Prioritizing Pharmaceutical Contaminants in Great Lakes Tributaries Using Risk-Based Screening Techniques. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2221-2239. [PMID: 35852176 PMCID: PMC9542422 DOI: 10.1002/etc.5403] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 05/31/2023]
Abstract
In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database. Available evidence did not suggest substantial concern for 75% of the monitored pharmaceuticals, including 147 undetected pharmaceuticals and 49 pharmaceuticals with screening-level alternative benchmarks. However, because of a lack of biological effects information, screening values were not available for 51 detected pharmaceuticals. Samples containing the greatest pharmaceutical concentrations and having the highest detection frequencies were from Lake Erie, southern Lake Michigan, and Lake Huron tributaries. Samples collected during low-flow periods had higher pharmaceutical concentrations than those collected during increased-flow periods. The wastewater-treatment plant effluent content in streams correlated positively with pharmaceutical concentrations. However, deviation from this correlation demonstrated that secondary factors, such as multiple pharmaceutical sources, were likely present at some sites. Further research could investigate high-priority pharmaceuticals as well as those for which alternative benchmarks could not be developed. Environ Toxicol Chem 2022;41:2221-2239. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Steven R. Corsi
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Laura A. DeCicco
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Edward T. Furlong
- Laboratory & Analytical Services DivisionUS Geological SurveyDenverColoradoUSA
| | - Gerald T. Ankley
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Brett R. Blackwell
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Peter L. Lenaker
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Michelle A. Nott
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| |
Collapse
|
39
|
Zhao X, Zheng Y, Quan F, Hu S, Wu Q, Luo M, Gu Y, Tang S, Jiang J. Road runoff as a significant nonpoint source of parabens and their metabolites in urban rivers. CHEMOSPHERE 2022; 301:134632. [PMID: 35439487 DOI: 10.1016/j.chemosphere.2022.134632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Parabens are widely added to food, cosmetics, and medicines as preservatives and are typical contaminants of pharmaceuticals and personal care products (PPCPs). However, their fate and transport in urban watersheds remain largely unexplored. This study investigated the role of road runoff as a critical nonpoint source of parabens and their metabolites in urban rivers based on 73 multimedia (road runoff and dust in different urban land uses, wastewater, stormwater discharge and river water) samples collected from a highly urbanized drainage area. Seven parabens and five metabolites were detected in the road runoff, with mean concentrations of ∑parabens and ∑metabolites equal to 47.5 ng/L and 4710 ng/L, respectively. The concentrations in road runoff were comparable to those in treated wastewater and river water and showed a land use pattern of residential > industrial > commercial. A first flush effect of the contaminants was observed in a heavy rainfall event with an antecedent dry period. In general, the population-based and area-based emission intensities of ∑parabens and ∑metabolites in road runoff were one order of magnitude higher than those in wastewater effluent during the rainfall events. This study provides quantitative evidence that road runoff can be a major pollution source of parabens and their metabolites in rapidly growing cities during the wet season and calls for the integrated management of nonpoint sources to prevent urban river contamination by typical PPCPs.
Collapse
Affiliation(s)
- Xue Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng Quan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shiyao Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingping Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meiyu Luo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Gu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sijie Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiping Jiang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
40
|
Maheswaran B, Karmegam N, Al-Ansari M, Subbaiya R, Al-Humaid L, Sebastin Raj J, Govarthanan M. Assessment, characterization, and quantification of microplastics from river sediments. CHEMOSPHERE 2022; 298:134268. [PMID: 35276113 DOI: 10.1016/j.chemosphere.2022.134268] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP), as a pollutant, is currently posing a biological hazard to the aquatic environment. The study aims to isolate, quantify, and characterize the MP pollutants in sediment samples from 14 study sites at Kaveri River, Killa Chinthamani, Tiruchirappalli, South India. With Sediment-MP Isolation (SMI) unit, density separation was done with a hydrogen peroxide solution. Four forms of MPs namely, fragments, films, foams, and fibers with orange, white, green, and saffron red were observed. The plenitude and distribution of four forms of MPs and natural substrates were geometrically independent, with large amounts of microfragments within the research region accounting for 79.72% variation by Principal Component Analysis. FT-IR analyses of MPs showed the presence of polyamide, polyethylene, polyethylene glycol, polyethylene terephthalate, polypropylene, and polystyrene. Additionally, the scanning electron microscopic analysis revealed that the MPs have differential surface morphology with rough surfaces, porous structures, fissures, and severe damage. Most MPs comprised Si, Mg, Cu, and Al, according to energy dispersive X-ray analyses. The combined SMI, instrumental analyses and evaluation (heat map) of MPs in river sediments help assess contamination levels and types of MPs. The findings might provide an insight into the status of MPs in Kavery River sediments that could help in formulating regulations for MPs reduction and contamination in rivers eventually to protect the environment.
