1
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
3
|
Olabisi OA, Barrett NJ, Lucas A, Smith M, Bethea K, Soldano K, Croall S, Sadeghpour A, Chakraborty H, Wolf M. Design and Rationale of the Phase 2 Baricitinib Study in Apolipoprotein L1-Mediated Kidney Disease (JUSTICE). Kidney Int Rep 2024; 9:2677-2684. [PMID: 39291185 PMCID: PMC11403079 DOI: 10.1016/j.ekir.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Individuals of recent West African ancestry develop focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (HTN-ESKD) at 4 times the rate of White Americans. Two protein-coding variants of the Apolipoprotein L1 (APOL1) gene, G1 and G2, explain 50% to 70% of the excess risk of HTN-ESKD and FSGS among this group. Increased expression of G1 and G2 in the kidney, mediated by Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, drive pathogenesis of these kidney diseases. Baricitinib is an orally active inhibitor of JAK1/2 that blocks APOL1 synthesis. The Janus kinase-STAT Inhibition to Reduce APOL1-Associated Kidney Disease (JUSTICE) trial is evaluating the antiproteinuric efficacy and safety of baricitinib in patients with APOL1-associated FSGS and HTN-attributed chronic kidney disease (HTN-CKD). Methods JUSTICE is a single-center, randomized, double-blind, placebo-controlled, pilot phase 2 trial of baricitinib in patients with proteinuria, APOL1-associated FSGS or APOL1-associated HTN-CKD without diabetes. A total of 75 African American patients with APOL1-associated CKD, including 25 with FSGS and 50 with HTN-CKD, aged 18 to 70 years will be randomized 2:1 to daily treatment with baricitinib or placebo, respectively. Results The primary efficacy end point will be percent change in urine albumin-to-creatinine ratio (UACR) from baseline to end of month 6. The primary safety end point will be incidence of clinically significant decreases in hemoglobin of ≥ 1g/dl. Conclusion The phase 2 JUSTICE study will characterize the antiproteinuric efficacy and safety of JAK1/2 inhibition with baricitinib in patients with APOL1-associated FSGS and APOL1-associated HTN-CKD.
Collapse
Affiliation(s)
- Opeyemi A Olabisi
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nadine J Barrett
- Atrium Health/Wake Forest Comprehensive Cancer Center and Maya Angelo Center for Health Equity, Wake Forest School of Medicine, Wake Forest, North Carolina, USA
- Department of Social Science and Health Policy, Division of Population Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Maya Angelo Center for Health Equity, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anika Lucas
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maurice Smith
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kenisha Bethea
- Duke Clinical and Translational Science Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Karen Soldano
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephanie Croall
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Azita Sadeghpour
- Duke Precision Medicine Program, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Myles Wolf
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Xie J, Ma YL, Gui MT, Yao L, Li JH, Wang MZ, Zhou XJ, Wang YF, Zhao MY, Cao H, Lu B, Fu DY. Efficacy of Huoxue Qianyang Qutan Recipe on essential hypertension: A randomized, double-blind, placebo-controlled trial. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:484-492. [PMID: 38789290 DOI: 10.1016/j.joim.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Hypertension, a prevalent disease, is a significant risk factor for coronary heart disease. Huoxue Qianyang Qutan Recipe (HQQR), a traditional Chinese herbal remedy, has been used for treating hypertension over several years. OBJECTIVE This study assesses HQQR's efficacy for controlling blood pressure among patients with hypertension related to blood stasis, yang hyperactivity and phlegm. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS A randomized controlled trial was conducted at the Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China, from July 2020 to June 2022. Major components of HQQR were identified using thin-layer chromatography and high-performance liquid chromatography. Participants aged 18-80 years, exhibiting traditional Chinese medicine syndromes of blood stasis, yang hyperactivity or phlegm, along with grades 1 or 2 hypertension, were randomly categorized into two groups. The intervention group was given HQQR granules alongside conventional hypertension treatment, while the control group was given placebo granules in addition to conventional treatment for 12 weeks. MAIN OUTCOME MEASURES The primary outcome was clinic blood pressure, whereas secondary outcomes included metabolic indices (e.g., homeostasis model assessment of insulin resistance [HOMA-IR], total cholesterol [TC], low-density lipoprotein cholesterol and triglyceride), target organ damage indices (left ventricular mass index and urinary albumin creatinine ratio [UACR]) and inflammation indices (interleukin-6 [IL-6] and high-sensitivity C-reactive protein [hs-CRP]). RESULTS HQQR's primary components were identified as salvianolic acid B, emodin and ferulic acid. Of the 216 participants (108 in each group), compared to the control, the intervention group exhibited significant improvements (P < 0.001) in clinic systolic blood pressure ([136.24 ± 7.63] vs [130.06 ± 8.50] mmHg), clinic diastolic blood pressure ([84.34 ± 8.72] vs [80.46 ± 6.05] mmHg), home systolic blood pressure ([131.64 ± 8.74] vs [122.36 ± 8.45] mmHg) and home diastolic blood pressure ([78.47 ± 9.53] vs [71.79 ± 6.82] mmHg). HQQR demonstrated a reduction in ambulatory blood pressure (24-hour systolic blood pressure: [133.75 ± 10.49] vs [132.46 ± 8.84] mmHg and 24-hour diastolic blood pressure: [84.12 ± 8.01] vs [82.11 ± 7.45] mmHg) and an improvement in HOMA-IR ([4.09 ± 1.72] vs [3.98 ± 1.44]), TC ([4.66 ± 1.47] vs [3.75 ± 1.81] mmol/L) and UACR (75.94 [5.12, 401.12] vs 45.61 [4.26, 234.26]). Moreover, HQQR demonstrated a decrease in hs-CRP (1.46 [0.10, 10.53] vs 0.57 [0.12, 3.99] mg/L) and IL-6 (6.69 [2.00, 29.74] vs 5.27 [2.00, 9.73] pg/mL), with no reported side effects (P < 0.001). CONCLUSION This study highlights the therapeutic potential of HQQR use in ameliorating blood pressure, glycolipid metabolism, and inflammation in patients with hypertension. TRIAL REGISTRATION ChiCTR2000035092 (https://www.chictr.org.cn/). Please cite this article as: Xie J, Ma YL, Gui MT, Yao L, Li JH, Wang MZ, Zhou XJ, Wang YF, Zhao MY, Cao H, Lu B, Fu DY. Efficacy of Huoxue Qianyang Qutan Recipe on essential hypertension: A randomized, double-blind, placebo-controlled trial. J Integr Med 2024; 22(4): 485-493.
Collapse
Affiliation(s)
- Jun Xie
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Yu-Long Ma
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Ming-Tai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jian-Hua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ming-Zhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xun-Jie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi-Fan Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Ming-Yi Zhao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hui Cao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - De-Yu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
6
|
Abdulla MH, AlMarabeh S, Bolger T, Lucking EF, O'Halloran KD, Johns EJ. Effects of intrarenal pelvic infusion of tumour necrosis factor-α and interleukin 1-β on reno-renal reflexes in anaesthetised rats. J Hypertens 2024; 42:1027-1038. [PMID: 38690904 DOI: 10.1097/hjh.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Reno-renal reflexes are disturbed in cardiovascular and hypertensive conditions when elevated levels of pro-inflammatory mediators/cytokines are present within the kidney. We hypothesised that exogenously administered inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL)-1β modulate the renal sympatho-excitatory response to chemical stimulation of renal pelvic sensory nerves. METHODS In anaesthetised rats, intrarenal pelvic infusions of vehicle [0.9% sodium chloride (NaCl)], TNF-α (500 and 1000 ng/kg) and IL-1β (1000 ng/kg) were maintained for 30 min before chemical activation of renal pelvic sensory receptors was performed using randomized intrarenal pelvic infusions of hypertonic NaCl, potassium chloride (KCl), bradykinin, adenosine and capsaicin. RESULTS The increase in renal sympathetic nerve activity (RSNA) in response to intrarenal pelvic hypertonic NaCl was enhanced during intrapelvic TNF-α (1000 ng/kg) and IL-1β infusions by almost 800% above vehicle with minimal changes in mean arterial pressure (MAP) and heart rate (HR). Similarly, the RSNA response to intrarenal pelvic adenosine in the presence of TNF-α (500 ng/kg), but not IL-1β, was almost 200% above vehicle but neither MAP nor HR were changed. There was a blunted sympatho-excitatory response to intrapelvic bradykinin in the presence of TNF-α (1000 ng/kg), but not IL-1β, by almost 80% below vehicle, again without effect on either MAP or HR. CONCLUSION The renal sympatho-excitatory response to renal pelvic chemoreceptor stimulation is modulated by exogenous TNF-α and IL-1β. This suggests that inflammatory mediators within the kidney can play a significant role in modulating the renal afferent nerve-mediated sympatho-excitatory response.
