1
|
Rusdi MS, Karim MR, Hossain S, Chowdhury MDA, Nazim-Ud-Doulah, Rahman MS, Rifat IN, Osman H, Khandaker MU. Spatial distribution of heavy metal in sands and sediments of Parki Beach, Chattogram, Bangladesh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1275. [PMID: 39614922 DOI: 10.1007/s10661-024-13399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
To assess the sources, levels, spatial distributions and exposure to human health, the concentration of heavy metals Pb, Cu, Mn, Zn, and Fe in the sand/sediment of the Parki Beach area of Anowara, Chattogram, Bangladesh are determined using Atomic Absorption Spectroscopy (AAS) for the first time. A total of 40 surface and subsurface sand and sediment samples were collected from 20 different sampling points along the 15 km long Parki Beach area, Bangladesh. Average concentrations of Pb, Cu, Mn, Zn and Fe in surface samples are 14.60, 10.10, 283, 407 and 25,256 mg/kg respectively and 9.95, 4.20, 193, 156.6 and 24,404 mg/kg for sub-surface samples, respectively, which shows that the values are higher in surface samples than those in sub-surface samples. According to the Consensus-Based Sediment Quality Guidelines (CBSQG), the northern part of the beach becomes moderately polluted by Mn and Fe, and a smaller area of the southern part is highly polluted by Zn. The average Contamination Factor (CF) of Zn was greater than 1(CF > 1), while the CF of other metals was less than 1(CF < 1). CF of Zn in some sampling points was exceptionally high. Geo-accumulation Index (Igeo) also shows that Zn slightly pollutes some sampling points. The enrichment Factor (EF) of Fe and Mn in samples in the northern part of the study area is quite high and the study reveals that high values of Fe and Mn are mainly derived from geogenic sources. Ecological risk factor (Er) indicates low ecological risk for all sampling points. The Pollution Load Index (PLI) was measured at all sampling stations, and the results showed that the overall level of heavy metal pollution is low. The health quotient (HQ), health index (HI), total health index (THI) and incremental life time cancer risk (ILCR values suggest that adults are safe from any health risk while children may experience non carcinogenic health risk due to the combined effect of the metals. Reduction of heavy metal in the beach is possible with the adaptation of multiple strategies. This data can be used by policymakers to develop strategies to reduce the potential impacts of soil contamination on the environment and public health.
Collapse
Affiliation(s)
- Md Shiman Rusdi
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh.
| | - Md Rezaul Karim
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh
| | - Shahadat Hossain
- Atomic Energy Center, Chattogram, Bangladesh Atomic Energy Commission, 1018/A Bayazid Bostami Rd, Chattogram, 4209, Bangladesh
| | - Md Didarul Alam Chowdhury
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nazim-Ud-Doulah
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh
| | - Mohammad Saifur Rahman
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh
| | - Imtehan Nur Rifat
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia.
- Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, BiruliaSavar, Dhaka, 1216, Bangladesh.
- Department of Physics, College of Science, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Srivastava R, Singh Y, White JC, Dhankher OP. Mitigating toxic metals contamination in foods: Bridging knowledge gaps for addressing food safety. Trends Food Sci Technol 2024; 153:104725. [PMID: 39665028 PMCID: PMC11634057 DOI: 10.1016/j.tifs.2024.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Background Reducing exposure to harmful substances in food is highly desired, especially for infants, young children, and pregnant women. A workshop focused on understanding and reducing toxic metal contamination in food was conducted involving leading scientists, educators, practitioners, and key stakeholders in conjunction with the USDA National Institute of Food and Agriculture. Scope and approach The goal of this review and the workshop was to advance the current knowledge of major toxic metals concerning food safety, viz. arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), and chromium (Cr), preventive measures, identify critical knowledge gaps, and the need for research, extension, and education. Being a part of the "Closer to Zero (C2Z)" initiative of the USDA, FDA, and other federal agencies, the workshop adopted a "One Health" approach to mitigate dietary exposure and environmental pollution of hazardous elements. Key findings and conclusions The experts discussed the accumulation of toxic metals in food crops and drinking water in relation to soil biogeochemistry, plant uptake, and multidisciplinary factors such as food processing, detection, regulatory standards, etc. To forward food safety, this workshop critically examined toxic metals contamination, exposure and toxicity along the farm-to-fork-to-human continuum, research gaps, prevailing regulations, and sustainable remediation approaches, and offered significant recommendations. This review paper provides perspective on key findings of the workshop relative to addressing this important aspect of food safety, emphasizing interdisciplinary research that can effectively investigate and understand the complex and dynamic relationships between soil biogeochemistry, the microbiome, plant tolerance and accumulation strategies, uniform standards for acceptable and safe toxic element levels in food and water, and raising public awareness. This article also provides a foundation for decision-making regarding toxic metal fate and effects, including risk management strategies, in the face of modern industrialization and a changing climate.
Collapse
Affiliation(s)
- Richa Srivastava
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jason C. White
- The Connecticut Agricultural Experimental Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Chhikara S, Singh Y, Long S, Minocha R, Musante C, White JC, Dhankher OP. Overexpression of bacterial γ-glutamylcysteine synthetase increases toxic metal(loid)s tolerance and accumulation in Crambe abyssinica. PLANT CELL REPORTS 2024; 43:270. [PMID: 39443376 DOI: 10.1007/s00299-024-03351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Transgenic Crambe abyssinica lines overexpressing γ-ECS significantly enhance tolerance to and accumulation of toxic metal(loid)s, improving phytoremediation potential and offering an effective solution for contaminated soil management. Phytoremediation is an attractive environmental-friendly technology to remove metal(loid)s from contaminated soils and water. However, tolerance to toxic metals in plants is a critical limiting factor. Transgenic Crambe abyssinica lines were developed that overexpress the bacterial γ-glutamylcysteine synthetase (γ-ECS) gene to increase the levels of non-protein thiol peptides such as γ-glutamylcysteine (γ-EC), glutathione (GSH), and phytochelatins (PCs) that mediate metal(loid)s detoxification. The present study investigated the effect of γ-ECS overexpression on the tolerance to and accumulation of toxic As, Cd, Pb, Hg, and Cr supplied individually or as a mixture of metals. Compared to wild-type plants, γ-ECS transgenics (γ-ECS1-8 and γ-ECS16-5) exhibited a significantly higher capacity to tolerate and accumulate these elements in aboveground tissues, i.e., 76-154% As, 200-254% Cd, 37-48% Hg, 26-69% Pb, and 39-46% Cr, when supplied individually. This is attributable to enhanced production of GSH (82-159% and 75-87%) and PC2 (27-33% and 37-65%) as compared to WT plants under AsV and Cd exposure, respectively. The levels of Cys and γ-EC were also increased by 56-67% and 450-794% in the overexpression lines compared to WT plants under non-stress conditions, respectively. This likely enhanced the metabolic pathway associated with GSH biosynthesis, leading to the ultimate synthesis of PCs, which detoxify toxic metal(loid)s through chelation. These findings demonstrate that γ-ECS overexpressing Crambe lines can be used for the enhanced phytoremediation of toxic metals and metalloids from contaminated soils.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Aryal M. Phytoremediation strategies for mitigating environmental toxicants. Heliyon 2024; 10:e38683. [PMID: 39430524 PMCID: PMC11490803 DOI: 10.1016/j.heliyon.2024.e38683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In natural environments, persistent pollutants such as heavy metals and organic compounds, are frequently sequestered in sediments, soils, and mineral deposits, rendering them biologically unavailable. This study examines phytoremediation, a sustainable technology that uses plants to remove pollutants from soil, water, and air. It discusses enhancing techniques such as plant selection, the use of plant growth-promoting bacteria, soil amendments, and genetic engineering. The study highlights the slow removal rates and the limited availability of plant species that are effective for specific pollutants. Furthermore, it investigates bioavailability and the mechanisms underlying root exudation and hyperaccumulation. Applications across diverse environments and innovative technologies, such as transgenic plants and nanoparticles, are also explored. Additionally, the potential for phytoremediation with bioenergy production is considered. The purpose of this study is to provide researchers, practitioners, and policymakers with valuable resources for sustainable solutions.
