1
|
Liu Z, Zhang Y, Li F, Zhong H, Liu R, Zhang Q, Shi R, Wang Y, Wang Y. The effect of anthropogenic activities on the behavior of novel brominated flame retardants in surface soil of Northern China urbanized zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175836. [PMID: 39222822 DOI: 10.1016/j.scitotenv.2024.175836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Novel brominated flame retardants (NBFRs) have emerged as an alternative to traditional brominated flame retardants (BFRs) and may pose risks to the environment and human health. However, the distribution pattern of NBFRs in urbanized zones and their association with multiple socioeconomic variables have not been adequately explored. Herein, seven NBFRs were investigated in surface soil samples from Tianjin, China, a typical urbanized area. The ∑7NBFRs ranged from n.d. to 101 ng/g, dry weight (dw) (mean: 12.6 ± 17.6 ng/g dw), which exhibited a relatively elevated level compared to NBFRs in soils from other regions worldwide. Decabromodiphenylethane (DBDPE) was the main contaminant, and its concentration ranged from 0.378 to 99 ng/g, dry weight (dw) (mean: 11.4 ± 17.0 ng/g dw), accounting for 81 % of the ∑7NBFRs. Notably, NBFRs exhibited peak concentrations within residential zones, significantly surpassing those recorded in the remaining four regions (green, farmland, water environment and other) (p < 0.05). Furthermore, the concentration of NBFRs in the soil of the Binhai New District within Tianjin was the highest, significantly exceeding that of other administrative areas, which was closely related to the intensive industrial activities in this region. The above results indicate that human activities are a key factor affecting the concentration of NBFRs in the soil. Moreover, a variety of statistical methods were employed to investigate the correlation between socioeconomic variables and the distribution of NBFRs. The concentration of NBFRs showed a significant correlation with population density and the gross domestic product (GDP) (p < 0.05), and the incorporation of administrative regional planning into structural equation models demonstrated an indirect influence on the spatial distribution of NBFRs concentration, mediated by its impact on population density. These results emphasize the association between NBFRs contamination and the degree of urbanization, thereby providing valuable insights for assessing the exposure risk of NBFRs among urban residents.
Collapse
Affiliation(s)
- Ziyan Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yaqi Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Feifei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Zhong
- Institute of Scientific Instrumentation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qiu Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Sinclair CA, Garcia TS, Eagles-Smith CA. A Meta-Analysis of Mercury Biomagnification in Freshwater Predatory Invertebrates: Community Diversity and Dietary Exposure Drive Variability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19429-19439. [PMID: 39392791 PMCID: PMC11526377 DOI: 10.1021/acs.est.4c05920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Accurate estimates of methylmercury (MeHg) exposure are valuable to actionably assess risk and protect wildlife and human health. MeHg trophic transfer is a critical driver of risk: MeHg is generally biomagnified by a factor of 8.3 ± 7.5 from one trophic level to the next, averaged across freshwater communities (mean ± standard deviation). This variability can produce disparate risks even where basal MeHg concentrations are similar. Taxonomy may be one driver of this variability: physiologically diverse groups, like vertebrates and invertebrates, may assimilate MeHg differently. To determine whether taxonomy affects trophic transfer efficiency, we conducted a meta-analysis characterizing predatory invertebrate MeHg biomagnification. Our analyses estimated that freshwater predatory invertebrates biomagnify MeHg by factors of 2.1 ± 0.2 to 4.3 ± 0.3, with a 98.9 ± 0.4% posterior probability that factors are below 5 (mean ± standard error). When vertebrates or primary producers were included, a site's trophic magnification factor was 18.6 ± 6.2 to 54.1 ± 7.7% higher than estimates for invertebrates alone. Biomagnification was inversely correlated to prey MeHg concentration and varied among systematic and functional groups. These data suggest that predatory invertebrates biomagnify MeHg less efficiently than vertebrates and that a community's diversity and structure determine its biomagnification efficiency. Incorporating organismal variation in trophic transfer estimates may improve the assessment, communication, and management of MeHg risk.