Collapse
Affiliation(s)
- Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Sara AlMarabeh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Tom Bolger
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Edward J Johns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Schiffrin EL. Regarding Immune Mechanisms Driving Hypertension in REGARDS. Hypertension 2024; 81:1254-1256. [PMID: 38748768 DOI: 10.1161/hypertensionaha.124.22973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Affiliation(s)
- Ernesto L Schiffrin
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
Liang D, Liu C, Yang M. The association between the urinary chromium and blood pressure: a population-based study. BMC Cardiovasc Disord 2024; 24:248. [PMID: 38730326 PMCID: PMC11088134 DOI: 10.1186/s12872-024-03918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND AND AIM The impact of trace elements and heavy metals on human health has attracted widespread attention. However, the correlation between urinary chromium concentrations and blood pressure remains unclear and inadequately reported, and the aim of this study was to investigate the relationship between urinary chromium concentrations and blood pressure in adults in the United States (US). METHODS We utilized data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 for this study. Multivariate logistic regression and multivariate linear regression were used to explore the association of urinary chromium concentrations with hypertension and blood pressure. Additionally, we also performed subgroup analysis and restricted cubic splines (RCS). RESULTS A total of 2958 participants were enrolled in this study. The overall mean systolic blood pressure and diastolic blood pressure were 123.98 ± 0.60, 72.66 ± 0.57 mmHg, respectively. The prevalence of hypertension was found in 41.31% of the whole participants. In the fully adjusted model, we did not observe a correlation between urinary chromium concentrations and the risk of hypertension and systolic blood pressure. However, we found a negative association between urinary chromium concentrations and diastolic blood pressure. In subgroup analysis, we observed a positive association between urinary chromium and the risk of hypertension among participants older than 60 years of age and those who were Non-Hispanic Black. The interaction term highlighted the influence of age and race on this positive association. We also found a negative association of urinary chromium with diastolic blood pressure in male, participants who were current smokers, overweight, and other races, as well as those without alcohol use and anti-hypertensive drug use. However, the interaction term only revealed the influence of alcohol consumption on the negative association. CONCLUSION Our study suggested that urinary chromium concentrations may show a negative association with diastolic blood pressure and this association was significantly dependent on alcohol consumption. Besides, a positive association between urinary chromium and the risk of hypertension was also found among participants older than 60 years of age and those who were Non-Hispanic Black.
Collapse
Affiliation(s)
- Dan Liang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Mei Yang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China.
| |
Collapse
|
9
|
Zhao J, Lu N, Qu Y, Liu W, Zhong H, Tang N, Li J, Wang L, Xi D, He F. Calcium-sensing receptor-mediated macrophage polarization improves myocardial remodeling in spontaneously hypertensive rats. Exp Biol Med (Maywood) 2024; 249:10112. [PMID: 38715976 PMCID: PMC11075494 DOI: 10.3389/ebm.2024.10112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/13/2023] [Indexed: 06/04/2024] Open
Abstract
Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Lu
- School of Medicine, Tarim University, Alaer, Xinjiang, China
| | - Yuanyuan Qu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei Liu
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hua Zhong
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Na Tang
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jiayi Li
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lamei Wang
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongmei Xi
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Fang He
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Lamb FS, Choi H, Miller MR, Stark RJ. Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels. Hypertension 2024; 81:752-763. [PMID: 38174563 PMCID: PMC10954410 DOI: 10.1161/hypertensionaha.123.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Collapse
Affiliation(s)
- Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
11
|
Caiazzo E, Sharma M, Rezig AOM, Morsy MI, Czesnikiewicz-Guzik M, Ialenti A, Sulicka-Grodzicka J, Pellicori P, Crouch SH, Schutte AE, Bruzzese D, Maffia P, Guzik TJ. Circulating cytokines and risk of developing hypertension: A systematic review and meta-analysis. Pharmacol Res 2024; 200:107050. [PMID: 38159784 DOI: 10.1016/j.phrs.2023.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Immune responses play a significant role in hypertension, though the importance of key inflammatory mediators remains to be defined. We used a systematic literature review and meta-analysis to study the associations between key cytokines and incident hypertension. METHODS We performed a systematic search of Pubmed/Medline, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL), for peer-reviewed studies published up to August 2022. Incident hypertension was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg and/or the use of antihypertensive medications. Random effects meta-analyses were used to calculate pooled hazard ratios (HRs)/risk ratios (RRs) and 95% confidence intervals by cytokine levels (highest vs. lowest quartile). RESULTS Only IL-6 and IL-1β levels have evidence allowing for quantitative evaluation concerning the onset of hypertension. Six studies (10406 participants, 2932 incident cases) examined the association of IL-6 with incident hypertension. The highest versus lowest quartile of circulating IL-6 was associated with a significant HR/RR of hypertension (1.61, 95% CI: 1.00 to 2.60; I2 =87%). After adjusting for potential confounders, including body mass index (BMI), HR/RR was no longer significant (HR/RR: 1.24; 95% CI, 0.96 to 1.61; I2 = 56%). About IL-1β, neither the crude (HR/RR: 1.03; 95% CI, 0.60 to 1.76; n = 2) nor multivariate analysis (HR/RR: 0.97, 95% CI, 0.60 to 1.56; n = 2) suggested a significant association with the risk of developing hypertension. CONCLUSIONS A limited number of studies suggest that higher IL-6, but not IL-1β, might be associated with the development of hypertension.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Malvika Sharma
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Asma O M Rezig
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Moustafa I Morsy
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Periodontology, Prophylaxis and Oral Medicine, Jagiellonian University, Krakow, Poland
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Joanna Sulicka-Grodzicka
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Rheumatology and Immunology, Jagiellonian University Medical College, Kracow, Poland
| | - Pierpaolo Pellicori
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simone H Crouch
- SA MRC/Wits Developmental Pathways for Health Research Unit (DPHRU), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; MRC Research Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa; The George Institute for Global Health, Sydney, Australia; School of Population Health, University of New South Wales, Sydney, Australia
| | - Dario Bruzzese
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy; Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild of European Research-intensive Universities, South Africa.
| | - Tomasz J Guzik
- Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild of European Research-intensive Universities, South Africa; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Department of Internal and Agricultural Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
12
|
Zhang H, Dhalla NS. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int J Mol Sci 2024; 25:1082. [PMID: 38256155 PMCID: PMC10817020 DOI: 10.3390/ijms25021082] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
With cardiovascular disease (CVD) being a primary source of global morbidity and mortality, it is crucial that we understand the molecular pathophysiological mechanisms at play. Recently, numerous pro-inflammatory cytokines have been linked to several different CVDs, which are now often considered an adversely pro-inflammatory state. These cytokines most notably include interleukin-6 (IL-6),tumor necrosis factor (TNF)α, and the interleukin-1 (IL-1) family, amongst others. Not only does inflammation have intricate and complex interactions with pathophysiological processes such as oxidative stress and calcium mishandling, but it also plays a role in the balance between tissue repair and destruction. In this regard, pre-clinical and clinical evidence has clearly demonstrated the involvement and dynamic nature of pro-inflammatory cytokines in many heart conditions; however, the clinical utility of the findings so far remains unclear. Whether these cytokines can serve as markers or risk predictors of disease states or act as potential therapeutic targets, further extensive research is needed to fully understand the complex network of interactions that these molecules encompass in the context of heart disease. This review will highlight the significant advances in our understanding of the contributions of pro-inflammatory cytokines in CVDs, including ischemic heart disease (atherosclerosis, thrombosis, acute myocardial infarction, and ischemia-reperfusion injury), cardiac remodeling (hypertension, cardiac hypertrophy, cardiac fibrosis, cardiac apoptosis, and heart failure), different cardiomyopathies as well as ventricular arrhythmias and atrial fibrillation. In addition, this article is focused on discussing the shortcomings in both pathological and therapeutic aspects of pro-inflammatory cytokines in CVD that still need to be addressed by future studies.
Collapse
Affiliation(s)
- Hannah Zhang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
13
|
Plonsky-Toder M, Magen D, Pollack S. Innate Immunity and CKD: Is There a Significant Association? Cells 2023; 12:2714. [PMID: 38067142 PMCID: PMC10705738 DOI: 10.3390/cells12232714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic kidney disease (CKD) constitutes a worldwide epidemic, affecting approximately 10% of the global population, and imposes significant medical, psychological, and financial burdens on society. Individuals with CKD often face elevated morbidity and mortality rates, mainly due to premature cardiovascular events. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications, including atherosclerosis, cardiovascular disease (CVD), protein-energy wasting, and the aging process. Over the past two decades, a substantial body of evidence has emerged, identifying chronic inflammation as a central element of the uremic phenotype. Chronic inflammation has been shown to play a significant role in the progression of CKD, as well as in the acceleration of CKD-related complications in dialysis patients, including atherosclerosis, CVD, protein-energy wasting, and the aging process. Remarkably, chronic inflammation also impacts patients with CKD who have not yet required renal replacement therapy. While extensive research has been conducted on the involvement of both the adaptive and innate immune systems in the pathogenesis of CKD-related complications, this wealth of data has not yet yielded well-established, effective treatments to counteract this ongoing pathological process. In the following review, we will examine the established components of the innate immune system known to be activated in CKD and provide an overview of the current therapeutic approaches designed to mitigate CKD-related chronic inflammation.
