1
|
Maffia P, Mauro C, Case A, Kemper C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol 2024; 21:743-761. [PMID: 38600367 DOI: 10.1038/s41569-024-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild, Accra, Ghana
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ayden Case
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Naidoo KK, Altfeld M. The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection. Viruses 2024; 16:1584. [PMID: 39459918 PMCID: PMC11512232 DOI: 10.3390/v16101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural killer (NK) cells are multifaceted innate effector cells that critically influence antiviral immunity, and several protective NK cell features that modulate HIV-1 acquisition and viral control have been described. Chronic HIV-1 infection leads to NK cell impairment that has been associated with metabolic dysregulations. Therapeutic approaches targeting cellular immune metabolism represent potential novel interventions to reverse defective NK cell function in people living with HIV.
Collapse
Affiliation(s)
- Kewreshini K. Naidoo
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20251 Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
3
|
Pavlova NN, Thompson CB. Oncogenic Control of Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041531. [PMID: 38565265 PMCID: PMC11444253 DOI: 10.1101/cshperspect.a041531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A cell committed to proliferation must reshape its metabolism to enable robust yet balanced production of building blocks for the assembly of proteins, lipids, nucleic acids, and other macromolecules, from which two functional daughter cells can be produced. The metabolic remodeling associated with proliferation is orchestrated by a number of pro-proliferative signaling nodes, which include phosphatidylinositol-3 kinase (PI3K), the RAS family of small GTPases, and transcription factor c-myc In metazoan cells, these signals are activated in a paracrine manner via growth factor-mediated activation of receptor (or receptor-associated) tyrosine kinases. Such stimuli are limited in duration and therefore allow the metabolism of target cells to return to the resting state once the proliferation demands have been satisfied. Cancer cells acquire activating genetic alterations within common pro-proliferative signaling nodes. These alterations lock cellular nutrient uptake and utilization into a perpetual progrowth state, leading to the aberrant accumulation and spread of cancer cells.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
4
|
Yamamoto W, Hamada T, Suzuki J, Matsuoka Y, Omori-Miyake M, Kuwahara M, Matsumoto A, Nomura S, Konishi A, Yorozuya T, Yamashita M. Suppressive effect of the anesthetic propofol on the T cell function and T cell-dependent immune responses. Sci Rep 2024; 14:19337. [PMID: 39164311 PMCID: PMC11336218 DOI: 10.1038/s41598-024-69987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
General anesthesia is thought to suppress the immune system and negatively affect postoperative infection and the long-term prognosis of cancer. However, the mechanism underlying immunosuppression induced by general anesthetics remains unclear. In this study, we focused on propofol, which is widely used for sedation under general anesthesia and intensive care and examined its effects on the T cell function and T cell-dependent immune responses. We found that propofol suppressed T cell glycolytic metabolism, differentiation into effector T cells, and cytokine production by effector T cells. CD8 T cells activated and differentiated into effector cells in the presence of propofol in vitro showed reduced antitumor activity. Furthermore, propofol treatment suppressed the increase in the number of antigen-specific CD8 T cells during Listeria infection. In contrast, the administration of propofol improved inflammatory conditions in mouse models of inflammatory diseases, such as OVA-induced allergic airway inflammation, hapten-induced contact dermatitis, and experimental allergic encephalomyelitis. These results suggest that propofol may reduce tumor and infectious immunity by suppressing the T cell function and T cell-dependent immune responses while improving the pathogenesis and prognosis of chronic inflammatory diseases by suppressing inflammation.
Collapse
Affiliation(s)
- Waichi Yamamoto
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Taisuke Hamada
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Junpei Suzuki
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Yuko Matsuoka
- Translational Research Center, Ehime University Hospital, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Miyuki Omori-Miyake
- Department of Infections and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Akira Matsumoto
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Shunsuke Nomura
- Department of Immuno-Drug Chemistry, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Amane Konishi
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
- Translational Research Center, Ehime University Hospital, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
- Department of Infections and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
- Department of Immuno-Drug Chemistry, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan.
| |
Collapse
|
5
|
Simon‐Molas H, Del Prete R, Kabanova A. Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Mol Oncol 2024; 18:1777-1794. [PMID: 38115544 PMCID: PMC11223612 DOI: 10.1002/1878-0261.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Glucose catabolism, one of the essential pathways sustaining cellular bioenergetics, has been widely studied in the context of tumors. Nevertheless, the function of various branches of glucose metabolism that stem from 'classical' glycolysis have only been partially explored. This review focuses on discussing general mechanisms and pathological implications of glycolysis and its branching pathways in the biology of B cell malignancies. We summarize here what is known regarding pentose phosphate, hexosamine, serine biosynthesis, and glycogen synthesis pathways in this group of tumors. Despite most findings have been based on malignant B cells themselves, we also discuss the role of glucose metabolism in the tumor microenvironment, with a focus on T cells. Understanding the contribution of glycolysis branching pathways and how they are hijacked in B cell malignancies will help to dissect the role they have in sustaining the dissemination and proliferation of tumor B cells and regulating immune responses within these tumors. Ultimately, this should lead to deciphering associated vulnerabilities and improve current therapeutic schedules.
Collapse
Affiliation(s)
- Helga Simon‐Molas
- Departments of Experimental Immunology and HematologyAmsterdam UMC location University of AmsterdamThe Netherlands
- Cancer ImmunologyCancer Center AmsterdamThe Netherlands
| | | | - Anna Kabanova
- Fondazione Toscana Life Sciences FoundationSienaItaly
| |
Collapse
|
6
|
Moraly J, Kondo T, Benzaoui M, DuSold J, Talluri S, Pouzolles MC, Chien C, Dardalhon V, Taylor N. Metabolic dialogues: regulators of chimeric antigen receptor T cell function in the tumor microenvironment. Mol Oncol 2024; 18:1695-1718. [PMID: 38922759 PMCID: PMC11223614 DOI: 10.1002/1878-0261.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells have demonstrated remarkable success in the treatment of relapsed/refractory melanoma and hematological malignancies, respectively. These treatments have marked a pivotal shift in cancer management. However, as "living drugs," their effectiveness is dependent on their ability to proliferate and persist in patients. Recent studies indicate that the mechanisms regulating these crucial functions, as well as the T cell's differentiation state, are conditioned by metabolic shifts and the distinct utilization of metabolic pathways. These metabolic shifts, conditioned by nutrient availability as well as cell surface expression of metabolite transporters, are coupled to signaling pathways and the epigenetic landscape of the cell, modulating transcriptional, translational, and post-translational profiles. In this review, we discuss the processes underlying the metabolic remodeling of activated T cells, the impact of a tumor metabolic environment on T cell function, and potential metabolic-based strategies to enhance T cell immunotherapy.
Collapse
Affiliation(s)
- Josquin Moraly
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- Université Sorbonne Paris CitéParisFrance
| | - Taisuke Kondo
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Mehdi Benzaoui
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, CNRSMontpellierFrance
| | - Justyn DuSold
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Sohan Talluri
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Marie C. Pouzolles
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Christopher Chien
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Valérie Dardalhon
- Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, CNRSMontpellierFrance
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
- Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, CNRSMontpellierFrance
| |
Collapse
|
7
|
Wang DH, Ye LH, Ning JY, Zhang XK, Lv TT, Li ZJ, Wang ZY. Single-cell sequencing and multiple machine learning algorithms to identify key T-cell differentiation gene for progression of NAFLD cirrhosis to hepatocellular carcinoma. Front Mol Biosci 2024; 11:1301099. [PMID: 38993839 PMCID: PMC11237165 DOI: 10.3389/fmolb.2024.1301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC), which is closely associated with chronicinflammation, is the most common liver cancer and primarily involves dysregulated immune responses in the precancerous microenvironment. Currently, most studies have been limited to HCC incidence. However, the immunopathogenic mechanisms underlying precancerous lesions remain unknown. Methods: We obtained single-cell sequencing data (GSE136103) from two nonalcoholic fatty liver disease (NAFLD) cirrhosis samples and five healthy samples. Using pseudo-time analysis, we systematically identified five different T-cell differentiation states. Ten machine-learning algorithms were used in 81 combinations to integrate the frameworks and establish the best T-cell differentiation-related prognostic signature in a multi-cohort bulk transcriptome analysis. Results: LDHA was considered a core gene, and the results were validated using multiple external datasets. In addition, we validated LDHA expression using immunohistochemistry and flow cytometry. Conclusion: LDHA is a crucial marker gene in T cells for the progression of NAFLD cirrhosis to HCC.