Collapse
Affiliation(s)
- Baskaran Maheswaran
- Post Graduate and Research Department of Biotechnology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620 020, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - Mysoon Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box, 21692, Kitwe, Zambia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Joseph Sebastin Raj
- Post Graduate and Research Department of Biotechnology, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, 620 020, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
41
|
Pompei CME, Campos LC, Vieira EM, Tucci A. The impact of micropollutants on native algae and cyanobacteria communities in ecological filters during drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153401. [PMID: 35114242 DOI: 10.1016/j.scitotenv.2022.153401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
An attractive alternative for drinking water production is ecological filtration. Previous studies have reported high removal levels of pharmaceutical and personal care products (PPCPs) by this technology. Algae and cyanobacteria play an important role in the biological activity of ecological filters. The aim of this study was to characterize and identify the community of algae and cyanobacteria in relation to its composition, density and biovolume from 22 ecological filters that received spikings of 2 μg L-1 PPCPs. For algae and cyanobacteria species, triplicate samples were collected before and 96 h after each spiking from the interface between the top sand layer of the ecological filters and the supernatant water. Results show that Chlorophyceae and Cyanobacteria were present in high numbers of taxa and abundance. The specie Lepocinclis cf. ovum (Euglenophyceae) had the highest percentage occurrence/abundance and frequency into the filters, indicating a possible tolerance by Lepocinclis cf. ovum to the concentration of selected PPCPs. Although the concentration of PPCPs did not affect the treated water quality, they did affect the algae and cyanobacteria community. No differences were detected between filters that received a single PPCP and filters that received a mixture of the six compounds. Also, changes in the composition of algae and cyanobacteria communities were observed before and 96 h after the spikings.
Collapse
Affiliation(s)
- Caroline M Erba Pompei
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil; Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom; São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Eny Maria Vieira
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Andréa Tucci
- Nucleus of Phycology, Institute of Botany, São Paulo, SP, Brazil
| |
Collapse
|
42
|
Dar OI, Aslam R, Sharma S, Jia AQ, Kaur A, Faggio C. Biomolecular alterations in the early life stages of four food fish following acute exposure of Triclosan. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103820. [PMID: 35123018 DOI: 10.1016/j.etap.2022.103820] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
We investigated the effect of acute concentrations of triclosan (TCS; 96 h exposure and 10d post exposure) on the free amino acid, primary (SDS-PAGE) and secondary (FT-IR) structure of proteins in the embryos/larvae of Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala. A concentration dependent increase in free amino acids, upregulation of polypeptides (100 and 70 kDa in C. carpio, C. idella and L. rohita, 55, 45, 36 kda in C. idella and L. rohita and 22 kDa in all the fish) and a decline in percent area of all the selected peaks of the FT-IR spectra was observed after exposure and recovery period. The decline in percent area was greatest for L. rohita at peak 1080 - 1088 cm-1 (-75.99%) after exposure and at peak 2854 - 2855 cm-1 (-53.59%) after recovery. Curve fitting analysis revealed a decrease in α-helices and increase in β-sheets in all fish after exposure and recovery period. The results suggest that TCS elicits alterations in biomolecules of fish embryos.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India.
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Italy.