Collapse
Affiliation(s)
- Moran Plonsky-Toder
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| | - Daniella Magen
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| | - Shirley Pollack
- Pediatric Nephrology Institution, Rambam Health Care Campus, Haifa 3109601, Israel
- Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
14
|
Sulicka-Grodzicka J, Szczepaniak P, Jozefczuk E, Urbanski K, Siedlinski M, Niewiara Ł, Guzik B, Filip G, Kapelak B, Wierzbicki K, Korkosz M, Guzik TJ, Mikolajczyk TP. Systemic and local vascular inflammation and arterial reactive oxygen species generation in patients with advanced cardiovascular diseases. Front Cardiovasc Med 2023; 10:1230051. [PMID: 37745103 PMCID: PMC10513373 DOI: 10.3389/fcvm.2023.1230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background Systemic inflammation may cause endothelial activation, mediate local inflammation, and accelerate progression of atherosclerosis. We examined whether the levels of circulating inflammatory cytokines reflect local vascular inflammation and oxidative stress in two types of human arteries. Methods Human internal mammary artery (IMA) was obtained in 69 patients undergoing coronary artery bypass graft (CABG) surgery and left anterior descending (LAD) artery was obtained in 17 patients undergoing heart transplantation (HTx). Plasma levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were measured using ELISA, high-sensitivity C-reactive protein (hs-CRP) was measured using Luminex, and mRNA expression of proinflammatory cytokines in the vascular tissues was assessed. Furthermore, formation of superoxide anion was measured in segments of IMA using 5 uM lucigenin-dependent chemiluminescence. Vascular reactivity was measured using tissue organ bath system. Results TNF-α, IL-6 and IL-1β mRNAs were expressed in all studied IMA and LAD segments. Plasma levels of inflammatory cytokines did not correlate with vascular cytokine mRNA expression neither in IMA nor in LAD. Plasma TNF-α and IL-6 correlated with hs-CRP level in CABG group. Hs-CRP also correlated with TNF-α in HTx group. Neither vascular TNF-α, IL-6 and IL-1β mRNA expression, nor systemic levels of either TNF-α, IL-6 and IL-1β were correlated with superoxide generation in IMAs. Interestingly, circulating IL-1β negatively correlated with maximal relaxation of the internal mammary artery (r = -0.37, p = 0.004). At the same time the mRNA expression of studied inflammatory cytokines were positively associated with each other in both IMA and LAD. The positive correlations were observed between circulating levels of IL-6 and TNF-α in CABG cohort and IL-6 and IL-1β in HTx cohort. Conclusions This study shows that peripheral inflammatory cytokine measurements may not reflect local vascular inflammation or oxidative stress in patients with advanced cardiovascular disease (CVD). Circulating pro-inflammatory cytokines generally correlated positively with each other, similarly their mRNA correlated in the arterial wall, however, these levels were not correlated between the studied compartments.
Collapse
Affiliation(s)
- Joanna Sulicka-Grodzicka
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Karol Urbanski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Łukasz Niewiara
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
| | - Bartłomiej Guzik
- Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
| | - Grzegorz Filip
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Bogusław Kapelak
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J. Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tomasz P. Mikolajczyk
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
16
|
Daou D, Gillette TG, Hill JA. Inflammatory Mechanisms in Heart Failure with Preserved Ejection Fraction. Physiology (Bethesda) 2023; 38:0. [PMID: 37013947 PMCID: PMC10396273 DOI: 10.1152/physiol.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the most common form of heart failure and a significant public health concern for which limited effective therapies exist. Inflammation triggered by comorbidity burden is a critical element of HFpEF pathophysiology. Here, we discuss evidence for comorbidity-driven systemic and myocardial inflammation and the mechanistic role of inflammation in pathological myocardial remodeling in HFpEF.
Collapse
Affiliation(s)
- Daniel Daou
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
17
|
Lambrechts MJ, Pitchford C, Hogan D, Li J, Fogarty C, Rawat S, Leary EV, Cook JL, Choma TJ. Lumbar spine intervertebral disc desiccation is associated with medical comorbidities linked to systemic inflammation. Arch Orthop Trauma Surg 2023; 143:1143-1153. [PMID: 34623492 DOI: 10.1007/s00402-021-04194-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Symptomatic disc degeneration is a common cause of low back pain. Recently, the prevalence of low back pain has swiftly risen leading to increased patient disability and loss of work. The increase in back pain also coincides with a rapid rise in patient medical comorbidities. However, a comprehensive study evaluating a link between patient's medical comorbidities and their influence on lumbar intervertebral disc morphology is lacking in the literature. METHODS Electronic medical records (EMR) were retrospectively reviewed to determine patient-specific medical characteristics. Magnetic resonance imaging (MRI) was evaluated for lumbar spine intervertebral disc desiccation and height loss according to the Griffith-modified Pfirrmann grading system. Bivariate and multivariable linear regression analyses assessed strength of associations between patient characteristics and lumbar spine Pfirrmann grade severity (Pfirrmann grade of the most affected lumbar spine intervertebral disc) and cumulative grades (summed Pfirrmann grades for all lumbar spine intervertebral discs). RESULTS In total, 605 patients (304 diabetics and 301 non-diabetics) met inclusion criteria. Bivariate analysis identified older age, diabetes, American Society of Anesthesiologists (ASA) class, hypertension, chronic obstructive pulmonary disease (COPD), peripheral vascular disease, and hypothyroidism as being strongly associated with an increasing cumulative Pfirrmann grades. Multivariable models similarly found an association linking increased cumulative Pfirrmann grades with diabetes, hypothyroidism, and hypertension, while additionally identifying non-white race, heart disease, and previous lumbar surgery. Chronic pain, depression, and obstructive sleep apnea (OSA) were associated with increased Pfirrmann grades at the most affected level without an increase in cumulative Pfirrmann scores. Glucose control was not associated with increasing severity or cumulative Pfirrmann scores. CONCLUSION These findings provide specific targets for future studies to elucidate key mechanisms by which patient-specific medical characteristics contribute to the development and progression of lumbar spine disc desiccation and height loss. LEVEL OF EVIDENCE III (retrospective cohort).
Collapse
Affiliation(s)
- Mark J Lambrechts
- Department of Orthopaedic Surgery, Orthopaedic Resident, University Physicians, University of Missouri, Columbia, MO, 65212, USA.
| | - Chase Pitchford
- School of Medicine, University of Missouri, Columbia, MO, USA
| | - Daniel Hogan
- School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jinpu Li
- Department of Orthopaedic Surgery, Orthopaedic Resident, University Physicians, University of Missouri, Columbia, MO, 65212, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Casey Fogarty
- Department of Orthopaedic Surgery, Orthopaedic Resident, University Physicians, University of Missouri, Columbia, MO, 65212, USA.,School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sury Rawat
- Department of Orthopaedic Surgery, Orthopaedic Resident, University Physicians, University of Missouri, Columbia, MO, 65212, USA.,School of Medicine, University of Missouri, Columbia, MO, USA
| | - Emily V Leary
- Department of Orthopaedic Surgery, Orthopaedic Resident, University Physicians, University of Missouri, Columbia, MO, 65212, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - James L Cook
- Department of Orthopaedic Surgery, Orthopaedic Resident, University Physicians, University of Missouri, Columbia, MO, 65212, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Theodore J Choma
- Department of Orthopaedic Surgery, Orthopaedic Resident, University Physicians, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
18
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
19
|
Patil P, Doshi G. Deciphering the Role of Pyroptosis Impact on Cardiovascular Diseases. Curr Drug Targets 2023; 24:1166-1183. [PMID: 38164730 DOI: 10.2174/0113894501267496231102114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis has become a noteworthy area of focus in recent years due to its association with inflammatory diseases. Pyroptosis is a type of programmed cell death accompanied by an inflammatory response, and the discovery of the gasdermin family has expanded the study of pyroptosis. The primary characteristics of pyroptosis include cell expansion, membrane penetration, and the ejection of cell contents. In healthy physiology, pyroptosis is an essential part of the host's defence against pathogen infection. Excessive Pyroptosis, however, can lead to unchecked and persistent inflammatory responses, including the emergence of inflammatory diseases. More precisely, gasdermin family members have a role in the creation of membrane holes during pyroptosis, which leads to cell lysis. It is also related to how pro-inflammatory intracellular substances, including IL-1, IL-18, and High mobility group box 1 (HMGB1), are used. Two different signalling pathways, one of which is regulated by caspase-1 and the other by caspase-4/5/11, are the primary causes of pyroptosis. Cardiovascular diseases are often associated with cell death and acute or chronic inflammation, making this area of research particularly relevant. In this review, we first systematically summarize recent findings related to Pyroptosis, exploring its characteristics and the signalling pathway mechanisms, as well as various treatment strategies based on its modulation that has emerged from the studies. Some of these strategies are currently undergoing clinical trials. Additionally, the article elaborates on the scientific evidence indicating the role of Pyroptosis in various cardiovascular diseases. As a whole, this should shed insight into future paths and present innovative ideas for employing Pyroptosis as a strong disease-fighting weapon.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
20
|
Li J, Yuan H, Zhao Z, Li L, Li X, Zhu L, Wang X, Sun P, Xiao Y. The mitigative effect of isorhamnetin against type 2 diabetes via gut microbiota regulation in mice. Front Nutr 2022; 9:1070908. [PMID: 36618710 PMCID: PMC9815710 DOI: 10.3389/fnut.2022.1070908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
In order to demonstrate the effects of isorhamnetin (IH) on the symptoms of type 2 diabetes mellitus (T2DM) and the role of gut microbiota in this process, an T2DM mouse model was established via a high-fat diet and streptozotocin. After 6 weeks of IH intervention and diabetes phenotype monitoring, the mice were dissected. We detected blood indicators and visceral pathology. Contents of the cecum were collected for 16S rRNA sequencing and short chain fatty acid (SCFAs) detection. The results showed that after IH intervention, the body weight of type 2 diabetic mice was gradually stabilized, fasting blood glucose was significantly decreased, and food intake was reduced (P < 0.05). Isorhamnetin significantly increased the level of SCFAs and decreased the levels of blood lipids and inflammatory factors in mice (P < 0.05). 16S rRNA sequencing results showed that Lactobacillus were significantly decreased and Bacteroidales S24-7 group_norank were significantly increased (P < 0.05). Interestingly, gut microbiota was significantly correlated with inflammatory factors, blood lipids, and SCFAs (P < 0.05). Taken together, our data demonstrated that isorhamnetin could improve the diabetic effects in T2DM mice, which might be mediated by gut microbiota.