Collapse
Affiliation(s)
- De-hua Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-hong Ye
- Department of Pathology, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing-yuan Ning
- Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-kuan Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ting-ting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zi-jie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhi-yu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol 2024; 261:109939. [PMID: 38382658 DOI: 10.1016/j.clim.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Marlene Marte Furment
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America.
| |
Collapse
|
9
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Da J, Di X, Xie Y, Li J, Zhang L, Liu Y. Recent advances in nanomedicine for metabolism-targeted cancer therapy. Chem Commun (Camb) 2024; 60:2442-2461. [PMID: 38321983 DOI: 10.1039/d3cc05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metabolism denotes the sum of biochemical reactions that maintain cellular function. Different from most normal differentiated cells, cancer cells adopt altered metabolic pathways to support malignant properties. Typically, almost all cancer cells need a large number of proteins, lipids, nucleotides, and energy in the form of ATP to support rapid division. Therefore, targeting tumour metabolism has been suggested as a generic and effective therapy strategy. With the rapid development of nanotechnology, nanomedicine promises to have a revolutionary impact on clinical cancer therapy due to many merits such as targeting, improved bioavailability, controllable drug release, and potentially personalized treatment compared to conventional drugs. This review comprehensively elucidates recent advances of nanomedicine in targeting important metabolites such as glucose, glutamine, lactate, cholesterol, and nucleotide for effective cancer therapy. Furthermore, the challenges and future development in this area are also discussed.
Collapse
Affiliation(s)
- Jun Da
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - XinJia Di
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YuQi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - JiLi Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - LiLi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YanLan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
11
|
Chang L, Li G, Jiang S, Li J, Yang J, Shah K, Zhou L, Song H, Deng L, Luo Z, Guo Y, Yan Y. 1-Pyrroline-5-carboxylate inhibit T cell glycolysis in prostate cancer microenvironment by SHP1/PKM2/LDHB axis. Cell Commun Signal 2024; 22:101. [PMID: 38326896 PMCID: PMC10851605 DOI: 10.1186/s12964-024-01493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Our previous studies demonstrated that 1-Pyrroline-5-carboxylate (P5C) released by prostate cancer cells inhibits T cell proliferation and function by increasing SHP1 expression. We designed this study to further explore the influence of P5C on T cell metabolism, and produced an antibody for targeting P5C to restore the functions of T cells. METHOD We co-immunoprecipated SHP1 from T cells and analyzed the proteins that were bound to it using liquid chromatography mass spectrometry (LC/MS-MS). The influence of P5C on T cells metabolism was also detected by LC/MS-MS. Seahorse XF96 analyzer was further used to identify the effect of P5C on T cells glycolysis. We subsequently designed and produced an antibody for targeting P5C by monoclonal technique and verified its effectiveness to restore the function of T cells in vitro and in vivo. RESULT PKM2 and LDHB bind SHP1 in T cells, and P5C could increase the levels of p-PKM2 while having no effect on the levels of PKM2 and LDHB. We further found that P5C influences T cell energy metabolism and carbohydrate metabolism. P5C also inhibits the activity of PKM2 and decreases the content of intracellular lactic acid while increasing the activity of LDH. Using seahorse XF96 analyzer, we confirmed that P5C remarkably inhibits glycolysis in T cells. We produced an antibody for targeting P5C by monoclonal technique and verified that the antibody could oppose the influence of P5C to restore the process of glycolysis and function in T cells. Meanwhile, the antibody also inhibits the growth of prostate tumors in an animal model. CONCLUSION Our study revealed that P5C inhibits the process of glycolysis in T cells by targeting SHP1/PKM2/LDHB complexes. Moreover, it is important that the antibody for targeting P5C could restore the function of T cells and inhibit the growth of prostate tumors.
Collapse
Affiliation(s)
- Lei Chang
- Department of Urology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Guohao Li
- Department of Urology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Shan Jiang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jin Yang
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Le Zhou
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hanrui Song
- First Clinical College of College of Medicine and Nursing, Hubei University of Medicine, Shiyan, China
| | - Leyuan Deng
- First Clinical College of College of Medicine and Nursing, Hubei University of Medicine, Shiyan, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yonglian Guo
- Department of Urology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yutao Yan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
12
|
Bacigalupa ZA, Landis MD, Rathmell JC. Nutrient inputs and social metabolic control of T cell fate. Cell Metab 2024; 36:10-20. [PMID: 38118440 PMCID: PMC10872404 DOI: 10.1016/j.cmet.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Cells in multicellular organisms experience diverse neighbors, signals, and evolving physical environments that drive functional and metabolic demands. To maintain proper development and homeostasis while avoiding inappropriate cell proliferation or death, individual cells interact with their neighbors via "social" cues to share and partition available nutrients. Metabolic signals also contribute to cell fate by providing biochemical links between cell-extrinsic signals and available resources. In addition to metabolic checkpoints that sense nutrients and directly supply molecular intermediates for biosynthetic pathways, many metabolites directly signal or provide the basis for post-translational modifications of target proteins and chromatin. In this review, we survey the landscape of T cell nutrient sensing and metabolic signaling that supports proper immunity while avoiding immunodeficiency or autoimmunity. The integration of cell-extrinsic microenvironmental cues with cell-intrinsic metabolic signaling provides a social metabolic control model to integrate cell signaling, metabolism, and fate.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madelyn D Landis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
14
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
15
|
Flati I, Di Vito Nolfi M, Dall’Aglio F, Vecchiotti D, Verzella D, Alesse E, Capece D, Zazzeroni F. Molecular Mechanisms Underpinning Immunometabolic Reprogramming: How the Wind Changes during Cancer Progression. Genes (Basel) 2023; 14:1953. [PMID: 37895302 PMCID: PMC10606647 DOI: 10.3390/genes14101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolism and the immunological state are intimately intertwined, as defense responses are bioenergetically expensive. Metabolic homeostasis is a key requirement for the proper function of immune cell subsets, and the perturbation of the immune-metabolic balance is a recurrent event in many human diseases, including cancer, due to nutrient fluctuation, hypoxia and additional metabolic changes occurring in the tumor microenvironment (TME). Although much remains to be understood in the field of immunometabolism, here, we report the current knowledge on both physiological and cancer-associated metabolic profiles of immune cells, and the main molecular circuits involved in their regulation, highlighting similarities and differences, and emphasizing immune metabolic liabilities that could be exploited in cancer therapy to overcome immune resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (I.F.); (M.D.V.N.); (F.D.); (D.V.); (D.V.); (E.A.); (F.Z.)