Collapse
Affiliation(s)
- Mahendra Aryal
- Department of Chemistry, Tribhuvan University, Tri-Chandra Campus, Kathmandu, 44600, Nepal
| |
Collapse
|
5
|
Roy R, Samanta S, Pandit S, Naaz T, Banerjee S, Rawat JM, Chaubey KK, Saha RP. An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies. Appl Biochem Biotechnol 2024; 196:1712-1751. [PMID: 37410353 DOI: 10.1007/s12010-023-04614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Contamination-free groundwater is considered a good source of potable water. Even in the twenty-first century, over 90 percent of the population is reliant on groundwater resources for their lives. Groundwater influences the economical state, industrial development, ecological system, and agricultural and global health conditions worldwide. However, different natural and artificial processes are gradually polluting groundwater and drinking water systems throughout the world. Toxic metalloids are one of the major sources that pollute the water system. In this review work, we have collected and analyzed information on metal-resistant bacteria along with their genetic information and remediation mechanisms of twenty different metal ions [arsenic (As), mercury (Hg), lead (Pb), chromium (Cr), iron (Fe), copper (Cu), cadmium (Cd), palladium (Pd), zinc (Zn), cobalt (Co), antimony (Sb), gold (Au), silver (Ag), platinum (Pt), selenium (Se), manganese (Mn), molybdenum (Mo), nickel (Ni), tungsten (W), and uranium (U)]. We have surveyed the scientific information available on bacteria-mediated bioremediation of various metals and presented the data with responsible genes and proteins that contribute to bioremediation, bioaccumulation, and biosorption mechanisms. Knowledge of the genes responsible and self-defense mechanisms of diverse metal-resistance bacteria would help us to engineer processes involving multi-metal-resistant bacteria that may reduce metal toxicity in the environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Tahseena Naaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Srijoni Banerjee
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Janhvi Mishra Rawat
- Department of Life Sciences, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Rudra P Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| |
Collapse
|
6
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
7
|
Khan S, Galstyan H, Abbas M, Wenjing X. Advanced biotechnology strategies for detoxification of persistent organic pollutants and toxic elements in soil. CHEMOSPHERE 2023; 345:140519. [PMID: 37871876 DOI: 10.1016/j.chemosphere.2023.140519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
This paper aims to comprehensively examine and present the current state of persistent organic pollutants (POPs) and toxic elements (TEs) in soil. Additionally, it seeks to assess the viability of employing advanced biotechnology, specifically phytoremediation with potent microbial formulations, as a means of detoxifying POPs and TEs. In the context of the "global treaty," which is known as the Stockholm Convention, we analyzed the 3D chemical structures of POPs and its prospects for living organisms which have not been reviewed up to date. The obstacles associated with the phytoremediation strategy in biotechnology, including issues like slow plant growth and limited efficiency in contaminant uptake, have also been discussed and demonstrated. While biotechnology is recognized as a promising method for detoxifying persistent organic pollutants (POPs) and facilitating the restoration of contaminated and degraded lands, its full potential in the field is constrained by various factors. Recent advances in biotechnology, such as microbial enzymes, designer plants, composting, and nanobiotechnology techniques, have opened up new avenues for mitigating persistent organic pollutants (POPs) and toxic elements (TEs). The insights gained from this review can contribute to the development of innovative, practical, and economically viable approaches for remediating and restoring soils contaminated with persistent organic pollutants (POPs) and toxic elements (TEs). The ultimate aim is to reduce the risks to both human and environmental health.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Hrachuhi Galstyan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China
| | - Mohsin Abbas
- College of Engineering, University of Technology Bahrain, Salmabad, Kingdom of Bahrain
| | - Xiang Wenjing
- Department of International Exchange and Cooperation, Neijiang Normal University, Neijiang, 641100, China
| |
Collapse
|
8
|
El Rasafi T, Haouas A, Tallou A, Chakouri M, Aallam Y, El Moukhtari A, Hamamouch N, Hamdali H, Oukarroum A, Farissi M, Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. CHEMOSPHERE 2023; 341:140121. [PMID: 37690564 DOI: 10.1016/j.chemosphere.2023.140121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, B.P 5366, Maarif, Casablanca, Morocco.
| | - Ayoub Haouas
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Anas Tallou
- Department of Soil, Plant and Food Sciences - University of Bari "Aldo Moro", Italy
| | - Mohcine Chakouri
- Team of Remote Sensing and GIS Applied to Geosciences and Environment, Department of Earth Sciences, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Yassine Aallam
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco; Mohammed VI Polytechnic (UM6P) University, Ben Guerir, Morocco
| | - Ahmed El Moukhtari
- Ecology and Environment Laboratory, Faculty of Sciences Ben Msik, Hassan II University, PO 7955, Sidi Othmane, Casablanca, Morocco
| | - Noureddine Hamamouch
- Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Hanane Hamdali
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Mohamed Farissi
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, USMS, Beni Mellal, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
9
|
Gao W, Zhang Y, Lin M, Mao J, Xing B, Li Y, Hou R. Capability of phytoremediation of glyphosate in environment by Vulpia myuros. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115511. [PMID: 37774542 DOI: 10.1016/j.ecoenv.2023.115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Glyphosate is an herbicide extensively used worldwide that can remain in the soil. Phytoremediation to decontaminate polluted water or soil requires a plant that can accumulate the target compound. Vulpia myuros is an annual fescue that can be used as a heavy mental phytoremediation strategy. Recently, it has been used to intercrop with tea plant to prohibit the germination and growth of other weeds in tea garden. In order to know whether it can be used an decontaminating glyphosate' plant in water or soil, in this study, glyphosate degradation behavior was investigated in Vulpia myuros cultivated in a hydroponic system. The results showed that the concentration of glyphosate in the nutrient solution decreased from 43.09 μg mL-1 to 0.45 μg mL-1 in 30 days and that 99% of the glyphosate molecules were absorbed by V. myuros. The contents of glyphosate in the roots reached the maximum (224.33 mg kg-1) on day 1 and then decreased. After 3 days, the content of glyphosate in the leaves reached the highest value (215.64 mg kg-1), while it decreased to 156.26 mg kg-1 in the roots. The dissipation dynamics of glyphosate in the whole hydroponic system fits the first-order kinetic model C = 455.76e-0.21 t, with a half-life of 5.08 days. Over 30 days, 80% of the glyphosate was degraded. The contents of the glyphosate metabolite amino methyl phosphoric acid (AMPA), ranged from 0.103 mg kg-1 on day 1-0.098 mg kg-1 on day 30, not changing significantly over time. The Croot/solution, Cleaf/solution and Cleaf/root were used to express the absorption, transfer, and distribution of glyphosate in V. myuros. These results indicated that glyphosate entered into the root system through free diffusion, which was influenced by both the log Kow and the concentration of glyphosate in the nutrient solution, and that glyphosate was either easily transferred to the leaves through the transpiration stream, accumulated, or degraded. The degradation of glyphosate in V. myuros indicated that it has potential as a remediating plant for environmental restoration.
Collapse
Affiliation(s)
- Wanjun Gao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China; Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Yongzhi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Mengling Lin
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Junlin Mao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
10
|
Sun C, Shen X, Zhang Y, Song T, Xu L, Xiao J. Molecular Defensive Mechanism of Echinacea purpurea (L.) Moench against PAH Contaminations. Int J Mol Sci 2023; 24:11020. [PMID: 37446196 DOI: 10.3390/ijms241311020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The understanding of the molecular defensive mechanism of Echinacea purpurea (L.) Moench against polycyclic aromatic hydrocarbon (PAH) contamination plays a key role in the further improvement of phytoremediation efficiency. Here, the responses of E. purpurea to a defined mixture of phenanthrene (PHE) and pyrene (PYR) at different concentrations or a natural mixture from an oilfield site with a history of several decades were studied based on transcriptomics sequencing and widely targeted metabolomics approaches. The results showed that upon 60-day PAH exposure, the growth of E. purpurea in terms of biomass (p < 0.01) and leaf area per plant (p < 0.05) was negatively correlated with total PAH concentration and significantly reduced at high PAH level. The majority of genes were switched on and metabolites were accumulated after exposure to PHE + PYR, but a larger set of genes (3964) or metabolites (208) showed a response to a natural PAH mixture in E. purpurea. The expression of genes involved in the pathways, such as chlorophyll cycle and degradation, circadian rhythm, jasmonic acid signaling, and starch and sucrose metabolism, was remarkably regulated, enhancing the ability of E. purpurea to adapt to PAH exposure. Tightly associated with transcriptional regulation, metabolites mainly including sugars and secondary metabolites, especially those produced via the phenylpropanoid pathway, such as coumarins, flavonoids, and their derivatives, were increased to fortify the adaptation of E. purpurea to PAH contamination. These results suggest that E. purpurea has a positive defense mechanism against PAHs, which opens new avenues for the research of phytoremediation mechanism and improvement of phytoremediation efficiency via a mechanism-based strategy.