Collapse
Affiliation(s)
- Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Huimin Yuan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhiqi Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Department of Pharmacology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Clinical Medicine College, Hangzhou Normal University, Hangzhou, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ping Sun
- School of Public Health, Shanxi Medical University, Taiyuan, China,*Correspondence: Ping Sun,
| | - Yinping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Yinping Xiao,
| |
Collapse
|
21
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
22
|
Lu X, Crowley SD. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022; 12:4087-4101. [PMID: 35950656 DOI: 10.1002/cphy.c210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+ CD11b- and CD103- CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin-modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha, interleukin-17A, and interferon-gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms-like tyrosine kinase 3 ligand-dependent classical DCs are required to sustain the full hypertensive response, but C-X3 -C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt-sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC-T cell interactions modulate levels of pro-hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12:1-15, 2022.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
23
|
Lu X, Crowley SD. The Immune System in Hypertension: a Lost Shaker of Salt 2021 Lewis K. Dahl Memorial Lecture. Hypertension 2022; 79:1339-1347. [PMID: 35545942 DOI: 10.1161/hypertensionaha.122.18554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The seminal observations of Dr Lewis Dahl regarding renal mechanisms of hypertension remain highly relevant in light of more recent experiments showing that immune system dysfunction contributes to hypertension pathogenesis. Dr Dahl established that inappropriate salt retention in the kidney plays a central role via Ohm's Law in permitting blood pressure elevation. Nevertheless, inflammatory cytokines whose expression is induced in the early stages of hypertension can alter renal blood flow and sodium transporter expression and activity to foster renal sodium retention. By elaborating these cytokines and reactive oxygen species, myeloid cells and T lymphocytes can connect systemic inflammatory signals to aberrant kidney functions that allow sustained hypertension. By activating T lymphocytes, antigen-presenting cells such as dendritic cells represent an afferent sensing mechanism triggering T cell activation, cytokine generation, and renal salt and water reabsorption. Manipulating these inflammatory signals to attenuate hypertension without causing prohibitive systemic immunosuppression will pose a challenge, but disrupting actions of inflammatory mediators locally within the kidney may offer a path through which to target immune-mediated mechanisms of hypertension while capitalizing on Dr Dahl's key recognition of the kidney's importance in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC
| |
Collapse
|
24
|
Mechanisms underlying the effects of caloric restriction on hypertension. Biochem Pharmacol 2022; 200:115035. [DOI: 10.1016/j.bcp.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
|
25
|
Renoprotective Effect of KLF2 on Glomerular Endothelial Dysfunction in Hypertensive Nephropathy. Cells 2022; 11:cells11050762. [PMID: 35269384 PMCID: PMC8909753 DOI: 10.3390/cells11050762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Kruppel-like factor 2 (KLF2) regulates endothelial cell metabolism; endothelial dysfunction is associated with hypertension and is a predictor of atherosclerosis development and cardiovascular events. Here, we investigated the role of KLF2 in hypertensive nephropathy by regulating KLF2 expression in human primary glomerular endothelial cells (hPGECs) and evaluating this expression in the kidney tissues of a 5/6 nephrectomy mouse model as well as patients with hypertension. Hypertension-mimicking devices and KLF2 siRNA were used to downregulate KLF2 expression, while the expression of KLF2 was upregulated by administering simvastatin. After 4 mmHg of pressure was applied on hPGECs for 48 h, KLF2 mRNA expression decreased, while alpha-smooth muscle actin (αSMA) mRNA expression increased. Apoptosis and fibrosis rates were increased under pressure, and these phenomena were aggravated following KLF2 knockdown, but were alleviated after simvastatin treatment; additionally, these changes were observed in angiotensin II, angiotensin type-1 receptor (AT1R) mRNA, and interleukin-18 (IL-18), but not in angiotensin type-2 receptor mRNA. Reduced expression of KLF2 in glomerular endothelial cells due to hypertension was found in both 5/6 nephrectomy mice and patients with hypertensive nephropathy. Thus, our study demonstrates that the pressure-induced apoptosis and fibrosis of glomerular endothelial cells result from angiotensin II, AT1R activation, and KLF2 inhibition, and are associated with IL-18.
Collapse
|
26
|
Merkely G, Ackermann J, Gomoll AH. The Role of Hypertension in Cartilage Restoration: Increased Failure Rate After Autologous Chondrocyte Implantation but Not After Osteochondral Allograft Transplantation. Cartilage 2021; 13:1306S-1314S. [PMID: 31965812 PMCID: PMC8808780 DOI: 10.1177/1947603519900792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives. The purpose of this study was to examine whether patients with diagnosed hypertension have an increased risk of graft failure following cartilage repair with either autologous chondrocyte implantation (ACI) or osteochondral allograft transplantation (OCA). We hypothesized that hypertension is related to higher ACI and OCA graft failure. Design. Patients who underwent ACI or OCA transplantation between February 2009 and December 2016 were included in this study. Inclusion criteria were (1) at least 2 years' follow-up, (2) available information related to the living habits (smoking and medication status), and (3) available information related to the presence of hypertension, diabetes mellitus, or hyperlipidemia. To identify potential independent risk factors of graft failure, univariate screening was performed and factors with significance at a level of P < 0.1 were entered in multivariate logistic regression models. Results. A total of 368 patients (209 ACI and 159 OCA) were included into our study. In the ACI group, 61 patients' (29.1%) graft failed. Univariate screening identified older age, female gender, defect size, higher prevalence of hypertension, and smoking as a predictor of graft failure. Following, multivariate logistic regression revealed female gender (odds ratio [OR] 1.02, P = 0.048), defect size (OR 1.07, P = 0.035), and hypertension (OR 3.73, P = 0.023) as significant independent risk factors predicting graft failure after ACI. In the OCA group, 29 patients' (18.2%) graft failed and none of the included factors demonstrated to be a potential risk factor for graft failure. Conclusion. Hypertension, defect size, and female gender seem to predict ACI graft failure but not OCA failure.
Collapse
Affiliation(s)
- Gergo Merkely
- Cartilage Repair Center, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA,Department of Traumatology, Semmelweis
University, Budapest, Hungary,Gergo Merkely, Cartilage Repair Center,
Brigham and Women’s Hospital, Harvard Medical School, 850 Boylston Steet # 112,
Chestnut Hill, Boston, MA 02467, USA.
| | - Jakob Ackermann
- Sports Medicine Center, Department of
Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA,Balgrist University Hospital, Zurich,
Switzerland
| | | |
Collapse
|
27
|
Rodríguez-Vera D, Vergara-Castañeda A, Lazcano-Orozco DK, Ramírez-Vélez G, Vivar-Sierra A, Araiza-Macías MJ, Hernández-Contreras JP, Naranjo-Navarro CR, Salazar JR, Loza-Mejía MA, Pinto-Almazán R. Inflammation Parameters Associated with Metabolic Disorders: Relationship Between Diet and Microbiota. Metab Syndr Relat Disord 2021; 19:469-482. [PMID: 34402660 DOI: 10.1089/met.2021.0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolic syndrome (MetS) includes numerous interrelated clinical, anthropometric, biochemical, and metabolic components and has become a public health problem due to its impact on morbimortality. Inflammation is a central mechanism underlying the etiology and clinical manifestations of MetS, contributing to its related pathological outcomes. Dietary patterns have been associated with the promotion of the diversity of microbiota in the digestive tract. Recently, research has focused on the importance of microbiota changes associated with MetS and inflammation. Other studies have been performed to understand the impact of prebiotics, probiotics, and synbiotics as allies on diet, inflammation, and MetS parameters. This review analyses the correlation between metabolic disorders, inflammation parameters, gut microbiota, and how diet has been involved as treatment of MetS and the modulation of inflammation and microbiota.