Collapse
Affiliation(s)
- Cailin A. Sinclair
- Department
of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Tiffany S. Garcia
- Department
of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Collin A. Eagles-Smith
- Forest
and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon 97330, United States
| |
Collapse
|
3
|
Zhang P, Wang J, Sweetman A, Ge L, Xing R, Ji H, Yan J, Xiao Q, Cui Y, Ma H, Xu S. An overview on the legacy and risks of Polychlorinated Biphenyls (PCBs) and Organochlorinated Pesticides (OCPs) in the polar regions. MARINE POLLUTION BULLETIN 2024; 209:117042. [PMID: 39393231 DOI: 10.1016/j.marpolbul.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/13/2024]
Abstract
Polychlorinated Biphenyls (PCBs) and Organochlorinated Pesticides (OCPs) are 'trapped' in a variety of environmental media and can therefore undergo further processing by geochemical cycles. By reviewing a wide range of research studies, we present and discuss the main progresses that affect legacy contaminants, such as migration and transformation processes, biological effects assessment across all Arctic media. PCBs and OCPs demonstrated an overall decreasing concentration trend over time in the Arctic. Ecological risk assessment was undertaken by comparison with two standards, suggesting that there was no ecological risk in either soil or sediment. The concentrations of HCB, ΣHCHs, ΣDDTs, chlordane, mirex, and ΣPCBs increased with trophic levels (TLs), showing a significant linear correlation (P < 0.001). The calculated trophic magnification factors (TMFs) values ranged from 0.0004 to 26.63, among which DDTs had the highest value. Future research need to focus on the long-term fate of PCBs and OCPs.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jing Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Andrew Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Rongguang Xing
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Ji
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingfeng Yan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qian Xiao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yaqing Cui
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Sisi Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
4
|
Love D, Slovisky M, Costa KA, Megarani D, Mehdi Q, Colombo V, Ivantsova E, Subramaniam K, Bowden JA, Bisesi JH, Martyniuk CJ. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 39291828 DOI: 10.1002/etc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. β-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation β1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of β-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;00:1-14. © 2024 SETAC.
Collapse
Affiliation(s)
- Deirdre Love
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Megan Slovisky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaylie Anne Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Dorothea Megarani
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Qaim Mehdi
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Vincent Colombo
- Department of Animal Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Emma Ivantsova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Zhang J, Feng Y, Hu T, Xu X, Zhao D, Zhao J, Wang X, Li L, Wang S, Song C, Zhao S. Antibiotics and polycyclic aromatic hydrocarbons in marine food webs of the Yellow River Estuary: Occurrence, trophic transfer, and human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173709. [PMID: 38852864 DOI: 10.1016/j.scitotenv.2024.173709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Antibiotics and polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants in the aquatic region encompassing the estuary of the Yellow River and Laizhou Bay. But little information is available about the trophic transfer of antibiotics and PAHs in the marine food web of this area. This study investigated the occurrence and trophic transfer of 19 antibiotics and 16 PAHs in marine organisms from a food web of Laizhou Bay of the Yellow River estuary. Sulfonamides, fluoroquinolones, and 2 to 4-ring PAHs were the dominant contaminants in organisms. There was a significant positive correlation between the log total concentration of sulfonamides and trophic level (TL). Sulfadiazine, sulfamethazine, and erythromycin had biomagnification effects, while ciprofloxacin and ofloxacin had biological dilution effects. The log total concentration of PAHs had a significant negative correlation with TL. Naphthalene, fluorene, anthracene, pyrene, and benzo[g,h,i]perylene had biological dilution effects. The distinct correlations of trophic magnification factors Dow of antibiotics and Kow of 2 to 5-ring PAHs, indicating that the potential of these two coefficients for predicting their transfer. Risk assessment indicated that the consumption of seafood containing antibiotics and PAHs in Laizhou Bay of the Yellow River estuary posed health and carcinogenic risks to human, respectively.
Collapse
Affiliation(s)
- Jiachao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yucheng Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Tao Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xueyan Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Decun Zhao
- Shandong Yellow River Delta National Nature Reserve Administration Committee, Dongying 257091, China
| | | | - Xiaoli Wang
- Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Li
- Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; WeiHai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Dreyer S, Marcu D, Keyser S, Bennett M, Maree L, Koeppel K, Abernethy D, Petrik L. Factors in the decline of the African penguin: Are contaminants of emerging concern (CECs) a potential new age stressor? MARINE POLLUTION BULLETIN 2024; 206:116688. [PMID: 39029148 DOI: 10.1016/j.marpolbul.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
The African penguin is currently experiencing a significant decline, with just over 10,000 breeding pairs left. A substantial body of research reflects the impacts of contaminants of emerging concern (CECs) on the marine environment, with wastewater treatment plants reported as one of the main sources of CEC release. In South Africa, CECs were identified contaminating the marine environment and bioaccumulating in several marine species. Approximately 70 % of all African penguin colonies breed in close proximity to cities and/or harbors in South Africa. Currently, the impact of CECs as a stressor upon the viability of African penguin populations is unknown. Based on the search results there was a clear lack of information on CECs' bioaccumulation and impact on the African penguin. This narrative review will thus focus on the prevalent sources and types of CECs and examine the reported consequences of constant exposure in seabirds, particularly African penguins.