| |
Collapse
|
43
|
Kumar M, Kuroda K, Barcelo D, Furumai H. Monsoon dilutes the concurrence but increases the correlation of viruses and Pharmaceuticals and Personal Care Products (PPCPs) in the urban waters of Guwahati, India: The context of pandemic viruses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152282. [PMID: 34902398 DOI: 10.1016/j.scitotenv.2021.152282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Concurrence of pharmaceuticals and personal care products (PPCPs), pathogenic viruses, metals and microbial pollution along with their seasonal variations in the water environment are overarching in the context of existing pandemic, especially for tropical countries. The present study focuses on the seasonal influence on the vulnerability of urban water in Guwahati, the largest city in North-eastern India, through examining the concurrence of seven PPCPs, five viruses, faecal bacteria and nine metals in surface waters during monsoon (Summer-July 2017) and pre-monsoon (Winter-March 2018). Surface water sampling was carried out at different locations of the Brahmaputra River, its tributary Bharalu River (an unlined urban drain), and Dipor Bill Lake (Ramsar-recognized wetland). Both PPCPs and viruses were at high concentrations (e.g. up to 970 ng L-1 caffeine, 2.5 × 103 copies mL-1 pepper mild mottle virus (PMMoV)) at the confluence points of urban drains and the river, while they were mostly undetectable at both upstream and downstream locations, implying strong self-purification ability of the river. All the analysed PPCPs and viruses were at much higher concentrations during pre-monsoon i.e., winter than during monsoon, implying heavy dilution and temperature effect during the monsoon. Overall, PPCPs and viruses were more correlated in monsoon but the risk quotient in the urban tributary was higher in pre-monsoon (e.g. 5061 in pre-monsoon and 1515 in monsoon for caffeine). PMMoV was found to be an excellent faecal pollution indicator due to its prevalence, detectability and specificity in all seasons. Overall, the seasonal fluctuations of the non-enveloped viruses monitored in this study is likely to be relevant for SARS-CoV-2. We contribute to address the literature scarcity pertaining to seasonal variations in the prevalence of viruses and their concurrences with contaminants of emerging concern.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu 939-0398, Japan
| | - Damia Barcelo
- Catalan Institute for Water Research (OCRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Wolters B, Hauschild K, Blau K, Mulder I, Heyde BJ, Sørensen SJ, Siemens J, Jechalke S, Smalla K, Nesme J. Biosolids for safe land application: does wastewater treatment plant size matters when considering antibiotics, pollutants, microbiome, mobile genetic elements and associated resistance genes? Environ Microbiol 2022; 24:1573-1589. [PMID: 35192222 PMCID: PMC9306954 DOI: 10.1111/1462-2920.15938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/04/2023]
Abstract
Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing. Concentrations of heavy metals, antibiotics, the biocides triclosan, triclocarban and quaternary ammonium compounds (QACs) were measured. Strong and significant correlations were revealed between several target genes and concentrations of Cu, Zn, triclosan, several antibiotics and QACs. Interestingly, the size of the sewage treatment plant (inhabitant equivalents) was negatively correlated with antibiotic concentrations, RGs and MGEs abundances and had little influence on the load of metals and QACs or the microbial community composition. Biosolids from WWTPs with anaerobic treatment and hospitals in their catchment area were associated with a higher abundance of potential opportunistic pathogens and higher concentrations of QACs.
Collapse
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kristin Hauschild
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Ines Mulder
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Benjamin Justus Heyde
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Siemens
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Sven Jechalke
- Justus Liebig University Giessen, Institute of Phytopathology, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Minhas PS, Saha JK, Dotaniya ML, Sarkar A, Saha M. Wastewater irrigation in India: Current status, impacts and response options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152001. [PMID: 34856275 DOI: 10.1016/j.scitotenv.2021.152001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Wastewater generated from urban agglomerations in India is estimated to be 26.4 km3 annually and 28% of it is treated. This has a potential to irrigate about 2.1 million-ha agricultural land, contribute 4 million Mg of plant nutrients, generate 2.8 million person-days of employment and reduce green house gas (GHG) emission by 73.7 million Mg CO2-e. Farmers in peri-urban areas depend largely on raw and partially treated wastewater for livelihood via raising high value crops such as vegetable, fodders and fruits. Both controlled and uncontrolled disposal of waste waters leads to progressive and irreversible contamination of soils, surface and ground waters with pathogens, heavy metals and organic micro-contaminants and consequently their bio-transfer through the chain: sewage-soil-vegetation-animal-humans. This has led to the development of a considerable assortment of regulatory measures and guidelines aimed at reducing or eliminating wastewater related health risks. Because conventional treatment technologies are cost prohibitive, alternate methods based on biological and land treatment systems are being advocated. Since soils are the most logical sinks for wastewater, efforts are to optimise rates and methods of water application, quantify the sink capacity of soils to immobilise contaminants and protect the quality of produce. Reuse of diluted or undiluted wastewaters improves crop productivity by 10-36% though production sustainability depends on soil type, climatic conditions, crop grown, irrigation techniques and socio-political factors. Disposal of wastewater in tree plantations and constructed wetlands with consequent removal of toxic metals/compounds using hyper-accumulators/accumulators plants provide for a possible alternative. Ignoring the associated risks, using pisciculture for sewage disposal is quite popular in high rainfall areas. With growing water scarcities, it is utmost important to recognise wastewaters as a valuable resource and formulate appropriate policy initiatives considering the health and livelihood issues of the per-urban farmers and consumers of food as well as risks to environment.
