1
|
Damerell V, Klaassen‐Dekker N, Brezina S, Ose J, Ulvik A, van Roekel EH, Holowatyj AN, Baierl A, Böhm J, Bours MJL, Brenner H, de Wilt JHW, Grady WM, Habermann N, Hoffmeister M, Keski‐Rahkonen P, Lin T, Schirmacher P, Schrotz‐King P, Ulrich AB, van Duijnhoven FJB, Warby CA, Shibata D, Toriola AT, Figueiredo JC, Siegel EM, Li CI, Gsur A, Kampman E, Schneider M, Ueland PM, Weijenberg MP, Ulrich CM, Kok DE, Gigic B. Circulating tryptophan-kynurenine pathway metabolites are associated with all-cause mortality among patients with stage I-III colorectal cancer. Int J Cancer 2025; 156:552-565. [PMID: 39308420 PMCID: PMC11621991 DOI: 10.1002/ijc.35183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Alterations within the tryptophan-kynurenine metabolic pathway have been linked to the etiology of colorectal cancer (CRC), but the relevance of this pathway for prognostic outcomes in CRC patients needs further elucidation. Therefore, we investigated associations between circulating concentrations of tryptophan-kynurenine pathway metabolites and all-cause mortality among CRC patients. This study utilizes data from 2102 stage I-III CRC patients participating in six prospective cohorts involved in the international FOCUS Consortium. Preoperative circulating concentrations of tryptophan, kynurenine, kynurenic acid (KA), 3-hydroxykynurenine (HK), xanthurenic acid (XA), 3-hydroxyanthranilic acid (HAA), anthranilic acid (AA), picolinic acid (PA), and quinolinic acid (QA) were measured by liquid chromatography-tandem mass spectrometry. Using Cox proportional hazards regression, we examined associations of above-mentioned metabolites with all-cause mortality, adjusted for potential confounders. During a median follow-up of 3.2 years (interquartile range: 2.2-4.9), 290 patients (13.8%) deceased. Higher blood concentrations of tryptophan, XA, and PA were associated with a lower risk of all-cause mortality (per doubling in concentrations: tryptophan: HR = 0.56; 95%CI:0.41,0.76, XA: HR = 0.74; 95%CI:0.64,0.85, PA: HR = 0.76; 95%CI:0.64,0.92), while higher concentrations of HK and QA were associated with an increased risk of death (per doubling in concentrations: HK: HR = 1.80; 95%CI:1.47,2.21, QA: HR = 1.31; 95%CI:1.05,1.63). A higher kynurenine-to-tryptophan ratio, a marker of cell-mediated immune activation, was associated with an increased risk of death (per doubling: HR = 2.07; 95%CI:1.52,2.83). In conclusion, tryptophan-kynurenine pathway metabolites may be prognostic markers of survival in CRC patients.
Collapse
Affiliation(s)
- Victoria Damerell
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Niels Klaassen‐Dekker
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Stefanie Brezina
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Jennifer Ose
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
- Department III: Media, Information and DesignUniversity of Applied Sciences and Arts, Hochschule HannoverHannoverGermany
| | | | - Eline H. van Roekel
- Department of Epidemiology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Andreana N. Holowatyj
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Andreas Baierl
- Department of Statistics and Operations ResearchUniversity of ViennaViennaAustria
| | - Jürgen Böhm
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Martijn J. L. Bours
- Department of Epidemiology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Hermann Brenner
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Johannes H. W. de Wilt
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal SurgeryRadboud University Medical CenterNijmegenThe Netherlands
| | - William M. Grady
- Therapeutics and Translational Science DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Nina Habermann
- Genome BiologyEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Pekka Keski‐Rahkonen
- Nutrition and Metabolism BranchInternational Agency for Research on CancerLyonFrance
| | - Tengda Lin
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | | | - Petra Schrotz‐King
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Alexis B. Ulrich
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
- Rheinland Klinikum NeussLukas KrankenhausNeussGermany
| | | | - Christy A. Warby
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - David Shibata
- Department of SurgeryUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterCaliforniaLos AngelesUSA
| | - Erin M. Siegel
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Christopher I. Li
- Division of Public Health SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Andrea Gsur
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Ellen Kampman
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Martin Schneider
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | | | - Matty P. Weijenberg
- Department of Epidemiology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Cornelia M. Ulrich
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Dieuwertje E. Kok
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Biljana Gigic
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | | |
Collapse
|
2
|
Shen H, Zhou L, Yang Y, Shu H, Wu D, Yang S, Xie L, Yang L, Tian S, Zhang X, Ma R, Jiang L, Jiang M, Zhang H, Wang Y, Zhang H, Gao S, Xu L, Wang H. The gut microbiota-produced vitamin B6 mitigates alcohol-associated liver disease by attenuating hepatic oxidative stress damage. Hepatol Commun 2025; 9:e0599. [PMID: 39670862 PMCID: PMC11637752 DOI: 10.1097/hc9.0000000000000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/22/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a major clinical issue characterized by progressive stages, including hepatic steatosis, liver fibrosis, cirrhosis, and HCC. Patients with long-term chronic alcoholism often present with gut microbiota dysbiosis and reduced plasma levels of vitamin B6. This study aimed to verify that gut microbiota disruption in ALD significantly contributes to reduced in vivo production of vitamin B6 and to investigate the role of this reduction in the pathogenesis of ALD. METHODS The ALD was investigated utilizing the Gao-binge mouse model. Fecal microbial composition was analyzed in pair-fed mice and ALD mice to identify alcohol-induced functional changes in the microbiota. Additionally, liver protein expression profiles and liver and plasma metabolomic profiles were characterized to elucidate the role of vitamin B6 in ALD pathogenesis through integrated proteomic and metabolomic analyses. The findings were further validated using animal models and clinical patient samples. RESULTS Alcohol consumption disrupted the gut microbiota in the mice, impairing the vitamin B6 synthesis by intestinal microorganisms. Vitamin B6 deficiency aggravated the disorder of amino acid metabolism in the liver and inhibited ornithine aminotransferase expression, thereby worsening oxidative stress damage. In patients with ALD, significant disturbances of gut microbiota were observed, along with decreased intestinal vitamin B6 levels, which were negatively correlated with serum biochemical markers. CONCLUSIONS The imbalance of gut microbiota in ALD mice reduces vitamin B6 synthesis, which affects amino acid metabolism and glutathione synthesis in the liver, thereby exacerbating ALD. These findings suggest that vitamin B6 may play a critical protective role in ALD progression by regulating amino acid metabolism.
Collapse
Affiliation(s)
- Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanru Yang
- Department of Blood Transfusion, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hang Shu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Dongqing Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Simin Yang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Lei Yang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Shanfei Tian
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xinru Zhang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Ma
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Man Jiang
- Department of Neurology, Mengcheng First People’s Hospital, Bozhou, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yan Wang
- School of Health Service Management, Anhui Medical University, Hefei, China
| | - Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, China
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Chen B, Wang C, Li W. Genetic insights into the effect of trace elements on cardiovascular diseases: multi-omics Mendelian randomization combined with linkage disequilibrium score regression analysis. Front Immunol 2024; 15:1459465. [PMID: 39691718 PMCID: PMC11649655 DOI: 10.3389/fimmu.2024.1459465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Objective Epidemiological evidence indicates that trace elements are significantly associated with cardiovascular health. However, its causality and underlying mechanisms remain unclear. Therefore, this study aimed to investigate the causal relationship between trace elements and cardiovascular disease, as well as their potential mechanism of action. Method Two-sample Mendelian randomization (MR) analyses along with mediated and multivariate MR analyses were employed. These analyses utilized 13 trace elements as exposure variables and 20 cardiovascular diseases as outcome variables, with 4907 circulating plasma proteins, 1400 serum metabolites, 731 immune cell phenotypes, and 473 intestinal flora as potential mediators. The Bayesian weighted MR method was used to validate the MR results, and linkage disequilibrium score regression (LDSC) was applied to explore the genetic correlation between trace elements and cardiovascular disease. Result Our findings indicated a positive or negative causal relationship between genetically predicted trace elements and cardiovascular disease. An analysis using the Bayesian weighted MR method demonstrated that our causal inference results were reliable. The results of the mediated MR analyses indicate that potassium may reduce the risk of ischemic heart disease by influencing the expression of the plasma proteins BDH2 and C1R. Vitamin B12 may increase the risk of coronary atherosclerosis and cardiovascular death by reducing the levels of VPS29 and PSME1 proteins, while vitamin C may mitigate the risk of cardiac arrest by inhibiting the expression of the TPST2 protein. In addition, potassium can reduce the risk of ischemic heart disease by lowering 4-methoxyphenyl sulfate levels. None of the instrumental variables exhibited pleiotropy in the MR analysis. A sensitivity analysis using the leave-one-out method further confirmed the robustness of our findings. LDSC results indicated a genetic correlation between multiple trace elements and various cardiovascular diseases. Conclusion This study uncovered the true causal relationship between trace elements and cardiovascular disease risk using genetic methods, and revealed the significant mediating role of specific plasma proteins and metabolites in this relationship.
Collapse
Affiliation(s)
- Bohang Chen
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Chuqiao Wang
- The Department of Endocrinology, Liaoning Health Industry Group Fukuang General Hospital, Fushun, Liaoning, China
| | - Wenjie Li
- The Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Ahmad W, Kanwal MA, Inayat I, Ahmad SN, Batool AI, Ghazanfar N, Idrees R, Suleman S, Younis A, Ahmad KR. Protective Role of Vitamin B6 Against Teratogenic Effects Induced by Lead in Chick Embryo. Birth Defects Res 2024; 116:e2416. [PMID: 39589106 DOI: 10.1002/bdr2.2416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Heavy metals like lead (Pb) have been used by humans for a very long time, but throughout the industrial revolution, their use expanded, increasing exposure to the metal. Lead, however, has no biological purpose in the human body and is hazardous when it gets into soft tissues and organs. Lead is still used in a variety of industries, including battery manufacturing and car maintenance, despite efforts to limit its usage. OBJECTIVE This study investigates the teratogenic and morphometric effects of lead on chick embryos and the potential ameliorative effects of vitamin B6. METHODS Two hundred fertilized eggs from the golden black chicken were divided into four groups: control, lead acetate, vitamin B6, and lead + vitamin B6. RESULTS On the 14th day, embryos were analyzed. Significant reductions in body weight and size were observed in the lead-exposed group (33.93 ± 1.27 g) compared to the control (41.12 ± 0.97 g). Pronounced deformities included rudimentary beaks, protruding eyes, tridactyl limbs, hydrocephaly, and neck deformities. Appendicular deformities like phocomelia, amelia, and abnormal phalanges growth were also noted. Vitamin B6 demonstrated therapeutic benefits, significantly improving mean embryo weight in the Lead + Vitamin B6 group (42.37 ± 0.99 g). The lead-exposed group showed a reduction in maxilla length (3.61 ± 1.30 mm) compared to the Lead + Vitamin B6 group (7.57 ± 0.79 mm). This group also showed reduced severity of muscular dystrophy and bone thinning, with signs of recovery in beak and bone sizes. CONCLUSIONS The study highlights vitamin B6's beneficial impact in mitigating lead's toxic effects on chick embryonic development.
Collapse
Affiliation(s)
- Waheed Ahmad
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Iram Inayat
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Nazish Ghazanfar
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Rabia Idrees
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sadia Suleman
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Asma Younis
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | | |
Collapse
|
5
|
Wang C, Wang X, Jiang Y, Wu Z, Yang J, Wei S, Wang Z, Sun G. Ionic liquid-based yellow-emitting carbon dots for fluorescence-smartphone dual-mode detection of vitamin B6 in milk. Food Chem 2024; 460:140525. [PMID: 39047472 DOI: 10.1016/j.foodchem.2024.140525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The determination of vitamin B6 (VB6) in food is of great significance due to its vital role in maintaining health and its necessity for ingestion through dietary sources. Therefore, based on ionic liquid-based yellow-emitting carbon dots (Y-CDs), a novel fluorescence-smartphone dual-mode method was first developed. The present method was applied to the detection of VB6 in milk. In the fluorescence method, the formation of complexes between VB6 and Y-CDs results in a significant decrease of the fluorescence intensity of Y-CDs. VB6 in milk samples was successfully determined according to this method, which exhibited a low detection limit (5 × 10-5 mg/mL) and excellent recoveries (98.80%-103.80%), demonstrating its feasibility in real sample analysis. In addition, the smartphone-based analysis method was established by researching the correlation between different VB6 concentrations and the (R + B) values of Y-CDs. When this method was applied, the detection process of VB6 was simplified. By combining the two methods, the possibility of incorrect analysis results can be effectively reduced, and the reliability of detection results can be improved through cross-validation of the two methods. Compared with traditional chromatography and electrochemical methods, the dual-mode method was more rapid, convenient, accurate, and suitable for the detection of VB6.