Collapse
Affiliation(s)
- Diana Rodríguez-Vera
- Molecular Biology in Metabolic and Neurodegenerative Diseases Laboratory, Research Unit, High Specialty Regional Hospital of Ixtapaluca (HRAEI), Ixtapaluca, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Mexico City, Mexico
| | - Arely Vergara-Castañeda
- Basic and Clinical Health Sciences Research Group, Chemical Sciences School, Universidad La Salle-México, México City, Mexico
| | - Diana K Lazcano-Orozco
- Molecular Biology in Metabolic and Neurodegenerative Diseases Laboratory, Research Unit, High Specialty Regional Hospital of Ixtapaluca (HRAEI), Ixtapaluca, México
| | - Gabriela Ramírez-Vélez
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Alonso Vivar-Sierra
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - María José Araiza-Macías
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - José Patricio Hernández-Contreras
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Carlos Rogelio Naranjo-Navarro
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Juan Rodrigo Salazar
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Marco A Loza-Mejía
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Molecular Biology in Metabolic and Neurodegenerative Diseases Laboratory, Research Unit, High Specialty Regional Hospital of Ixtapaluca (HRAEI), Ixtapaluca, México.,Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Mexico City, Mexico
| |
Collapse
|
28
|
Melton E, Qiu H. Interleukin-1β in Multifactorial Hypertension: Inflammation, Vascular Smooth Muscle Cell and Extracellular Matrix Remodeling, and Non-Coding RNA Regulation. Int J Mol Sci 2021; 22:8639. [PMID: 34445357 PMCID: PMC8395428 DOI: 10.3390/ijms22168639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The biological activities of interleukins, a group of circulating cytokines, are linked to the immuno-pathways involved in many diseases. Mounting evidence suggests that interleukin-1β (IL-1β) plays a significant role in the pathogenesis of various types of hypertension. In this review, we summarized recent findings linking IL-1β to systemic arterial hypertension, pulmonary hypertension, and gestational hypertension. We also outlined the new progress in elucidating the potential mechanisms of IL-1β in hypertension, focusing on it's regulation in inflammation, vascular smooth muscle cell function, and extracellular remodeling. In addition, we reviewed recent studies that highlight novel findings examining the function of non-coding RNAs in regulating the activity of IL-1β and its associated proteins in the setting of hypertension. The information collected in this review provides new insights into understanding the pathogenesis of hypertension and could lead to the discovery of new anti-hypertensive therapies to combat this highly prevalent disease.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
29
|
Lambrechts MJ, Maryan K, Whitman W, Yen TC, Li J, Leary EV, Cook JL, Choma TJ. Comorbidities associated with cervical spine degenerative disc disease. J Orthop 2021; 26:98-102. [PMID: 34341630 DOI: 10.1016/j.jor.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022] Open
Abstract
Determining important links between medical comorbidities and cervical spine degenerative disc disease (DDD) will help elucidate pathomechanisms of disc degeneration. Electronic medical records and magnetic resonance imaging were retrospectively reviewed to evaluate 799 patients assessed for cervical spine pathology. Bivariate analysis identified older age, diabetes, ASA class, cancer, COPD, depression, hypertension, hypothyroidism, Medicare status, peripheral vascular disease, history of previous cervical spine surgery, smoking, and lower median household income as having strong associations with increased cumulative grade of cervical spine DDD. This study provides evidence suggesting aging and accumulation of medical comorbidities influence severity of cervical spine DDD.
Collapse
Affiliation(s)
- Mark J Lambrechts
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Kyle Maryan
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Wyatt Whitman
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Tzu-Chuan Yen
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Jinpu Li
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Emily V Leary
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Theodore J Choma
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Madhur MS, Elijovich F, Alexander MR, Pitzer A, Ishimwe J, Van Beusecum JP, Patrick DM, Smart CD, Kleyman TR, Kingery J, Peck RN, Laffer CL, Kirabo A. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ Res 2021; 128:908-933. [PMID: 33793336 PMCID: PMC8023750 DOI: 10.1161/circresaha.121.318052] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.
Collapse
Affiliation(s)
- Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeanne Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Kingery
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit (MITU), Mwanza, Tanzania
| | - Cheryl L. Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| |
Collapse
|
31
|
Abstract
Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Stephanie M. Cicalese
- These authors contributed equally and are considered co-first authors
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Josiane Fernandes da Silva
- These authors contributed equally and are considered co-first authors
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Priviero
- These authors contributed equally and are considered co-first authors
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
32
|
Gao H, Bigalke J, Jiang E, Fan Y, Chen B, Chen QH, Shan Z. TNFα Triggers an Augmented Inflammatory Response in Brain Neurons from Dahl Salt-Sensitive Rats Compared with Normal Sprague Dawley Rats. Cell Mol Neurobiol 2021; 42:1787-1800. [PMID: 33625627 PMCID: PMC8382783 DOI: 10.1007/s10571-021-01056-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/04/2021] [Indexed: 12/23/2022]
Abstract
Tumor Necrosis Factor (TNF)-α is a proinflammatory cytokine (PIC) and has been implicated in a variety of illness including cardiovascular disease. The current study investigated the inflammatory response trigged by TNFα in both cultured brain neurons and the hypothalamic paraventricular nucleus (PVN), a key cardiovascular relevant brain area, of the Sprague Dawley (SD) rats. Our results demonstrated that TNFα treatment induces a dose- and time-dependent increase in mRNA expression of PICs including Interleukin (IL)-1β and Interleukin-6 (IL6); chemokines including C-C Motif Chemokine Ligand 5 (CCL5) and C-C Motif Chemokine Ligand 12 (CCL12), inducible nitric oxide synthase (iNOS), as well as transcription factor NF-kB in cultured brain neurons from neonatal SD rats. Consistent with this finding, immunostaining shows that TNFα treatment increases immunoreactivity of IL1β, CCL5, iNOS and stimulates activation or expression of NF-kB, in both cultured brain neurons and the PVN of adult SD rats. We further compared mRNA expression of the aforementioned genes in basal level as well as in response to TNFα challenge between SD rats and Dahl Salt-sensitive (Dahl-S) rats, an animal model of salt-sensitive hypertension. Dahl-S brain neurons presented higher baseline levels as well as greater response to TNFα challenge in mRNA expression of CCL5, iNOS and IL1β. Furthermore, central administration of TNFα caused significant higher response in CCL12 in the PVN of Dahl-S rats. The increased inflammatory response to TNFα in Dahl-S rats may be indicative of an underlying mechanism for enhanced pressor reactivity to salt intake in the Dahl-S rat model.
Collapse
Affiliation(s)
- Huanjia Gao
- Department of Kinesiology & Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA.,The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Jeremy Bigalke
- Department of Kinesiology & Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA
| | - Enshe Jiang
- Department of Kinesiology & Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA.,Institute of Nursing and Health, Henan University, Henan, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University, Henan, China
| | - Yuanyuan Fan
- Department of Kinesiology & Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA.,School of Life Sciences, Henan University, Henan, China
| | - Bojun Chen
- Department of Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Hui Chen
- Department of Kinesiology & Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA.,Health Research Institute, Michigan Technological University, Houghton, MI, 49931, USA
| | - Zhiying Shan
- Department of Kinesiology & Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA. .,Health Research Institute, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
33
|
De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. Emerging Role of the Inflammasome and Pyroptosis in Hypertension. Int J Mol Sci 2021; 22:ijms22031064. [PMID: 33494430 PMCID: PMC7865380 DOI: 10.3390/ijms22031064] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are components of the innate immune response that have recently emerged as crucial controllers of tissue homeostasis. In particular, the nucleotide-binding domain, leucine-rich-containing (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a complex platform involved in the activation of caspase-1 and the maturation of interleukin (IL)-1β and IL-18, which are mainly released via pyroptosis. Pyroptosis is a caspase-1-dependent type of cell death that is mediated by the cleavage of gasdermin D and the subsequent formation of structurally stable pores in the cell membrane. Through these pores formed by gasdermin proteins cytosolic contents are released into the extracellular space and act as damage-associated molecular patterns, which are pro-inflammatory signals. Inflammation is a main contributor to the development of hypertension and it also is known to stimulate fibrosis and end-organ damage. Patients with essential hypertension and animal models of hypertension exhibit elevated levels of circulating IL-1β. Downregulation of the expression of key components of the NLRP3 inflammasome delays the development of hypertension and pharmacological inhibition of this inflammasome leads to reduced blood pressure in animal models and humans. Although the relationship between pyroptosis and hypertension is not well established yet, pyroptosis has been associated with renal and cardiovascular diseases, instances where high blood pressure is a critical risk factor. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of hypertension and discuss the potential use of approaches targeting this pathway as future anti-hypertensive strategies.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (P.P.); (A.B.-M.)