Collapse
Affiliation(s)
- Paramjit S Minhas
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, India.
| | | | - M L Dotaniya
- ICAR-Directorate of Rapeseed Mustard Research, Bharatpur 321303, India
| | - Abhijit Sarkar
- ICAR-Indian Institute of Soil Science, Bhopal 462038, India
| | | |
Collapse
|
46
|
Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127284. [PMID: 34655870 DOI: 10.1016/j.jhazmat.2021.127284] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.
Collapse
Affiliation(s)
- Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA.
| | - Jie Xue
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yixin Zhao
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Alicia A Taylor
- Ecological and Biological Sciences Practice, Exponent, Inc., Oakland, CA 94612, USA
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yian Sun
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | - Yurong Zhu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA
| |
Collapse
|
47
|
Sengar A, Vijayanandan A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (PPCPs) detected in Indian surface and wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150677. [PMID: 34599960 DOI: 10.1016/j.scitotenv.2021.150677] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 05/20/2023]
Abstract
The release of pharmaceuticals and personal care products (PPCPs) in environmental waters has become an urgent issue due to their pseudo-persistent traits. The present study was undertaken to conduct a screening-level risk assessment of 98 PPCPs, detected in different water matrices (treated wastewater, surface water, and groundwater) of India, for evaluating ecological risk (risk to fish, daphnia, and algae), human health risk, and antimicrobial resistance (AMR) selection risk by following risk quotient (RQ) based methodology. In the present study, 47% of the detected PPCPs in Indian waters were found to exert a possible risk (RQ > 1) to either aquatic species and human health, or cause AMR selection risk. 17 out of 25 antibiotics detected in the environmental waters were found to pose a threat of AMR selection. 11 out of 49 pharmaceuticals were found to exert human health risk from ingesting contaminated surface water, whereas only 2 pharmaceuticals out of 25 were found to exert risk from the intake of groundwater. Very high RQs (>1000) for few pharmaceuticals were obtained, signifying a great potential of the detected PPCPs in causing severe health concern, aquatic toxicity, and AMR spread. Within India, special attention needs to be given to the pharmaceutical hubs, as the environmental waters in these regions were found to be severely contaminated with drug residues resulting in extremely high RQs. The present study will be helpful in prioritizing the detected PPCPs in the environmental waters of India, for which immediate attention and enforceable guidelines are required.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
48
|
Galinaro CA, Spadoto M, de Aquino FWB, de Souza Pelinson N, Vieira EM. Environmental risk assessment of parabens in surface water from a Brazilian river: the case of Mogi Guaçu Basin, São Paulo State, under precipitation anomalies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8816-8830. [PMID: 34491494 DOI: 10.1007/s11356-021-16315-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Parabens are preservatives widely used by industry since these compounds have antifungal properties, relative low cost, and stability over a wide pH range. This study aims to quantify and assess the environmental risks of methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) in surface water from a Brazilian River, Mogi Guaçu. The State of São Paulo, including the Mogi Guaçu River region, suffered from a period of intense drought and high temperatures, which caused anomalies in river flows and water supply problems. The water samples were collected from 14 locations, along 300 km of river extension, at four different seasons. Samples were previously extracted and pre-concentrated by dispersive liquid-liquid microextraction (DLLME) and later analyzed by ultra-performance liquid chromatography coupled with electrospray ionization in tandem with mass spectrometry (UPLC-ESI-MS/MS) detector. During the sampling period, PP was detected in 89.3% of the water samples, MP in 87.5%, EP in 73.2%, and BP in 48.2%. The sum of parabens' average levels was 42.2 μg L-1 in Winter, 41.5 μg L-1 in Summer, 36.6 μg L-1 in Autumn, and 31.5 μg L-1 in Spring. These levels can be attributed to the smaller dilution effect caused by the drought period. Also, ecological risk assessment indicated that parabens could take a low, medium, and high risk for target organisms in the measured aquatic environments, especially considering Pimephales promelas where 15% of the samples do not present potential risk, 84% of samples can present medium risk and only 1% have low risk. Besides, the risks for BP are also considerably higher, when almost 40% presents for high risks and 60% for medium risks. The present study indicates worrisome threats to the water source and to allegedly protected biodiversity and, therefore, urgent actions are needed to effectively protect.