Collapse
Affiliation(s)
- Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xiujuan Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Yuhao Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Zhiyu Wu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Jiawei Yang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Zhibing Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
6
|
Kupjetz M, Patt N, Joisten N, Ueland PM, McCann A, Gonzenbach R, Bansi J, Zimmer P. Baseline Inflammation but not Exercise Modality Impacts Exercise-induced Kynurenine Pathway Modulation in Persons With Multiple Sclerosis: Secondary Results From a Randomized Controlled Trial. Int J Tryptophan Res 2024; 17:11786469241284423. [PMID: 39534856 PMCID: PMC11555752 DOI: 10.1177/11786469241284423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background The kynurenine pathway (KP) is an important hub in neuroimmune crosstalk that is dysregulated in persons with multiple sclerosis (pwMS) and modulated by exercise in a modality-specific manner. Objectives To compare changes in the KP metabolite profile of pwMS (1) following combined treatments including either high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) during a 3-week multimodal rehabilitation, (2) to evaluate exercise response in relation to baseline systemic inflammation, and (3) to investigate associations of kynurenines with physical capacity and clinical outcomes. Methods For this secondary analysis of a randomized controlled trial, serum concentrations of kynurenines at baseline and after 3 weeks were determined using targeted metabolomics (LC-MS/MS). Exercise-induced changes in the KP metabolite profile according to treatment and baseline systemic inflammation (neutrophil-to-lymphocyte ratio (NLR) <3.12 versus ⩾3.12) were investigated using covariance analyses. Results Regardless of treatment, concentrations of tryptophan and most kynurenines decreased over time. Quinolinic acid concentration increased (p < .001). Participants with low and high NLR revealed differential exercise-induced changes in concentrations of kynurenines and NLR. The systemic inflammation markers neopterin (p = .015) and NLR (p < .001) decreased in the whole group and in participants with high NLR, respectively. Conclusions Combined treatments including HIIT or MICT do not differentially modulate the KP metabolite profile, with both reducing concentrations of most kynurenines. Baseline systemic inflammation may impact exercise-induced changes in the KP metabolite profile and anti-inflammatory effects of exercise in pwMS. Trial registration clinicaltrials.gov (identifier: NCT04356248).
Collapse
Affiliation(s)
- Marie Kupjetz
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Nadine Patt
- Department of Neurology, Valens Rehabilitation Centre, Clinics of Valens, Valens, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Göttingen, Germany
| | | | | | - Roman Gonzenbach
- Department of Neurology, Valens Rehabilitation Centre, Clinics of Valens, Valens, Switzerland
| | - Jens Bansi
- Department of Neurology, Valens Rehabilitation Centre, Clinics of Valens, Valens, Switzerland
- Department of Health, Physiotherapy, OST – Eastern Switzerland University of Applied Sciences, Sankt Gallen, Switzerland
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
7
|
Liu X, Liu Y, Shu Y, Tao H, Sheng Z, Peng Y, Cai M, Zhang X, Lan W. Association between dietary vitamin B6 intake and constipation: a population-based study. Front Nutr 2024; 11:1483515. [PMID: 39582668 PMCID: PMC11584952 DOI: 10.3389/fnut.2024.1483515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Background Numerous studies have suggested a link between dietary micronutrient intake and the onset of constipation. Nevertheless, there has not been much research done on the potential relationship between vitamin B6 and constipation. The purpose of this study was to determine whether dietary vitamin B6 consumption and chronic constipation are related among adult participants in the National Health and Nutrition Examination Survey (NHANES). Method The study made use of information from the 2009-2010 NHANES health and nutrition survey. Respondents' dietary information was gathered using 24-h dietary recalls. A range of statistical techniques, including as interaction tests, subgroup analyses, and curve fitting analyses, were used to examine the connection between dietary vitamin B6 intake and chronic constipation. Result This study included 3,643 patients, with 270 (7.41%) diagnosed with persistent constipation. A fully adjusted multiple logistic regression analysis found that increasing dietary vitamin B6 consumption (OR = 0.78, 95% CI: 0.68-0.89) was linked to a lower incidence of constipation, with significance at p < 0.05. After accounting for numerous factors, the odds ratio and 95% confidence interval for the third tertile compared to the reference group (first tertile) were 0.85 (0.74, 0.98), with statistical significance at p < 0.05. Furthermore, subgroup analysis and interaction assessments revealed a substantial negative link between vitamin B6 intake and the occurrence of constipation, particularly in males and alcohol drinkers (all p-values were less than 0.05). Conclusion This study found an inverse connection between vitamin B6 consumption and the prevalence of persistent constipation. More extensive prospective trials are needed to fully examine the long-term influence of vitamin B6 on persistent constipation.
Collapse
Affiliation(s)
- Xuefeng Liu
- Liaoning University of Traditional Chinese Medicine, Second Clinical College, Shenyang, China
- Third Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedong Liu
- Liaoning University of Traditional Chinese Medicine, Second Clinical College, Shenyang, China
- Third Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuping Shu
- Fujian Provincial People’s Hospital, Fuzhou, China
| | - Hongwu Tao
- Liaoning University of Traditional Chinese Medicine, Second Clinical College, Shenyang, China
| | - Zewei Sheng
- Liaoning University of Traditional Chinese Medicine, Second Clinical College, Shenyang, China
- Third Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuyu Peng
- Liaoning University of Traditional Chinese Medicine, Second Clinical College, Shenyang, China
| | - Meiqi Cai
- Liaoning University of Traditional Chinese Medicine, Second Clinical College, Shenyang, China
- Third Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaoming Zhang
- Third Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Weiru Lan
- Third Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
8
|
Lu J, Mao H, Tan Y, Luo G. Associations of Dietary Intake of Vitamin B6 and Plasma Pyridoxal 5'-Phosphate Level With Depression in US Adults: Findings From NHANES 2005-2010. Brain Behav 2024; 14:e70128. [PMID: 39508477 PMCID: PMC11541856 DOI: 10.1002/brb3.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Evidence regarding the associations of pyridoxal 5'-phosphate level in plasma and dietary intake of vitamin B6 with depression risk is scarce. Accordingly, we investigated the aforementioned associations in US adults. METHODS This is a cross-sectional study that included data from two independent samples of 12,716 and 11,967 individuals (aged ≥ 20 years) participating in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010. The associations of the pyridoxal 5'-phosphate level in plasma and dietary intake of vitamin B6 with depression risk were examined through multivariable logistic regression. In addition, we determined dose-response associations by fitting restricted cubic splines to the data. RESULTS In the multivariable model, the highest quarter of dietary intake of vitamin B6 was associated with a significantly lower risk of depression compared to the lowest quarter (OR = 0.63, 95% CI: 0.50, 0.79, p < 0.001). Similarly, the highest quartile of plasma PLP levels was linked to a reduced risk of depression compared to the lowest quartile (OR = 0.76, 95% CI: 0.62, 0.93, p < 0.01). With increasing quartiles of dietary intake of vitamin B6 and plasma PLP levels, the risk of depression also decreased accordingly (all p for trend < 0.01). Furthermore, the correlation analysis revealed that for every 1-SD increase in the level of plasma lutein + zeaxanthin and dietary intake of vitamin B6, the risk of depression showed a decreasing trend (all p < 0.01). The interaction test results indicated that the dietary consumption of vitamin B6 did not significantly interact with any of the stratification factors (all p for interaction > 0.05). Moreover, no significant interaction was found between the amount of plasma PLP and any hierarchical factors (all p for interaction > 0.05), except for gender-based subgroup analysis (p for interaction > 0.05). The dose-response relationship results showed a linear decrease trend in the relationship between dietary vitamin B6 intake and plasma pyridoxal 5'-phosphate with the risk of depression. CONCLUSIONS Plasma PLP levels and dietary vitamin B6 intake in the highest quartiles are associated with a lower risk of depression. These findings support the promotion of a balanced diet rich in vitamin B6. However, future randomized controlled trials are necessary to confirm the effects of vitamin B6 supplementation on depression risk. We should aim for a healthy and balanced diet in terms of nutritional supplementation.
Collapse
Affiliation(s)
- Jinhong Lu
- Department of General SurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Huina Mao
- Nursing DepartmentZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yulei Tan
- Department of General SurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Guizhi Luo
- Department of General SurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Xuan C, Liu RH, Zhao C, Li J, Zhou TT, Tian QW, He GW. Association between serum pyridoxal 5'-phosphate levels and all-cause, cardiovascular mortality, and cardiovascular disease in adults: a population-based cohort study. Ther Adv Chronic Dis 2024; 15:20406223241290411. [PMID: 39429976 PMCID: PMC11489924 DOI: 10.1177/20406223241290411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background The association between pyridoxal 5'-phosphate (PLP) and cardiovascular disease (CVD) remains a topic of discussion. Objectives This study aimed to explore the relationship between serum PLP levels and the incidence of all-cause mortality, cardiovascular mortality, and the risk of CVD among the US population. Design A population-based cohort study. Methods This study analyzed data from the National Health and Nutrition Examination Survey. Adjusted hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated using weighted Cox proportional hazards regression models to assess the risk associated with all-cause and cardiovascular mortality. Weighted binary logistic regression was utilized to assess the relationship between serum PLP levels and the risk of CVD. Nonlinear associations were evaluated using multivariable-adjusted restricted cubic splines. Results There were 2546 cases of all-cause mortality and 867 cases of cardiovascular mortality over a mean follow-up of 11.36 years. In the fully adjusted model, the adjusted HRs with 95% CIs for all-cause mortality associated with increases in serum PLP levels corresponding to the interquartile ranges were 0.83 (0.74-0.93), 0.71 (0.63-0.80), and 0.64 (0.56-0.74), respectively. Similarly, cardiovascular mortality decreased by 0.78 (0.62-0.97), 0.63 (0.49-0.81), and 0.62 (0.50-0.77) with each quartile increase in serum PLP levels. Higher serum PLP levels confer protection against CVD risk (odds ratio: 0.87, 95% CI: 0.79-0.96). Serum PLP levels showed nonlinear relationships with risk of all-cause mortality, cardiovascular mortality, and CVD. Conclusion The results of this study provide evidence that serum PLP serves as a protective factor against all-cause mortality, cardiovascular mortality, and CVD in US adults, with dose-response relationships.
Collapse
Affiliation(s)
- Chao Xuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No. 1677, Wutai Mountain Road, Qingdao 266500, China
| | - Ru-Hua Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cong Zhao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting-Ting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing-Wu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital; Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
10
|
Kurata H, Meguro S, Abe Y, Sasaki T, Arai Y, Hayashi K. Association of fish intake with all-cause mortality according to CRP levels or inflammation in older adults: a prospective cohort study. BMC Public Health 2024; 24:2822. [PMID: 39407192 PMCID: PMC11481737 DOI: 10.1186/s12889-024-20162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The relationship between inflammatory response, fish consumption, and mortality risk in older individuals is unclear. We investigated whether C-reactive protein (CRP) levels ≥ 0.1 mg/dL, fish intake, and inflammatory responses are associated with all-cause mortality risk in older adults. METHODS This prospective cohort study included older adults aged 85-89 years from the Kawasaki Aging and Wellbeing Project, who did not require daily care. Cohort was recruited from March 2017 to December 2018 (follow-up ended on December 31, 2021). Dietary assessment was conducted using the Brief Self-Administered Diet History Questionnaire. Multivariate Cox proportional hazards regression was used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for all-cause mortality in the CRP ≥ 0.1 mg/dL group; the CRP < 0.1 mg/dL group was used for reference. Within CRP ≥ 0.1 and < 0.1 mg/dL groups, participants were categorized into tertiles of fish intake. HRs and 95% CIs for all-cause mortality in the other groups were estimated using the lower tertile group as a reference. RESULTS The study included 996 participants (mean [standard deviation] age, 86.5 [1.37] years; 497 [49.9%] women) with a median CRP level of 0.08 (interquartile range [IQR] = 0.04-0.16). There were 162 deaths during 4,161 person-years of observation; the multivariable-adjusted HR for all-cause mortality in the CRP ≥ 0.1 mg/dL group was 1.86 (95% CI, 1.32-2.62); P < 0.001. In 577 individuals with median (IQR) fish intake of 39.3 g/1000 kcal (23.6-57.6) and CRP level of < 0.1 mg/dL, the multivariable-adjusted HR for all-cause mortality in the higher tertile group of fish intake was 1.15 (0.67-1.97); P = 0.59, non-linear P = 0.84. In 419 individuals with median (IQR) fish intake of 40.7 g/1000 kcal (25.0-60.1) and CRP level of ≥ 0.1 mg/dL, the multivariate-adjusted HR for all-cause mortality in the higher tertile group of fish intake was 0.49 (0.26-0.92); P = 0.026, non-linear P = 0.38, P-value for interaction = 0.040. CONCLUSIONS A negative association between fish intake and all-cause mortality was seen in older adults with elevated CRP levels, which is a mortality risk factor. While the results may be limited owing to stringent methods ensuring impartiality, they offer valuable insights for future research. TRIAL REGISTRATION UMIN000026053. Registered February 24, 2017.