| | | |
Collapse
|
16
|
Clain JA, Boutrais S, Dewatines J, Racine G, Rabezanahary H, Droit A, Zghidi-Abouzid O, Estaquier J. Lipid metabolic reprogramming of hepatic CD4 + T cells during SIV infection. Microbiol Spectr 2023; 11:e0168723. [PMID: 37656815 PMCID: PMC10581067 DOI: 10.1128/spectrum.01687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/24/2023] [Indexed: 09/03/2023] Open
Abstract
While liver inflammation is associated with AIDS, little is known so far about hepatic CD4+ T cells. By using the simian immunodeficiency virus (SIV)-infected rhesus macaque (RM) model, we aimed to characterize CD4+ T cells. The phenotype of CD4+ T cells was assessed by flow cytometry from uninfected (n = 3) and infected RMs, with either SIVmac251 (n = 6) or SHIVSF162p3 (n = 6). After cell sorting of hepatic CD4+ T cells, viral DNA quantification and RNA sequencing were performed.Thus, we demonstrated that liver CD4+ T cells strongly expressed the SIV coreceptor, CCR5. We showed that viremia was negatively correlated with the percentage of hepatic effector memory CD4+ T cells. Consistent with viral sensing, inflammatory and interferon gene transcripts were increased. We also highlighted the presence of harmful CD4+ T cells expressing GZMA and members of TGFB that could contribute to fuel inflammation and fibrosis. Whereas RNA sequencing demonstrated activated CD4+ T cells displaying higher levels of mitoribosome and membrane lipid synthesis transcripts, few genes were related to glycolysis and oxidative phosphorylation, which are essential to sustain activated T cells. Furthermore, we observed lower levels of mitochondrial DNA and higher levels of genes associated with damaged organelles (reticulophagy and mitophagy). Altogether, our data revealed that activated hepatic CD4+ T cells are reprogrammed to lipid metabolism. Thus, strategies aiming to reprogram T cell metabolism with effector function could be of interest for controlling viral infection and preventing liver disorders.IMPORTANCEHuman immunodeficiency virus (HIV) infection may cause liver diseases, associated with inflammation and tissue injury, contributing to comorbidity in people living with HIV. Paradoxically, the contribution of hepatic CD4+ T cells remains largely underestimated. Herein, we used the model of simian immunodeficiency virus (SIV)-infected rhesus macaques to access liver tissue. Our work demonstrates that hepatic CD4+ T cells express CCR5, the main viral coreceptor, and are infected. Viral infection is associated with the presence of inflamed and activated hepatic CD4+ T cells expressing cytotoxic molecules. Furthermore, hepatic CD4+ T cells are reprogrammed toward lipid metabolism after SIV infection. Altogether, our findings shed new light on hepatic CD4+ T cell profile that could contribute to liver injury following viral infection.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Steven Boutrais
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Juliette Dewatines
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Gina Racine
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | | | - Arnaud Droit
- Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
| | - Ouafa Zghidi-Abouzid
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Jérôme Estaquier
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- INSERM U1124, Université Paris, Paris, France
| |
Collapse
|
17
|
Li W, Pan X, Chen L, Cui H, Mo S, Pan Y, Shen Y, Shi M, Wu J, Luo F, Liu J, Li N. Cell metabolism-based optimization strategy of CAR-T cell function in cancer therapy. Front Immunol 2023; 14:1186383. [PMID: 37342333 PMCID: PMC10278966 DOI: 10.3389/fimmu.2023.1186383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR)-modified T cells has revolutionized the field of immune-oncology, showing remarkable efficacy against hematological malignancies. However, its success in solid tumors is limited by factors such as easy recurrence and poor efficacy. The effector function and persistence of CAR-T cells are critical to the success of therapy and are modulated by metabolic and nutrient-sensing mechanisms. Moreover, the immunosuppressive tumor microenvironment (TME), characterized by acidity, hypoxia, nutrient depletion, and metabolite accumulation caused by the high metabolic demands of tumor cells, can lead to T cell "exhaustion" and compromise the efficacy of CAR-T cells. In this review, we outline the metabolic characteristics of T cells at different stages of differentiation and summarize how these metabolic programs may be disrupted in the TME. We also discuss potential metabolic approaches to improve the efficacy and persistence of CAR-T cells, providing a new strategy for the clinical application of CAR-T cell therapy.
Collapse
Affiliation(s)
- Wenshuai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoshu Cui
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuru Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
18
|
Abstract
The uptake and metabolism of nutrients support fundamental cellular process from bioenergetics to biomass production and cell fate regulation. While many studies of cell metabolism focus on cancer cells, the principles of metabolism elucidated in cancer cells apply to a wide range of mammalian cells. The goal of this review is to discuss how the field of cancer metabolism provides a framework for revealing principles of cell metabolism and for dissecting the metabolic networks that allow cells to meet their specific demands. Understanding context-specific metabolic preferences and liabilities will unlock new approaches to target cancer cells to improve patient care.
Collapse
Affiliation(s)
- Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Fehrenbach DJ, Nguyen B, Alexander MR, Madhur MS. Modulating T Cell Phenotype and Function to Treat Hypertension. KIDNEY360 2023; 4:e534-e543. [PMID: 36951464 PMCID: PMC10278787 DOI: 10.34067/kid.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/25/2023] [Indexed: 03/24/2023]
Abstract
Hypertension is the leading modifiable risk factor of worldwide morbidity and mortality because of its effects on cardiovascular and renal end-organ damage. Unfortunately, BP control is not sufficient to fully reduce the risks of hypertension, underscoring the need for novel therapies that address end-organ damage in hypertension. Over the past several decades, the link between immune activation and hypertension has been well established, but there are still no therapies for hypertension that specifically target the immune system. In this review, we describe the critical role played by T cells in hypertension and hypertensive end-organ damage and outline potential therapeutic targets to modulate T-cell phenotype and function in hypertension without causing global immunosuppression.
Collapse
Affiliation(s)
- Daniel J. Fehrenbach
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Bianca Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| |
Collapse
|
20
|
This S, Rogers D, Mallet Gauthier È, Mandl JN, Melichar HJ. What's self got to do with it: Sources of heterogeneity among naive T cells. Semin Immunol 2023; 65:101702. [PMID: 36463711 DOI: 10.1016/j.smim.2022.101702] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.
Collapse
Affiliation(s)
- Sébastien This
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Dakota Rogers
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Ève Mallet Gauthier
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada.
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
21
|
Heuser C, Renner K, Kreutz M, Gattinoni L. Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Semin Cancer Biol 2023; 88:32-45. [PMID: 36496155 DOI: 10.1016/j.semcancer.2022.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors and adoptive T cell therapies have been valuable additions to the toolbox in the fight against cancer. These treatments have profoundly increased the number of patients with a realistic perspective toward a return to a cancer-free life. Yet, in a number of patients and tumor entities, cancer immunotherapies have been ineffective so far. In solid tumors, immune exclusion and the immunosuppressive tumor microenvironment represent substantial roadblocks to successful therapeutic outcomes. A major contributing factor to the depressed anti-tumor activity of immune cells in tumors is the harsh metabolic environment. Hypoxia, nutrient competition with tumor and stromal cells, and accumulating noxious waste products, including lactic acid, pose massive constraints to anti-tumor immune cells. Numerous strategies are being developed to exploit the metabolic vulnerabilities of tumor cells in the hope that these would also alleviate metabolism-inflicted immune suppression. While promising in principle, especially in combination with immunotherapies, these strategies need to be scrutinized for their effect on tumor-fighting immune cells, which share some of their key metabolic properties with tumor cells. Here, we provide an overview of strategies that seek to tackle lactate metabolism in tumor or immune cells to unleash anti-tumor immune responses, thereby opening therapeutic options for patients whose tumors are currently not treatable.
Collapse
Affiliation(s)
- Christoph Heuser
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany.
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Clinical Cooperation Group Immunometabolomics, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany; University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
22
|
Hong HS, Mbah NE, Shan M, Loesel K, Lin L, Sajjakulnukit P, Correa LO, Andren A, Lin J, Hayashi A, Magnuson B, Chen J, Li Z, Xie Y, Zhang L, Goldstein DR, Carty SA, Lei YL, Opipari AW, Argüello RJ, Kryczek I, Kamada N, Zou W, Franchi L, Lyssiotis CA. OXPHOS promotes apoptotic resistance and cellular persistence in T H17 cells in the periphery and tumor microenvironment. Sci Immunol 2022; 7:eabm8182. [PMID: 36399539 PMCID: PMC9853437 DOI: 10.1126/sciimmunol.abm8182] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell proliferation and cytokine production are bioenergetically and biosynthetically costly. The inability to meet these metabolic demands results in altered differentiation, accompanied by impaired effector function, and attrition of the immune response. Interleukin-17-producing CD4 T cells (TH17s) are mediators of host defense, autoimmunity, and antitumor immunity in the setting of adoptive T cell therapy. TH17s are long-lived cells that require mitochondrial oxidative phosphorylation (OXPHOS) for effector function in vivo. Considering that TH17s polarized under standardized culture conditions are predominately glycolytic, little is known about how OXPHOS regulates TH17 processes, such as their ability to persist and thus contribute to protracted immune responses. Here, we modified standardized culture medium and identified a culture system that reliably induces OXPHOS dependence in TH17s. We found that TH17s cultured under OXPHOS conditions metabolically resembled their in vivo counterparts, whereas glycolytic cultures were dissimilar. OXPHOS TH17s exhibited increased mitochondrial fitness, glutamine anaplerosis, and an antiapoptotic phenotype marked by high BCL-XL and low BIM. Limited mitophagy, mediated by mitochondrial fusion regulator OPA-1, was critical to apoptotic resistance in OXPHOS TH17s. By contrast, glycolytic TH17s exhibited more mitophagy and an imbalance in BCL-XL to BIM, thereby priming them for apoptosis. In addition, through adoptive transfer experiments, we demonstrated that OXPHOS protected TH17s from apoptosis while enhancing their persistence in the periphery and tumor microenvironment in a murine model of melanoma. Together, our work demonstrates how metabolism regulates TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases.