Collapse
Affiliation(s)
- Stephanie Dreyer
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, NR4 7TJ, United Kingdom
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Katja Koeppel
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Darrell Abernethy
- Aberystwyth School of Veterinary Science, Aberystwyth University, Ceredigion SY23 3FL, United Kingdom
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
7
|
Yang X, Huang L, Zhang L, Zhu L, Cheng Y, Wang C, Kang B, Zhao S, Yang Y. Distribution and biomagnification of Hexabromocyclododecanes (HBCDs) in edible marine fish in the Beibu Gulf, China: Implication for seafood dietary risk. MARINE POLLUTION BULLETIN 2024; 206:116737. [PMID: 39053263 DOI: 10.1016/j.marpolbul.2024.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Hexabromocyclododecanes (HBCDs) are legacy additive brominated flame retardant. In present study, the distribution, biomagnification and potential human health risk associated with HBCDs were investigated in six edible marine fish species collected from three bays in the Beibu Gulf, China, between March and October 2021. The concentration of HBCDs ranged from 0.05 to 200 ng/g lipid weight (lw), with Scoliodon laticaudus and Trichiurus nanhaiensis having the highest and lowest concentration, respectively. The α-HBCD was dominant in most studied fish, expect for Scoliodon laticaudus. Dietary source was the primary factor for the diastereomeric profiles of HBCDs in fish. Only γ-HBCD demonstrated trophic magnification in the studied fish species. Finally, the estimated daily intake (EDI) was 0.18 ng/kg/day for adults, 0.17 ng/kg/day for teenager and children, and all corresponding margin of exposure (MOE) values were lager than 8 indicating relatively low human exposure risks from fish consumption.
Collapse
Affiliation(s)
- Xi Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, Guangxi 541004, China.
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi 536009, China
| | - Liang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanan Cheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong 266100, China
| | - Shuwen Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiheng Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
8
|
Kharat PY, Nair MM, Rakesh PS, Haridevi CK. Distribution and bioaccumulation status of polycyclic aromatic hydrocarbons (PAHs) in Veraval coastal waters using copepods as bio-indicators. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:711. [PMID: 38976165 DOI: 10.1007/s10661-024-12805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
The study investigates the pollution characteristics of 16 priority PAHs, accumulated in copepods from a major fishing harbour and its adjacent coastal waters of Veraval, west coast of India. The total PAH accumulation is in the range of 922.16-27,807.49 ng g-1 dw, with the mean concentration of 5776.59 ng g-1 dw. High concentrations of PAHs were present in the copepod samples from inside the harbour. Notably, there was no significant correlation between the lipid content of copepods and the accumulation of PAHs. The molecular diagnostic ratio method (MDR) indicates that the PAH sources are petrogenic in origin, while principal component analysis (PCA) points to petroleum, coal combustion and vehicular emission sources. Total cancerous PAHs (C-PAHs) in the study area dominate by 40% of the total PAHs identified; moreover, the bioaccumulation factor (BAF) is very high in the offshore area, which is also a fishing ground. The global relevance and magnitude of the present study in the Veraval, one of the prime seafood exporting hubs in India, should be dealt with utmost avidity as the accumulation status of PAHs in the zooplankton has never been explored in the Indian coastal waters. Moreover, the current study gives the foremost data on the bioaccumulation status of PAHs in copepods from the tropical waters of India.
Collapse
Affiliation(s)
- Pooja Yuvraj Kharat
- CSIR-National Institute of Oceanography, Regional Center, Mumbai, 400053, India
| | - Midhun M Nair
- CSIR-National Institute of Oceanography, Regional Center, Mumbai, 400053, India
| | - P S Rakesh
- CSIR-National Institute of Oceanography, Regional Center, Mumbai, 400053, India.