Collapse
Affiliation(s)
- Hideaki Kurata
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shu Meguro
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan.
| | - Yukiko Abe
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Takashi Sasaki
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Yasumichi Arai
- Centre for Supercentenarian Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism and Nephrology Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-0016, Japan
| |
Collapse
|
11
|
Liu Y, Wang X, You M, Zheng M, Yu M, Leng X. Association between vitamin B6 levels and rheumatoid arthritis: a two-sample Mendelian randomization study. Front Nutr 2024; 11:1442214. [PMID: 39464681 PMCID: PMC11502391 DOI: 10.3389/fnut.2024.1442214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Background Micronutrients play a crucial role in rheumatoid arthritis (RA). Changes in micronutrient levels in RA patients can lead to the worsening of their condition. Though significant correlations between RA and micronutrients have been found in earlier observational studies, their underlying causal relationship is still unknown. This study aimed to elucidate the causal genetic relationships between 15 micronutrients (copper, zinc, magnesium, vitamins A, C, E, D, B6, B12, folate, carotene, iron, selenium, calcium, potassium) and RA. Method The exposure factors and outcome data used in the two-sample Mendelian randomization (MR) were derived from publicly available summary statistics data of European populations. The GWAS data for exposure factors were obtained from the OpenGWAS database. For the outcome data of RA, we utilized data from the FinnGen database. We used the MR principle to remove confounding factors and conducted MR analyses using five methods: inverse variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode, with IVW as the primary method. Then, we identified micronutrients related to RA and performed MR analyses on these elements, including heterogeneity analysis and pleiotropy analysis such as MR-Egger intercept, MR-PRESSO method, and "leave-one-out" analysis. Finally, we conducted multivariable MR analyses and performed sensitivity analyses again. Results The IVW analysis revealed a relationship between vitamin B6 and RA (p: 0.029, OR: 1.766, and 95% CI: 1.062-2.938). Sensitivity analysis confirmed the validity and reliability of this result. Conclusion This study revealed a causal relationship between vitamin B6 and RA, with vitamin B6 being identified as a risk factor for RA. This finding could contribute to the diagnosis and supplementary treatment of RA patients, providing a reference for subsequent basic research and developing new drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangyang Leng
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Rodríguez-Castillo AJ, González-Chávez SA, Portillo-Pantoja I, Cruz-Hermosillo E, Pacheco-Tena C, Chávez-Flores D, Delgado-Gardea MCE, Infante-Ramírez R, Ordaz-Ortiz JJ, Sánchez-Ramírez B. Aqueous Extracts of Rhus trilobata Inhibit the Lipopolysaccharide-Induced Inflammatory Response In Vitro and In Vivo. PLANTS (BASEL, SWITZERLAND) 2024; 13:2840. [PMID: 39458787 PMCID: PMC11514583 DOI: 10.3390/plants13202840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Chronic noncommunicable diseases (NCDs) are responsible for approximately 74% of deaths globally. Medicinal plants have traditionally been used to treat NCDs, including diabetes, cancer, and rheumatic diseases, and are a source of anti-inflammatory compounds. This study aimed to evaluate the anti-inflammatory effects of Rhus trilobata (Rt) extracts and fractions in lipopolysaccharide (LPS)-induced inflammation models in vitro and in vivo. The aqueous extract (RtAE) and five fractions (F2 to F6) were obtained via C18 solid-phase separation and tested in murine LPS-induced J774.1 macrophages. Key inflammatory markers, such as IL-1β, IL-6, TNF-α, and COX-2 gene expression were measured using RT-qPCR, and PGE2 production was assessed via HPLC-DAD. The in vivo effects were tested in an LPS-induced paw edema model in Wistar rats. Results showed that RtAE at 15 μg/mL significantly decreased IL-1β and IL-6 gene expression in vitro. Fraction F6 further reduced IL-1β, TNF-α, and IL-6 gene expression, COX-2 expression, and PGE2 production. In vivo, F6 significantly reduced LPS-induced paw edema, inflammatory infiltration, and IL-1β and COX-2 protein expression. Chemical characterization of F6 by UPLC/MS-QTOF revealed at least eight compounds with anti-inflammatory activity. These findings support the anti-inflammatory potential of RtAE and F6, reinforcing the medicinal use of Rt.
Collapse
Affiliation(s)
- Alejandra Jazmín Rodríguez-Castillo
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - Ismael Portillo-Pantoja
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Eunice Cruz-Hermosillo
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - David Chávez-Flores
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Ma. Carmen E. Delgado-Gardea
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Rocío Infante-Ramírez
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - José Juan Ordaz-Ortiz
- Laboratorio de Metabolómica y Espectrometría de Masas, Unidad de Genómica Avanzada, CINVESTAV-IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico;
| | - Blanca Sánchez-Ramírez
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| |
Collapse
|
13
|
Yin L, Liang F, Xie B, Su Y, Cheng L, Wei X, Tian W. Association between dietary vitamin B6 intake and endometriosis risk: evidence from the national health and nutrition examination survey. Front Nutr 2024; 11:1407099. [PMID: 39421613 PMCID: PMC11483862 DOI: 10.3389/fnut.2024.1407099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Background Endometriosis is a multifaceted disorder with genetic, immune, inflammatory, and multifactorial origins. Vitamin B6 serves as a pivotal coenzyme in various metabolic pathways involving lipids, hemes, nucleic acids, proteins, and carbohydrates. Dysregulation or deficiency of vitamin B6 can perturb human physiology. However, the relationship between dietary vitamin B6 and endometriosis remains elusive. This study aims to explore how dietary intake of vitamin B6 is associated with the risk of endometriosis. Methods Using cross-sectional data from the National Health and Nutrition Examination Survey, we analyzed information from American women aged 20-54 years between 1999 and 2006. After adjusting for relevant covariates, multivariable logistic regression analysis was employed to evaluate correlations. Results A total of 4,453 women were included in the study. The multiple linear regression model revealed a positive association between dietary vitamin B6 intake and the risk of endometriosis, even after controlling for confounding variables. Compared to individuals with lower vitamin B6 consumption (Q1: <0.94 mg/day), the adjusted odds ratio (OR) values for dietary vitamin B6 intake and endometriosis in Q2 (0.95-1.39 mg/day), Q3 (1.40-1.99 mg/day), and Q4 (>1.90 mg/day) were 1.22 (95% CI: 0.88-1.69, p = 0.23), 1.22 (95% CI: 0.86-1.73, p = 0. 279), and 1.51 (95% CI, 1.01-2. 24, p = 0.04), respectively. Conclusion Our findings suggest a positive correlation between endometriosis and dietary vitamin B6 intake. Further investigations are imperative to establish a causal relationship between dietary vitamin B6 intake and endometriosis.
Collapse
Affiliation(s)
- Ling Yin
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Feng Liang
- Gynecology Department, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Baoli Xie
- Gynecology Department, The First People’s Hospital of Nanning, Nanning, China
| | - Yanlin Su
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Li Cheng
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xin Wei
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Wencai Tian
- Department of Obstetrics and Gynecology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
14
|
Zhang X, Wang J, Wu Z, Xin B, He S, He Z, Li Y. Circulating levels of micronutrients and risk of osteomyelitis: a Mendelian randomization study. Front Nutr 2024; 11:1443539. [PMID: 39416655 PMCID: PMC11479910 DOI: 10.3389/fnut.2024.1443539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Few observational studies have investigated the effect of micronutrients on osteomyelitis, and these findings are limited by confounding and conflicting results. Therefore, we conducted Mendelian randomization (MR) analyses to evaluate the association between blood levels of eight micronutrients (copper, selenium, zinc, vitamin B12, vitamin C, and vitamin D, vitamin B6, vitamin E) and the risk of osteomyelitis. Methods We performed the two-sample and multivariable Mendelian randomization (MVMR) to investigate causation, where instrument variables for the predictor (micronutrients) were derived from the summary data of micronutrients from independent cohorts of European ancestry. The outcome instrumental variables were used from the summary data of European-ancestry individuals (n = 486,484). The threshold of statistical significance was set at p < 0.00625. Results We found a significant causal association that elevated zinc heightens the risk of developing osteomyelitis in European ancestry individuals OR = 1.23 [95% confidence interval (CI) [1.07, 1.43]; p = 4.26E-03]. Similarly, vitamin B6 showed a similar significant causal effect on osteomyelitis as a risk factor OR = 2.78 (95% CI [1.34, 5.76]; p = 6.04E-03; in the secondary analysis). Post-hoc analysis suggested this result (vitamin B6). However, the multivariable Mendelian randomization (MVMR) provides evidence against the causal association between zinc and osteomyelitis OR = 0.98(95% CI [-0.11, 0.07]; p = 7.20E-1). After searching in PhenoScanner, no SNP with confounding factors was found in the analysis of vitamin B6. There was no evidence of a reverse causal impact of osteomyelitis on zinc and vitamin B6. Conclusion This study supported a strong causal association between vitamin B6 and osteomyelitis while reporting a dubious causal association between zinc and osteomyelitis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Division), Xi’an, China
| | - Jiaxing Wang
- Shannxi Clinical Research Center of Digestive Disease (Cancer Division), Xi’an, China
- Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Zhimeng Wu
- Shannxi Clinical Research Center of Digestive Disease (Cancer Division), Xi’an, China
- Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Binglong Xin
- Shanxi Institute of Science and Technology, Jincheng, China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Division), Xi’an, China
| | - Zitong He
- Shannxi Clinical Research Center of Digestive Disease (Cancer Division), Xi’an, China
- Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Division), Xi’an, China
| |
Collapse
|
15
|
Wilson E, Umans J, Swarovski M, Minhas P, Midttun Ø, Ulvik AA, Shahid-Besanti M, Linortner P, Mhatre S, Wang Q, Channappa D, Corso N, Tian L, Fredericks C, Kerchner G, Plowey E, Cholerton B, Ueland P, Zabetian C, Gray N, Quinn J, Montine T, Sha S, Longo F, Wolk D, Chen-Plotkin A, Henderson V, Wyss-Coray T, Wagner A, Mormino E, Aghaeepour N, Poston K, Andreasson K. Parkinson's disease is characterized by vitamin B6-dependent inflammatory kynurenine pathway dysfunction. RESEARCH SQUARE 2024:rs.3.rs-4980210. [PMID: 39399688 PMCID: PMC11469709 DOI: 10.21203/rs.3.rs-4980210/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a complex multisystem disorder clinically characterized by motor, non-motor, and premotor manifestations. Pathologically, PD involves neuronal loss in the substantia nigra, striatal dopamine deficiency, and accumulation of intracellular inclusions containing aggregates of α-synuclein. Recent studies demonstrate that PD is associated with dysregulated metabolic flux through the kynurenine pathway (KP), in which tryptophan is converted to kynurenine (KYN), and KYN is subsequently metabolized to neuroactive compounds quinolinic acid (QA) and kynurenic acid (KA). This multicenter study used highly sensitive liquid chromatography-tandem mass-spectrometry to compare blood and cerebral spinal fluid (CSF) KP metabolites between 158 unimpaired older adults and 177 participants with PD. Results indicate that increased neuroexcitatory QA/KA ratio in both plasma and CSF of PD participants associated with peripheral and cerebral inflammation and vitamin B6 deficiency. Furthermore, increased QA tracked with CSF tau and severity of both motor and non-motor PD clinical dysfunction. Importantly, plasma and CSF kynurenine metabolites classified PD participants with a high degree of accuracy (AUC = 0.897). Finally, analysis of metabolite data revealed subgroups with distinct KP profiles, and these were subsequently found to display distinct PD clinical features. Together, these data further support the hypothesis that the KP serves as a site of brain and periphery crosstalk, integrating B-vitamin status, inflammation and metabolism to ultimately influence PD clinical manifestation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cyrus Zabetian
- VA Puget Sound Health Care System and University of Washington Seattle
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moustafa A, Abdel-Gawad SA, Shehata M, El-Kamel RS, Fekry AM. Electrochemical sensing of vitamin B 6 (pyridoxine) by adapted carbon paste electrode. Sci Rep 2024; 14:21972. [PMID: 39304680 DOI: 10.1038/s41598-024-71341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
The recent investigation targets to use adapted carbon paste (CP) with copper nanoparticles (CuNs) operating in a phosphate buffer (PBS) medium with a pH range of 5.0-8.0, to synthesize a novel, susceptible, and simple electrochemical sensor for the detection of one of the most important drugs, vitamin B6. Copper (Cu) is one of the most three common essential trace elements found in the bodies of both humans and animals, along with iron and zinc for all crucial physiological and biochemical functions. Its properties, which are assessed using a variety of methods including scanning electron microscopy (SEM), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS), have also drawn a lot of attention recently. We considered the effects of pH, buffer, scan rate, interference, and calibration curve. The susceptible electrode's linear calibration curve encompassed concentration values between 8.88 and 1000.0 µM. The calculated limits of detection and quantification were 32.12 and 107.0 µM, respectively. Furthermore, this method was established in real human urine samples and drug validation which have been shown satisfactory results for vitamin B6 detection.