Collapse
Affiliation(s)
- Caixia Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xiangbo Shen
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yulan Zhang
- Liaoning Province Outstanding Innovation Team, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tianshu Song
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Lingjing Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Junyao Xiao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
11
|
Pradhan B, Bhuyan PP, Nayak R, Patra S, Behera C, Ki JS, Ragusa A, Lukatkin AS, Jena M. Microalgal Phycoremediation: A Glimpse into a Sustainable Environment. TOXICS 2022; 10:toxics10090525. [PMID: 36136490 PMCID: PMC9502476 DOI: 10.3390/toxics10090525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/28/2023]
Abstract
Microalgae are continually exposed to heavy metals and metalloids (HMMs), which stifles their development and reproduction due to the resulting physiological and metabolic abnormalities, leading to lower crop productivity. They must thus change their way of adapting to survive in such a hostile environment without sacrificing their healthy growth, development, reproductive capacity, or survival. The mode of adaptation involves a complex relationship of signalling cascades that govern gene expression at the transcriptional and post-transcriptional levels, which consequently produces altered but adapted biochemical and physiochemical parameters. Algae have been reported to have altered their physicochemical and molecular perspectives as a result of exposure to a variety of HMMs. Hence, in this review, we focused on how microalgae alter their physicochemical and molecular characteristics as a tolerance mechanism in response to HMM-induced stress. Furthermore, physiological and biotechnological methods can be used to enhance extracellular absorption and clean up. The introduction of foreign DNA into microalgae cells and the genetic alteration of genes can boost the bio-accumulation and remediation capabilities of microalgae. In this regard, microalgae represent an excellent model organism and could be used for HMM removal in the near future.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769001, Odisha, India
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Andrea Ragusa
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alexander S. Lukatkin
- Department of General Biology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 430005 Saransk, Russia
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| |
Collapse
|
12
|
The endophyte Stenotrophomonas maltophilia EPS modulates endogenous antioxidant defense in safflower (Carthamus tinctorius L.) under cadmium stress. Arch Microbiol 2022; 204:431. [PMID: 35759053 PMCID: PMC9237008 DOI: 10.1007/s00203-022-03049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) pollution in agricultural soils induces oxidative stress in plants that in turn is the foremost limiting factor for agricultural productivity. In past few decades, plant-metal-microbe interaction is of great interest as an emerging environmentally friendly technology that can be exploited to alleviate metal stress in plants. Considering these, in the present study an endophytic bacterium strain EPS has been isolated from the roots of common bean. The present strain was identified as Stenotrophomonas maltophilia based on 16S rRNA gene sequence. The strain showed Cd tolerance and Cd-adsorption potentials. The inoculation of strain EPS in safflower seeds significantly enhanced the antioxidant defense of plants under Cd-stress conditions through increasing the levels of antioxidant molecules like phenolics, flavonoids and carotenoids as well as improving the activities of the antioxidative enzymes including guaiacol peroxidase (POX), ascorbate peroxidase (APX) and superoxide dismutase (SOD). The output of this study is that strain EPS inoculation mitigates Cd-induced oxidative stress and consequently it may be beneficial, especially in Cd-contaminated crop fields.
Collapse
|
13
|
Karimi H, Mahdavi S, Asgari Lajayer B, Moghiseh E, Rajput VD, Minkina T, Astatkie T. Insights on the bioremediation technologies for pesticide-contaminated soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1329-1354. [PMID: 34476637 DOI: 10.1007/s10653-021-01081-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The fast pace of increasing human population has led to enhanced crop production, due to which a significant increase in the application of pesticides has been recorded worldwide. Following the enhancement in the utilization of pesticides, the degree of environmental pollution, particularly soil pollution, has increased. To address this challenge, different methods of controlling and eliminating such contaminants have been proposed. Various methods have been reported to eradicate or reduce the degree of contamination of pesticides in the soil. Several factors are crucial for soil contamination, including pH, temperature, the number, and type/nature of soil microorganisms. Among the accessible techniques, some of them respond better to contamination removal. One of these methods is bioremediation, and it is one of the ideal solutions for pollution reduction. In this innovative technique, microorganisms are utilized to decompose environmental pollutants or to curb pollution. This paper gives detailed insight into various strategies used for the reduction and removal of soil pollution.
Collapse
Affiliation(s)
- Hoda Karimi
- Environmental Science Department, Research Institute for Grapes and Raisin (RIGR), Malayer University, Malayer, Iran
| | - Shahriar Mahdavi
- Department of Soil Science, Faculty of Agriculture, Malayer University, Malayer, Iran
| | - Behnam Asgari Lajayer
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Moghiseh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, Russia, 344090
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, Russia, 344090
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
14
|
Abeywardhana DC, Adikaram NM, Kularatne RKA. Are mangrove forests reliable sinks of heavy metals due to phytoremediation and other mechanisms? A Sri Lankan perspective. MARINE POLLUTION BULLETIN 2022; 177:113453. [PMID: 35278907 DOI: 10.1016/j.marpolbul.2022.113453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
We present a viewpoint regarding the prospects in Sri Lanka (a tropical island nation) to depend on mangroves in the remediation of heavy metal laden coastal environments. Sri Lanka has a rich array of lagoons and estuaries (total extent of 1580.17 km2) with ideal brackish water habitats to allow mangrove proliferation and for more restoration works. Furthermore, our estimates of Total Potential Ecological Risk (PER < 150) indicate that ecological risk from metallic contamination of coastal sediments is low, which means mangrove ecosystems would be ideal natural treatment systems for such low polluting environments (but as final cum tertiary treatment systems only). Mangroves are neither metal hyperaccumulators nor good phytoremediators (no ability to take up more than 5000 mg/kg dry weight of a given metal or exhibit a bioconcentration factor ≥ 1000), which means not very effective for high polluting environments.
Collapse
Affiliation(s)
| | - Nayana Madurya Adikaram
- Department of Physical Sciences, Faculty of Applied Sciences, South Eastern University, Sri Lanka
| | - Ranil Kavindra Asela Kularatne
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora Campus, Australia; Faculty of Graduate Studies, University of Colombo, Sri Lanka.
| |
Collapse
|
15
|
Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. CHEMOSPHERE 2022; 289:133252. [PMID: 34902385 DOI: 10.1016/j.chemosphere.2021.133252] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology, as an emerging science, has taken over all fields of life including industries, health and medicine, environmental issues, agriculture, biotechnology etc. The use of nanostructure molecules has revolutionized all sectors. Environmental pollution is a great concern now a days, in all industrial and developing as well as some developed countries. A number of remedies are in practice to overcome this problem. The application of nanotechnology in the bioremediation of environmental pollutants is a step towards revolution. The use of various types of nanoparticles (TiO2 based NPs, dendrimers, Fe based NPs, Silica and carbon nanomaterials, Graphene based NPs, nanotubes, polymers, micelles, nanomembranes etc.) is in practice to diminish environmental hazards. For this many In-situ (bioventing, bioslurping, biosparging, phytoremediation, permeable reactive barrier etc.) and Ex-situ (biopile, windrows, bioreactors, land farming etc.) methodologies are employed. Improved properties like nanoscale size, less time utilization, high adaptability for In-situ and Ex-situ use, undeniable degree of surface-region to-volume proportion for possible reactivity, and protection from ecological elements make nanoparticles ideal for natural applications. There are distinctive nanomaterials and nanotools accessible to treat the pollutants. Each of these methods and nanotools depends on the properties of foreign substances and the pollution site. The current designed review highlights the techniques used for bioremediation of environmental pollutants as well as use of various nanoparticles along with proposed In-situ and Ex-situ bioremediation techniques.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazeelat Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Sciences, National Textile University Faisalabad, 37610, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
16
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Kaushal J, Mahajan P, Kaur N. A review on application of phytoremediation technique for eradication of synthetic dyes by using ornamental plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67970-67989. [PMID: 34636019 DOI: 10.1007/s11356-021-16672-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation emerges as an innovative and eco-friendly technique to remediate textile dyes with the use of various categories of plants. In recent years, ornamental plants emerge as more attractive and effective substitute in comparison to edible plants for phytoremediation. Regardless of aesthetic value, some ornamental plants can be grown to remediate the sites contaminated with dyes, heavy metals, pesticides, or other organic compounds. In this review, we focus on pioneer research on synthetic dye removal using ornamental plants and evaluate the phytoremediation capability of ornamental plants for treatment of textile effluent. This paper also emphasized specific ornamental plants having high accumulation and tolerance ability for removal of dyes. The mechanisms explored for the phytoremediation of dyes by ornamental plants have also been explained. This review will also be helpful for researchers for exploring more new ornamental plants in phytoremediation technique.
Collapse
Affiliation(s)
- Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Pooja Mahajan
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Navjeet Kaur
- Centre for Water Sciences, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
18
|
Beliaev DV, Tereshonok DV, Lunkova NF, Baranova EN, Osipova ES, Lisovskii SV, Raldugina GN, Kuznetsov VV. Expression of Cytochrome c3 from Desulfovibrio vulgaris in Plant Leaves Enhances Uranium Uptake and Tolerance of Tobacco. Int J Mol Sci 2021; 22:12622. [PMID: 34884428 PMCID: PMC8657950 DOI: 10.3390/ijms222312622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cytochrome c3 (uranyl reductase) from Desulfovibrio vulgaris can reduce uranium in bacterial cells and in cell-free systems. This gene was introduced in tobacco under control of the RbcS promoter, and the resulting transgenic plants accumulated uranium when grown on a uranyl ion containing medium. The uptaken uranium was detected by EM in chloroplasts. In the presence of uranyl ions in sublethal concentration, the transgenic plants grew phenotypically normal while the control plants' development was impaired. The data on uranium oxidation state in the transgenic plants and the possible uses of uranium hyperaccumulation by plants for environmental cleanup are discussed.