| | - C K Haridevi
- CSIR-National Institute of Oceanography, Regional Center, Mumbai, 400053, India
| |
Collapse
|
9
|
Campioni L, Oró-Nolla B, Granadeiro JP, Silva MC, Madeiros J, Gjerdrum C, Lacorte S. Exposure of an endangered seabird species to persistent organic pollutants: Assessing levels in blood and link with reproductive parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172814. [PMID: 38679096 DOI: 10.1016/j.scitotenv.2024.172814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Ocean contamination, particularly from persistent organic pollutants (POPs), remains a significant threat to marine predators that occupy high trophic positions. Long-lived procellariform seabirds are apex predators in marine ecosystems and tend to accumulate contaminants. Prolonged exposure to pollutants negatively affects their fitness including reproductive success. Low breeding success may represent a hurdle for the restoration of small and endangered seabird populations, including several highly threatened gadfly petrels. Here we investigated the annual variation (2019 and 2022) in organochlorine pesticide (OCP), polychlorinated biphenyl ether (PCB), polybrominated diphenyl ether (PBDE), and polycyclic aromatic hydrocarbon (PAH) exposure in the endangered Bermuda petrel (Pterodroma cahow), and the relationship between female contaminant burden and breeding parameters. We found that petrels were exposed to a wide range of pollutants (33 out of 55 showed measurable levels) with PCBs dominating the blood contaminant profiles in both years. Only 9 compounds were detected in >50 % of the birds. Specifically, among OCPs, p, p'-DDE and hexaclorobenzene were the most frequently detected while fluorene and acenaphthene were the most common PAH. The concentrations of ∑5PCBs and ∑7POPs were higher in older birds. Furthermore, females with greater contaminant burdens laid eggs with a lower probability of hatching. However, female investment in egg production (size and volume) was unrelated to their blood contaminant load. Overall, this study highlights the presence of a wide range of contaminants in the petrel's food web, and it sheds light on the potential impact of chronic exposure to sub-lethal levels of PCBs on the breeding success of seabirds. We claim that toxicological testing should be a practice integrated in the management of seabirds, particularly of endangered species to monitor how past and present anthropogenic activities impact their conservation status.
Collapse
Affiliation(s)
- Letizia Campioni
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Ispa - Instituto Universitário, 1149-041 Lisboa, Portugal.
| | - Bernat Oró-Nolla
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - José P Granadeiro
- CESAM Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Mónica C Silva
- CE3C- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, CHANGE - Global Change and Sustainability Institute, Campo Grande, 1749-016 Lisbon, Portugal
| | - Jeremy Madeiros
- Department of Environment and Natural Resources, Ministry of the Environment, PO Box FL588, Flatts, FL BX, Bermuda
| | - Carina Gjerdrum
- Canadian Wildlife Service, Dartmouth, Nova Scotia B2Y 2N6, Canada
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
10
|
Wu NN, Liu S, Xu R, Huang QY, Pan YF, Li HX, Lin L, Hou R, Cheng YY, Xu XR. New insight into the bioaccumulation and trophic transfer of free and conjugated antibiotics in an estuarine food web based on multimedia fate and model simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133088. [PMID: 38016320 DOI: 10.1016/j.jhazmat.2023.133088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The substantial utilization of antibiotics causes their "pseudo-persistence" in offshore environments. Published studies on antibiotic surveillance in food webs have primarily emphasized on parent forms; however, the compositions and concentrations of conjugated antibiotics in aquatic organisms remain largely unexplored. This study systematically examined the distribution characteristics and trophodynamics of free antibiotics and their conjugated forms in an estuarine food web. Total antibiotic levels differed insignificantly between the surface and bottom waters. The total mean values of free antibiotics in crabs, fish, shrimps, sea cucumbers, and snails varied from 0.77 to 1.4 ng/g (wet weight). The numbers and values of antibiotics rose in these biological samples after enzymatic hydrolysis. Conjugated antibiotics accounted for 23.8-76.9% of the total antibiotics in the biological samples, revealing that conjugated forms play a non-negligible role in aquatic organisms. More number of antibiotics exhibited bioaccumulation capabilities after enzymatic hydrolysis. In the food web, the free forms of anhydroerythromycin and conjugated forms of trimethoprim and ciprofloxacin underwent trophic dilution, whereas the free forms of trimethoprim and conjugated forms of ofloxacin underwent trophic amplification. The present work provides new insights into the bioaccumulation and trophic transfer of free and conjugated antibiotics in food webs.
Collapse
Affiliation(s)
- Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
11
|
Zhao K, Gaines SD, García Molinos J, Zhang M, Xu J. Effect of trade on global aquatic food consumption patterns. Nat Commun 2024; 15:1412. [PMID: 38360822 PMCID: PMC10869811 DOI: 10.1038/s41467-024-45556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Globalization of fishery products is playing a significant role in shaping the harvesting and use of aquatic foods, but a vigorous debate has focused on whether the trade is a driver of the inequitable distribution of aquatic foods. Here, we develop species-level mass balance and trophic level identification datasets for 174 countries and territories to analyze global aquatic food consumption patterns, trade characteristics, and impacts from 1976 to 2019. We find that per capita consumption of aquatic foods has increased significantly at the global scale, but the human aquatic food trophic level (HATL), i.e., the average trophic level of aquatic food items in the human diet, is declining (from 3.42 to 3.18) because of the considerable increase in low-trophic level aquaculture species output relative to that of capture fisheries since 1976. Moreover, our study finds that trade has contributed to increasing the availability and trophic level of aquatic foods in >60% of the world's countries. Trade has also reduced geographic differences in the HATL among countries over recent decades. We suggest that there are important opportunities to widen the current focus on productivity gains and economic outputs to a more equitable global distribution of aquatic foods.