Collapse
Affiliation(s)
- Ayah Moustafa
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Soha A Abdel-Gawad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University, Giza, 12613, Egypt.
| | - M Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Renad S El-Kamel
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amany M Fekry
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
17
|
Liu J, Chen Y, Song Y, Xu D, Gu Y, Wang J, Song W, Sun B, Jiang Z, Xia B. Evidence of size-dependent toxicity of polystyrene nano- and microplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) during the intestinal regeneration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124394. [PMID: 38901819 DOI: 10.1016/j.envpol.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 μm, 1 μm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 μg g-1 and 337.95 μg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqi Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Baiqin Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zitan Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
18
|
Visternicu M, Rarinca V, Burlui V, Halitchi G, Ciobică A, Singeap AM, Dobrin R, Mavroudis I, Trifan A. Investigating the Impact of Nutrition and Oxidative Stress on Attention Deficit Hyperactivity Disorder. Nutrients 2024; 16:3113. [PMID: 39339712 PMCID: PMC11435085 DOI: 10.3390/nu16183113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Attention deficit hyperactivity disorder (ADHD) is the most common childhood-onset neurodevelopmental disorder, characterized by difficulty maintaining attention, impulsivity, and hyperactivity. While the cause of this disorder is still unclear, recent studies have stated that heredity is important in the development of ADHD. This is linked to a few comorbidities, including depression, criminal behavior, and anxiety. Although genetic factors influence ADHD symptoms, there are also non-genetic factors, one of which is oxidative stress (OS), which plays a role in the pathogenesis and symptoms of ADHD. This review aims to explore the role of OS in ADHD and its connection to antioxidant enzyme levels, as well as the gut-brain axis (GBA), focusing on diet and its influence on ADHD symptoms, particularly in adults with comorbid conditions. Methods: The literature search included the main available databases (e.g., Science Direct, PubMed, and Google Scholar). Articles in the English language were taken into consideration and our screening was conducted based on several words such as "ADHD", "oxidative stress", "diet", "gut-brain axis", and "gut microbiota." The review focused on studies examining the link between oxidative stress and ADHD, the role of the gut-brain axis, and the potential impact of dietary interventions. Results: Oxidative stress plays a critical role in the development and manifestation of ADHD symptoms. Studies have shown that individuals with ADHD exhibit reduced levels of key antioxidant enzymes, including glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), as well as a diminished total antioxidant status (TOS) compared to healthy controls. Additionally, there is evidence of a close bidirectional interaction between the nervous system and gut microbiota, mediated by the gut-brain axis. This relationship suggests that dietary interventions targeting gut health may influence ADHD symptoms and related comorbidities. Conclusions: Oxidative stress and the gut-brain axis are key factors in the pathogenesis of ADHD, particularly in adults with comorbid conditions. A better understanding of these mechanisms could lead to more targeted treatments, including dietary interventions, to mitigate ADHD symptoms. Further research is required to explore the therapeutic potential of modulating oxidative stress and gut microbiota in the management of ADHD.
Collapse
Affiliation(s)
- Malina Visternicu
- Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
| | - Viorica Rarinca
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
| | - Vasile Burlui
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
| | - Gabriela Halitchi
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
| | - Alin Ciobică
- "Ioan Haulica" Institute, Apollonia University, Pacurari Street 11, 700511 Iași, Romania
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, No. 20A, 700505 Iași, Romania
- CENEMED Platform for Interdisciplinary Research, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
- Institute of Gastroenterology and Hepatology, "St. Spiridon" University Hospital, 700115 Iași, Romania
| | - Romeo Dobrin
- Institute of Psychiatry "Socola", 36 Bucium Street, 700282 Iași, Romania
- Department of Psychiatry, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
| | - Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Anca Trifan
- Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, University Street No. 16, 700115 Iași, Romania
- Institute of Gastroenterology and Hepatology, "St. Spiridon" University Hospital, 700115 Iași, Romania
| |
Collapse
|
19
|
Tappia PS, Shah AK, Dhalla NS. The Efficacy of Vitamins in the Prevention and Treatment of Cardiovascular Disease. Int J Mol Sci 2024; 25:9761. [PMID: 39337248 PMCID: PMC11432297 DOI: 10.3390/ijms25189761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Vitamins are known to affect the regulation of several biochemical and metabolic pathways that influence cellular function. Adequate amounts of both hydrophilic and lipophilic vitamins are required for maintaining normal cardiac and vascular function, but their deficiencies can contribute to cardiovascular abnormalities. In this regard, a deficiency in the lipophilic vitamins, such as vitamins A, D, and E, as well as in the hydrophilic vitamins, such as vitamin C and B, has been associated with suboptimal cardiovascular function, whereas additional intakes have been suggested to reduce the risk of atherosclerosis, hypertension, ischemic heart disease, arrhythmias, and heart failure. Here, we have attempted to describe the association between low vitamin status and cardiovascular disease, and to offer a discussion on the efficacy of vitamins. While there are inconsistencies in the impact of a deficiency in vitamins on the development of cardiovascular disease and the benefits associated with supplementation, this review proposes that specific vitamins may contribute to the prevention of cardiovascular disease in individuals at risk rather than serve as an adjunct therapy.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Anureet K Shah
- Department of Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2E 0J9, Canada
| |
Collapse
|
20
|
Xie F, Zhou M, Li X, Li S, Ren M, Wang C. Macrogenomic and Metabolomic Analyses Reveal Mechanisms of Gut Microbiota and Microbial Metabolites in Diarrhea of Weaned Piglets. Animals (Basel) 2024; 14:2327. [PMID: 39199861 PMCID: PMC11350701 DOI: 10.3390/ani14162327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Recent studies have shown a correlation between piglet diarrhea and the gut microbiota. However, the precise mechanism by which intestinal microorganisms and their metabolites influence diarrhea in weaned piglets remains unclear. This study explored differences in the gut microbiota and associated metabolites between healthy and diarrheic-weaned piglets using macrogenomic and metabolomic analyses. The histomorphological results showed that diarrheic piglets had shorter jejunal and ileal villi, some of which were shed, compared to healthy piglets. Substantial differences in gut microbial diversity and metabolites were also observed, with Bacteroidaceae bacterium and Caudoviricetes being the main differential organisms that were strongly correlated with host status. Microbial functions, mainly the metabolism of carbohydrates, glycans, lipids, and amino acids, as well as related enzyme activities, were substantially different. The major differential metabolites were carnosine, pantothenic acid (vitamin B5), pyridoxal, methylimidazoleacetic acid, indole-3-acetaldehyde, and 5-hydroxyindoleacetic acid. These metabolites were enriched in beta-alanine, histidine, tryptophan, and vitamin B6 metabolism, and in the pantothenate and CoA biosynthesis pathways. Combined macrogenomic and metabolomic analyses revealed that carnosine, vitamin B5, and pyridoxal were negatively correlated with Caudoviricetes; methylimidazoleacetic acid, indole-3-acetaldehyde, and 5-hydroxyindoleacetic acid were positively correlated with Caudoviricetes. Whereas carnosine and vitamin B5 were positively correlated with Bacteroidaceae bacterium, 5-hydroxyindoleacetic acid was negatively correlated. The decreased abundance of Bacteroidaceae bacterium and the increased abundance of Caudoviricetes and related metabolites likely contribute to post-weaning diarrhea in piglets. Therefore, the abundance of Bacteroidaceae bacterium and Caudoviricetes can likely serve as potential markers for identifying and preventing diarrhea in post-weaning piglets.
Collapse
Affiliation(s)
- Fei Xie
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 239000, China; (F.X.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| |
Collapse
|
21
|
Wang Y, Wang X, Luo J, Qiu B, Huang R, Xiao Y. Urinary Epinephrine Sulfate Can Predict Cardiovascular Risk in Moderate-to-Severe OSA: A Metabolomics-Based Study. Nat Sci Sleep 2024; 16:1153-1168. [PMID: 39131167 PMCID: PMC11314438 DOI: 10.2147/nss.s470154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose There are currently no ideal indicators for predicting the cardiovascular risk of obstructive sleep apnea (OSA). This study aimed to employ urinary metabolomics to detect early cardiovascular risk in patients with moderate-to-severe OSA. Patients and Methods Male participants who underwent polysomnography from November 2020 to May 2021 were screened. Clinical data, polysomnography data and urine samples were collected. Untargeted metabolomics analyses of urine were performed. Multivariate analyses and receiver operating characteristic (ROC) curve analyses were subsequently performed to identify potential biomarkers. Associations between metabolites and clinical indicators and cardiovascular risk were examined through linear regression analyses with interaction and mediation analyses. Results Thirty-six male participants were included in the study, comprising 22 males with moderate-to-severe OSA and 14 age-matched controls, with an average age of 39.6 ± 9.2 years. We identified 65 metabolites in the study, involving pathways including pyrimidine, androgen, estrogen, vitamin B6 and sulfate/sulfite metabolism. Among them, epinephrine sulfate was the most significantly altered metabolite. ROC analyses highlighted that epinephrine sulfate had the highest area under the curve (AUC=0.883) for detecting moderate-to-severe OSA. Epinephrine sulfate was statistically correlated with OSA severity, hypoxia-related indicators (apnea-hypopnea index: r=0.685; oxygen desaturation index: r=0.743, p<0.0001), arterial stiffness (arterial augmentation index: r=0.361, p=0.031) and long-term cardiovascular risk (Framingham cardiovascular risk: r=0.375, p=0.024). Linear regression analysis revealed that epinephrine sulfate was significantly associated with an increased in the Framingham risk (β = 0.004, 95% CI = 0.000-0.009, p = 0.049), with the effect partly mediated by systolic blood pressure (27.6%) and not moderated by other factors. Additionally, it also significantly associated with the increased in the arterial augmentation index (β = 0.019, 95% CI = 0.000-0.037, p = 0.046), with the effect fully mediated by blood pressure and not moderated by other indices statistically. Conclusion There are significant metabolic pathway alterations in moderate-to-severe OSA patients. Urinary epinephrine sulfate markedly predicts early cardiovascular risk in OSA patients.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaona Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jinmei Luo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Bintao Qiu
- Department of Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Rong Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Xiao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
22
|
Chaudhary J, Tripathi A, Sahoo SK. Vitamin B 6 Cofactor Pyridoxal 5'-phosphate Conjugated Papain-Stabilized Fluorescent Gold Nanoclusters for Switch-on Detection of Zinc(II). J Fluoresc 2024:10.1007/s10895-024-03849-9. [PMID: 39042357 DOI: 10.1007/s10895-024-03849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
In this study, fluorescent gold nanoclusters (AuNCs) conjugated with pyridoxal-5-phosphate (PLP) were synthesized, characterized, and used for Zn2+ fluorescence turn-on sensing. PLP was conjugated over the surface of papain-stabilized fluorescent gold nanoclusters (pap-AuNCs; λex = 380 nm, λem = 670 nm) by forming imine linkage. Due to this modification, the red color emitting pap-AuNCs changed to orange color emitting nanoclusters PLP_pap-AuNCs. The nano-assembly PLP_pap-AuNCs detect Zn2+ selectively by showing a notable fluorescence enhancement at 477 nm. Zn2+ detection with PLP_pap-AuNCs was quick and easy, with an estimated detection limit of 0.14 µM. Further, paper strips and cotton buds coated with PLP_pap-AuNCs were developed for affordable on-site visual detection of Zn2+. Finally, the detection of Zn2+ in actual environmental water samples served as validation of the usefulness of PLP_pap-AuNCs.