Collapse
Affiliation(s)
- Hanna S. Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nneka E. Mbah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mengrou Shan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kristen Loesel
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lin Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Luis O. Correa
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Lin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Atsushi Hayashi
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Judy Chen
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhaoheng Li
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel R. Goldstein
- Institute of Gerontology; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shannon A. Carty
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yu Leo Lei
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Anthony W. Opipari
- Department of Obstetrics and Gynecology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Rafael J. Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Ilona Kryczek
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Nobuhiko Kamada
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiping Zou
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Luigi Franchi
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Costas A. Lyssiotis
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
23
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
24
|
Singh B, Kumar Rai A. Loss of immune regulation in aged T-cells: A metabolic review to show lack of ability to control responses within the self. Hum Immunol 2022; 83:808-817. [DOI: 10.1016/j.humimm.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
|
25
|
Xiang K, He Z, Fu J, Wang G, Li H, Zhang Y, Zhang S, Chen L. Microplastics exposure as an emerging threat to ancient lineage: A contaminant of concern for abnormal bending of amphioxus via neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129454. [PMID: 35803186 DOI: 10.1016/j.jhazmat.2022.129454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Growing inputs of microplastics into marine sediment have increased significantly the needs for assessment of their potential risks to the marine benthos. A knowledge gap remains with regard to the effect of microplastics on benthos, such as cephalochordates. By employing amphioxus as a model benthic chordate, here we show that exposure to microplastics for 96 h at doses of 1 mg/L and 100 mg/L results in evident accumulation of the polyethylene microplastics. The accumulated microplastics are as much as 0.027% of body weight upon high-dose exposure, causing an abnormal body-bending phenotype that limits the locomotion capability of amphioxus. Mechanistic insight reveals that microplastics can bring about histological damages in gill, intestine and hepatic cecum; In-depth assay of relevant biomarkers including superoxide dismutase, catalase, glutathione, pyruvic acid and total cholesterol indicates the occurrence of oxidative damage and metabolic disorder; Further, microplastics exposure depresses the activity of acetylcholinesterase while allowing the level of acetylcholine to rise in muscle, suggesting the emergence of neurotoxicity. These consequences eventually contribute to the muscle dysfunction of amphioxus. This study rationalizes the abnormal response of the vulnerable notochord to microplastics, signifying the dilemma suffered by the ancient lineage under the emerging threat. Given the enrichment of microplastics through marine food chains, this study also raises significant concerns on the impact of microplastics to other marine organisms, and eventually human beings.
Collapse
Affiliation(s)
- Keyu Xiang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Zhiyu He
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jianxin Fu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Guoqing Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yu Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
26
|
Abdalkareem Jasim S, Jade Catalan Opulencia M, Alexis Ramírez-Coronel A, Kamal Abdelbasset W, Hasan Abed M, Markov A, Raheem Lateef Al-Awsi G, Azamatovich Shamsiev J, Thaeer Hammid A, Nader Shalaby M, Karampoor S, Mirzaei R. The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. Int Immunopharmacol 2022; 110:108983. [PMID: 35750016 DOI: 10.1016/j.intimp.2022.108983] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
The accumulating evidence revealed that microbiota plays a significant function in training, function, and the induction of host immunity. Once this interaction (immune system-microbiota) works correctly, it enables the production of protective responses against pathogens and keeps the regulatory pathways essential for maintaining tolerance to innocent antigens. This concept of immunity and metabolic activity redefines the realm of immunometabolism, paving the way for innovative therapeutic interventions to modulate immune cells through immune metabolic alterations. A body of evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) such as butyrate, acetate, and propionate, play a key role in immune balance. SCFAs act on many cell types to regulate various vital biological processes, including host metabolism, intestinal function, and the immune system. Such SCFAs generated by gut bacteria also impact immunity, cellular function, and immune cell fate. This is a new concept of immune metabolism, and better knowledge about how lifestyle affects intestinal immunometabolism is crucial for preventing and treating disease. In this review article, we explicitly focus on the function of SCFAs in the metabolism of immune cells, especially macrophages, neutrophils, dendritic cells (DCs), B cells, T (Th) helper cells, and cytotoxic T cells (CTLs).
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt.
| | - Murtadha Hasan Abed
- Department of Medical Laboratory, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation; Tyumen Industrial University, Tyumen, Russian Federation.
| | | | - Jamshid Azamatovich Shamsiev
- Department of Pediatric Surgery, Anesthesiology and Intensive Care, Samarkand State Medical Institute, Samarkand, Uzbekistan; Research scholar, Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan.
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq.
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
27
|
Seo H, Kramer AC, McLendon BA, Cain JW, Burghardt RC, Wu G, Bazer FW, Johnson GA. Elongating porcine conceptuses can utilize Glutaminolysis as an Anaplerotic pathway to maintain the TCA cycle. Biol Reprod 2022; 107:823-833. [PMID: 35552608 DOI: 10.1093/biolre/ioac097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
During the peri-implantation period of pregnancy, the trophectoderm of pig conceptuses utilize glucose via multiple biosynthetic pathways to support elongation and implantation, resulting in limited availability of pyruvate for metabolism via the TCA cycle. Therefore, we hypothesized that porcine trophectoderm cells replenish TCA cycle intermediates via a process known as anaplerosis, and that trophectoderm cells convert glutamine to α-ketoglutarate, a TCA cycle intermediate, through glutaminolysis. Results demonstrate: 1) that expression of glutaminase (GLS) increases in trophectoderm and glutamine synthetase (GLUL) increases in extra-embryonic endoderm of conceptuses, suggesting that extra-embryonic endoderm synthesizes glutamine, and trophectoderm converts glutamine into glutamate; and 2) that expression of glutamate dehydrogenase 1 (GLUD1) decreases and expression of aminotransferases including PSAT1 increase in trophectoderm, suggesting that glutaminolysis occurs in the trophectoderm through the GLS-aminotransferase pathway during the peri-implantation period. We then incubated porcine conceptuses with 13C-glutamine in the presence or absence of glucose in the culture media, and then monitored the movement of glutamine-derived carbons through metabolic intermediates within glutaminolysis and the TCA cycle. The accumulation of 13C-labeled carbons significantly increased in glutamate, α-ketoglutarate, succinate, malate, citrate, and aspartate in the absence of glucose in the media. Collectively, our results indicate that during the peri-implantation period of pregnancy, the proliferating and migrating trophectoderm cells of elongating porcine conceptuses utilize glutamine via glutaminolysis as an alternate carbon source to maintain TCA cycle flux.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Joe W Cain
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, and Department of Animal Science, Texas A&M University, College Station, TX 77843
| |
Collapse
|
28
|
Dabi YT, Andualem H, Degechisa ST, Gizaw ST. Targeting Metabolic Reprogramming of T-Cells for Enhanced Anti-Tumor Response. Biologics 2022; 16:35-45. [PMID: 35592358 PMCID: PMC9113448 DOI: 10.2147/btt.s365490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
Abstract
Cancer immunotherapy is an effective treatment option against cancer. One of the approaches of cancer immunotherapy is the modification of T cell-based anti-tumor immune responses. T-cells, a type of adaptive immune response cells responsible for cell-mediated immunity, have long been recognized as key regulators of immune-mediated anti-tumor immunity. T-cell activities have been reported to be suppressed or enhanced by changes in cell metabolism. Moreover, metabolic reprogramming during activation of T cells is required for the development of distinct differentiation profiles of these cells, which may allow the development of long-term cell-mediated anti-tumor immunity. However, T cells have been shown to undergo metabolic exhaustion in tumor microenvironment (TME) as it poses several obstacles to their function. Applications of several mechanistic solutions to improve the efficacy of T cell-based therapies including chimeric antigen receptor (CAR) T cell therapy are yet to be determined. Modifying the metabolic properties of these cells and employing them in cancer immunotherapy is a potential strategy for improving their anti-tumor activity and therapeutic efficacy. To give an insight, in this review paper, we endeavoured to cover metabolic reprogramming in cancer and T cells, signalling mechanisms involved in immuno-metabolic regulation, the effects of the TME on T cell metabolic fitness, and targeting metabolic reprogramming of T cells for an enhanced anti-tumor response.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Tel +251911364465, Email
| | - Henok Andualem
- Immunology and Molecular Biology, Department of Medical Laboratory Science, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
29
|
Chen S, Bin Abdul Rahim AA, Wang WW, Cheong R, Prabhu AV, Tan JZY, Naing MW, Toh HC, Liu D. In-situ scalable manufacturing of Epstein-Barr virus-specific T-cells using bioreactor with an expandable culture area (BECA). Sci Rep 2022; 12:7045. [PMID: 35487951 PMCID: PMC9054749 DOI: 10.1038/s41598-022-11015-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
The ex-vivo expansion of antigen-specific T-cells for adoptive T-cell immunotherapy requires active interaction between T-cells and antigen-presenting cells therefore culture density and environment become important variables to control. Maintenance of culture density in a static environment is traditionally performed by the expansion of the culture area through splitting of culture from a single vessel into multiple vessels-a highly laborious process. This study aims to validate the use and efficacy of a novel bioreactor, bioreactor with an expandable culture area-dual chamber (BECA-D), that was designed and developed with a cell chamber with expandable culture area (12-108 cm2) and a separate media chamber to allow for in-situ scaling of culture with maintenance of optimum culture density and improved nutrient and gas exchange while minimizing disturbance to the culture. The performance of BECA-D in the culture of Epstein-Barr virus-specific T-cells (EBVSTs) was compared to the 24-well plate. BECA-D had 0.9-9.7 times the average culture yield of the 24-well plates across 5 donor sets. BECA-D was able to maintain the culture environment with relatively stable glucose and lactate levels as the culture expanded. This study concludes that BECA-D can support the culture of ex-vivo EBVSTs with lower manufacturing labour and time requirements compared to the use of the 24-well plate. BECA-D and its adaptation into a closed system with an automated platform (currently being developed) provides cell therapy manufacturers and developers with a closed scale-out solution to producing adoptive cell therapy for clinical use.