Collapse
Affiliation(s)
- Kangshun Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
| | | | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| | - Jun Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Luarte T, Hirmas-Olivares A, Höfer J, Giesecke R, Mestre M, Guajardo-Leiva S, Castro-Nallar E, Pérez-Parada A, Chiang G, Lohmann R, Dachs J, Nash SB, Pulgar J, Pozo K, Přibylová PP, Martiník J, Galbán-Malagón C. Occurrence and diffusive air-seawater exchanges of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Fildes Bay, King George Island, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168323. [PMID: 37949125 DOI: 10.1016/j.scitotenv.2023.168323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
We report the levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in seawater and air, and the air-sea dynamics through diffusive exchange analysis in Fildes Bay, King George Island, Antarctica, between November 2019 and January 30, 2020. Hexachlorobenzene (HCB) was the most abundant compound in both air and seawater with concentrations around 39 ± 2.1 pg m-3 and 3.2 ± 2.4 pg L-1 respectively. The most abundant PCB congener was PCB 11, with a mean of 3.16 ± 3.7 pg m-3 in air and 2.0 ± 1.1 pg L-1 in seawater. The fugacity gradient estimated for the OCP compounds indicate a predominance of net atmospheric deposition for HCB, α-HCH, γ-HCH, 4,4'-DDT, 4,4'-DDE and close to equilibrium for the PeCB compound. The observed deposition of some OCs may be driven by high biodegradation rates and/or settling fluxes decreasing the concentration of these compounds in surface waters, which is supported by the capacity of microbial consortium to degrade some of these compounds. The estimated fugacity gradients for PCBs showed differences between congeners, with net volatilization predominating for PCB-9, a trend close to equilibrium for PCB congeners 11, 28, 52, 101, 118, 138, and 153, and deposition for PCB 180. Snow amplification may play an important role for less hydrophobic PCBs, with volatilization predominating after snow/glacier melting. As hydrophobicity increases, the biological pump decreases the concentration of PCBs in seawater, reversing the fugacity gradient to atmospheric deposition. This study highlights the potential impacts of climate change, through glacier retreat, on the biogeochemistry of POPs, remobilizing those compounds previously trapped within the cryosphere which in turn will transform the Antarctic cryosphere into a secondary source of the more volatile POPs in coastal areas, influenced by snow and ice melting.
Collapse
Affiliation(s)
- Thais Luarte
- Programa de Doctorado en Medicina de la Conservación, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| | - Andrea Hirmas-Olivares
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Ricardo Giesecke
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, Valdivia, Chile
| | - Mireia Mestre
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Chile
| | - Sergio Guajardo-Leiva
- Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Eduardo Castro-Nallar
- Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, Rocha 27000, Uruguay
| | - Gustavo Chiang
- Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Investigación para Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, Barcelona, Catalunya 08034, Spain
| | - Susan Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - José Pulgar
- Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile
| | - Karla Pozo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile; Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petra P Přibylová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jakub Martiník
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| |
Collapse
|
13
|
Du D, Lu Y, Yang S, Wang R, Wang C, Yu M, Chen C, Zhang M. Biomagnification and health risks of perflfluoroalkyl acids (PFAAs) in seafood from the Yangtze river estuary of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122930. [PMID: 37972680 DOI: 10.1016/j.envpol.2023.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Bioaccumulation and human health risk assessment of Perfluoroalkyl acids (PFAAs) is important for pollutant hazard assessment. In this study, 26 aquatic organisms were collected from the Yangtze River estuary, the PFAAs concentrations in organisms were detected by liquid chromatography-mass spectrometry, and the trophic levels of organisms were constructed using nitrogen isotope analysis. The results showed that Perfluorobutane sulfonate (PFBS) was predominant in organisms with the mean concentration of 6.43 ± 8.21 ng/g ww. The biomagnification of organisms along the food chain was widespread, and the biomagnification factor (BMF) of perfluorooctane sulfonic (PFOS) was the most prominent. Trophic magnifcation factors (TMFs) of PFAAs were estimated in the marine food web, and TMFs >1 were observed in Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid (PFUnDA), Perfluorododecanoic acid (PFDoDA), and PFOS, indicating the biomagnifcation effects of these 4 individual PFAAs in organisms at Yangtze River estuary. The estimated daily intake (EDI) of PFBS was highest in adolescents aged 6-18 years, with EDIs of 18.9 ng/kg·bw/day for males and 14.0 ng/kg·bw/day for females. The hazard ratio (HR) of PFAAs reported in different age and gender groups were lower than 1.