Collapse
Affiliation(s)
- Jayant Chaudhary
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Aditi Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
23
|
Liu J, Yang D, Sun X, Yang S, Zhang Y, Li Q, Deng S, Dai H, Wu X. Mass spectrum oriented metabolomics for evaluating the efficacy and discovering the mechanism of Shaofuzhuyu Decoction for endometriosis of cold coagulation and blood stasis. Heliyon 2024; 10:e33806. [PMID: 39071582 PMCID: PMC11279264 DOI: 10.1016/j.heliyon.2024.e33806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Shaofuzhuyu Decoction (SFZYD) is a classical formula for treating endometriosis of cold coagulation and blood stasis (ECB). The clinical efficacy is definite, but the potential mechanisms require further exploration. The study aimed to reveal the metabolic mechanisms of SFZYD for treating ECB using mass spectrum oriented metabolomics. Firstly, the study has used metabolomics data to identify biomarkers and to investigate metabolic pathways. Then, the targets of SFZYD for treating ECB were dug by building and analyzing a biological network of biomarkers. Finally, the obtained targets were validated by molecular docking. This study found that SFZYD could significantly improve the biochemical indicators and metabolic abnormalities of ECB. A total of 18 ECB-related biomarkers in 7 pathways were identified. SFZYD was able to regulate the levels of 14 biomarkers that were involved in 5 metabolic pathways. Furthermore, the study yielded 119 SFZYD active ingredients, 1119 target proteins associated with endometriosis, 610 targets associated with biomarkers, 727 GO functions, and 159 KEGG pathways. Biological network analysis constructed a network diagram of herbs-ingredients-targets-biomarkers, and found 6 key active ingredients and 9 core targets. Molecular docking showed high affinities between key ingredients and core targets. This study elucidated that SFZYD plays a role in treating ECB through multi-component, multi-target, and multi-pathway.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongxia Yang
- Department of Gynecology Medicine, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaolan Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiyao Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyao Deng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haoran Dai
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Yuan Y, Zhuang Y, Cui Y, Liu Y, Zhang Q, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. Effects of 1, 2-bis (2,4, 6-tribromophenoxy) ethane and bis (2-ethylhexyl) tetrabromophthalate on serum metabolic and lipid profiles in male rats. Toxicol Appl Pharmacol 2024; 490:117020. [PMID: 38969211 DOI: 10.1016/j.taap.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
This study explored the effects of 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) and bis (2-ethylhexyl) tetrabromophthalate (TBPH) on serum metabolites and lipids in male Sprague-Dawley (SD) rats. Rats were orally gavaged 250 mg/kg bw of BTBPE and 500 mg/kg bw of TBPH for 28 consecutive days. Serum samples were collected for metabolomics and lipidomics analysis. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to explore changes in rat metabolic patterns. Least absolute shrinkage and selection operator (LASSO) regression models were established using serum levels of total thyroxine (TT4), free thyroxine (FT4), and rats' grouping information as variables to screen for robust differential substances. SuperPred was the database to obtain potential targets. The metabolomics and lipidomics results showed that BTBPE and TBPH had an impact on rat metabolic patterns, affecting pathways such as vitamin B6 synthesis. For BTBPE treatment, pyridoxal and ceramide (Cer) 24:0;4O were selected as differential substances related to thyroid hormones. For TBPH treatment, dehydroascorbic acid, acylcarnitine (CAR) 19:0, and diglyceride (DG) 38:4 were selected as differential substances related to thyroid hormones. Serotonin 2c receptor and cyclooxygenase-2 were chosen as potential targets of BTBPE and TBPH, respectively. In conclusion, this study found that BTBPE and TBPH impacted the metabolism of rats, and this effect may be related to changes in thyroid function.
Collapse
Affiliation(s)
- Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
25
|
De Simoni E, Candelora M, Belleggia S, Rizzetto G, Molinelli E, Capodaglio I, Ferretti G, Bacchetti T, Offidani A, Simonetti O. Role of antioxidants supplementation in the treatment of atopic dermatitis: a critical narrative review. Front Nutr 2024; 11:1393673. [PMID: 38933878 PMCID: PMC11203398 DOI: 10.3389/fnut.2024.1393673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by itching, epidermal barrier dysfunction, and an unbalanced inflammatory reaction. AD pathophysiology involves a dysregulated immune response driven by T helper-2 cells. Many factors, including reactive oxygen species (ROS), are involved in AD pathogenesis by causing cellular damage and inflammation resulting in skin barrier dysfunction. This narrative review aims to provide a comprehensive overview of the role of natural molecules and antioxidant compounds, highlighting their potential therapeutic value in AD prevention and management. They include vitamin D, vitamin E, pyridoxine, Vitamin C, carotenoids, and melatonin. Some studies report a statistically significant association between antioxidant levels and improvement in AD, however, there are conflicting results in which antioxidant supplementation, especially Vitamin D, did not result in improvement in AD. Therefore, the clinical efficacy of these dietary nutritional factors in the treatment of AD needs to be further evaluated in clinical trials. Meanwhile, antioxidants can be incorporated into the management of AD patients in a personalized manner, tailored to the severity of the disease, comorbidities, and individual needs.
Collapse
Affiliation(s)
- Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Candelora
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sara Belleggia
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Irene Capodaglio
- Hospital Cardiology and UTIC, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Research Center of Health Education and Health Promotion, Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
26
|
Bermúdez-Humarán LG, Chassaing B, Langella P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb Cell Fact 2024; 23:172. [PMID: 38867272 PMCID: PMC11167913 DOI: 10.1186/s12934-024-02449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Philippe Langella
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| |
Collapse
|
27
|
Brenner M, Zink C, Witzinger L, Keller A, Hadamek K, Bothe S, Neuenschwander M, Villmann C, von Kries JP, Schindelin H, Jeanclos E, Gohla A. 7,8-Dihydroxyflavone is a direct inhibitor of human and murine pyridoxal phosphatase. eLife 2024; 13:RP93094. [PMID: 38856179 PMCID: PMC11164532 DOI: 10.7554/elife.93094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.
Collapse
Affiliation(s)
- Marian Brenner
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Christoph Zink
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Linda Witzinger
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Angelika Keller
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Kerstin Hadamek
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Sebastian Bothe
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | | | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of WürzburgWürzburgGermany
| | | | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| |
Collapse
|
28
|
Eicher T, Kelly RS, Braisted J, Siddiqui JK, Celedón J, Clish C, Gerszten R, Weiss ST, McGeachie M, Machiraju R, Lasky-Su J, Mathé EA. Consistent Multi-Omic Relationships Uncover Molecular Basis of Pediatric Asthma IgE Regulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308502. [PMID: 38883716 PMCID: PMC11178010 DOI: 10.1101/2024.06.05.24308502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Serum total immunoglobulin E levels (total IgE) capture the state of the immune system in relation to allergic sensitization. High levels are associated with airway obstruction and poor clinical outcomes in pediatric asthma. Inconsistent patient response to anti-IgE therapies motivates discovery of molecular mechanisms underlying serum IgE level differences in children with asthma. To uncover these mechanisms using complementary metabolomic and transcriptomic data, abundance levels of 529 named metabolites and expression levels of 22,772 genes were measured among children with asthma in the Childhood Asthma Management Program (CAMP, N=564) and the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS, N=309) via the TOPMed initiative. Gene-metabolite associations dependent on IgE were identified within each cohort using multivariate linear models and were interpreted in a biochemical context using network topology, pathway and chemical enrichment, and representation within reactions. A total of 1,617 total IgE-dependent gene-metabolite associations from GACRS and 29,885 from CAMP met significance cutoffs. Of these, glycine and guanidinoacetic acid (GAA) were associated with the most genes in both cohorts, and the associations represented reactions central to glycine, serine, and threonine metabolism and arginine and proline metabolism. Pathway and chemical enrichment analysis further highlighted additional related pathways of interest. The results of this study suggest that GAA may modulate total IgE levels in two independent pediatric asthma cohorts with different characteristics, supporting the use of L-Arginine as a potential therapeutic for asthma exacerbation. Other potentially new targetable pathways are also uncovered.
Collapse
Affiliation(s)
- Tara Eicher
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD USA
- Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, OH USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - John Braisted
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD USA
| | - Jalal K. Siddiqui
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH USA
| | - Juan Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | | | - Robert Gerszten
- Harvard Medical School, Boston, MA USA
- Broad Institute, Cambridge, MA USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Raghu Machiraju
- Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, OH USA
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Ewy A. Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD USA
| |
Collapse
|
29
|
Yuan L, Zhao Z, Yuan Y, Kang C, Xiao Q, Wei X, Hao W. Immunotoxicity of 2-Acetyl-4-tetrahydroxybutylimidazole in BALB/c mice with different vitamin B6 nutritional statuses. Toxicology 2024; 505:153836. [PMID: 38768702 DOI: 10.1016/j.tox.2024.153836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Caramel color is a widely used food pigment, and 2-Acetyl-4-tetrahydroxybutylimidazole (THI) is a by-products of Class III caramel color. Some studies have shown that THI can reduce the number of peripheral blood lymphocytes. However, the comprehensive mechanism of THI immunotoxicity requires further study. In this study, the effects of THI on lymphocyte count, humoral immunity, cellular immunity and nonspecific immunity were determined and the effect of the nutritional status of VB6 on THI immunotoxicity was evaluated. Female BALB/c mice were divided into 3 groups and fed chow containing different doses of VB6: VB6-normal (6 mg/kg VB6), VB6-deprived (0.5 mg/kg VB6) or VB6-enhanced (12 mg/kg VB6) feed. Each group was further divided into 4 subgroups and treated with THI (0.5, 2.5 or 12.5 mg/kg bw) or the solvent control by gavage for 30 days. The thymic cortical thickness was measured with ViewPoint; the proportions of major immune cells and T cells in peripheral blood and tissues were detected via flow cytometry; the transformation and proliferation abilities of T and B cells were detected via T and B lymphocyte proliferation assays; NK cell activity was assessed via lactate dehydrogenase assays; humoral immune function was assessed via plaque-forming cell assays; and the immune function of T lymphocytes was assessed via delayed type hypersensitivity assays. The results showed that compared with those in the corresponding control group, the white blood cell count and lymphocyte count decreased significantly in all the VB6-deprived groups, in the 2.5 and 12.5 mg/kg VB6 groups, and in the 12.5 mg/kg VB6-enhanced group. With increasing THI dose, the thymic cortical layer became thinner. In the thymus, THI increased the proportions of CD3+ T cells and mature CD8+ T cells and decreased the proportions of immature double-positive, double-negative T cells and CD69-expressing lymphocytes. The proportions of naïve T cells and Tcm (central memory T) cells related to homing decreased. The proportion of mature T cells in the spleen decreased significantly. The proliferation of T cells stimulated by ConA decreased after THI exposure. VB6-deficient mice were more sensitive to THI immunotoxicity, and supplementation with VB6 had a certain protective effect on these mice. The results of the PFC and NK cell activity assays indicated that THI exposure might not affect humoral immune or innate immune function.
Collapse
Affiliation(s)
- Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zhe Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yue Yuan
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
30
|
Fang Y, Lv S, Xiao S, Hou H, Yao J, Cao Y, He B, Liu X, Wang P, Liu D, Zhou Z. Enantioselective bioaccumulation and toxicological effects of chiral neonicotinoid sulfoxaflor in rats. CHEMOSPHERE 2024; 358:142065. [PMID: 38636916 DOI: 10.1016/j.chemosphere.2024.142065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Sulfoxaflor is a widely used fourth-generation neonicotinoid pesticide, which has been detected in biological and environmental samples. Sulfoxaflor can potentially be exposed to humans via the food chain, thus understanding its toxic effects and enantioselective bioaccumulation is crucial. In this study, toxicokinetics, bioaccumulation, tissue distribution and enantiomeric profiles of sulfoxaflor in rats were investigated through single oral exposure and 28-days continuous exposure experiment. Sulfoxaflor mainly accumulated in liver and kidney, and the (-)-2R,3R-sulfoxaflor and (-)-2S,3R-sulfoxaflor had higher enrichment than their enantiomers in rats. The toxicological effects were evaluated after 28-days exposure. Slight inflammation in liver and kidney were observed by histopathology. Sphingolipid, amino acid, and vitamin B6 metabolism pathways were significantly disturbed in metabonomics analysis. These toxicities were in compliance with dose-dependent effects. These results improve understanding of enantioselective bioaccumulation and the potential health risk of sulfoxaflor.
Collapse
Affiliation(s)
- Yaofeng Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Shengchen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Shouchun Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Haonan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Jianing Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Yue Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Bingying He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
31
|
Wang Y, Lu WL, Feng WM, Xu W, Liu LH, He LM. RENAL PROTECTIVE EFFECT AND CLINICAL ANALYSIS OF VITAMIN B 6 IN PATIENTS WITH SEPSIS. Shock 2024; 61:841-847. [PMID: 38691102 DOI: 10.1097/shk.0000000000002329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
ABSTRACT Objective: To investigate the protective effect and possible mechanisms of vitamin B 6 against renal injury in patients with sepsis. Methods: A total of 128 patients with sepsis who met the entry criteria in multiple centers were randomly divided into experimental (intravenous vitamin B 6 therapy) and control (intravenous 0.9% sodium chloride therapy) groups based on usual care. Clinical data, the inflammatory response indicators interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor (TNF-α), and endothelin-1 (ET-1), the oxidative stress response indicators superoxide dismutase, glutathione and malondialdehyde, and renal function (assessed by blood urea nitrogen, serum creatinine, and renal resistance index monitored by ultrasound) were compared between the two groups. Results: After 7 d of treatment, the IL-6, IL-8, TNF-α, and ET-1 levels in the experimental group were significantly lower than those in the control group, the oxidative stress response indicators were significantly improved in the experimental group and the blood urea nitrogen, serum creatinine, and renal resistance index values in the experimental group were significantly lower than those in the control group ( P < 0.05). There was no statistical difference between the two groups in the rate of renal replacement therapy and 28 d mortality ( P > 0.05). However, the intensive care unit length of stay and the total hospitalization expenses in the experimental group were significantly lower than those in the control group ( P < 0.05). Conclusion: The administration of vitamin B 6 in the treatment of patients with sepsis attenuates renal injury, and the mechanism may be related to pyridoxine decreasing the levels of inflammatory mediators and their regulation by redox stress.