Collapse
Affiliation(s)
- Denis V. Beliaev
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.T.); (N.F.L.); (E.S.O.); (V.V.K.)
| | - Dmitry V. Tereshonok
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.T.); (N.F.L.); (E.S.O.); (V.V.K.)
| | - Nina F. Lunkova
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.T.); (N.F.L.); (E.S.O.); (V.V.K.)
| | - Ekaterina N. Baranova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia;
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Ekaterina S. Osipova
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.T.); (N.F.L.); (E.S.O.); (V.V.K.)
| | | | - Galina N. Raldugina
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.T.); (N.F.L.); (E.S.O.); (V.V.K.)
| | - Vladimir V. Kuznetsov
- K. A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.V.T.); (N.F.L.); (E.S.O.); (V.V.K.)
| |
Collapse
|
19
|
Albarano L, Zupo V, Guida M, Libralato G, Caramiello D, Ruocco N, Costantini M. PAHs and PCBs Affect Functionally Intercorrelated Genes in the Sea Urchin Paracentrotus lividus Embryos. Int J Mol Sci 2021; 22:ijms222212498. [PMID: 34830379 PMCID: PMC8619768 DOI: 10.3390/ijms222212498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, C. da Torre Spaccata, 87071 Amendolara, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Correspondence:
| |
Collapse
|
20
|
Liu H, Tang X, Xu X, Dai Y, Zhang X, Yang Y. Potential for phytoremediation of neonicotinoids by nine wetland plants. CHEMOSPHERE 2021; 283:131083. [PMID: 34182627 DOI: 10.1016/j.chemosphere.2021.131083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Broad-spectrum insecticides such as neonicotinoids tend to accumulate and detrimentally impact natural ecosystems. Accordingly, we aimed to assess the neonicotinoid phytoremediation abilities of nine wetland plant species commonly used in constructed wetland systems: Acorus calamus, Typha orientalis, Arundo donax, Thalia dealbata, Canna indica, Iris pseudacorus, Cyperus alternifolius, Cyperus papyrus and Juncus effusus. We assessed their removal of six neonicotinoids and explored the mechanisms responsible for the observed removal in a 28-day experiment. The planted systems effectively removed the neonicotinoids, with removal efficiencies of 9.5-99.9%. Compared with the other neonicotinoids, imidacloprid, thiacloprid and acetamiprid were most readily removed in the planted systems. C. alternifolius and C. papyrus exhibited the best removal performance for all six neonicotinoids. Based on our assessment of mass balance, the main removal processes were biodegradation and plant accumulation. Plants can enhance neonicotinoid removal through enhancing biodegradation. The differences in transport and accumulation behaviors may be related to plant species and physicochemical properties of neonicotinoids. Further research is merited on the toxicity of neonicotinoids to plants and microorganisms and the metabolic pathways by which neonicotinoids are broken down in wetland systems.
Collapse
Affiliation(s)
- Huanping Liu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaoyan Tang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Xiaomin Xu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yunv Dai
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaomeng Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
21
|
Re-vitalizing of endophytic microbes for soil health management and plant protection. 3 Biotech 2021; 11:399. [PMID: 34422540 DOI: 10.1007/s13205-021-02931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Soil health management and increase crop productivity are challenging issues for researchers and scientists. Many research publications have given multiple technological solutions for improving soil health and crop productivity but main problem is sustainability of those technologies under field condition and different agro-climatic zone. Due to the random industrialization, deforestation, mining and other environmental factor reduce soil fertility and human health. Many alternative options e.g., crop rotation, green manuring, integrated farming, biofertilizer (plant-growth-promoting microorganism, microbial consortium of rhizosphere soils), and vermicomposting are available for adapting and improving the soil heath and crop productivity by farmers. Recent trends of new research dimension for sustainable agriculture, endophytic microbes and its consortium is one of the better alternative for increasing crop productivity, soil health and fertility management. However, current trends are focuses on the endophytic microbes, which are present mostly in all plant species. Endophytic microbes are isolated from plant parts-root, shoot, leaf, flower and seeds which have very potential ability of plant growth promotion and bio-controlling agent for enhancing plant growth and development. Mostly plant endophytes showed multi-dimensional (synergistic, mutualistic, symbiotic etc.) interactions within the host plants. It promotes the plant growth, protects from pathogen, and induces resistance against biotic and abiotic environmental stresses, and improves the soil fertility. Till date, most of the scientific research has been done on assuming that interaction of plant endophytes with the host is similar like the plant-growth-promoting microorganism (PGPM). It would be very interesting to explore the functional properties of plant endophytes to modulate the essential gene expression during biotic and abiotic stresses. Endophytes have the ability to induce the soil fertility by improving soil essential nutrient, enzymatic activity and influence the other physiochemical property. In this study, we have discussed details about functional properties of plant endophytes and their mechanism for enhancing plant productivity and soil health and fertility management under climate-resilient agricultural practices. Our main objective is to promote and explore the beneficial plant endophytes for enhancing sustainable agricultural productivity.
Collapse
|
22
|
Ochieng WA, Xian L, Nasimiyu AT, Muthui SW, Ndirangu LN, Otieno DO, Wan T, Liu F. Exploring the ammonium detoxification mechanism of young and mature leaves of the macrophyte Potamogeton lucens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105879. [PMID: 34116338 DOI: 10.1016/j.aquatox.2021.105879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Toxicity in aquatic plants, caused by excess ammonium in the environment, is an important ecological problem and active research topic. Recent studies showed the importance of the enzyme Glutamate Dehydrogenase (GDH) in detoxifying ammonium. However, these results mainly derived from species comparisons, hence some mechanisms may have been obscured due to species differences. Our recent finding that young leaves of Potamogeton lucens were less sensitive to ammonium enrichment, than mature leaves allowed us to study ammonium detoxification within a species. We found that, unlike mature leaves, ammonium-tolerant young leaves of P. lucens could assimilate ammonium mainly through GDH. There was a 38% increase of NADH-dependent GDH in 50 mg/L ammonium concentration compared with 0.1 mg/L. Therefore, this study confirms the hypothesis that the GDH pathway plays a major role in the detoxification of ammonium in freshwater macrophytes.
Collapse
Affiliation(s)
- Wyckliffe Ayoma Ochieng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Ling Xian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China
| | - Annah Timinah Nasimiyu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Samuel Wamburu Muthui
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Leah Nyawira Ndirangu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Duncan Ochieng Otieno
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China.
| | - Fan Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
23
|
Braglia R, Rugnini L, Malizia S, Scuderi F, Redi EL, Canini A, Bruno L. Exploiting the Potential in Water Cleanup from Metals and Nutrients of Desmodesmus sp. and Ampelodesmos mauritanicus. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071461. [PMID: 34371664 PMCID: PMC8309229 DOI: 10.3390/plants10071461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Increasing levels of freshwater contaminants, mainly due to anthropogenic activities, have resulted in a great deal of interest in finding new eco-friendly, cost-effective and efficient methods for remediating polluted waters. The aim of this work was to assess the feasibility of using a green microalga Desmodesmus sp., a cyanobacterium Nostoc sp. and a hemicryptophyte Ampelodesmos mauritanicus to bioremediate a water polluted with an excess of nutrients (nitrogen and phosphorus) and heavy metals (copper and nickel). We immediately determined that Nostoc sp. was sensitive to metal toxicity, and thus Desmodesmus sp. was chosen for sequential tests with A. mauritanicus. First, A. mauritanicus plants were grown in the 'polluted' culture medium for seven days and were, then, substituted by Desmodesmus sp. for a further seven days (14 days in total). Heavy metals were shown to negatively affect both the growth rates and nutrient removal capacity. The sequential approach resulted in high metal removal rates in the single metal solutions up to 74% for Cu and 85% for Ni, while, in the bi-metal solutions, the removal rates were lower and showed a bias for Cu uptake. Single species controls showed better outcomes; however, further studies are necessary to investigate the behavior of new species.
Collapse
Affiliation(s)
- Roberto Braglia
- Botanic Gardens, Department Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (F.S.); (E.L.R.); (A.C.)
| | - Lorenza Rugnini
- Laboratory of Biology of Algae, Department Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (L.R.); (S.M.)
| | - Sara Malizia
- Laboratory of Biology of Algae, Department Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (L.R.); (S.M.)
| | - Francesco Scuderi
- Botanic Gardens, Department Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (F.S.); (E.L.R.); (A.C.)
| | - Enrico Luigi Redi
- Botanic Gardens, Department Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (F.S.); (E.L.R.); (A.C.)
| | - Antonella Canini
- Botanic Gardens, Department Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (R.B.); (F.S.); (E.L.R.); (A.C.)
| | - Laura Bruno
- Laboratory of Biology of Algae, Department Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (L.R.); (S.M.)