Collapse
Affiliation(s)
- Di Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Ecology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Rui Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenchen Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunci Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Holbert S, Colbourne K, Fisk AT, Ross PS, MacDuffee M, Gobas FAPC, Brown TM. Polychlorinated biphenyl and polybrominated diphenyl ether profiles vary with feeding ecology and marine rearing distribution among 10 Chinook salmon (Oncorhynchus tshawytscha) stocks in the North Pacific Ocean. ENVIRONMENTAL RESEARCH 2024; 241:117476. [PMID: 37879388 DOI: 10.1016/j.envres.2023.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Chinook salmon (Oncorhynchus tshawytscha) along the west coast of North America have experienced significant declines in abundance and body size over recent decades due to several anthropogenic stressors. Understanding the reasons underlying the relatively high levels of persistent organic pollutants (POPs) in Chinook stocks is an important need, as it informs recovery planning for this foundation species, as well for the Chinook-dependent Resident killer whales (Orcinus orca, RKW) of British Columbia (Canada) and Washington State (USA). We evaluated the influence of stock-related differences in feeding ecology, using stable isotopes, and marine rearing ground on the concentrations and patterns of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Chinook salmon. A principal components analysis (PCA) revealed a clear divergence of PCB and PBDE congener patterns between Chinook with a nearshore rearing distribution ('shelf resident') versus a more offshore distribution. Shelf resident Chinook had 12-fold higher PCB concentrations and 46-fold higher PBDE concentrations relative to offshore stocks. Shelf resident Chinook had PCB and PBDE profiles that were heavier and dominated by more bioaccumulative congeners, respectively. The higher δ13C and δ15N in shelf resident Chinook compared to the offshore rearing stocks, and their different marine distributions explain the large divergence in contaminant levels and profiles, with shelf resident stocks being heavily influenced by land-based sources of industrial contamination. Results provide compelling new insight into the drivers of contaminant accumulation in Chinook salmon, raise important questions about the consequences for their health, and explain a major pathway to the heavily POP-contaminated Resident killer whales that consume them.
Collapse
Affiliation(s)
- S Holbert
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada; Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, BC, Canada
| | - K Colbourne
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, BC, Canada
| | - A T Fisk
- School of the Environment, University of Windsor, Windsor, ON, Canada
| | - P S Ross
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - M MacDuffee
- Raincoast Conservation Foundation, Sidney, BC, Canada
| | - F A P C Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - T M Brown
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada; Pacific Science Enterprise Centre, Fisheries and Oceans Canada, West Vancouver, BC, Canada; School of the Environment, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
15
|
Jyoti D, Sinha R. Physiological impact of personal care product constituents on non-target aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167229. [PMID: 37741406 DOI: 10.1016/j.scitotenv.2023.167229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Personal care products (PCPs) are products used in cleaning, beautification, grooming, and personal hygiene. The rise in diversity, usage, and availability of PCPs has resulted in their higher accumulation in the environment. Thus, these constitute an emerging category of environmental contaminants due to the potential of its constituents (chemical and non-chemical) to induce various physiological effects even at lower concentrations (ng/L). For analyzing the impact of the PCPs constituents on the non-target organism about 300 article including research articles, review articles and guidelines were studied from 2000 to 2023. This review aims to firstly discuss the fate and accumulation of PCPs in the aquatic environment and organisms; secondly provides overview of environmental risks that are linked to PCPs; thirdly review the trends, current status of regulations and risks associated with PCPs and finally discuss the knowledge gaps and future perspectives for future research. The article discusses important constituents of PCPs such as antimicrobials, cleansing agents and disinfectants, fragrances, insect repellent, moisturizers, plasticizers, preservatives, surfactants, UV filters, and UV stabilizers. Each of them has been found to display certain toxic impact on the aquatic organisms especially the plasticizers and UV filters. These continuously and persistently release biologically active and inactive components which interferes with the physiological system of the non-target organism such as fish, corals, shrimps, bivalves, algae, etc. With a rise in the number of toxicity reports, concerns are being raised over the potential impacts of these contaminant on aquatic organism and humans. The rate of adoption of nanotechnology in PCPs is greater than the evaluation of the safety risk associated with the nano-additives. Hence, this review article presents the current state of knowledge on PCPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Science, Solan, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India.
| |
Collapse
|
16
|
Abstract
The measurement of naturally occurring stable isotope ratios of the light elements (C, N, H, O, S) in animal tissues and associated organic and inorganic fractions of associated environments holds immense potential as a means of addressing effects of global change on animals. This paper provides a brief review of studies that have used the isotope approach to evaluate changes in diet, isotopic niche, contaminant burden, reproductive and nutritional investment, invasive species and shifts in migration origin or destination with clear links to evaluating effects of global change. This field has now reached a level of maturity that is impressive but generally underappreciated and involves technical as well as statistical advances and access to freely available R-based packages. There is a need for animal ecologists and conservationists to design tissue collection networks that will best answer current and anticipated questions related to the global change and the biodiversity crisis. These developments will move the field of stable isotope ecology toward a more hypothesis driven discipline related to rapidly changing global events.