Collapse
Affiliation(s)
- Yao Wang
- Department of General Surgery, First People's Hospital affiliated to Huzhou University Medical College, Huzhou, China
| | - Wen-Long Lu
- Department of General Surgery, Linghu People's Hospital of Nanxun District, Huzhou, China
| | - Wen-Ming Feng
- Department of General Surgery, First People's Hospital affiliated to Huzhou University Medical College, Huzhou, China
| | - Wei Xu
- Department of Critical Care Medicine, First People's Hospital affiliated to Huzhou University Medical College, Huzhou, China
| | - Li-Hua Liu
- Department of General Surgery, Wuxing District People's Hospital, Huzhou, China
| | - Li-Min He
- Department of General Surgery, Nanxun District People's Hospital, Huzhou, China
| |
Collapse
|
32
|
Zhang H, Zhang Y, Gong Y, Zhang J, Li D, Tian Y, Han R, Guo Y, Sun G, Li W, Zhang Y, Zhao X, Zhang X, Wang P, Kang X, Jiang R. Fasting-Induced Molting Impacts the Intestinal Health by Altering the Gut Microbiota. Animals (Basel) 2024; 14:1640. [PMID: 38891687 PMCID: PMC11171271 DOI: 10.3390/ani14111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Fasting-induced molting (FIM) is a common method used to improve the laying performance of aged laying hens. Nevertheless, this approach may impose various stresses on chickens, such as disruptions in intestinal flora and inflammation issues within the intestines. However, the impact of an imbalance in intestinal flora on intestinal health during the FIM process remains elusive. Therefore, intestinal injury, the microbiome, and the metabolome were analyzed individually and integrated to elucidate the impact of the intestinal flora on intestinal health during the FIM process. The findings indicated that fasting resulted in a notable reduction in villus height and villus/crypt ratio, coupled with elevated levels of intestinal inflammation and permeability. During the fasting period, microbiota compositions changed. The abundance of Escherichia_Shigella increased, while the abundance of Ruminococcaceae_UCG-013 and Lactobacillus decreased. Escherichia_Shigella was positively correlated with Citrinin and Sterobilin, which lead to intestinal inflammation. Ruminococcaceae_UCG-013 and Lactobacillus exhibited positive correlations with Lanthionine and reduced Glutathione, thereby reducing intestinal inflammation. This study screened the intestinal probiotics, Ruminococcaceae UCG-013 and Lactobacillus, that influence gut health during the fasting period, providing an experimental basis for improving gut microbiota and reducing intestinal inflammation during the FIM process.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yihui Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Jun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xinlong Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xiaoran Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Pengyu Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (H.Z.); (Y.Z.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| |
Collapse
|
33
|
Xue P, Xue M, Luo Y, Tang Q, Wang F, Sun R, Song Y, Chao Z, Fang M. Colonic Microbiota Improves Fiber Digestion Ability and Enhances Absorption of Short-Chain Fatty Acids in Local Pigs of Hainan. Microorganisms 2024; 12:1033. [PMID: 38930415 PMCID: PMC11205767 DOI: 10.3390/microorganisms12061033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Compared to commercial breeds, Chinese local pig breeds have a greater ability to digest dietary fiber, which may be due to differences in intestinal microbiota. In this study, we fed Ding'an and DLY pigs high and low levels of dietary fiber, respectively, to investigate factors contributing to high dietary fiber adaption in Ding'an pigs. Twelve Ding'an pigs and DLY pigs were randomly divided into a 2 (diet) × 2 (breed) factorial experiment (n = 3). Compared with commercial pigs, Ding'an pigs have a stronger ability to digest dietary fiber. Prevotella was more prevalent in Ding'an pigs than in DLY pigs, which may be an important reason for the stronger ability of fiber degradation in Ding'an pigs. When the effects of feed and breed factors are considered, differences in abundance of 31 species and 14 species, respectively, may result in a greater ability of fiber degradation in Ding'an pigs. Among them, Prevotella. sp. CAG:520 may be a newly discovered bacterium related to fiber degradation, which positively correlated with many fiber-degrading bacteria (r > 0.7). We also found that the concentration of plant metabolites with anti-inflammatory and antioxidant effects was higher in the colonic chyme of Ding'an pigs after increasing the fiber content, which resulted in the downregulated expression of inflammatory factors in colonic mucosa. Spearman's correlation coefficient revealed a strong correlation between microbiota and the apparent digestibility of dietary fiber (r > 0.7). The mRNA expressions of SLC16A1, PYY, and GCG were significantly increased in the colonic mucosa of Ding'an pigs fed on high-fiber diets, which indicates that Ding'an pigs have an enhanced absorption of SCFAs. Our results suggested that an appropriate increase in dietary fiber content can reduce the inflammatory response and improve feed efficiency in Ding'an pigs, and differences in the intestinal microbial composition may be an important reason for the difference in the fiber degradation capacity between the two breeds of pigs.
Collapse
Affiliation(s)
- Pengxiang Xue
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Mingming Xue
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Yabiao Luo
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Qiguo Tang
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
| | - Feng Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571101, China; (F.W.); (R.S.); (Z.C.)
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571101, China; (F.W.); (R.S.); (Z.C.)
| | - Yanxia Song
- Sanya Institute, China Agricultural University, Sanya 572024, China;
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571101, China; (F.W.); (R.S.); (Z.C.)
| | - Meiying Fang
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.X.); (M.X.); (Y.L.); (Q.T.)
- Sanya Institute, China Agricultural University, Sanya 572024, China;
| |
Collapse
|
34
|
Tian Z, Liu L, Wu L, Yang Z, Zhang Y, Du L, Zhang D. Enhancement of vitamin B 6 production driven by omics analysis combined with fermentation optimization. Microb Cell Fact 2024; 23:137. [PMID: 38750497 PMCID: PMC11095007 DOI: 10.1186/s12934-024-02405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Microbial engineering aims to enhance the ability of bacteria to produce valuable products, including vitamin B6 for various applications. Numerous microorganisms naturally produce vitamin B6, yet the metabolic pathways involved are rigorously controlled. This regulation by the accumulation of vitamin B6 poses a challenge in constructing an efficient cell factory. RESULTS In this study, we conducted transcriptome and metabolome analyses to investigate the effects of the accumulation of pyridoxine, which is the major commercial form of vitamin B6, on cellular processes in Escherichia coli. Our omics analysis revealed associations between pyridoxine and amino acids, as well as the tricarboxylic acid (TCA) cycle. Based on these findings, we identified potential targets for fermentation optimization, including succinate, amino acids, and the carbon-to-nitrogen (C/N) ratio. Through targeted modifications, we achieved pyridoxine titers of approximately 514 mg/L in shake flasks and 1.95 g/L in fed-batch fermentation. CONCLUSION Our results provide insights into pyridoxine biosynthesis within the cellular metabolic network for the first time. Our comprehensive analysis revealed that the fermentation process resulted in a remarkable final yield of 1.95 g/L pyridoxine, the highest reported yield to date. This work lays a foundation for the green industrial production of vitamin B6 in the future.
Collapse
Affiliation(s)
- Zhizhong Tian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lijuan Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zixuan Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yahui Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liping Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Alessandri G, Fontana F, Mancabelli L, Tarracchini C, Lugli GA, Argentini C, Longhi G, Rizzo SM, Vergna LM, Anzalone R, Viappiani A, Turroni F, Ossiprandi MC, Milani C, Ventura M. Species-level characterization of saliva and dental plaque microbiota reveals putative bacterial and functional biomarkers of periodontal diseases in dogs. FEMS Microbiol Ecol 2024; 100:fiae082. [PMID: 38782729 PMCID: PMC11165276 DOI: 10.1093/femsec/fiae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Periodontal diseases are among the most common bacterial-related pathologies affecting the oral cavity of dogs. Nevertheless, the canine oral ecosystem and its correlations with oral disease development are still far from being fully characterized. In this study, the species-level taxonomic composition of saliva and dental plaque microbiota of 30 healthy dogs was investigated through a shallow shotgun metagenomics approach. The obtained data allowed not only to define the most abundant and prevalent bacterial species of the oral microbiota in healthy dogs, including members of the genera Corynebacterium and Porphyromonas, but also to identify the presence of distinct compositional motifs in the two oral microniches as well as taxonomical differences between dental plaques collected from anterior and posterior teeth. Subsequently, the salivary and dental plaque microbiota of 18 dogs affected by chronic gingival inflammation and 18 dogs with periodontitis were compared to those obtained from the healthy dogs. This analysis allowed the identification of bacterial and metabolic biomarkers correlated with a specific clinical status, including members of the genera Porphyromonas and Fusobacterium as microbial biomarkers of a healthy and diseased oral status, respectively, and genes predicted to encode for metabolites with anti-inflammatory properties as metabolic biomarkers of a healthy status.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Maria Cristina Ossiprandi
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Department of Veterinary Medical Science, University of Parma, Via Del Taglio 10, 43126 Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| |
Collapse
|
36
|
Tsukamoto M, Hishida A, Tamura T, Nagayoshi M, Okada R, Kubo Y, Kato Y, Hamajima N, Nishida Y, Shimanoe C, Ibusuki R, Shibuya K, Takashima N, Nakamura Y, Kusakabe M, Nakamura Y, Koyanagi YN, Oze I, Nishiyama T, Suzuki S, Watanabe I, Matsui D, Otonari J, Ikezaki H, Katsuura-Kamano S, Arisawa K, Kuriki K, Nakatochi M, Momozawa Y, Takeuchi K, Wakai K, Matsuo K. GWAS of Folate Metabolism With Gene-environment Interaction Analysis Revealed the Possible Role of Lifestyles in the Control of Blood Folate Metabolites in Japanese: The J-MICC Study. J Epidemiol 2024; 34:228-237. [PMID: 37517992 PMCID: PMC10999522 DOI: 10.2188/jea.je20220341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND The present genome-wide association study (GWAS) aimed to reveal the genetic loci associated with folate metabolites, as well as to detect related gene-environment interactions in Japanese. METHODS We conducted the GWAS of plasma homocysteine (Hcy), folic acid (FA), and vitamin B12 (VB12) levels in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study participants who joined from 2005 to 2012, and also estimated gene-environment interactions. In the replication phase, we used data from the Yakumo Study conducted in 2009. In the discovery phase, data of 2,263 participants from four independent study sites of the J-MICC Study were analyzed. In the replication phase, data of 573 participants from the Yakumo Study were analyzed. RESULTS For Hcy, MTHFR locus on chr 1, NOX4 on chr 11, CHMP1A on chr 16, and DPEP1 on chr 16 reached genome-wide significance (P < 5 × 10-8). MTHFR also associated with FA, and FUT2 on chr 19 associated with VB12. We investigated gene-environment interactions in both studies and found significant interactions between MTHFR C677T and ever drinking, current drinking, and physical activity >33% on Hcy (β = 0.039, 0.038 and -0.054, P = 0.018, 0.021 and <0.001, respectively) and the interaction of MTHFR C677T with ever drinking on FA (β = 0.033, P = 0.048). CONCLUSION The present GWAS revealed the folate metabolism-associated genetic loci and gene-environment interactions with drinking and physical activity in Japanese, suggesting the possibility of future personalized cardiovascular disease prevention.
Collapse
Affiliation(s)
- Mineko Tsukamoto
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mako Nagayoshi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Kubo
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasufumi Kato
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenichi Shibuya
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoyuki Takashima
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Yasuyuki Nakamura
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Miho Kusakabe
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuriko N. Koyanagi
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Isao Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Otonari
- Department of Psychosomatic Medicine, Kyushu University Graduate School of Medical Sciences, Faculty of Medical Sciences, Fukuoka, Japan
| | - Hiroaki Ikezaki
- Department of Comprehensive General Internal Medicine, Kyushu University Graduate School of Medical Sciences, Faculty of Medical Sciences, Fukuoka, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kokichi Arisawa
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of International and Community Oral Health, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
37
|
Wu L, Li J, Zhang Y, Tian Z, Jin Z, Liu L, Zhang D. Multiple Cofactor Engineering Strategies to Enhance Pyridoxine Production in Escherichia coli. Microorganisms 2024; 12:933. [PMID: 38792763 PMCID: PMC11123869 DOI: 10.3390/microorganisms12050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pyridoxine, also known as vitamin B6, is an essential cofactor in numerous cellular processes. Its importance in various applications has led to a growing interest in optimizing its production through microbial biosynthesis. However, an imbalance in the net production of NADH disrupts intracellular cofactor levels, thereby limiting the efficient synthesis of pyridoxine. In our study, we focused on multiple cofactor engineering strategies, including the enzyme design involved in NAD+-dependent enzymes and NAD+ regeneration through the introduction of heterologous NADH oxidase (Nox) coupled with the reduction in NADH production during glycolysis. Finally, the engineered E. coli achieved a pyridoxine titer of 676 mg/L in a shake flask within 48 h by enhancing the driving force. Overall, the multiple cofactor engineering strategies utilized in this study serve as a reference for enhancing the efficient biosynthesis of other target products.