| |
Collapse
|
24
|
Urionabarrenetxea E, Garcia-Velasco N, Anza M, Artetxe U, Lacalle R, Garbisu C, Becerril T, Soto M. Application of in situ bioremediation strategies in soils amended with sewage sludges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144099. [PMID: 33421774 DOI: 10.1016/j.scitotenv.2020.144099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Increasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades. On one hand, classical physical and/or chemical technologies can be found which are efficient, but have high costs and impacts upon ecosystems. On the other hand, biological methods (such as phytoremediation, bioremediation and vermiremediation) are relatively cost effective and eco-friendly, but also more time-consuming. These biological methods and their yields have been widely studied but little is known about the interaction between different soil cleaning methods. The combination of different biological strategies could lead to an improvement in remediation performance. Hence, in the present work, different micro-, vermi- and phyto-remediation combinations are applied in a sewage sludge polluted landfill in Gernika-Lumo (Basque Country) which was used as a disposal point for decades, in search of the treatment (single) or combination (dual or triple) of treatments with best remediation yields. Eight experimental groups were applied (n=3) placing earthworms (E), bacteria (B), plants (P), bacteria+earthworms (B+E), bacteria+plants (B+P), plants+earthworms (P+E) plants+bacteria+earthworms (P+B+E) and a non-treated (N.T.) group in the experimental plot (Landfill 17), for 12 months. In order to assess the efficiency of each treatment, a complete characterization (chemical and ecotoxicological) was carried out before and after remediation. Results showed high removal rates for dieldrin (between 50% and 78%) in all the experimental groups. In contrast, removal rates around 20-25% were achieved for heavy metals (Cd 15%-35%; Ni 24%-37%; Pb 15%-33%; Cr 7%-39%) and benzo(a)pyrene (19.5%-28%). The highest reductions were observed in dual (P+E, B+E) and triple (P+B+E) treatments. The best elimination yields were obtained after P+B+E treatment, as highlighted by the battery of ecotoxicological tests and bioassays performed with earthworms, plants and bacteria.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Mikel Anza
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - Unai Artetxe
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Rafael Lacalle
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Carlos Garbisu
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - Txema Becerril
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| |
Collapse
|
25
|
Tomczyk B, Siatecka A, Bogusz A, Oleszczuk P. Ecotoxicological assessment of sewage sludge-derived biochars-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116484. [PMID: 33549892 DOI: 10.1016/j.envpol.2021.116484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The study aimed to evaluate the ecotoxicity of soil (S) amended with biochars (BCKN) produced by the thermal conversion of sewage sludge (SSL) at temperatures of 500 °C, 600 °C, or 700 °C and SSL itself. The ecotoxicological tests were carried out on organisms representing various trophic levels (Lepidium sativum in plant, Folsomia candida in invertebrates, and Aliivibrio fischeri in bacteria). Moreover, the study evaluated the effects of three plants (Lolium perenne, Trifolium repens, and Arabidopsis thaliana) growing on BCKN700-amended soil on its ecotoxicological properties. The experiment was carried out for six months. In most tests, the conversion of sewage sludge into biochar caused a significant decrease in toxicity by adding it to the soil. The pyrolysis temperature directly determined this effect. The soil amended with the biochars produced at higher temperatures (600 °C and 700 °C) generally exhibited lower toxicity to the test organisms than the SSL. Because of aging, all the biochars lost their inhibition properties against the tested organisms in the solid-phase tests and had a stimulating influence on the reproductive ability of F. candida. With time, the fertilizing effect of the BCKN700 amended soil also increased. The aged biochars also did not have an inhibitory effect on A. fischeri luminescence in the leachate tests. The study has also demonstrated that the cultivation of an appropriate plant species may additionally reduce the toxicity of soil fertilized with biochar. The obtained results show that the conversion of sewage sludge to biochar carried out at an appropriate temperature can become a useful method in reducing the toxicity of the waste and while being safe for agricultural purposes.
Collapse
Affiliation(s)
- Beata Tomczyk
- Department of Ecotoxicology, Institute of Environmental Protection, National Research Institute, Krucza 5/11D St., 00-548, Warsaw, Poland
| | - Anna Siatecka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection, National Research Institute, Krucza 5/11D St., 00-548, Warsaw, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
| |
Collapse
|
26
|
Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111887. [PMID: 33450535 DOI: 10.1016/j.ecoenv.2020.111887] [Citation(s) in RCA: 501] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) is an unessential trace element in plants that is ubiquitous in the environment. Anthropogenic activities such as disposal of urban refuse, smelting, mining, metal manufacturing, and application of synthetic phosphate fertilizers enhance the concentration of Cd in the environment and are carcinogenic to human health. In this manuscript, we reviewed the sources of Cd contamination to the environment, soil factors affecting the Cd uptake, the dynamics of Cd in the soil rhizosphere, uptake mechanisms, translocation, and toxicity of Cd in plants. In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water, increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and physiology. In addition, the defense mechanism in plants against Cd toxicity and potential remediation strategies, including the use of biochar, minerals nutrients, compost, organic manure, growth regulators, and hormones, and application of phytoremediation, bioremediation, and chemical methods are also highlighted in this review. This manuscript may help to determine the ecological importance of Cd stress in interdisciplinary studies and essential remediation strategies to overcome the contamination of Cd in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Renzhi Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ma Wenjun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
27
|
Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Lam SS, Sonne C. A review on phytoremediation of contaminants in air, water and soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123658. [PMID: 33264867 DOI: 10.1016/j.jhazmat.2020.123658] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 05/19/2023]
Abstract
There is a global need to use plants to restore the ecological environment. There is no systematic review of phytoremediation mechanisms and the parameters for environmental pollution. Here, we review this situation and describe the purification rate of different plants for different pollutants, as well as methods to improve the purification rate of plants. This is needed to promote the use of plants to restore the ecosystems and the environment. We found that plants mainly use their own metabolism including the interaction with microorganisms to repair their ecological environment. In the process of remediation, the purification factors of plants are affected by many conditions such as light intensity, stomatal conductance, temperature and microbial species. In addition the efficiency of phytoremediation is depending on the plants species-specific metabolism including air absorption and photosynthesis, diversity of soil microorganisms and heavy metal uptake. Although the use of nanomaterials and compost promote the restoration of plants to the environment, a high dose may have negative impacts on the plants. In order to improve the practicability of the phytoremediation on environmental restoration, further research is needed to study the effects of different kinds of catalysts on the efficiency of phytoremediation. Thus, the present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.
Collapse
Affiliation(s)
- Zihan Wei
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Han Yang
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
28
|
Lachapelle A, Yavari S, Pitre FE, Courchesne F, Brisson J. Co-planting of Salix interior and Trifolium pratense for phytoremediation of trace elements from wood preservative contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:632-640. [PMID: 33222513 DOI: 10.1080/15226514.2020.1847034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoextraction potential of a co-planting system was evaluated using a shrub and an herbaceous species and compared with monocultures. A greenhouse experiment with Salix interior and Trifolium pratense grown in combination or alone was conducted for 120 days in soil either uncontaminated or contaminated with wood preservatives containing mixed chromated copper arsenate and pentachlorophenol (PCP). The results showed that the plant species produced similar amounts of dry biomass per pot in monoculture and co-planting, whether growing in contaminated or uncontaminated soil. Arsenic (As), chromium (Cr) and copper (Cu) concentrations in root tissue of S. interior increased 8.6%, 65.9% and 4.5%, respectively, in co-planting compared to its monoculture. T. pratense had superior concentration of As (14% higher) in root tissue when co-planted. However, the higher trace elements concentrations in the plant tissues did not translate into measurable differences in total trace element removal per pot, except for As. The bioconcentration factor for Cu and As was high in the belowground portions of the plants in co-planting. PCP levels in the soil decreased to values near the limit of detection in all treatments. These results suggest that co-planting S. interior with T. pratense could lead to higher phytoextraction potential than monoculture.
Collapse
Affiliation(s)
- Anne Lachapelle
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Sara Yavari
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Frédéric E Pitre
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | | | - Jacques Brisson
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| |
Collapse
|
29
|
Functional Gene Diversity of Selected Indigenous Hydrocarbon-Degrading Bacteria in Aged Crude Oil. Int J Microbiol 2020; 2020:2141209. [PMID: 32802067 PMCID: PMC7414327 DOI: 10.1155/2020/2141209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/02/2020] [Indexed: 12/05/2022] Open
Abstract
Crude oil pollution has consistently deteriorated all environmental compartments through the cycle of activities of the oil and gas industries. However, there is a growing need to identify microbes with catabolic potentials to degrade these pollutants. This research was conducted to identify bacteria with functional degradative genes. A crude oil-polluted soil sample was obtained from an aged spill site at Imo River, Ebubu, Komkom community, Nigeria. Bacteria isolates were obtained and screened for hydrocarbon degradation potential by turbidometry assay. Plasmid and chromosomal DNA of the potential degraders were further screened for the presence of selected catabolic genes (C230, Alma, Alkb, nahAC, and PAHRHD(GP)) and identified by molecular typing. Sixteen (16) out of the fifty (50) isolates obtained showed biodegradation activity in a liquid broth medium at varying levels. Bacillus cereus showed highest potential for this assay with an optical density of 2.450 @ 600 nm wavelength. Diverse catabolic genes resident in plasmids and chromosomes of the isolates and, in some cases, both plasmid and chromosomes of the same organism were observed. The C230 gene was resident in >50% of the microbial population tested, while other genes occurred in lower proportions with the least observed in nahAC and PAHRHD. These organisms can serve as potential bioremediation agents.