- Correspondence: (C.D.M.); (S.C.); Tel.: +34-868-885031 (S.C.)
| |
Collapse
|
34
|
Sukhanov S, Higashi Y, Yoshida T, Mummidi S, Aroor AR, Jeffrey Russell J, Bender SB, DeMarco VG, Chandrasekar B. The SGLT2 inhibitor Empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/Caspase-1-dependent IL-1β and IL-18 secretion. Cell Signal 2021; 77:109825. [PMID: 33160017 PMCID: PMC8118186 DOI: 10.1016/j.cellsig.2020.109825] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Chronic inflammation and persistent oxidative stress contribute to the development and progression of vascular proliferative diseases. We hypothesized that the proinflammatory cytokine interleukin (IL)-17A induces oxidative stress and amplifies inflammatory signaling in human aortic smooth muscle cells (SMC) via TRAF3IP2-mediated NLRP3/caspase-1-dependent mitogenic and migratory proinflammatory cytokines IL-1β and IL-18. Further, we hypothesized that these maladaptive changes are prevented by empagliflozin (EMPA), an SGLT2 (Sodium/Glucose Cotransporter 2) inhibitor. Supporting our hypotheses, exposure of cultured SMC to IL-17A promoted proliferation and migration via TRAF3IP2, TRAF3IP2-dependent superoxide and hydrogen peroxide production, NLRP3 expression, caspase-1 activation, and IL-1β and IL-18 secretion. Furthermore, NLRP3 knockdown, caspase-1 inhibition, and pretreatment with IL-1β and IL-18 neutralizing antibodies and IL-18BP, each attenuated IL-17A-induced SMC migration and proliferation. Importantly, SMC express SGLT2, and pre-treatment with EMPA attenuated IL-17A/TRAF3IP2-dependent oxidative stress, NLRP3 expression, caspase-1 activation, IL-1β and IL-18 secretion, and SMC proliferation and migration. Importantly, silencing SGLT2 attenuated EMPA-mediated inhibition of IL-17A-induced cytokine secretion and SMC proliferation and migration. EMPA exerted these beneficial antioxidant, anti-inflammatory, anti-mitogenic and anti-migratory effects under normal glucose conditions and without inducing cell death. These results suggest the therapeutic potential of EMPA in vascular proliferative diseases.
Collapse
Affiliation(s)
- Sergiy Sukhanov
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Yusuke Higashi
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Tadashi Yoshida
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Srinivas Mummidi
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA.
| | - Annayya R Aroor
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Jacob Jeffrey Russell
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA.
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
35
|
Machida T, Endo TH, Oyoshi R, Yutani M, Machida M, Shiga S, Murakami H, Hiraide S, Hirafuji M, Iizuka K. Abnormal Pressure Stress Reduces Interleukin-1β-Induced Cyclooxygenase-2 Expression in Cultured Rat Vascular Smooth Muscle Cells. Biol Pharm Bull 2021; 44:853-860. [PMID: 34078818 DOI: 10.1248/bpb.b21-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated mechanical stress on blood vessels associated with hypertension has a direct effect on the function of vascular endothelial cells and vascular smooth muscle cells (VSMCs). In the present study, we have identified the effect of pulsatile pressure stress on cyclooxygenase-2 (COX-2) expression induced by interleukin (IL)-1β in cultured rat VSMCs. VSMCs were isolated from aortic media of Wistar rats and cultured. Pulsatile pressure applied to VSMCs was repeatedly given between either 80 and 160 mmHg, which simulates systolic hypertension, or 80 and 120 mmHg, which simulates normal blood pressure, at a frequency of 4 cycles per min using our original apparatus. Pressure loading that simulates systolic hypertension reduced IL-1β-induced COX-2 expression. The pressure also inhibited the rapid and transient phosphorylation of extracellular signal-regulated kinase (ERK) induced by IL-1β. IL-1β-induced COX-2 expression was significantly inhibited by a specific conventional protein kinase C (PKC) inhibitor. Pressure loading that simulates systolic hypertension also reduced phorbol myristate 13-acetate (PMA) (a PKC activator)-induced COX-2 expression and the rapid and transient phosphorylation of ERK. Pressure loading that simulates normal blood pressure had no effect on IL-1β- and PMA-induced COX-2 expression. The present study shows that pressure stress between 80 and 160 mmHg, which simulates systolic hypertension reduces IL-1β-induced COX-2 expression by affecting a mechanism involving PKC and ERK signaling pathways. Downregulation of COX-2 expression in VSMCs by abnormal pressure stress may further worsen local vascular injury associated with hypertension.
Collapse
Affiliation(s)
- Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Tomoko Hinse Endo
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Riho Oyoshi
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Mikiko Yutani
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Maiko Machida
- Division of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| | - Saki Shiga
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Hina Murakami
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Sachiko Hiraide
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Masahiko Hirafuji
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Kenji Iizuka
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
36
|
Patrick DM, Van Beusecum JP, Kirabo A. The role of inflammation in hypertension: novel concepts. CURRENT OPINION IN PHYSIOLOGY 2020; 19:92-98. [PMID: 33073072 PMCID: PMC7552986 DOI: 10.1016/j.cophys.2020.09.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypertension remains the most important modifiable risk factor for the development of cardiovascular disease. While it is clear that inflammation plays a pivotal role in the development and maintenance of hypertension, several novel discoveries have been made within the past decade that have advanced the field and have provided new mechanistic insights. First, recent studies have identified a central role of sodium-induced immune cell activation in the pathogenesis of hypertension by altering the gut microbiome and formation of products of lipid oxidation known as isolevuglandins. Second, cytokine elaboration by the inflammasome leading to end-organ dysfunction and immune activation has been found to play a role in the genesis of hypertension. Third, novel techniques have identified previously uncharacterized immune cell populations that may play a functional role in these processes. Finally, the role of inflammation in hypertension may be an important mediator of severe COVID-19 infections. In this review, we discuss these recent advances in the study of inflammation and hypertension and highlight topics for future studies.
Collapse
Affiliation(s)
- David M Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, USA
| | - Justin P Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
37
|
de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome in Times of COVID-19. Front Immunol 2020; 11:583373. [PMID: 33149733 PMCID: PMC7580384 DOI: 10.3389/fimmu.2020.583373] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses (CoVs) are members of the genus Betacoronavirus and the Coronaviridiae family responsible for infections such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and more recently, coronavirus disease-2019 (COVID-19). CoV infections present mainly as respiratory infections that lead to acute respiratory distress syndrome (ARDS). However, CoVs, such as COVID-19, also present as a hyperactivation of the inflammatory response that results in increased production of inflammatory cytokines such as interleukin (IL)-1β and its downstream molecule IL-6. The inflammasome is a multiprotein complex involved in the activation of caspase-1 that leads to the activation of IL-1β in a variety of diseases and infections such as CoV infection and in different tissues such as lungs, brain, intestines and kidneys, all of which have been shown to be affected in COVID-19 patients. Here we review the literature regarding the mechanism of inflammasome activation by CoV infection, the role of the inflammasome in ARDS, ventilator-induced lung injury (VILI), and Disseminated Intravascular Coagulation (DIC) as well as the potential mechanism by which the inflammasome may contribute to the damaging effects of inflammation in the cardiac, renal, digestive, and nervous systems in COVID-19 patients.
Collapse
Affiliation(s)
| | - W Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
38
|
Shokoples BG, Paradis P, Schiffrin EL. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 41:186-199. [PMID: 32998520 PMCID: PMC7752223 DOI: 10.1161/atvbaha.120.315116] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic low-grade inflammation contributes to the development of several diseases, including cardiovascular disease. Adequate strategies to target inflammation in cardiovascular disease are in their infancy and remain an avenue of great interest. The purinergic receptor P2X7 is a ubiquitously expressed receptor that predominately mediates inflammation and cellular death. P2X7 is a ligand-gated cation channel that is activated in response to high concentrations of extracellular ATP, triggering the assembly and activation of the NLRP3 (nuclear oligomerization domain like receptor family pyrin domain containing 3) inflammasome and subsequent release of proinflammatory cytokines IL (interleukin)-1β and IL-18. Increased P2X7 activation and IL-1β and IL-18 concentrations have been implicated in the development of many cardiovascular conditions including hypertension, atherosclerosis, ischemia/reperfusion injury, and heart failure. P2X7 receptor KO (knockout) mice exhibit a significant attenuation of the inflammatory response, which corresponds with reduced disease severity. P2X7 antagonism blunts blood pressure elevation in hypertension and progression of atherosclerosis in animal models. IL-1β and IL-18 inhibition has shown efficacy in clinical trials reducing major adverse cardiac events, including myocardial infarction, and heart failure. With several P2X7 antagonists available with proven safety margins, P2X7 antagonism could represent an untapped potential for therapeutic intervention in cardiovascular disorders.