Collapse
Affiliation(s)
- Carlos Alexandre Galinaro
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil.
| | - Mariangela Spadoto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, Avenida do Trabalhador São Carlense, 400, 13.560-970, São Carlos, São Paulo, Brazil
| | - Francisco Wendel Batista de Aquino
- Chemistry Department, Federal University of São Carlos, Rodovia Washington Luís s/n km 235, P.O. Box 676, São Paulo, São Carlos, 13565-905, Brazil
| | - Natália de Souza Pelinson
- São Carlos School of Engineering (EESC), University of São Paulo (USP), 400 Trabalhador São Carlense Avenue, São Carlos, SP, 13566-590, Brazil
| | - Eny Maria Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
49
|
Renganathan J, S IUH, Ramakrishnan K, Ravichandran MK, Philip L. Spatio-temporal distribution of pharmaceutically active compounds in the River Cauvery and its tributaries, South India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149340. [PMID: 34399341 DOI: 10.1016/j.scitotenv.2021.149340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutically active compounds (PhACs) present in the environment are a great threat to human well-being and the ecosystem. Eventhough recognized as the pharmacy of the world", studies addressing the distribution of PhACs in the Indian environment are scarce. Hence, in the current study, selected PhACs, heavy metals (HMs), and physicochemical parameters (PCPs) were measured from the surface waters of the River Cauvery during the pre- and post-monsoon. PhACs such as caffeine, carbamazepine, and diclofenac were detected in most samples, whereas topiramate, ibuprofen, and verapamil were found only in few stations. In contrast, the distribution of ciprofloxacin, atenolol, and isoprenaline was strongly influenced by the seasonal pattern (p < 0.05). PhACs such as loperamide, glafenine, erythromycin, and gemfibrozil were not detected during the study. Distribution of PhACs based on average concentration (ng/L) are, CBZ (205.62) > CAF (114.09) > DCF (28.51) > CIP (25.23) > ATL (18.86) > IPL (13.91) > PPL (11.26) > TCS (10.39) > IBF (7.34) > TPT (3.09) > VPL (1.16). Bivariate and multivariate statistical analyses have revealed a positive correlation expressed by the majority of the PhACs with PCPs (COD, TOC), nutrients (TN, TP), and HMs (Pb, Mn, Ni) in the range from 0.540** to 0.961**(p < 0.01). Whereas, DO revealed negative correlation with most of the parameters in the range from -0.559** to -0.831** (p < 0.01). A high average concentration of PhACs was recorded in the upstream (52.08 ng/L) and wastewater discharge points (55.60 ng/L). Further, the environmental risk assessment study has identified the higher risk exhibited by TCS (RQ: 3.29) and CAF (RQ: 38.82) on algae and Daphnia respectively. The study portrays the distribution of emerging contaminants in the River Cauvery and its tributaries and also delivers preliminary data about the distribution of isoprenaline, topiramate, verapamil, and perindopril in the Indian freshwater system.
Collapse
Affiliation(s)
- Jayakumar Renganathan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Insamam Ul Huq S
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Kamaraj Ramakrishnan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Manthiram Karthik Ravichandran
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Ligy Philip
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India.
| |
Collapse
|
50
|
Sharma S, Dar OI, Singh K, Thakur S, Kesavan AK, Kaur A. Genomic markers for the biological responses of Triclosan stressed hatchlings of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67370-67384. [PMID: 34254240 DOI: 10.1007/s11356-021-15109-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) used commonly in pharmaceuticals and personal care products has become the most common pollutant in water. Three-day-old hatchlings of an indigenous fish, Labeo rohita, were given 96h exposure to a nonlethal (60 μg L-1) and two moderately lethal concentrations (67 and 97 μg L-1) of TCS and kept for 10 days of recovery for recording transcriptomic alterations in antioxidant/detoxification (SOD, GST, CAT, GPx, GR, CYP1a and CYP3a), metabolic (LDH, ALT and AST) and neurological (AchE) genes and DNA damage. The data were subjected to principal component analysis (PCA) for obtaining biomarkers for the toxicity of TCS. Hatchlings were highly sensitive to TCS (96h LC50 = 126 μg L-1 and risk quotient = 40.95), 96h exposure caused significant induction of CYP3a, AChE and ALT but suppression of all other genes. However, expression of all the genes increased significantly (except for a significant decline in ALT) after recovery. Concentration-dependent increase was also observed in DNA damage [Tail Length (TL), Tail Moment (TM), Olive Tail Moment (OTM) and Percent Tail DNA (TDNA)] after 96 h. The damage declined significantly over 96h values at 60 and 67 μg L-1 after recovery, but was still several times more than control. TCS elicited genomic alterations resulted in 5-11% mortality of exposed hatchlings during the recovery period. It is evident that hatchlings of L. rohita are a potential model and PCA shows that OTM, TL, TM, TDNA, SOD and GR (association with PC1 during exposure and recovery) are the biomarkers for the toxicity of TCS. Graphical abstract.
Collapse
Affiliation(s)
- Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirpal Singh
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sharad Thakur
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anup Kumar Kesavan
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|