Collapse
Affiliation(s)
- Keith A Hobson
- Wildlife Research Division, Environment and Climate Change Canada, Saskatoon, SK, S7N 0X4, Canada.
- Department of Biology, Western University, London, ON, N6A 5B7, Canada.
| |
Collapse
|
17
|
Boldrocchi G, Villa B, Monticelli D, Spanu D, Magni G, Pachner J, Mastore M, Bettinetti R. Zooplankton as an indicator of the status of contamination of the Mediterranean Sea and temporal trends. MARINE POLLUTION BULLETIN 2023; 197:115732. [PMID: 37913563 DOI: 10.1016/j.marpolbul.2023.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Zooplankton has been intensively used as bioindicators of water pollution at global level, however, only few comprehensive studies have been conducted from the Mediterranean Sea and manly dated back to the 1970s. To redress the urgent need for updated data, this study provides information on the presence and levels of contaminants in zooplankton from the Tyrrhenian Sea. Although banned, both PCBs (46.9 ± 37.2 ng g-1) and DDT (8.9 ± 10.7 ng g-1) are still present and widespread, but their contamination appears to be a local problem and to be declining over the past 50 years. Zooplankton accumulates high levels of certain TEs, including Zn (400 ± 388 ppm) and Pb (35.3 ± 45.5 ppm), but shows intermediate concentrations of other TEs, including Cd (1.6 ± 0.9 ppm) and Hg (0.1 ± 0.1 ppm), comparing with both strongly polluted and more pristine marine habitats, which may reflect a general improvement.
Collapse
Affiliation(s)
- G Boldrocchi
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy.
| | - B Villa
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy; One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - D Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - D Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - G Magni
- One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - J Pachner
- One Ocean Foundation, Via Gesù 10, 20121 Milan, Italy
| | - M Mastore
- Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy
| | - R Bettinetti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy
| |
Collapse
|
18
|
Li S, Li Y, Wang W, Jiao J, Degen AA, Zhang T, Bai Y, Zhao J, Kreuzer M, Shang Z. Dietary habits of pastoralists on the Tibetan plateau are influenced by remoteness and economic status. Food Res Int 2023; 174:113627. [PMID: 37981357 DOI: 10.1016/j.foodres.2023.113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
In general, dietary habits of pastoralists are livestock-derived, but are also influenced by external food sources under globalization. We hypothesized that dietary habits of pastoralists would be influenced by their remoteness, and that changes from the traditional diet would result in deviations in the local ecological chain. To test this hypothesis, we determined the δ13C and δ15N values of soil, plants, and hair of animals and pastoralists (n = 885). The δ13C value in human hair reflects the proportions of protein originating from C3 and C4 plants; whereas, the δ15N value reflects the proportions of protein derived from plants and animals, with higher values indicating a greater consumption of meat. The isotopic signatures enabled us to estimate the variation in dietary habits of pastoralists across a socio-economic gradient of easily accessible to remote areas on the Tibetan plateau, and to determine the trophic transfer of the isotopes along an ecological chain. The trophic magnification factor (TMF) evaluated the trophic transfer of δ15N in the soil-plants-animals-pastoralists ecological chain. The high δ15N values in soil and plants were not recovered in animals and pastoralists in easily accessible and developed areas, indicating the use of external feed and food resources, and that they deviated from the ecological chain. The mean δ13C (-22.0 ‰) and δ15N values (6.9 ‰) of pastoralists indicated diets consisting mainly of local C3 plants and animal products. However, pastoralists in remote areas relied more on meat protein and on the local ecological chain than pastoralists in easily accessible areas, as their δ15N values and trophic magnification factor of δ15N in the ecological chain were greater. In addition to remoteness, per capita GDP influenced dietary changes in pastoralists, with richer pastoralists consuming more external food. We concluded that dietary changes of pastoralists in the easily accessible areas were due to external food resources and alterations in the local ecological chain of animals and plant-based foods available to the pastoralists.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yinfeng Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenyin Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianxin Jiao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Tao Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yanfu Bai
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jingxue Zhao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Eschikon 27, 8315 Lindau, Switzerland