Collapse
Affiliation(s)
- Lijuan Wu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.Z.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.Z.)
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhizhong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.Z.)
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.L.); (Z.T.); (D.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Xu H, Yue H, Ge H, Wang F. Vitamin B6 ameliorates acute pancreatitis by suppressing the caspase3 signaling pathway. BMC Gastroenterol 2024; 24:151. [PMID: 38698325 PMCID: PMC11067178 DOI: 10.1186/s12876-024-03248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in Sprague‒Dawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.
Collapse
Affiliation(s)
- Heling Xu
- Department of Gastroenterology, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224001, Jiangsu, China
| | - Hongqin Yue
- Department of Gastroenterology, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224001, Jiangsu, China
| | - Haijue Ge
- Department of Gastroenterology, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224001, Jiangsu, China
| | - Fusheng Wang
- Department of Gastroenterology, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
39
|
Sandvig HV, Aam S, Alme KN, Lydersen S, Magne Ueland P, Ulvik A, Wethal T, Saltvedt I, Knapskog AB. Neopterin, kynurenine metabolites, and indexes related to vitamin B6 are associated with post-stroke cognitive impairment: The Nor-COAST study. Brain Behav Immun 2024; 118:167-177. [PMID: 38428649 DOI: 10.1016/j.bbi.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS We have previously shown that systemic inflammation was associated with post-stroke cognitive impairment (PSCI). Because neopterin, kynurenine pathway (KP) metabolites, and B6 vitamers are linked to inflammation, in our study we investigated whether those biomarkers were associated with PSCI. MATERIAL AND METHODS The Norwegian Cognitive Impairment After Stroke study is a prospective multicenter cohort study of patients with acute stroke recruited from May 2015 through March 2017. Plasma samples of 422 participants (59 % male) with ischemic stroke from the index hospital stay and 3 months post-stroke were available for analyses of neopterin, KP metabolites, and B6 vitamers using liquid chromatography-tandem mass spectrometry. Mixed linear regression analyses adjusted for age, sex, and creatinine, were used to assess whether there were associations between those biomarkers and cognitive outcomes, measured by the Montreal Cognitive Assessment scale (MoCA) at 3-, 18-, and 36-month follow-up. RESULTS Participants had a mean (SD) age of 72 (12) years, with a mean (SD) National Institutes of HealthStroke Scale score of 2.7 (3.6) at Day 1. Higher baseline values of quinolinic acid, PAr (i.e., an inflammatory marker based on vitamin B6 metabolites), and HKr (i.e., a marker of functional vitamin B6 status based on selected KP metabolites) were associated with lower MoCA score at 3, 18, and 36 months post-stroke (p < 0.01). Higher baseline concentrations of neopterin and 3-hydroxykynurenine were associated with lower MoCA scores at 18 and 36 months, and higher concentrations of xanthurenic acid were associated with higher MoCA score at 36 months (p < 0.01). At 3 months post-stroke, higher concentrations of neopterin and lower values of pyridoxal 5́-phosphate were associated with lower MoCA scores at 18- and 36-month follow-up, while lower concentrations of picolinic acid were associated with a lower MoCA score at 36 months (p < 0.01). CONCLUSION Biomarkers and metabolites of systemic inflammation, including biomarkers of cellular immune activation, indexes of vitamin B6 homeostasis, and several neuroactive metabolites of the KP pathway, were associated with PSCI. TRIAL REGISTRATION ClinicalTrials.gov: NCT02650531.
Collapse
Affiliation(s)
- Heidi Vihovde Sandvig
- Department of Medicine, Kristiansund Hospital, Møre og Romsdal Hospital Trust, Kristiansund, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Stina Aam
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Katinka N Alme
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Stian Lydersen
- Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| | - Torgeir Wethal
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Stroke, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway
| |
Collapse
|
40
|
Liu D, Tan S, Zhou Z, Gu S, Zuo H. Trimethylamine N-oxide, β-alanine, tryptophan index, and vitamin B6-related dietary patterns in association with stroke risk. Nutr Metab Cardiovasc Dis 2024; 34:1179-1188. [PMID: 38218714 DOI: 10.1016/j.numecd.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND AND AIMS The aim of this study was to examine the associations of dietary patterns derived by reduced-rank regression (RRR) model reflecting variation in novel biomarkers (trimethylamine N-oxide, β-alanine, tryptophan index, and vitamin B6) with stroke risk. METHODS AND RESULTS We performed analyses based on a community-based cohort study "the Prospective Follow-up Study on Cardiovascular Morbidity and Mortality in China (PFS-CMMC)". Factor loadings were calculated by RRR using 11 food groups collected via a validated food frequency questionnaire and the four response variables based on its nested case-control data (393 cases of stroke vs. 393 matched controls). Dietary pattern scores were derived by applying the factor loadings to the food groups in the entire cohort (n = 15,518). The associations of dietary pattern with the stroke risk were assessed using Cox proportional hazards models. The dietary pattern characterized with higher intakes of red meat and poultry but lower intakes of fresh vegetables, fresh fruits, and fish/seafoods were identified for further analyses. The hazard ratios (HR) for the highest vs. lowest quartile was 1.55 [95 % confidence interval (CI): 1.18-2.03, P trend = 0.001] for total stroke, 2.96 [95 % CI: 1.53-5.71, P trend <0.001] for non-ischemic stroke, after adjustment for sex, age, educational attainment, current smoking, current drinking, body mass index, total energy intake, family history of stroke, hypertension, diabetes, hyperlipidemia, and estimated glomerular filtration rate. CONCLUSION Our findings highlight the importance of limited meat intake and increased intakes of fresh vegetables, fruits, and fish/seafoods in the prevention of stroke among Chinese adults.
Collapse
Affiliation(s)
- Dong Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; School of Public Health, Nantong University, Nantong, China
| | - Siyue Tan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengyuan Zhou
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Shujun Gu
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China.
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
41
|
Yuan M, Wang F, Sun T, Bian X, Zhang Y, Guo C, Yu L, Yao Z. Vitamin B 6 alleviates chronic sleep deprivation-induced hippocampal ferroptosis through CBS/GSH/GPX4 pathway. Biomed Pharmacother 2024; 174:116547. [PMID: 38599059 DOI: 10.1016/j.biopha.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Several studies have found that sleep deprivation (SD) can lead to neuronal ferroptosis and affect hippocampal function. However, there are currently no effective interventions. Vitamin B6 is a co-factor for key enzymes in the transsulfuration pathway which is critical for maintaining cell growth in the presence of cysteine deprivation. The results showed that SD inhibited cystine-glutamate antiporter light chain subunit xCT protein expression and caused cysteine deficiency, which reduced the synthesis of the glutathione (GSH) to trigger neuronal ferroptosis. Nissl staining further revealed significant neuronal loss and shrinkage in the CA1 and CA3 regions of the hippocampus in SD mice. Typical ferroptotic indicators characterized by lipid peroxidation and iron accumulation were showed in the hippocampus after sleep deprivation. As expected, vitamin B6 could alleviate hippocampal ferroptosis by upregulating the expression of cystathionine beta-synthase (CBS) in the transsulfuration pathway, thereby replenishing the intracellular deficient GSH and restoring the expression of GPX4. Similar anti-ferroptotic effects of vitamin B6 were demonstrated in HT-22 cells treated with ferroptosis activator erastin. Furthermore, vitamin B6 had no inhibitory effect on erastin-induced ferroptosis in CBS-knockout HT22 cells. Our findings suggested chronic sleep deprivation caused hippocampal ferroptosis by disrupting the cyst(e)ine/GSH/GPX4 axis. Vitamin B6 alleviated sleep deprivation-induced ferroptosis by enhancing CBS expression in the transsulfuration pathway.
Collapse
Affiliation(s)
- Man Yuan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Feng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tieqiang Sun
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuxian Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Lixia Yu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
42
|
Du Y, Xu K, Zhao H, Wu Y, Jiang H, He J, Jiang Y. Preliminary Study on the Pathogenic Mechanism of Jujube Flower Disease in Honeybees ( Apis mellifera ligustica) Based on Midgut Transcriptomics. Genes (Basel) 2024; 15:533. [PMID: 38790162 PMCID: PMC11121247 DOI: 10.3390/genes15050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Honeybees are prone to poisoning, also known as jujube flower disease, after collecting nectar from jujube flowers, resulting in the tumultuous demise of foragers. The prevalence of jujube flower disease has become one of the main factors affecting the development of the jujube and beekeeping industries in Northern China. However, the pathogenic mechanisms underlying jujube flower disease in honeybees are poorly understood. Herein, we first conducted morphological observations of the midgut using HE-staining and found that jujube flower disease-affected honeybees displayed midgut damage with peritrophic membrane detachment. Jujube flower disease was found to increase the activity of chitinase and carboxylesterase (CarE) and decrease the activity of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and the content of CYP450 in the honeybee midgut. Transcriptomic data identified 119 differentially expressed genes in the midgut of diseased and healthy honeybees, including CYP6a13, CYP6a17, CYP304a1, CYP6a14, AADC, and AGXT2, which are associated with oxidoreductase activity and vitamin binding. In summary, collecting jujube flower nectar could reduce antioxidant and detoxification capacities of the honeybee midgut and, in more severe cases, damage the intestinal structure, suggesting that intestinal damage might be the main cause of honeybee death due to jujube nectar. This study provides new insights into the pathogenesis of jujube flower disease in honeybees.
Collapse
Affiliation(s)
- Yali Du
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
- Apiculture Science Institute of Jilin Province, Jilin 132108, China; (K.X.); (Y.W.); (H.J.); (J.H.)
| | - Kai Xu
- Apiculture Science Institute of Jilin Province, Jilin 132108, China; (K.X.); (Y.W.); (H.J.); (J.H.)
| | - Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin 132108, China; (K.X.); (Y.W.); (H.J.); (J.H.)
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jilin 132108, China; (K.X.); (Y.W.); (H.J.); (J.H.)
| | - Jinming He
- Apiculture Science Institute of Jilin Province, Jilin 132108, China; (K.X.); (Y.W.); (H.J.); (J.H.)
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| |
Collapse
|
43
|
Wang P, Huang J, Xue F, Abuduaini M, Tao Y, Liu H. Associations of serum vitamin B6 status with the risks of cardiovascular, cancer, and all-cause mortality in the elderly. Front Immunol 2024; 15:1354958. [PMID: 38698865 PMCID: PMC11064647 DOI: 10.3389/fimmu.2024.1354958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Background There are few studies investigating the relationship between serum vitamin B6 and mortality risk in the elderly. This study hereby evaluated the associations between biomarkers of serum vitamin B6 status and cardiovascular, cancer, and all-cause mortality risks in the elderly. Methods Our study included a total of 4,881 participants aged 60 years or older from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. Serum vitamin B6 status was estimated based on levels of pyridoxal 5'-phosphate (PLP), 4-pyridoxic acid (4-PA), and vitamin B6 turnover rate (4-PA/PLP) detected by high-performance liquid chromatography. Survival status and corresponding causes of death were matched through the National Death Index records through December 31, 2019. Multivariate Cox regression model was adopted to assess the relationships between serum vitamin B6 status and the risk of mortality. Results During a median follow-up period of 10.33 years, 507 cardiovascular deaths, 426 cancer deaths, and 1995 all-cause deaths were recorded, respectively. In the multivariate-adjusted Cox model, the hazard ratios (HRs) and 95% confidence intervals (CIs) for the highest versus the lowest quartiles of PLP, 4-PA, and 4-PA/PLP were 0.70(0.54-0.90), 1.33(0.88-2.02), and 2.01(1.41-2.79) for cardiovascular mortality, 0.73(0.52-1.02), 1.05(0.71-1.57), and 1.95(1.25-3.05) for cancer mortality, and 0.62(0.53-0.74), 1.05(0.82-1.34), and 2.29(1.87-2.79) for all-cause mortality, respectively. Conclusion Our study found that lower serum PLP levels were associated with increased risks of cardiovascular and all-cause mortality among the elderly population. And higher vitamin B6 turnover rate was associated with increased risks of cardiovascular, cancer, and all-cause mortality.