Collapse
|
30
|
Sharma P, Tripathi S, Chandra R. Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon 2020; 6:e04559. [PMID: 32760841 PMCID: PMC7393463 DOI: 10.1016/j.heliyon.2020.e04559] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
The present manuscript has focused on the heavy metal; accumulation potential by common native plants i.e. Chenopodium album L., Ricinus communis, Ranunculus sceleratus, and Rumex dentatus growing on the disposed of pulp and paper mill effluent sludge. The sludge showed the abundance of benzene propanoic acid tert- butyldimethylsilyl ester, Octadecanoic acid, TMS, Hexadecanoic acid, TMS, cinnamic acid-α-phenyl-TMS ester, β-sitosterol TMS, 4-mercaptobenzoic acid as residual complex organic compounds along with heavy metals Fe (98.30 mg/L-1), Zn (51.00 mg/L-1), Cu (3.21 mg/L-1), Cd (9.11 mg/L-1), Mn (18.27 mg/L-1), Ni (5.21 mg/L-1), (Hg 0.014 mg/L-1) which were above the prescribed limit of environmental standard. The complexation of organic compounds with heavy metal restricts the bioavailability of metals to plants. But the metal analysis in various parts of the plant showed a significant amount of metal accumulation. Further, histological observations of root tissue through TEM showed apparent deposition of metal granules near the cell wall and vacuole as adoption features of plants. But the variable concentration of metal accumulation in different parts by various plants indicated the variable potential of tested plants with various metals. This also indicated their metal bio-availability and movement to plant tissue. Further, their bioconcentration factor (BCF) and translocation factor (TF) > 1.0 indicated the hyperaccumulation tendency of plants Mn was accumulated maximum in leaves C. album (69.38 mg/kg-1) followed by Cu (25.75 mg/kg -1), As (23.20 mg/kg -1), Fe (20.90 mg/kg -1) and Pb was maximum accumulated (22.41 mg/kg -1) in R. cummunis leaves. The result revealed that arsenic has been accumulated in higher amount root, shoot and leaves of all tested plants. The metal accumulator plants showed phytoremediation potential also by reducing various pollution parameters after growth on sludge. These potential plants may be used as biotechnological tools for the eco-restoration of polluted sites.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
31
|
Recent developments in environmental mercury bioremediation and its toxicity: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heavy metals accumulation from industrial wastewater even at low concentrations can cause long term cumulative health effects. To overcome this problem, phytoremediation is an alternative method to treat industrial wastewater. In this study, Ipomoea aquatica and Centella asiatica were used as phytoremediation plants for removing aluminum (Al) and iron (Fe) from industrial wastewater. The results showed that the regression value (R2) for all metal concentrations (mg/L) over treatment day is positive and similar to R2 = 1. This result indicated that the metal concentration exhibits a good relationship for reflecting the decrease in the metal concentration with the proportion of treatment day. It was found that I. aquatica accumulates higher Al and Fe contents than C. asiatica. The translocation factor of both plants was found to be greater than 1, implying that both plants can accumulate and extract heavy metals from industrial wastewater.
Collapse
|
33
|
Luo H, Wang Q, Liu Z, Wang S, Long A, Yang Y. Potential bioremediation effects of seaweed Gracilaria lemaneiformis on heavy metals in coastal sediment from a typical mariculture zone. CHEMOSPHERE 2020; 245:125636. [PMID: 31869668 DOI: 10.1016/j.chemosphere.2019.125636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Seaweeds are good bio-monitors of heavy metals pollution in coastal seawater. In the present study, the potential bioremediation effects of cultivated Gracilaria lemaneiformis on heavy metals in Nan'ao coastal sediment from a typical mariculture zone, South China were evaluated. Sediment samples were collected from five different zones (Gracilaria cultivation zone, G; Fish culture zone, F; Shellfish culture zone, S; Transition zone, T; Control zone, C) from December 2014 to July 2015. The concentrations of Cd, Pb, Cu, and Zn in the sediments were significantly different among the various types of mariculture areas. The concentrations varied widely: Cd (0.04-1.02) μg g-1; Cu (1.19-37.70) μg g-1; Pb (8.45-74.45) μg g-1; Zn (36.80-201.24) μg g-1. The lowest heavy metal concentrations in the sediment were occurred at Gracilaria cultivation zone, while higher concentrations occurred at control zones and fish culture zones. The pollution load index, principal components and cluster analysis showed that heavy metal concentrations were the highest at fish culture zone, while the concentrations were the lowest at Gracilaria cultivation zone, and Gracilaria cultivation affects the heavy metals in the sediments. Gracilaria had strong adsorption capacities for heavy metals from seawater, showing the highest heavy metal Bioconcentration Factors in May (higher seaweed biomass period). Consequently, the results suggested that Gracilaria cultivation influences the heavy metal concentrations in sediments from the typical coastal mariculture zone. Gracilaria cultivation has the potential to bioremediate heavy metals in the coastal sediments. Therefore, Gracilaria cultivation can add environmental advantages and ecological values to coastal mariculture zones.
Collapse
Affiliation(s)
- Hongtian Luo
- Institute of Hydrobiology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Qing Wang
- Institute of Hydrobiology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| | - Zhiwei Liu
- Institute of Hydrobiology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Shuangyao Wang
- Institute of Hydrobiology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Aimin Long
- State Key Laboratory of Tropic Ocean Environment (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; School of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yufeng Yang
- Institute of Hydrobiology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
34
|
Albarano L, Costantini M, Zupo V, Lofrano G, Guida M, Libralato G. Marine sediment toxicity: A focus on micro- and mesocosms towards remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134837. [PMID: 31791766 DOI: 10.1016/j.scitotenv.2019.134837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Micro- and/or mesocosms are experimental tools bringing ecologically relevant components of the natural environment under controlled conditions closest to the real world, without losing the advantage of reliable reference conditions and replications, providing a link between laboratory studies and filed studies in natural environments. Here, for the first time, a formal comparison of different types of mesocosm applied to the study of marine contaminants is offered, considering that pollution of coastal areas represented a major concern in the last decades because of the abundance of discharged toxic substances. In particular, the structural characteristics of micro- and mesocosms (m-cosms) used to study marine contaminated sediments were reviewed, focusing on their advantages/disadvantages. Their potentiality to investigate sediment remediation have been discussed, offering new perspective on how the use of m-cosms can be useful for the development of practical application in the development of solutions for contaminated sediment management in the contaminated marine environment.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Napoli, Italy
| |
Collapse
|
35
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|
36
|
Eze MO, George SC. Ethanol-blended petroleum fuels: implications of co-solvency for phytotechnologies. RSC Adv 2020; 10:6473-6481. [PMID: 35496013 PMCID: PMC9049632 DOI: 10.1039/c9ra10919f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/03/2020] [Indexed: 11/25/2022] Open
Abstract
In recent decades, there has been increasing interest in the use of ethanol-blended fuels as alternatives to unblended fossil fuels. These initiatives are targeted at combating CO2 and particulate matter emissions, as these oxygenates leave behind a lesser carbon footprint. Noble as it may appear, this innovation is not without attendant ugly consequences. One major implication is the effect of co-solvency on the applicability of various forms of phytotechnologies for contaminant removal. By means of gas chromatography-mass spectrometry, this research investigated the effect of diesel fuel ethanol addition on the leaching potentials of petroleum hydrocarbons. Since phytoremediation of hydrocarbons depends largely on rhizodegradation of contaminants by the root-associated microbiome, the leaching of petroleum hydrocarbons beyond the rooting zones of plants may limit the effectiveness of this process as a reclamation strategy for ethanol-blended fuel spills. The analyses presented in this paper highlight the need for energy scientists to carefully consider the environmental impacts of ethanol-blended innovations holistically.
Collapse
Affiliation(s)
- Michael O Eze
- Department of Earth and Environmental Sciences, MQ Marine Research Centre, Macquarie University Sydney NSW 2109 Australia
| | - Simon C George
- Department of Earth and Environmental Sciences, MQ Marine Research Centre, Macquarie University Sydney NSW 2109 Australia
| |
Collapse
|
37
|
Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. Lead Toxicity in Cereals: Mechanistic Insight Into Toxicity, Mode of Action, and Management. FRONTIERS IN PLANT SCIENCE 2020; 11:587785. [PMID: 33633751 PMCID: PMC7901902 DOI: 10.3389/fpls.2020.587785] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/21/2020] [Indexed: 05/04/2023]
Abstract
Cereals are the major contributors to global food supply, accounting for more than half of the total human calorie requirements. Sustainable availability of quality cereal grains is an important step to address the high-priority issue of food security. High concentrations of heavy metals specifically lead (Pb) in the soil negatively affect biochemical and physiological processes regulating grain quality in cereals. The dietary intake of Pb more than desirable quantity via food chain is a major concern for humans, as it can predispose individuals to chronic health issues. In plant systems, high Pb concentrations can disrupt several key metabolic processes such as electron transport chain, cellular organelles integrity, membrane stability index, PSII connectivity, mineral metabolism, oxygen-evolving complex, and enzymatic activity. Plant growth-promoting rhizobacteria (PGPR) has been recommended as an inexpensive strategy for remediating Pb-contaminated soils. A diverse group of Ascomycetes fungi, i.e., dark septate endophytes is successfully used for this purpose. A symbiotic relationship between endophytes and host cereal induces Pb tolerance by immobilizing Pb ions. Molecular and cellular modifications in plants under Pb-stressed environments are explained by transcription factor families such as bZIP, ERF, and GARP as a regulator. The role of metal tolerance protein (MTP), natural resistance-associated macrophage protein (NRAMP), and heavy metal ATPase in decreasing Pb toxicity is well known. In the present review, we provided the contemporary synthesis of existing data regarding the effects of Pb toxicity on morpho-physiological and biochemical responses of major cereal crops. We also highlighted the mechanism/s of Pb uptake and translocation in plants, critically discussed the possible management strategies and way forward to overcome the menace of Pb toxicity in cereals.