Collapse
Affiliation(s)
- Sixun Chen
- Biomanufacturing Technology, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| | - Ahmad Amirul Bin Abdul Rahim
- Biomanufacturing Technology, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| | - Who-Whong Wang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Cres, Singapore, 169610, Singapore
| | - Rachael Cheong
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Cres, Singapore, 169610, Singapore
| | - Akshaya V Prabhu
- Biomanufacturing Technology, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore
| | - Jerome Zu Yao Tan
- Biomanufacturing Technology, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore.,Interdisciplinary Graduate Programme, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - May Win Naing
- Singapore Institute of Manufacturing Technology (SIMTech), A*STAR, 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Cres, Singapore, 169610, Singapore
| | - Dan Liu
- Biomanufacturing Technology, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Singapore, 138668, Singapore.
| |
Collapse
|
30
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
31
|
Bevilacqua A, Li Z, Ho P. Metabolic dynamics instructs CD8
+
T cell differentiation and functions. Eur J Immunol 2022; 52:541-549. [PMID: 35253907 PMCID: PMC9314626 DOI: 10.1002/eji.202149486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
Cytotoxic CD8+ T cells are a key element of the adaptative immune system to protect the organism against infections and malignant cells. During their activation and response, T cells undergo different metabolic pathways to support their energetic needs according to their localization and function. However, it has also been recently appreciated that this metabolic reprogramming also directly supports T‐cell lineage differentiation. Accordingly, metabolic deficiencies and prolonged stress exposure can impact T‐cell differentiation and skew them into an exhausted state. Here, we review how metabolism defines CD8+ T‐cell differentiation and function. Moreover, we cover the principal metabolic dysregulation that promotes the exhausted phenotype under tumor or chronic virus conditions. Finally, we summarize recent strategies to reprogram impaired metabolic pathways to promote CD8+ T‐cell effector function and survival.
Collapse
Affiliation(s)
- Alessio Bevilacqua
- Department of Fundamental Oncology University of Lausanne Lausanne Switzerland
| | - Zhiyu Li
- Department of Fundamental Oncology University of Lausanne Lausanne Switzerland
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan Hubei P. R. China
| | - Ping‐Chih Ho
- Department of Fundamental Oncology University of Lausanne Lausanne Switzerland
- Ludwig Institute for Cancer Research University of Lausanne Epalinges Switzerland
| |
Collapse
|
32
|
Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022; 11:768. [PMID: 35269390 PMCID: PMC8909366 DOI: 10.3390/cells11050768] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Immunometabolism is an emerging discipline in cancer immunotherapy. Tumor tissues are heterogeneous and influenced by metabolic reprogramming of the tumor immune microenvironment (TIME). In the TIME, multiple cell types interact, and the tumor and immune cells compete for limited nutrients, resulting in altered anticancer immunity. Therefore, metabolic reprogramming of individual cell types may influence the outcomes of immunotherapy. Understanding the metabolic competition for access to limited nutrients between tumor cells and immune cells could reveal the breadth and complexity of the TIME and aid in developing novel therapeutic approaches for cancer. In this review, we highlight that, when cells compete for nutrients, the prevailing cell type gains certain advantages over other cell types; for instance, if tumor cells prevail against immune cells for nutrients, the former gains immune resistance. Thus, a strategy is needed to selectively suppress such resistant tumor cells. Although challenging, the concept of cell type-specific metabolic pathway inhibition is a potent new strategy in anticancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
33
|
Metabolic Features of Tumor Dormancy: Possible Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14030547. [PMID: 35158815 PMCID: PMC8833651 DOI: 10.3390/cancers14030547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor recurrence still represents a major clinical challenge for cancer patients. Cancer cells may undergo a dormant state for long times before re-emerging. Both intracellular- and extracellular-driven pathways are involved in maintaining the dormant state and the subsequent awakening, with a mechanism that is still mostly unknown. In this scenario, cancer metabolism is emerging as a critical driver of tumor progression and dissemination and have gained increasing attention in cancer research. This review focuses on the metabolic adaptations characterizing the dormant phenotype and supporting tumor re-growth. Deciphering the metabolic adaptation sustaining tumor dormancy may pave the way for novel therapeutic approaches to prevent tumor recurrence based on combined metabolic drugs. Abstract Tumor relapse represents one of the main obstacles to cancer treatment. Many patients experience cancer relapse even decades from the primary tumor eradication, developing more aggressive and metastatic disease. This phenomenon is associated with the emergence of dormant cancer cells, characterized by cell cycle arrest and largely insensitive to conventional anti-cancer therapies. These rare and elusive cells may regain proliferative abilities upon the induction of cell-intrinsic and extrinsic factors, thus fueling tumor re-growth and metastasis formation. The molecular mechanisms underlying the maintenance of resistant dormant cells and their awakening are intriguing but, currently, still largely unknown. However, increasing evidence recently underlined a strong dependency of cell cycle progression to metabolic adaptations of cancer cells. Even if dormant cells are frequently characterized by a general metabolic slowdown and an increased ability to cope with oxidative stress, different factors, such as extracellular matrix composition, stromal cells influence, and nutrient availability, may dictate specific changes in dormant cells, finally resulting in tumor relapse. The main topic of this review is deciphering the role of the metabolic pathways involved in tumor cells dormancy to provide new strategies for selectively targeting these cells to prevent fatal recurrence and maximize therapeutic benefit.
Collapse
|
34
|
Rendeiro AF, Vorkas CK, Krumsiek J, Singh HK, Kapadia SN, Cappelli LV, Cacciapuoti MT, Inghirami G, Elemento O, Salvatore M. Metabolic and Immune Markers for Precise Monitoring of COVID-19 Severity and Treatment. Front Immunol 2022; 12:809937. [PMID: 35095900 PMCID: PMC8790058 DOI: 10.3389/fimmu.2021.809937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Deep understanding of the SARS-CoV-2 effects on host molecular pathways is paramount for the discovery of early biomarkers of outcome of coronavirus disease 2019 (COVID-19) and the identification of novel therapeutic targets. In that light, we generated metabolomic data from COVID-19 patient blood using high-throughput targeted nuclear magnetic resonance (NMR) spectroscopy and high-dimensional flow cytometry. We find considerable changes in serum metabolome composition of COVID-19 patients associated with disease severity, and response to tocilizumab treatment. We built a clinically annotated, biologically-interpretable space for precise time-resolved disease monitoring and characterize the temporal dynamics of metabolomic change along the clinical course of COVID-19 patients and in response to therapy. Finally, we leverage joint immuno-metabolic measurements to provide a novel approach for patient stratification and early prediction of severe disease. Our results show that high-dimensional metabolomic and joint immune-metabolic readouts provide rich information content for elucidation of the host's response to infection and empower discovery of novel metabolic-driven therapies, as well as precise and efficient clinical action.