Collapse
Affiliation(s)
- Pengxi Wang
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jia Huang
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Munire Abuduaini
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuchang Tao
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Mangoni AA, Zinellu A. Transsulfuration and folate pathways in rheumatoid arthritis: A systematic review and meta-analysis. Eur J Clin Invest 2024; 54:e14158. [PMID: 38214126 DOI: 10.1111/eci.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Metabolomic assessment of the transsulfuration and folic acid biochemical pathways could lead to the identification of promising biomarkers of nitric oxide dysregulation and oxidative stress in rheumatoid arthritis (RA). METHODS We conducted a systematic review and meta-analysis of transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6 , and vitamin B12 ) metabolites in RA patients in remission and healthy controls. Electronic databases were searched from inception to 15 July 2023 for relevant articles. We assessed the risk of bias using the JBI checklist and the certainty of evidence using GRADE. RESULTS In 28 eligible studies, compared to controls, RA patients had significantly higher concentrations of homocysteine (standardized mean difference, SMD = 0.74, 95% CI 0.54-0.93, p < 0.001; low certainty of evidence) and methionine (SMD = 1.00, 95% CI 0.57-1.44, p < 0.001; low certainty) and lower concentrations of vitamin B6 (SMD = -6.62, 95% CI -9.65 to -3.60, p < 0.001; low certainty). By contrast, there were non-significant between-group differences in vitamin B12 and folic acid. In meta-regression and subgroup analysis, there were no associations between the effect size and several study and patient characteristics except for homocysteine (year of publication, C-reactive protein, triglycerides, and analytical method) and folic acid (biological matrix). CONCLUSIONS The results of our study suggest that homocysteine, methionine, and vitamin B6 are promising biomarkers to assess nitric oxide dysregulation and oxidative stress in RA. (PROSPERO registration number: CRD42023461081).
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
45
|
Habib M, Lalagkas PN, Melamed RD. Mapping drug biology to disease genetics to discover drug impacts on the human phenome. BIOINFORMATICS ADVANCES 2024; 4:vbae038. [PMID: 38736684 PMCID: PMC11087821 DOI: 10.1093/bioadv/vbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 05/14/2024]
Abstract
Motivation Medications can have unexpected effects on disease, including not only harmful drug side effects, but also beneficial drug repurposing. These effects on disease may result from hidden influences of drugs on disease gene networks. Then, discovering how biological effects of drugs relate to disease biology can both provide insight into the mechanism of latent drug effects, and can help predict new effects. Results Here, we develop Draphnet, a model that integrates molecular data on 429 drugs and gene associations of nearly 200 common phenotypes to learn a network that explains drug effects on disease in terms of these molecular signals. We present evidence that our method can both predict drug effects, and can provide insight into the biology of unexpected drug effects on disease. Using Draphnet to map a drug's known molecular effects to downstream effects on the disease genome, we put forward disease genes impacted by drugs, and we suggest a new grouping of drugs based on shared effects on the disease genome. Our approach has multiple applications, including predicting drug uses and learning drug biology, with implications for personalized medicine. Availability and implementation Code to reproduce the analysis is available at https://github.com/RDMelamed/drug-phenome.
Collapse
Affiliation(s)
- Mamoon Habib
- Department of Computer Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| | | | - Rachel D Melamed
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| |
Collapse
|
46
|
Rim S, Vedøy OB, Brønstad I, McCann A, Meyer K, Steinsland H, Hanevik K. Inflammation, the kynurenines, and mucosal injury during human experimental enterotoxigenic Escherichia coli infection. Med Microbiol Immunol 2024; 213:2. [PMID: 38430452 PMCID: PMC10908629 DOI: 10.1007/s00430-024-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 03/03/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children and travelers, especially in low- and middle-income countries. ETEC is a non-invasive gut pathogen colonizing the small intestinal wall before secreting diarrhea-inducing enterotoxins. We sought to investigate the impact of ETEC infection on local and systemic host defenses by examining plasma markers of inflammation and mucosal injury as well as kynurenine pathway metabolites. Plasma samples from 21 volunteers experimentally infected with ETEC were collected before and 1, 2, 3, and 7 days after ingesting the ETEC dose, and grouped based on the level of intestinal ETEC proliferation: 14 volunteers experienced substantial proliferation (SP) and 7 had low proliferation (LP). Plasma markers of inflammation, kynurenine pathway metabolites, and related cofactors (vitamins B2 and B6) were quantified using targeted mass spectrometry, whereas ELISA was used to quantify the mucosal injury markers, regenerating islet-derived protein 3A (Reg3a), and intestinal fatty acid-binding protein 2 (iFABP). We observed increased concentrations of plasma C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine/tryptophan ratio (KTR), and Reg3a in the SP group following dose ingestion. Vitamin B6 forms, pyridoxal 5'-phosphate and pyridoxal, decreased over time in the SP group. CRP, SAA, and pyridoxic acid ratio correlated with ETEC proliferation levels. The changes following experimental ETEC infection indicate that ETEC, despite causing a non-invasive infection, induces systemic inflammation and mucosal injury when proliferating substantially, even in cases without diarrhea. It is conceivable that ETEC infections, especially when repeated, contribute to negative health impacts on children in ETEC endemic areas.
Collapse
Affiliation(s)
- Sehee Rim
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Oda Barth Vedøy
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Brønstad
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Hans Steinsland
- Department of Global Public Health and Primary Care, Faculty of Medicine, Centre for Intervention Science in Maternal and Child Health, Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, National Center for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
47
|
Liu W, Zhang T, Hu Z, Li X, Wang F, Peng R. Metabolomics study of graphene nuangong acupoint plaster for primary dysmenorrhea. Heliyon 2024; 10:e25268. [PMID: 38327403 PMCID: PMC10847914 DOI: 10.1016/j.heliyon.2024.e25268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Primary dysmenorrhea is a common gynecological disease with typical clinical symptoms and diverse treatment methods. Acupoint patch therapy is one of the traditional external treatments of traditional Chinese medicine, with a long history, and has been widely used in the treatment of many diseases in China. Graphene nuangong acupoint plaster (GNGAP) developed based on traditional acupoints and new materials have been used in the clinical treatment of primary dysmenorrhea, and satisfactory therapeutic effects have been achieved. However, the underlying mechanisms of GNGAP still need further investigation. In this study, we used estradiol benzoate combined with oxytocin intraperitoneally to establish dysmenorrhea model rats, and observed the torsion response, uterine organ coefficients, prostaglandin levels and metabolite changes of rats with dysmenorrhea model after the intervention of GNGAP, to elucidate the mechanism of the effect of GNGAP. Compared with normal rats, the dysmenorrhea model rats exhibited increased writhing response and latency time, increased uterine organ coefficient, and significant changes in 79 metabolites. Twenty-three significantly enriched pathways were discovered, including amino acid metabolism, arachidonic acid metabolism, pyrimidine metabolism, and ovarian steroidogenesis, which may be involved in the pathogenesis of primary dysmenorrhea. Compared with the model group, the torsion response, latency time and uterine organ coefficient of rats in the acupoint patch group were significantly improved, and nine uterine metabolites were significantly altered, among which metabolites such as 4-pyridoxic acid, d-glucarate and Phenol were identified as potential biomarkers for the therapeutic effects of GNGAP. Vitamin B6 metabolism, Ascorbate and aldarate metabolism and Tyrosine metabolism were enriched in nine metabolic pathways. These findings contribute to the screening study of potential pathological metabolic pathways in primary dysmenorrhea. Additionally, they reveal the biological effects of GNGAP in the treatment of primary dysmenorrhea at the metabolite level.
Collapse
Affiliation(s)
- Wu Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ting Zhang
- Department of Rehabilitation Medicine at Jingzhou Central Hospital, Jingzhou, 434020, China
| | - Zhaoduan Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xin Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fuchun Wang
- Department of Acupuncture, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Rui Peng
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
48
|
Bakker L, Choe K, Eussen SJPM, Ramakers IHGB, van den Hove DLA, Kenis G, Rutten BPF, Verhey FRJ, Köhler S. Relation of the kynurenine pathway with normal age: A systematic review. Mech Ageing Dev 2024; 217:111890. [PMID: 38056721 DOI: 10.1016/j.mad.2023.111890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The kynurenine pathway (KP) is gaining more attention as a common pathway involved in age-related conditions. However, which changes in the KP occur due to normal ageing is still largely unclear. The aim of this systematic review was to summarize the available evidence for associations of KP metabolites with age. METHODS We used an broad search strategy and included studies up to October 2023. RESULTS Out of 8795 hits, 55 studies were eligible for the systematic review. These studies suggest that blood levels of tryptophan decrease with age, while blood and cerebrospinal fluid levels of kynurenine and its ratio with tryptophan increase. Studies investigating associations between cerebrospinal fluid and blood levels of kynurenic acid and quinolinic acid with age reported either positive or non-significant findings. However, there is a large heterogeneity across studies. Additionally, most studies were cross-sectional, and only few studies investigated associations with other downstream kynurenines. CONCLUSIONS This systematic review suggests that levels of kynurenines are positively associated with age. Larger and prospective studies are needed that also investigate a more comprehensive panel of KP metabolites and changes during the life-course.
Collapse
Affiliation(s)
- Lieke Bakker
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands; Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, Maastricht University, 6229 HA Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM) and Care and Public Health Research Institute (CAPHRI), 6229 ER Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands; Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands; Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands; Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs) and European Graduate School of Neuroscience (EURON), Faculty of Health, Medicine and Life Sciences (FHML) Maastricht University, 6229 ER Maastricht, the Netherlands; Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands.
| |
Collapse
|
49
|
Zhu Y, Bao G, Zhu G, Zhang K, Zhu S, Hu J, He J, Jiang W, Fan J, Dang Y. Discovery and characterization of natural product luteolin as an effective inhibitor of human pyridoxal kinase. Bioorg Chem 2024; 143:107057. [PMID: 38150934 DOI: 10.1016/j.bioorg.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Pyridoxal kinase (PDXK) is an essential enzyme in the synthesis of pyridoxal 5-phosphate (PLP), the active form of vitamin B6, which plays a pivotal role in maintaining the enzyme activity necessary for cell metabolism. Thus, PDXK has garnered attention as a potential target for metabolism regulation and tumor therapy. Despite this interest, existing PDXK inhibitors have faced limitations, including weak suppressive activity, unclear mechanisms of action, and associated toxic side effects. In this study, we present the discovery of a novel PDXK inhibitor, luteolin, through a high-throughput screening approach based on enzyme activity. Luteolin, a natural product, exhibits micromolar-level affinity for PDXK and effectively inhibits the enzyme's activity in vitro. Our crystal structures reveal that luteolin occupies the ATP binding pocket through hydrophobic interactions and a weak hydrogen bonding pattern, displaying reversible characteristics as confirmed by biochemical assays. Moreover, luteolin disrupts vitamin B6 metabolism by targeting PDXK, thereby inhibiting the proliferation of leukemia cells. This research introduces a novel screening method for identifying high-affinity and potent PDXK inhibitors and sheds light on clarification of the structural mechanism of PDXK-luteolin for subsequent structure optimization of inhibitors.
Collapse
Affiliation(s)
- Yunmei Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Guangsen Bao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gaolin Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Kai Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Sanyong Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Jia He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jianjun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China; College of Pharmacy, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
50
|
Munteanu C, Schwartz B. B Vitamins, Glucoronolactone and the Immune System: Bioavailability, Doses and Efficiency. Nutrients 2023; 16:24. [PMID: 38201854 PMCID: PMC10780850 DOI: 10.3390/nu16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The present review deals with two main ingredients of energy/power drinks: B vitamins and glucuronolactone and their possible effect on the immune system. There is a strong relationship between the recommended daily dose of selected B vitamins and a functional immune system. Regarding specific B vitamins: (1) Riboflavin is necessary for the optimization of reactive oxygen species (ROS) in the fight against bacterial infections caused by Staphylococcus aureus and Listeria monocytogenes. (2) Niacin administered within normal doses to obese rats can change the phenotype of skeletal fibers, and thereby affect muscle metabolism. This metabolic phenotype induced by niacin treatment is also confirmed by stimulation of the expression of genes involved in the metabolism of free fatty acids (FFAs) and oxidative phosphorylation at this level. (3) Vitamin B5 effects depend primarily on the dose, thus large doses can cause diarrhea or functional disorders of the digestive tract whereas normal levels are effective in wound healing, liver detoxification, and joint health support. (4) High vitamin B6 concentrations (>2000 mg per day) have been shown to exert a significant negative impact on the dorsal root ganglia. Whereas, at doses of approximately 70 ng/mL, sensory symptoms were reported in 80% of cases. (5) Chronic increases in vitamin B12 have been associated with the increased incidence of solid cancers. Additionally, glucuronolactone, whose effects are not well known, represents a controversial compound. (6) Supplementing with D-glucarates, such as glucuronolactone, may help the body's natural defense system function better to inhibit different tumor promoters and carcinogens and their consequences. Cumulatively, the present review aims to evaluate the relationship between the selected B vitamins group, glucuronolactone, and the immune system and their associations to bioavailability, doses, and efficiency.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|