Collapse
Affiliation(s)
- Muhammad Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sheraz
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Zaid Ulhassan
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, University of Queensland, Brisbane, QLD, Australia
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Rafaqat Ali Gill
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and GeneticImprovement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
- *Correspondence: Rafaqat Ali Gill, ;
| |
Collapse
|
38
|
Borowik A, Wyszkowska J, Kucharski M, Kucharski J. Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2474. [PMID: 31336741 PMCID: PMC6678237 DOI: 10.3390/ijerph16142474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Grass Elymus elongatus has a potential in phytoremediation and was used in this study in a potted experiment, which was performed to determine the effect of polluting soil (Eutric Cambisol) with diesel oil (DO) and unleaded petroleum (P) on the diversity of soil microorganisms, activity of soil enzymes, physicochemical properties of soil, and on the resistance of Elymus elongatus to DO and P, which altogether allowed evaluating soil health. Both petroleum products were administered in doses of 0 and 7 cm3 kg-1 soil d.m. Vegetation of Elymus elongatus spanned for 105 days. Grasses were harvested three times, i.e., on day 45, 75, and 105 of the experiment. The study results demonstrated a stronger toxic effect of DO than of P on the growth and development of Elymus elongatus. Diesel oil caused greater changes in soil microbiome compared to unleaded petroleum. This hypothesis was additionally confirmed by Shannon and Simpson indices computed based on operational taxonomic unit (OTU) abundance, whose values were the lowest in the DO-polluted soil. Soil pollution with DO reduced the counts of all bacterial taxa and stimulated the activity of soil enzymes, whereas soil pollution with P diminished the diversity of bacteria only at the phylum, class, order, and family levels, but significantly suppressed the enzymatic activity. More polycyclic aromatic hydrocarbons (PAHs) were degraded in the soil polluted with P compared to DO, which may be attributed to the stimulating effect of Elymus elongatus on this process, as it grew better in the soil polluted with P than in that polluted with DO.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland.
| | - Mirosław Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| |
Collapse
|
39
|
Hussain I, Puschenreiter M, Gerhard S, Sani SGAS, Khan WUD, Reichenauer TG. Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18451-18464. [PMID: 31044381 PMCID: PMC6570674 DOI: 10.1007/s11356-019-04819-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/07/2019] [Indexed: 05/05/2023]
Abstract
Petroleum contamination and its remediation via plant-based solutions have got increasing attention by environmental scientists and engineers. In the current study, the physiological and growth responses of two diesel-tolerant plant species (tolerance limit: 1500-2000 mg/kg), Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus), have been investigated in vegetable oil- and diesel oil-amended soils. A long-term (147-day) greenhouse pot experiment was conducted to differentiate the main focus of the study: physical and chemical effects of oil (vegetable and diesel) in freshly spiked soils via evaluating the plant performance and hydrocarbon degradation. Moreover, plant performance was evaluated in terms of seed germination, plant shoot biomass, physiological parameters, and root biomass. Addition of both diesel oil and vegetable oil in freshly spiked soils showed deleterious effects on seedling emergence, root/shoot biomass, and chlorophyll content of grass and legume plants. Italian ryegrass showed more sensitivity in terms of germination rate to both vegetable and diesel oil as compared to non-contaminated soils while Birdsfoot trefoil reduced the germination rate only in diesel oil-impacted soils. The results of the current study suggest that both physical and chemical effects of oil pose negative effects of plant growth and root development. This observation may explain the phenomenon of reduced plant growth in aged/weathered contaminated soils during rhizoremediation experiments.
Collapse
Affiliation(s)
- Imran Hussain
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
- Department of Molecular Systems Biology, Faculty of Life sciences, University of Vienna, Vienna, Austria.
- Department of Natural Resources and Environmental Engineering, Bioenergy and Environmental Remediation Lab (BERL), Hanyang, South Korea.
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 24, A-3430, Tulln, Austria
| | - Soja Gerhard
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria
| | | | - Waqas-Us-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
| |
Collapse
|
40
|
Elshamy MM, Heikal YM, Bonanomi G. Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia District, Egypt. CHEMOSPHERE 2019; 225:678-687. [PMID: 30903843 DOI: 10.1016/j.chemosphere.2019.03.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Phytoremediation is an economic process through exploitation of plants capacity to accumulate heavy metals in polluted habitats by their harvestable parts. In the present investigation, Portulaca oleracea was examined to estimate its role in the accumulation of Mn(II), Cu(II), Zn(II), Fe(III) and Pb(II) ions and recognize its persistence against the industrial effluent toxicity from different farmlands located beside these regions (S1:S9) in Dakahlia district, Egypt. The most recorded associate plants were; Amaranthus viridus, Malva parviflora, Chenopodium murale and Echinochloa colonum, which have high potentiality of heavy metals (HM) accumulation. The phytoremediation efficiency (bioconcentration factor (BCF), bioaccumulation factor (BF), translocation factor (TF), enrichment coefficient of shoot (ECS) and element accumulation index (EAI)) of P. oleracea were calculated. Considering the results, S7 showed the highest BCF value for Cu(II), 7.40; Fe(III), 2.06; and Zn(II), 4.33, while Mn(II), 2.06 at S1 and Pb(II), 3.89 at S3. BF and TF values were less than unity 1.0 for most of the sites. However, ECS values showed small variations among the investigated HM at the nine sites. EAI values were higher in shoots out of all the sites except S2 > EAI of roots of the same sites. Also, there was positive correlation between the soil HM concentrations in most sites. Moreover, total protein was estimated quantitatively and qualitatively. The protein profile showed 16 bands of molecular weight ranged from 30.9 to 240.6 KDa. Finally, P. oleracea can be used for decontamination of soils with heavy metals due to the high ecological amplitude and phytoremediation characteristics.
Collapse
Affiliation(s)
- Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici (NA), Italy
| |
Collapse
|
41
|
Turcios AE, Papenbrock J. Enzymatic degradation of the antibiotic sulfamethazine by using crude extracts of different halophytic plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1104-1111. [PMID: 31037959 DOI: 10.1080/15226514.2019.1606782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The biodegradation of the antibiotic sulfamethazine (SMT) by using different crude extracts of halophytes was investigated. For this purpose, crude water extracts of the halophytes Chenopodium quinoa, Sesuvium portulacastrum, and Tripolium pannonicum were prepared. Different amounts of SMT were added to the different extracts (final concentration of 1, 2, and 5 mg L-1) and incubated at 37 °C. Crude extracts of T. pannonicum were further used to evaluate the degradation rate over time. In order to evaluate the influence of endophytic or naturally plant-associated microorganisms on the biodegradation of SMT, extracts from plants grown in sterile and non-sterile conditions were compared. SMT was analyzed by liquid chromatography coupled to positive ion electrospray mass spectrometry (ESI LC-MS). Based on the findings, crude extracts of T. pannonicum have a high potential to biodegrade SMT with a decrease up to 85.4% (4.27 ± 0.10 mg L-1) from an initial concentration of 5 mg L-1. The lowest activity was obtained using extracts of C. quinoa with degradation of 4.5%. Extracts of plants cultivated under sterile and non-sterile conditions do not have any significant difference in SMT degradation. Therefore, microorganisms and their enzymatic activities do not seem to play a significant role during this process.
Collapse
Affiliation(s)
- Ariel E Turcios
- Institute of Botany, Leibniz University Hannover , Hannover , Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover , Hannover , Germany
| |
Collapse
|
42
|
Cai C, Zhao M, Yu Z, Rong H, Zhang C. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:205-217. [PMID: 30690355 DOI: 10.1016/j.scitotenv.2019.01.180] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 05/09/2023]
Abstract
Heavy metal(loid)s are toxic and non-biodegradable environmental pollutants. The contamination of sediments with heavy metal(loid)s has attracted increasing attention due to the negative environmental effects of heavy metal(loid)s and the development of new remediation techniques for metal(loid) contaminated sediments. As a result of rapid nanotechnology development, nanomaterials are also being increasingly utilized for the remediation of contaminated sediments due to their excellent capacity of immobilizing/adsorbing metal(loid) ions. This review summarizes recent studies that have used various nanomaterials such as nanoscale zero-valent iron (nZVI), stabilizer-modified nZVI, nano apatite based-materials including nano-hydroxyapatite particles (nHAp) and stabilized nano-chlorapatite (nCLAP), carbon nanotubes (CNTs), and titanium dioxide nanoparticles (TiO2 NPs) for the remediation of heavy metal(loid) contaminated sediments. We also review the analysis of potential mechanisms involved in the interaction of nanomaterials with metal(loid) ions. Subsequently, we discuss the factors affecting the nanoparticle-heavy metal(loid)s interaction, the environmental impacts resulting from the application of nanomaterials, the knowledge gaps, and potential future research.