Collapse
Affiliation(s)
- André F. Rendeiro
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | | | - Jan Krumsiek
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Harjot K. Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Shashi N. Kapadia
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Maria Teresa Cacciapuoti
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
35
|
Barrera-Avalos C, Briceño P, Valdés D, Imarai M, Leiva-Salcedo E, Rojo LE, Milla LA, Huidobro-Toro JP, Robles-Planells C, Escobar A, Di Virgilio F, Morón G, Sauma D, Acuña-Castillo C. P2X7 receptor is essential for cross-dressing of bone marrow-derived dendritic cells. iScience 2021; 24:103520. [PMID: 34950860 PMCID: PMC8671947 DOI: 10.1016/j.isci.2021.103520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
T cell activation requires the processing and presentation of antigenic peptides in the context of a major histocompatibility complex (MHC complex). Cross-dressing is a non-conventional antigen presentation mechanism, involving the transfer of preformed peptide/MHC complexes from whole cells, such as apoptotic cells (ACs) to the cell membrane of professional antigen-presenting cells (APCs), such as dendritic cells (DCs). This is an essential mechanism for the induction of immune response against viral antigens, tumors, and graft rejection, which until now has not been clarified. Here we show for first time that the P2X7 receptor (P2X7R) is crucial to induce cross-dressing between ACs and Bone-Marrow DCs (BMDCs). In controlled ex vivo assays, we found that the P2X7R in both ACs and BMDCs is required to induce membrane and fully functional peptide/MHC complex transfer to BMDCs. These findings show that acquisition of ACs-derived preformed antigen/MHC-I complexes by BMDCs requires P2X7R expression. Cross-dressing of antigens to Dendritic Cells (DCs) is dependent of P2X7 receptor The P2X7 receptor must be present in both Dendritic Cells and antigen source The transfer of antigen/MHC-I complexes to DCs is functional and activates T CD8 cells The P2X7 receptor allows Cross-Dressing possibly through a membrane fusion process
Collapse
Affiliation(s)
- Carlos Barrera-Avalos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Pedro Briceño
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniel Valdés
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Mónica Imarai
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Elías Leiva-Salcedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Luis A. Milla
- Centro de Investigaciones Biomédicas y Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Juan Pablo Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Claudia Robles-Planells
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | | | - Gabriel Morón
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Corresponding author
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
- Corresponding author
| |
Collapse
|
36
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
37
|
Thurgood LA, Best OG, Rowland A, Lower KM, Brooks DA, Kuss BJ. Lipid uptake in chronic lymphocytic leukemia. Exp Hematol 2021; 106:58-67. [PMID: 34896245 DOI: 10.1016/j.exphem.2021.12.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/19/2022]
Abstract
Many cancers rely on glucose as an energy source, but it is becoming increasingly apparent that some cancers use alternate substrates to fuel their proliferation. Chronic lymphocytic leukaemia (CLL) is one such cancer. Through the use of flow cytometry and confocal microscopy, low levels of glucose uptake were observed in the OSU-CLL and HG3 CLL cell lines relative to highly glucose-avid Raji cells (Burkitt's lymphoma). Glucose uptake in CLL cells correlated with low expression of the GLUT1 and GLUT3 receptors. In contrast, both CLL cell lines and primary CLL cells, but not healthy B cells, were found to rapidly internalise medium- and long-chain, but not short-chain, fatty acids (FAs). Differential FA uptake was also observed in primary cells taken from patients with unmutated immunoglobulin heavy variable chain usage (IGHV) compared with patients with mutated IGHV. Delipidation of serum in the culture medium slowed the proliferation and significantly reduced the viability of OSU-CLL and HG3 cells, effects that were partially reversed by supplementation with a chemically defined lipid concentrate. These observations highlight the potential importance of FAs in the pathogenesis of CLL and raise the possibility that targeting FA utilisation may represent a novel therapeutic and prognostic approach in this disease.
Collapse
Affiliation(s)
- Lauren A Thurgood
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| | - Oliver G Best
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Ashley Rowland
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Karen M Lower
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Doug A Brooks
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Bryone J Kuss
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
38
|
Krapić M, Kavazović I, Wensveen FM. Immunological Mechanisms of Sickness Behavior in Viral Infection. Viruses 2021; 13:v13112245. [PMID: 34835051 PMCID: PMC8624889 DOI: 10.3390/v13112245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Sickness behavior is the common denominator for a plethora of changes in normal behavioral routines and systemic metabolism during an infection. Typical symptoms include temperature, muscle weakness, and loss of appetite. Whereas we experience these changes as a pathology, in fact they are a carefully orchestrated response mediated by the immune system. Its purpose is to optimize immune cell functionality against pathogens whilst minimizing viral replication in infected cells. Sickness behavior is controlled at several levels, most notably by the central nervous system, but also by other organs that mediate systemic homeostasis, such as the liver and adipose tissue. Nevertheless, the changes mediated by these organs are ultimately initiated by immune cells, usually through local or systemic secretion of cytokines. The nature of infection determines which cytokine profile is induced by immune cells and therefore which sickness behavior ensues. In context of infection, sickness behavior is typically beneficial. However, inappropriate activation of the immune system may induce adverse aspects of sickness behavior. For example, tissue stress caused by obesity may result in chronic activation of the immune system, leading to lasting changes in systemic metabolism. Concurrently, metabolic disease prevents induction of appropriate sickness behavior following viral infection, thus impairing the normal immune response. In this article, we will revisit recent literature that elucidates both the benefits and the negative aspects of sickness behavior in context of viral infection.
Collapse
|
39
|
Hosios AM, Manning BD. Cancer Signaling Drives Cancer Metabolism: AKT and the Warburg Effect. Cancer Res 2021; 81:4896-4898. [PMID: 34598998 DOI: 10.1158/0008-5472.can-21-2647] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
The Warburg effect, the propensity of some cells to metabolize glucose to lactate in the presence of oxygen (also known as aerobic glycolysis), has long been observed in cancer and other contexts of cell proliferation, but only in the past two decades have significant gains been made in understanding how and why this metabolic transformation occurs. In 2004, Cancer Research published a study by Elstrom and colleagues that provided one of the first connections between a specific oncogene and aerobic glycolysis. Studying hematopoietic and glioblastoma cell lines, they demonstrated that constitutive activation of AKT promotes an increased glycolytic rate without altering proliferation or oxygen consumption in culture. They proposed that it is this effect that allows constitutive AKT activation to transform cells and found that it sensitizes cells to glucose deprivation. In the years since, mechanistic understanding of oncogenic control of metabolism, and glycolysis specifically, has deepened substantially. Current work seeks to understand the benefits and liabilities associated with glycolytic metabolism and to identify inhibitors that might be of clinical benefit to target glycolytic cancer cells.See related article by Elstrom and colleagues, Cancer Res 2004;64:3892-9.
Collapse
Affiliation(s)
- Aaron M Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
40
|
Gaddis DE, Padgett LE, Wu R, Nguyen A, McSkimming C, Dinh HQ, Araujo DJ, Taylor AM, McNamara CA, Hedrick CC. Atherosclerosis Impairs Naive CD4 T-Cell Responses via Disruption of Glycolysis. Arterioscler Thromb Vasc Biol 2021; 41:2387-2398. [PMID: 34320835 PMCID: PMC10206822 DOI: 10.1161/atvbaha.120.314189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective CD4 T cells are important regulators of atherosclerotic progression. The metabolic profile of CD4 T cells controls their signaling and function, but how atherosclerosis affects T-cell metabolism is unknown. Here, we sought to determine the impact of atherosclerosis on CD4 T-cell metabolism and the contribution of such metabolic alterations to atheroprogression. Approach and Results Using PCR arrays, we profiled the expression of metabolism genes in CD4 T cells from atherosclerotic apolipoprotein-E knockout mice fed a Western diet. These cells exhibited dysregulated expression of genes critically involved in glycolysis and fatty acid degradation, compared with those from animals fed a standard laboratory diet. We examined how T-cell metabolism was changed in either Western diet–fed apolipoprotein-E knockout mice or samples from patients with cardiovascular disease by measuring glucose uptake, activation, and proliferation in CD4 T cells. We found that naive CD4 T cells from Western diet–fed apolipoprotein-E knockout mice failed to uptake glucose and displayed impaired proliferation and activation, compared with CD4 T cells from standard laboratory diet–fed animals. Similarly, we observed that naive CD4 T-cell frequencies were reduced in the circulation of human subjects with high cardiovascular disease compared with low cardiovascular disease. Naive T cells from high cardiovascular disease subjects also showed reduced proliferative capacity. Conclusions These results highlight the dysfunction that occurs in CD4 T-cell metabolism and immune responses during atherosclerosis. Targeting metabolic pathways within naive CD4 T cells could thus yield novel therapeutic approaches for improving CD4 T-cell responses against atheroprogression.