Collapse
Affiliation(s)
- Brandon G. Shokoples
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ernesto L. Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Liu FY, Fang BQ, Sun LM, Zhang XZ, Liu JL, Yang Y, Zhang WH, Wang XL, Ding YC. The Role of the NOD1/Rip2 Signaling Pathway in Myocardial Remodeling in Spontaneously Hypertensive Rats. Med Sci Monit 2020; 26:e924748. [PMID: 32855380 PMCID: PMC7477929 DOI: 10.12659/msm.924748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic hypertension changes the function and structure of the heart and blood vessels. This study aimed to explore the role of the NOD1/Rip2 (nucleotide-binding oligomerization domain 1/receptor-interacting protein 2) signaling pathway in myocardial remodeling in spontaneously hypertensive rats (SHRs). MATERIAL AND METHODS Blood pressure was measured using a tail cuff. The cardiac structure was observed using echocardiography. Slices of the myocardium were stained with hematoxylin and eosin. The expression of NOD1 and Rip2 was detected using real-time polymerase chain reaction, western blot, and immunohistochemistry. The content and distribution of collagen in the myocardium were observed using Van Gieson staining. Enzyme-linked immunosorbent assay was used to detect the interleukin-1 (IL-1) concentrations. SHRs were treated with the NOD1 agonist iE-DAP and NOD1 inhibitor ML130. RESULTS The NOD1 agonist increased blood pressure in SHRs, and the NOD1 inhibitor decreased blood pressure; the interventricular septum thickness (IVST) and left ventricular posterior wall thickness (LVPWT) of the agonist-treated group were thicker than those of the control group, and the antagonist exerted the opposite effects. The levels of the NOD1 and Rip2 mRNAs and proteins, serum IL-1 concentration, and myocardial collagen volume fraction (CVF%) increased in SHRs in the NOD1 agonist group, but the levels of NOD1 and Rip2, serum IL-1 concentration, and myocardial collagen volume fraction (CVF%) decreased in SHRs in the NOD1 inhibitor group. CONCLUSIONS NOD1/Rip2 expression increased during the progression of myocardial remodeling in SHRs. The NOD1 agonist increased NOD1 expression and promoted myocardial remodeling, while the NOD1 antagonist reduced NOD1/Rip2 expression and protected against myocardial remodeling.
Collapse
Affiliation(s)
- Feng-Yi Liu
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Bing-Qian Fang
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
- Department of Internal Medicine, Shaoxing Central Hospital, Shaoxing, Zhejiang, P.R. China
| | - Ling-Min Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiu-Zhen Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jin-Li Liu
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Yun Yang
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Wen-Hua Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiu-Li Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Yan-Chun Ding
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
40
|
Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, Pasqua T, Penna C, Rocca C, Samaja M, Angelone T. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience 2020; 42:1021-1049. [PMID: 32430627 PMCID: PMC7237344 DOI: 10.1007/s11357-020-00198-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells following binding with the cell surface ACE2 receptors, thereby leading to coronavirus disease 2019 (COVID-19). SARS-CoV-2 causes viral pneumonia with additional extrapulmonary manifestations and major complications, including acute myocardial injury, arrhythmia, and shock mainly in elderly patients. Furthermore, patients with existing cardiovascular comorbidities, such as hypertension and coronary heart disease, have a worse clinical outcome following contraction of the viral illness. A striking feature of COVID-19 pandemics is the high incidence of fatalities in advanced aged patients: this might be due to the prevalence of frailty and cardiovascular disease increase with age due to endothelial dysfunction and loss of endogenous cardioprotective mechanisms. Although experimental evidence on this topic is still at its infancy, the aim of this position paper is to hypothesize and discuss more suggestive cellular and molecular mechanisms whereby SARS-CoV-2 may lead to detrimental consequences to the cardiovascular system. We will focus on aging, cytokine storm, NLRP3/inflammasome, hypoxemia, and air pollution, which is an emerging cardiovascular risk factor associated with rapid urbanization and globalization. We will finally discuss the impact of clinically available CV drugs on the clinical course of COVID-19 patients. Understanding the role played by SARS-CoV2 on the CV system is indeed mandatory to get further insights into COVID-19 pathogenesis and to design a therapeutic strategy of cardio-protection for frail patients.
Collapse
Affiliation(s)
- F Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Gerbino
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - V Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- UOS Anesthesiology and Intensive Care Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - M Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - L M Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - P Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy.
| | - T Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - C Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - C Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - M Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - T Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Inflammatory processes play a critical role in the pathogenesis of hypertension. Innate and adaptive immune responses participate in blood pressure (BP) elevation and end-organ damage. In this review, we discuss recent studies illustrating mechanisms through which immune cells and cytokines regulate BP via their actions in the kidney. RECENT FINDINGS Cells of the innate immune system, including monocytes, neutrophils, and dendritic cells, can all promote BP elevation via effects on kidney function. These innate immune cells can directly impact oxidative stress and cytokine generation in the kidney and/or present antigens to lymphocytes for the engagement of the adaptive immune system. Once activated by dendritic cells, effector memory T cells accumulate in the hypertensive kidney and facilitate renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha (TNF-α), interleukin-17a (IL-17a), and interferon-gamma (IFN-γ), each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. B cells, regulate blood pressure via vasopressin receptor 2 (V2R)-dependent effects on fluid transport in the kidney. SUMMARY Immune cells of the innate and adaptive immune systems drive sodium retention and blood pressure elevation in part by altering renal solute transport.
Collapse
|
42
|
Cabău G, Crișan TO, Klück V, Popp RA, Joosten LAB. Urate-induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol Rev 2020; 294:92-105. [PMID: 31853991 PMCID: PMC7065123 DOI: 10.1111/imr.12833] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trained immunity is a process in which innate immune cells undergo functional reprogramming in response to pathogens or damage-associated molecules leading to an enhanced non-specific immune response to subsequent stimulation. While this capacity to respond more strongly to stimuli is beneficial for host defense, in some circumstances it can lead to maladaptive programming and chronic inflammation. Gout is characterized by persistent low-grade inflammation and is associated with an increased number of comorbidities. Hyperuricemia is the main risk factor for gout and is linked to the development of comorbidities. Several experimental studies have shown that urate can mechanistically alter the inflammatory capacity of myeloid cells, while observational studies have indicated an association of hyperuricemia to a wide spectrum of common adult inflammatory diseases. In this review, we argue that hyperuricemia is a main culprit in the development of the long-term systemic inflammation seen in gout. We revisit existing evidence for urate-induced transcriptional and epigenetic reprogramming that could lead to an altered functional state of circulating monocytes consisting in enhanced responsiveness and maladaptive immune responses. By discussing specific functional adaptations of monocytes and macrophages induced by soluble urate or monosodium urate crystals and their contribution to inflammation in vitro and in vivo, we further enforce that urate is a metabolite that can induce innate immune memory and we discuss future research and possible new therapeutic approaches for gout and its comorbidities.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Tania O. Crișan
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Viola Klück
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Radu A. Popp
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Leo A. B. Joosten
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
43
|
Xiao L, Harrison DG. Inflammation in Hypertension. Can J Cardiol 2020; 36:635-647. [PMID: 32389337 DOI: 10.1016/j.cjca.2020.01.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
For more than 50 years, evidence has accumulated that inflammation contributes to the pathogenesis of hypertension. Immune cells have been observed in vessels and kidneys of hypertensive humans. Biomarkers of inflammation, including high sensitivity C-reactive protein, various cytokines, and products of the complement pathway are elevated in humans with hypertension. Emerging evidence suggests that hypertension is accompanied and indeed initiated by activation of complement, the inflammasome, and by a change in the phenotype of circulating immune cells, particularly myeloid cells. High-dimensional transcriptomic analyses are providing insight into new subclasses of immune cells that are likely injurious in hypertension. These inflammatory events are interdependent and there is ultimately engagement of the adaptive immune system through mechanisms involving oxidative stress, modification of endogenous proteins, and alterations in antigen processing and presentation. These observations suggest new therapeutic opportunities to reduce end organ damage in hypertension might be used and guided by levels of inflammatory biomarkers.
Collapse
Affiliation(s)
- Liang Xiao
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David G Harrison
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Lu X, Rudemiller NP, Privratsky JR, Ren J, Wen Y, Griffiths R, Crowley SD. Classical Dendritic Cells Mediate Hypertension by Promoting Renal Oxidative Stress and Fluid Retention. Hypertension 2019; 75:131-138. [PMID: 31786985 DOI: 10.1161/hypertensionaha.119.13667] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FLT3L (Fms-like tyrosine kinase 3 ligand) stimulates the development of classical dendritic cells (DCs). Here we tested the hypothesis that classical DCs drive blood pressure elevation by promoting renal fluid retention. FLT3L-deficient (FLT3L-/-) mice that lack classical DCs in the kidney had mean arterial pressures similar to wild-types (WTs) at baseline but had blunted hypertensive responses during 4 weeks of chronic Ang II (angiotensin II) infusion. In FLT3L-/- mice, the proportions of effector memory T cells in the kidney were similar to those in WTs at baseline. However, after Ang II infusion, proportions of effector memory T cells were dramatically lower in the FLT3L-/- kidneys versus WTs, indicating that classical DCs augment the renal accumulation of effector T cells after renin-angiotensin system activation. Consistent with their lower blood pressures, the Ang II-infused FLT3L-/- mice had attenuated cardiac hypertrophy and lower renal mRNA expression for pro-hypertensive cytokines. Moreover, the Ang II-infused FLT3L-/- mice had lower urinary excretion of the oxidative stress marker 8-isoprostane and lower renal mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase 2. In an intraperitoneal saline challenge test at day 7 of Ang II, FLT3L-/- mice excreted higher proportions of the injected volume and sodium than WTs. Consistent with this enhanced diuresis, mRNA expressions for the sodium chloride cotransporter and all 3 subunits of the epithelial sodium channel were diminished by >40% in FLT3L-/- kidneys compared with the WTs. Thus, classical FLT3L-dependent DCs promote renal T-cell activation with consequent oxidative stress, fluid retention, and blood pressure elevation.