Collapse
Affiliation(s)
- Caiyuan Cai
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chaosheng Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
43
|
Shi W, Zhang Y, Chen S, Polle A, Rennenberg H, Luo ZB. Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. PLANT, CELL & ENVIRONMENT 2019; 42:1087-1103. [PMID: 30375657 DOI: 10.1111/pce.13471] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Uptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto- and/or arbuscular-mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal-induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM-contaminated soils.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Forest Botany and Tree Physiology, University of Goettingen, 37077, Göttingen, Germany
| | - Heinz Rennenberg
- Institute for Forest Sciences, University of Freiburg, 79110, Freiburg, Germany
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
44
|
Zhang M, Zhang Y, Tang L, Zeng G, Wang J, Zhu Y, Feng C, Deng Y, He W. Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation. J Colloid Interface Sci 2019; 539:654-664. [DOI: 10.1016/j.jcis.2018.12.112] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023]
|
45
|
Jalali M, Hemati Matin N. Nutritional status and risks of potentially toxic elements in some paddy soils and rice tissues. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:111-119. [PMID: 30656946 DOI: 10.1080/15226514.2018.1474436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This experiment was conducted to investigate the potential risk of toxic elements in paddy soils and rice straws, bran, and husked grains in Kuchesfahan, Gilan, Iran. The average content of total and DTPA-extractable of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 7.0, 26.3, 20728.8, 1516.7, 43.8, 16.6, and 211.8 mg kg-1, and 0.32, 14.1, 97.3, 63.4, 1.7, 4.8, and 56.2 mg kg-1, respectively. In addition, the average content of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in rice grain was 0.16, 2.4, 135.5, 34.1, 2.0, 0.6, and 15.0 mg kg-1, respectively. The average transfer factor for Cd, Cu, Fe, Mn, Ni, Pb, and Zn from soil to straw was 0.38, 0.16, 0.004, 0.13, 0.3, 0.04, and 0.09, respectively. The average values of estimated daily intake for Cd, Cu, Fe, Mn, Ni, Pb, and Zn through rice consumption for adult are respectively, estimated to be 0.0004, 0.005, 0.32, 0.08, 0.005, 0.0015, and 0.035 mg kg-1 body weight per day. There was no health risk index (HRI) values for adult greater than 1 (except three samples for Fe, and one sample for Mn and Cd); indicated that intake of single metal through the consumption of rice was safe. The average of heath index (HI) value for rice consumption was 0.33 and 0.35 for adult and children, respectively. Therefore, combination of several potentially toxic elements may not cause risk to local residents. Spatial distributions of HRI were obtained for potentially toxic metals in husked grains.
Collapse
Affiliation(s)
- Mohsen Jalali
- a Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| | - Narges Hemati Matin
- a Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran
| |
Collapse
|
46
|
Shang N, Ding M, Dai M, Si H, Li S, Zhao G. Biodegradation of malachite green by an endophytic bacterium Klebsiella aerogenes S27 involving a novel oxidoreductase. Appl Microbiol Biotechnol 2019; 103:2141-2153. [DOI: 10.1007/s00253-018-09583-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
|
47
|
Pandey J, Verma RK, Singh S. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:405-418. [PMID: 30656974 DOI: 10.1080/15226514.2018.1540546] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review briefly elucidates the research undertaken and benefits of using aromatic plants for remediation of heavy metal polluted sites. A sustainable approach to mitigate heavy metal contamination of environment is need of the hour. Phytoremediation has emerged to be one of the most preferable choices for combating the metal pollution problem. Aromatic plants can be used for remediation of contaminated sites as they are non-food crops thus minimizing the risk of food chain contamination. Most promising aromatic plants for phytoremediation of heavy metal contaminated sites have been identified from families - Poaceae, Lamiaceae, Asteraceae, and Geraniaceae. They act as potential phytostabilisers, hyper accumulators, bio-monitors, and facultative metallophytes. Being high value economic crops, monetary benefits can be obtained by growing them in tainted areas instead of food crops. It has been observed that heavy metal stress enhances the essential oil percentage of certain aromatic crops. Research conducted on some major aromatic plants in this context has been highlighted in the present review which suggests that aromatic plants hold a great potential for phytoremediation. It has been reported that essential oil from aromatic crops is not contaminated by heavy metals significantly. Thus, aromatic plants are emerging as an ideal candidate for phytoremediation. Highlights • Aromatic plants hold a great potential for phytoremediation of heavy metal contaminated sites. • Being high value economic crops, monetary benefits can be obtained by growing them in contaminated areas instead of food crops. • Research done on some major aromatic plants in this context has been highlighted in the present review.
Collapse
Affiliation(s)
- Janhvi Pandey
- a Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India
- b Division of Agronomy and Soil Science , CSIR-Central Institute of Medicinal and Aromatic Plants (Council of Scientific and Industrial Research) PO-CIMAP , Lucknow , Uttar Pradesh , India
| | - Rajesh Kumar Verma
- b Division of Agronomy and Soil Science , CSIR-Central Institute of Medicinal and Aromatic Plants (Council of Scientific and Industrial Research) PO-CIMAP , Lucknow , Uttar Pradesh , India
| | - Saudan Singh
- b Division of Agronomy and Soil Science , CSIR-Central Institute of Medicinal and Aromatic Plants (Council of Scientific and Industrial Research) PO-CIMAP , Lucknow , Uttar Pradesh , India
| |
Collapse
|
48
|
Almehdi A, El-Keblawy A, Shehadi I, El-Naggar M, Saadoun I, Mosa KA, Abhilash PC. Old leaves accumulate more heavy metals than other parts of the desert shrub Calotropis procera at a traffic-polluted site as assessed by two analytical techniques. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1254-1262. [PMID: 31134813 DOI: 10.1080/15226514.2019.1619164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calotropis procera is a perennial big shrub that has the potential to accumulate high concentrations of heavy metals. Metal sequestration in old organs has been considered as a mechanism for plant survival in polluted soils. The aim of the present study was to assess the role of the old leaves as a sink for HMs accumulation in C. procera. Two instruments were used: atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) microscopy. Soil and plant samples were collected from around one of the worst congested traffic areas in the United Arab Emirates (UAE). Samples from roots, stem, and green and old leaves were prepared and analyzed by both instruments. Calotropis procera was able to concentrate Fe, Mn, Sr, and Zn in the roots, but their translocation to stem and green leaves was low. Old leaves had greater ability to accumulate significantly higher concentrations of different metals, especially Fe and Sr, than other parts of the plants, indicating that C. procera uses these metabolically less-active leaves as sinks for heavy metals. Fe and Sr attained higher bioconcentration and accumulation values, compared to Zn and Mn. There were significant positive correlations between XRF and AAS for all elements in the different organs.
Collapse
Affiliation(s)
- Ahmed Almehdi
- Department of Chemistry, College of Sciences, University of Sharjah , Sharjah , UAE
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah , Sharjah , UAE
| | - Ihsan Shehadi
- Department of Chemistry, College of Sciences, University of Sharjah , Sharjah , UAE
| | - Mohamed El-Naggar
- Department of Chemistry, College of Sciences, University of Sharjah , Sharjah , UAE
| | - Ismail Saadoun
- Department of Applied Biology, College of Sciences, University of Sharjah , Sharjah , UAE
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah , Sharjah , UAE
| | | |
Collapse
|
49
|
Role of Phytoremediation in Reducing Cadmium Toxicity in Soil and Water. J Toxicol 2018; 2018:4864365. [PMID: 30425738 PMCID: PMC6218723 DOI: 10.1155/2018/4864365] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/05/2022] Open
Abstract
Heavy metals are a noxious form of pollutants present in soil and water. A new plant-based solar energy driven technology, phytoremediation, emerges as eco-friendly and cost-effective approach to remove heavy metal from various media with the help of hyperaccumulating plant species. This review paper aims to provide information on phytoremediation and its mechanisms for heavy metal removal especially to focus on Cadmium (Cd) metal and highlights the role of various hyperaccumulating plants for Cd metal remediation in soil and water. It complies various field case studies which play the important role in understanding the Cd removal through various plants. Additionally, it pinpoints several sources and the effects of Cd and other technologies used for Cd remediation. This paper provides the recent development in mechanisms of Cd hyperaccumulation by different plants, in order to motivate further research in this field.
Collapse
|
50
|
Sharma V, Pant D. Biocompatible metal decontamination from soil using Ageratum conyzoides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22294-22307. [PMID: 29808403 DOI: 10.1007/s11356-018-2343-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Metal pollution in soil is a serious problem among waste landfill sites and associated environment all over the globe. Amelioration of contaminated soil by plant bioaccumulation is an important strategy to protect the soil environment. Ageratum conyzoides is a common weed species that can grow easily in any contaminating site and bioaccumulate heavy metals present in the e-waste dumping/recycling sites as a natural scavenger. Soil selected for the study was contaminated with waste cathode ray tube (CRT) and printed circuit board (PCB) powder in the concentration range of 1-10 g/kg. Soil decontamination was achieved by using weed plants with ethylene diamine tetraacetic acid (EDTA, 0.1 g/kg) and kinetin (100 μM) combination in pot experiments. Fe, Mn, Zn, and Cu accumulation was found to be highest in leaves (6.51-38.58; 0.14-73.12; 5.24-269.07; 9.38-116.59%); Pb and Cr in stem (22.83-113.41; 21.05-500%), respectively, as compared with blank. Ion chromatography was used as a tool for the measurement of essential ions present in plant under different conditions. Plants showed better growth in terms of shoot, root length, biomass weight, and chlorophyll content with the proposed combination. EDTA allows the metals available for the accumulation through possible complexation. Also, the compatibility of kinetin to manage stress in plant is found to be enhanced in the presence of EDTA due to possible π-π interaction. Metal stress condition causes the deficiency of essential ions in the plants thereby disturbing its biochemistry and results in its eventual death. EDTA-kinetin hybrid treatment was found to be compatible for metal decontamination from soil, its detoxification in plants by changing its environment and restoring the essential ions for the survival of plant.
Collapse
Affiliation(s)
- Virbala Sharma
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| |
Collapse
|