Collapse
Affiliation(s)
- Dalia E. Gaddis
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Lindsey E. Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Anh Nguyen
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA 22908
| | - Chantel McSkimming
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA 22908
| | - Huy Q. Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705
| | - Daniel J. Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Angela M. Taylor
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA 22908
| | - Coleen A. McNamara
- Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA 22908
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
41
|
Integrated Metabolomics and Proteomics Analyses in the Local Milieu of Islet Allografts in Rejection versus Tolerance. Int J Mol Sci 2021; 22:ijms22168754. [PMID: 34445459 PMCID: PMC8395897 DOI: 10.3390/ijms22168754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft’s immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft’s microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance.
Collapse
|
42
|
Sun V, Sharpley M, Kaczor-Urbanowicz KE, Chang P, Montel-Hagen A, Lopez S, Zampieri A, Zhu Y, de Barros SC, Parekh C, Casero D, Banerjee U, Crooks GM. The Metabolic Landscape of Thymic T Cell Development In Vivo and In Vitro. Front Immunol 2021; 12:716661. [PMID: 34394122 PMCID: PMC8355594 DOI: 10.3389/fimmu.2021.716661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Although metabolic pathways have been shown to control differentiation and activation in peripheral T cells, metabolic studies on thymic T cell development are still lacking, especially in human tissue. In this study, we use transcriptomics and extracellular flux analyses to investigate the metabolic profiles of primary thymic and in vitro-derived mouse and human thymocytes. Core metabolic pathways, specifically glycolysis and oxidative phosphorylation, undergo dramatic changes between the double-negative (DN), double-positive (DP), and mature single-positive (SP) stages in murine and human thymus. Remarkably, despite the absence of the complex multicellular thymic microenvironment, in vitro murine and human T cell development recapitulated the coordinated decrease in glycolytic and oxidative phosphorylation activity between the DN and DP stages seen in primary thymus. Moreover, by inducing in vitro T cell differentiation from Rag1-/- mouse bone marrow, we show that reduced metabolic activity at the DP stage is independent of TCR rearrangement. Thus, our findings suggest that highly conserved metabolic transitions are critical for thymic T cell development.
Collapse
Affiliation(s)
- Victoria Sun
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States.,Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
| | - Mark Sharpley
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Karolina E Kaczor-Urbanowicz
- Division of Oral Biology & Medicine, School of Dentistry, UCLA, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, United States
| | - Patrick Chang
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States.,Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States
| | - Amélie Montel-Hagen
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Shawn Lopez
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Alexandre Zampieri
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yuhua Zhu
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Stéphanie C de Barros
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Chintan Parekh
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Casero
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States.,F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars- Sinai Medical Center, Los Angeles, CA, United States
| | - Utpal Banerjee
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, United States.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, United States.,Department of Biological Chemistry, UCLA, Los Angeles, CA, United States.,Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States
| | - Gay M Crooks
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States.,Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
43
|
Abdollahi P, Vandsemb EN, Elsaadi S, Røst LM, Yang R, Hjort MA, Andreassen T, Misund K, Slørdahl TS, Rø TB, Sponaas AM, Moestue S, Bruheim P, Børset M. Phosphatase of regenerating liver-3 regulates cancer cell metabolism in multiple myeloma. FASEB J 2021; 35:e21344. [PMID: 33566385 DOI: 10.1096/fj.202001920rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Cancer cells often depend on microenvironment signals from molecules such as cytokines for proliferation and metabolic adaptations. PRL-3, a cytokine-induced oncogenic phosphatase, is highly expressed in multiple myeloma cells and associated with poor outcome in this cancer. We studied whether PRL-3 influences metabolism. Cells transduced to express PRL-3 had higher aerobic glycolytic rate, oxidative phosphorylation, and ATP production than the control cells. PRL-3 promoted glucose uptake and lactate excretion, enhanced the levels of proteins regulating glycolysis and enzymes in the serine/glycine synthesis pathway, a side branch of glycolysis. Moreover, mRNAs for these proteins correlated with PRL-3 expression in primary patient myeloma cells. Glycine decarboxylase (GLDC) was the most significantly induced metabolism gene. Forced GLDC downregulation partly counteracted PRL-3-induced aerobic glycolysis, indicating GLDC involvement in a PRL-3-driven Warburg effect. AMPK, HIF-1α, and c-Myc, important metabolic regulators in cancer cells, were not mediators of PRL-3's metabolic effects. A phosphatase-dead PRL-3 mutant, C104S, promoted many of the metabolic changes induced by wild-type PRL-3, arguing that important metabolic effects of PRL-3 are independent of its phosphatase activity. Through this study, PRL-3 emerges as one of the key mediators of metabolic adaptations in multiple myeloma.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratory Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Esten N Vandsemb
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lisa M Røst
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rui Yang
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratory Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Magnus A Hjort
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Trygve Andreassen
- MR Core Facility, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Tobias S Slørdahl
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Torstein B Rø
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Children's Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siver Moestue
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pharmacy, Faculty of Health Sciences, Nord University, Bodø, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
44
|
Chappaz S, McArthur K, Kealy L, Law CW, Tailler M, Lane RM, Lieschke A, Ritchie ME, Good-Jacobson KL, Strasser A, Kile BT. Homeostatic apoptosis prevents competition-induced atrophy in follicular B cells. Cell Rep 2021; 36:109430. [PMID: 34289356 DOI: 10.1016/j.celrep.2021.109430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.
Collapse
Affiliation(s)
- Stéphane Chappaz
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia.
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Liam Kealy
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Maximilien Tailler
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Rachael M Lane
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | | | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Kim L Good-Jacobson
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Andreas Strasser
- Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005 SA, Australia.
| |
Collapse
|
45
|
Braun MY. The Natural History of T Cell Metabolism. Int J Mol Sci 2021; 22:ijms22136779. [PMID: 34202553 PMCID: PMC8269353 DOI: 10.3390/ijms22136779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
The cells of the immune system, particularly the T lymphocytes, have two main features that distinguish them from the cells of other tissues. They proliferate after activation and have the ability to move in tissues and organs. These characteristics compel them to develop metabolic plasticity in order to fulfil their immune function. This review focuses on the different known mechanisms that allow T cells to adapt their metabolism to the real-life circumstances they operate in, whether it is to exit quiescence, to differentiate into effector cells, or to participate in immune memory formation. Some of the metabolic adaptations to environmental variations that T cells are likely to undergo in their immune monitoring function are also discussed.
Collapse
Affiliation(s)
- Michel Y Braun
- Institute for Medical Immunology (IMI), Faculty of Medicine, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
46
|
Ding X, Chang Y, Wang S, Yan D, Yao J, Zhu G. Transcriptomic Analysis of the Effect of GAT-2 Deficiency on Differentiation of Mice Naïve T Cells Into Th1 Cells In Vitro. Front Immunol 2021; 12:667136. [PMID: 34149704 PMCID: PMC8208808 DOI: 10.3389/fimmu.2021.667136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) is known to affect the activation and function of immune cells. This study investigated the role of GABA transporter (GAT)-2 in the differentiation of type 1 helper T (Th1) cells. Naïve CD4+ T cells isolated from splenocytes of GAT-2 knockout (KO) and wild-type (WT) mice were cultured; Th1 cell differentiation was induced and transcriptome and bioinformatics analyses were carried out. We found that GAT-2 deficiency promoted the differentiation of naïve T cells into Th1 cells. RNA sequencing revealed 2984 differentially expressed genes including 1616 that were up-regulated and 1368 that were down-regulated in GAT-2 KO cells compared to WT cells, which were associated with 950 enriched Gene Ontology terms and 33 enriched Kyoto Encyclopedia of Genes and Genomes pathways. Notably, 4 signal transduction pathways (hypoxia-inducible factor [HIF]-1, Hippo, phospholipase D, and Janus kinase [JAK]/signal transducer and activator of transcription [STAT]) and one metabolic pathway (glycolysis/gluconeogenesis) were significantly enriched by GAT-2 deficiency, suggesting that these pathways mediate the effect of GABA on T cell differentiation. Our results provide evidence for the immunomodulatory function of GABA signaling in T cell-mediated immunity and can guide future studies on the etiology and management of autoimmune diseases.