Collapse
Affiliation(s)
- Xiaohan Lu
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Nathan P Rudemiller
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Jamie R Privratsky
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Jiafa Ren
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Yi Wen
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Robert Griffiths
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.).,Department of Immunology, Duke University School of Medicine, Durham, NC (S.D.C.)
| |
Collapse
|
45
|
Brain perivascular macrophages contribute to the development of hypertension in stroke-prone spontaneously hypertensive rats via sympathetic activation. Hypertens Res 2019; 43:99-110. [PMID: 31541222 DOI: 10.1038/s41440-019-0333-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022]
Abstract
Hypertension is associated with systemic inflammation. The activation of the sympathetic nervous system is critically involved in the pathogenesis of hypertension. Brain perivascular macrophages (PVMs) can be affected by circulating inflammatory cytokines, and the contribution of brain PVMs to sympathoexcitation has been demonstrated in a heart failure model. We thus investigated whether brain PVMs contribute to the development of hypertension through sympathoexcitation. Stroke-prone spontaneously hypertensive rats (SHRSP) developed hypertension over an 8-week period from 4 to 12 weeks of age. The number of brain PVMs and plasma interleukin-1β levels significantly increased at the ages of 8 and 12 weeks in SHRSP compared with normotensive Wistar-Kyoto rats (WKY). To determine the contribution of brain PVMs to blood pressure elevation, we intracerebroventricularly injected liposome-encapsulated clodronate, which eliminates macrophages by inducing apoptosis, into 8-week-old rats; we then assessed its effects in 10-week-old rats. Clodronate treatment attenuated the increase in mean blood pressure in SHRSP but not in WKY. Clodronate treatment reduced the depressor effect of hexamethonium, an index of sympathetic activity; it also reduced neuronal activity in sympathetic regulatory nuclei such as the hypothalamic paraventricular nucleus and rostral ventrolateral medulla and reduced the expression of cyclooxygenase-2 and prostaglandin E2, a downstream pathway in activated macrophages, in SHRSP but not in WKY. Furthermore, clodronate treatment attenuated the increase in blood pressure and renal sympathetic nerve activity in response to an acute intravenous injection of interleukin-1β in WKY. In conclusion, brain PVMs contribute to the development of hypertension via sympathetic activation. PVMs may be activated by increased levels of circulating interleukin-1β.
Collapse
|
46
|
Abstract
Sodium intake is undoubtedly indispensable for normal body functions but can be detrimental when taken in excess of dietary requirements. The consequences of excessive salt intake are becoming increasingly clear as high salt consumption persists across the globe. Salt has long been suspected to promote the development of hypertension and cardiovascular diseases and is now also recognized as a potential modulator of inflammatory and autoimmune diseases through its direct and indirect effects on immune cells. The finding that, in addition to the kidneys, other organs such as the skin regulate sodium levels in the body prompted new hypotheses, including the concept that skin-resident macrophages might participate in tissue sodium regulation through their interactions with lymphatic vessels. Moreover, immune cells such as macrophages and different T cell subsets are found in sodium-rich interstitial microenvironments, where sodium levels modulate their function. Alterations to the intestinal bacterial community induced by excess dietary salt represent another relevant axis whereby salt indirectly modulates immune cell function. Depending on the inflammatory context, sodium might either contribute to protective immunity (for example, by enhancing host responses against cutaneous pathogens) or it might contribute to immune dysregulation and promote the development of cardiovascular and autoimmune diseases.
Collapse
|
47
|
Li J, Cechova S, Wang L, Isakson BE, Le TH, Shi W. Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. Am J Physiol Renal Physiol 2019; 316:F1141-F1150. [PMID: 30943068 PMCID: PMC6620588 DOI: 10.1152/ajprenal.00567.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension affects over 1 billion people worldwide and increases the risk for heart failure, stroke, and chronic kidney disease. Despite high prevalence and devastating impact, its etiology still remains poorly understood for most hypertensive cases. Rcn2, which encodes reticulocalbin 2, is a candidate gene for atherosclerosis that we have previously reported in mice. Here, we identified Rcn2 as a novel regulator of blood pressure in mice. Rcn2 was abundantly expressed in the endothelium and adventitia of normal arteries and was dramatically upregulated in the medial layer of the artery undergoing structural remodeling. Deletion of Rcn2 lowered basal blood pressure and attenuated ANG II-induced hypertension in C57BL/6 mice. siRNA knockdown of Rcn2 dramatically increased production of the nitric oxide (NO) breakdown products nitrite and nitrate by endothelial cells but not by smooth muscle cells. Isolated carotid arteries from Rcn2-/- mice showed an increased sensitivity to the ACh-induced NO-mediated relaxant response compared with arteries of Rcn2+/+ mice. Analysis of a recent meta-data set showed associations of genetic variants near RCN2 with blood pressure in humans. These data suggest that Rcn2 regulates blood pressure and contributes to hypertension through actions on endothelial NO synthase.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| | - Sylvia Cechova
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Lina Wang
- Department of Medicine, University of Virginia , Charlottesville, Virginia
- Department of Pulmonary Medicine, Qingdao University Hospital , Qingdao , China
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
48
|
Zeng C, Wang R, Tan H. Role of Pyroptosis in Cardiovascular Diseases and its Therapeutic Implications. Int J Biol Sci 2019; 15:1345-1357. [PMID: 31337966 PMCID: PMC6643148 DOI: 10.7150/ijbs.33568] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Pyroptotic cell death or pyroptosis is characterized by caspase-1-dependent formation of plasma membrane pores, leading to the release of pro-inflammatory cytokines and cell lysis. Pyroptosis tightly controls the inflammatory responses and coordinates antimicrobial host defenses by releasing pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and consequently expands or sustains inflammation. It is recognized as an important innate immune effector mechanism against intracellular pathogens. The induction of pyroptosis is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome which has been linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Emerging evidence has indicated pyroptosis as an important trigger and endogenous regulator of cardiovascular inflammation. Thus, pyroptosis may play an important role in the pathogenesis of cardiovascular diseases. Design of therapeutic strategies targeting the activation of NLRP3 inflammasome and pyroptosis holds promise for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Renqing Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Department of pathology, the Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 21008, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
49
|
González A, Ravassa S, López B, Moreno MU, Beaumont J, San José G, Querejeta R, Bayés-Genís A, Díez J. Myocardial Remodeling in Hypertension. Hypertension 2019; 72:549-558. [PMID: 30354762 DOI: 10.1161/hypertensionaha.118.11125] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arantxa González
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Susana Ravassa
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Begoña López
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - María U Moreno
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Javier Beaumont
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Gorka San José
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.)
| | - Ramón Querejeta
- Division of Cardiology, Donostia University Hospital, University of the Basque Country, San Sebastián, Spain (R.Q.)
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.).,Heart Failure Unit and Cardiology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain (A.B.-G.).,Department of Medicine, Universitat Autònoma de Barcelona, Spain (A.B.-G.)
| | - Javier Díez
- From the Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., J.D.).,CIBERCV, Carlos III Institute of Health, Madrid, Spain (A.G., S.R., B.L., M.U.M., J.B., G.S.J., A.B.-G., J.D.).,Department of Cardiology and Cardiac Surgery (J.D.).,Department of Nephrology (J.D.), University of Navarra Clinic, University of Navarra, Pamplona, Spain
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Low-grade inflammation drives elevations in blood pressure (BP) and consequent target organ damage in diverse experimental models of hypertension. Here, we discuss recent advances elucidating immune-mediated mechanisms of BP elevation and associated target organ damage. RECENT FINDINGS Inflammatory mediators produced by immune cells or target organs act on the kidney, vasculature, skin, and nervous system to modulate hypertension. For example, cells of the innate immune system, including monocytes, neutrophils, and dendritic cells (DCs), can all promote BP elevation via actions in the vasculature and kidney. Macrophages expressing VEGF-C impact non-osmotic sodium storage in the skin that in turn regulates salt sensitivity. Within the adaptive immune system, activated T cells can secrete tumor necrosis factor-alpha (TNF-α), interleukin-17a (IL-17a), and interferon-gamma (IFN-γ), each of which has augmented BP and renal damage in pre-clinical models. Inversely, deficiency of IL-17a in mice blunts the hypertensive response and attenuates renal sodium retention via a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent pathway. Linking innate and adaptive immune responses, dendritic cells activated by augmented extracellular sodium concentrations stimulate T lymphocytes to produce pro-hypertensive cytokines. By contrast, regulatory T cells (Tregs) can protect against hypertension and associated kidney injury. Rodent studies reveal diverse mechanisms via which cells of the innate and adaptive immune systems drive blood pressure elevation by altering the inflammatory milieu in the kidney, vasculature, and brain.
Collapse
|