Collapse
Affiliation(s)
- Xueyan Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yajie Chang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Siquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dong Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiakui Yao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Wilkins HM, Wang X, Menta BW, Koppel SJ, Bothwell R, Becker AM, Anderson H, Schwartz E, Pei D, Yellapu NK, Chalise P, Gouvion CM, Haeri M, Burns JM, Swerdlow RH. Bioenergetic and inflammatory systemic phenotypes in Alzheimer's disease APOE ε4-carriers. Aging Cell 2021; 20:e13356. [PMID: 33939248 PMCID: PMC8135087 DOI: 10.1111/acel.13356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
We examined the impact of an APOE ε4 genotype on Alzheimer's disease (AD) subject platelet and lymphocyte metabolism. Mean platelet mitochondrial cytochrome oxidase Vmax activity was lower in APOE ε4 carriers and lymphocyte Annexin V, a marker of apoptosis, was significantly higher. Proteins that mediate mitophagy and energy sensing were higher in APOE ε4 lymphocytes which could represent compensatory changes and recapitulate phenomena observed in post‐mortem AD brains. Analysis of the lipid synthesis pathway found higher AceCSI, ATP CL, and phosphorylated ACC levels in APOE ε4 lymphocytes. Lymphocyte ACC changes were also observed in post‐mortem brain tissue. Lymphocyte RNAseq showed lower APOE ε4 carrier sphingolipid Transporter 3 (SPNS3) and integrin Subunit Alpha 1 (ITGA1) expression. RNAseq pathway analysis revealed APOE ε4 alleles activated inflammatory pathways and modulated bioenergetic signaling. These findings support a relationship between APOE genotype and bioenergetic pathways and indicate platelets and lymphocytes from APOE ε4 carriers exist in a state of bioenergetic stress. Neither medication use nor brain‐localized AD histopathology can account for these findings, which define an APOE ε4‐determined molecular and systemic phenotype that informs AD etiology.
Collapse
Affiliation(s)
- Heather M. Wilkins
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Biochemistry and Molecular Biology University of Kansas Medical Center Kansas City KS USA
| | - Xiaowan Wang
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Blaise W. Menta
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Biochemistry and Molecular Biology University of Kansas Medical Center Kansas City KS USA
| | - Scott J. Koppel
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Molecular and Integrative Physiology University of Kansas Medical Center Kansas City KS USA
| | - Rebecca Bothwell
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | | | - Heidi Anderson
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Erin Schwartz
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Dong Pei
- Department of Biostatistics and Data Science University of Kansas Medical Center Kansas City KS USA
| | - Nanda K. Yellapu
- Department of Biostatistics and Data Science University of Kansas Medical Center Kansas City KS USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science University of Kansas Medical Center Kansas City KS USA
| | - Cynthia M. Gouvion
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Pathology & Laboratory Medicine University of Kansas Medical Center Kansas City KS USA
| | - Mohammad Haeri
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Pathology & Laboratory Medicine University of Kansas Medical Center Kansas City KS USA
| | - Jeffrey M. Burns
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
| | - Russell H. Swerdlow
- Department of Neurology University of Kansas Medical Center Kansas City KS USA
- University of Kansas Alzheimer's Disease Center Kansas City KS USA
- Department of Biochemistry and Molecular Biology University of Kansas Medical Center Kansas City KS USA
- Department of Molecular and Integrative Physiology University of Kansas Medical Center Kansas City KS USA
| |
Collapse
|
48
|
Abstract
Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.
Collapse
Affiliation(s)
- Elizabeth M Steinert
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Karthik Vasan
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| |
Collapse
|
49
|
Kishimoto N, Yamamoto K, Abe T, Yasuoka N, Takamune N, Misumi S. Glucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV-1 particles to maintain infectivity. Biochem Biophys Res Commun 2021; 549:187-193. [PMID: 33676187 DOI: 10.1016/j.bbrc.2021.02.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
The cellular environment affects optimal viral replication because viruses cannot replicate without their host cells. In particular, metabolic resources such as carbohydrates, lipids, and ATP are crucial for viral replication, which is sensitive to cellular metabolism. Intriguingly, recent studies have demonstrated that human immunodeficiency virus type 1 (HIV-1) infection induces a metabolic shift from oxidative phosphorylation to aerobic glycolysis in CD4+ T cells to produce the virus efficiently. However, the importance of aerobic glycolysis in maintaining the quality of viral components and viral infectivity has not yet been fully investigated. Here, we show that aerobic glycolysis is necessary not only to override the inhibitory effect of virion-incorporated glycolytic enzymes, but also to maintain the enzymatic activity of reverse transcriptase and the adequate packaging of envelope proteins into HIV-1 particles. To investigate the effect of metabolic remodeling on the phenotypic properties of HIV-1 produced by infected cells, we replaced glucose with galactose in the culture medium because the cells grown in galactose-containing medium are forced to carry out oxidative metabolism instead of aerobic glycolysis. We found that the packaging levels of glyceraldehyde 3-phosphate dehydrogenase, alpha-enolase and pyruvate kinase muscle type 2, which decrease HIV-1 infectivity by packaging into viral particles, are increased in progeny viruses produced by the cells grown in galactose-containing medium. Furthermore, we found that the entry and reverse transcription efficiency of the progeny viruses were reduced, which was caused by a decrease in the enzymatic activity of reverse transcriptase in the viral particles and a decrease in the packaging levels of envelope proteins and reverse transcriptase. These results indicate that the aerobic glycolysis environment in HIV-1-infected cells may contribute to the quality control of viruses.
Collapse
Affiliation(s)
- Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Kengo Yamamoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Towa Abe
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Norito Yasuoka
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Nobutoki Takamune
- Kumamoto Innovative Development Organization, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|
50
|
Seo H, Johnson GA, Bazer FW, Wu G, McLendon BA, Kramer AC. Cell-Specific Expression of Enzymes for Serine Biosynthesis and Glutaminolysis in Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:17-28. [PMID: 33770400 DOI: 10.1007/978-3-030-54462-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During the peri-implantation period, conceptuses [embryo and placental membranes, particularly the trophectoderm (Tr)] of farm animals (e.g., sheep and pigs) rapidly elongate from spherical to tubular to filamentous forms. In concert with Tr outgrowth during conceptus elongation, the Tr of sheep and pig conceptuses attaches to the endometrial luminal epithelium (LE) to initiate placentation. In sheep, binucleate cells (BNCs) begin to differentiate from the mononuclear trophectoderm cells and migrate to the endometrial LE to form syncytial plaques. These events require Tr cells to expend significant amounts of energy to undergo timely and extensive proliferation, migration and fusion. It is likely essential that conceptuses optimally utilize multiple biosynthetic pathways to convert molecules such as glucose, fructose, and glutamine (components of histotroph transport by sheep and pig endometria into the uterine lumen), into ATP, amino acids, ribose, hexosamines and nucleotides required to support early conceptus development and survival. Elongating and proliferating conceptus Tr cells potentially act, in a manner similar to cancer cells, to direct carbon generated from glucose and fructose away from the TCA cycle for utilization in branching pathways of glycolysis, including the pentose phosphate pathway, one-carbon metabolism, and hexosamine biosynthesis. The result is a limited availability of pyruvate for maintaining the TCA cycle within mitochondria, and Tr cells replenish TCA cycle metabolites via a process known as anaplerosis, primarily through glutaminolysis to convert glutamine into TCA cycle intermediates. Here we describe the cell-specific expression of enzymes required for serine biosynthesis, one-carbon metabolism and glutaminolysis at the uterine-placental interface of sheep and pigs, and propose that these biosynthetic pathways are essential to support early placental development including Tr elongation, cell migration, cell fusion and implantation by ovine and porcine conceptuses.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|