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Frossard V, Vagnon C, Cottin N, Pin M, Santoul F, Naffrechoux E. The biological invasion of an apex predator (Silurus glanis) amplifies PCB transfer in a large lake food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166037. [PMID: 37544449 DOI: 10.1016/j.scitotenv.2023.166037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Invasive species can affect food web structure possibly modifying the transfer of pollutants in ecosystems but this facet of biological invasion remains largely unexplored. We examined how trophic and ontogenetic characteristics of the invasive European catfish could differ from its native counterpart, the Northern pike, possibly resulting in the amplification of PCB transfer to the higher trophic levels in a large lake food web. The PCB contents of catfish and pike were on average low (Ʃ7 PCBi 42.4 ± 38.6 ng g-1 ww and 37.9 ± 49.4 ng g-1 ww respectively) and dominated by PCB153 (~35 % of the PCB contamination). Only the largest pike (126 cm) slightly exceeded the European sanitary threshold of 125 ng g-1 ww Ʃ6 PCBi-NDL. Both species increased in trophic position with body size while catfish had clearly higher littoral reliance than pike indicating they exploited complementary trophic niches. PCB biomagnification was identified only for catfish (PCB153, Ʃ7 PCBi) leading to trophic magnification factor of ~5. PCB ontogenetic bioaccumulation was pervasive for catfish (PCB101, PCB118, PCB153, PCB138 and Ʃ7 PCBi) and identified for pike only regarding PCB101. The derived size accumulation factors (~1.02) indicated a size-doubling PCB contamination of ~40 cm for catfish. This finding suggested that catfish would exceed the European sanitary threshold at body size larger than 168 cm possibly constraining their commercial exploitation. Our results highlighted that the invasive catfish was a littoral-oriented apex predator occupying an alternative trophic niche as compared to pike thereby modifying the lake food web structure that resulted in an enhancement of PCB transfer to higher trophic levels. The biomagnification and ontogenetic bioaccumulation of catfish underlined the impact of this biological invasion on the fate of PCB in the ecosystem. Finally, the remarkable inter-individual PCB contamination suggested variable inter-individual PCB exposure likely associated to localized hotspots of PCB contamination in the lake.
Collapse
Affiliation(s)
- Victor Frossard
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France.
| | - Chloé Vagnon
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - Nathalie Cottin
- Université Savoie Mont Blanc, CNRS, EDYTEM, 73370 Le Bourget du Lac, France
| | - Mathieu Pin
- Université Savoie Mont Blanc, CNRS, EDYTEM, 73370 Le Bourget du Lac, France
| | - Frédéric Santoul
- Université Toulouse 3 Paul Sabatier, EDB, 31000 Toulouse, France
| | | |
Collapse
|
20
|
Xie Q, Liu F, Zhang X, Wu Y. Fatty acids and organohalogen contaminants in seafood from the Pearl River Estuary, China: Risk-benefit analyses of seafood consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165725. [PMID: 37495134 DOI: 10.1016/j.scitotenv.2023.165725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Seafood has long been considered a healthy food choice, but it is also an exposure source of contaminants that may bring potential health risks to humans. Here, 80 organohalogen contaminants (OHCs) and 36 fatty acids (FAs) were analyzed in 22 (n = 211) and 19 fishery species (n = 176) from the eastern- and western Pearl River Estuary (PRE), respectively, for risk-benefit analysis. The average concentrations of total FAs in seafood from the eastern- and western PRE were 26.0 ± 2.14 and 21.3 ± 1.66 mg g-1 wet weight, respectively. Seafood from the eastern PRE exhibited higher levels of OHCs than those from the western PRE, highlighting the spatial heterogeneity of OHC contamination within the PRE. Species occupying higher trophic levels (TLs) typically demonstrated higher levels of OHC accumulation, indicating the biomagnification potential of these contaminants in the PRE ecosystem. Significant negative correlations were observed between TLs and the proportions of monounsaturated fatty acids and polyunsaturated fatty acids, presumably attributed to the ability of fish to synthesize these FAs decreases with increasing TLs. Our benefit-risk quotient (BRQ) analyses revealed that, as far as OHCs are concerned, all seafood species had a BRQ∑OHCs value <1, except for one-spot snapper and daggertooth pike conger, which had BRQ values of 1.03 and 1.14, respectively. The findings indicate that most marine species here analyzed may not pose significant health risks to consumers as a result of OHC exposure. However, considering that many other pollutants and nutrients are not analyzed here, the results of our risk assessments should be treated as preliminary, not final. Future data collection is essential to enhance the comprehensiveness of this type of analysis.
Collapse
Affiliation(s)
- Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
21
|
Xie J, Tu S, Hayat K, Lan R, Chen C, Leng T, Zhang H, Lin T, Liu W. Trophodynamics of halogenated organic pollutants (HOPs) in aquatic food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166426. [PMID: 37598971 DOI: 10.1016/j.scitotenv.2023.166426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Halogenated organic pollutants (HOPs) represent hazardous and persistent compounds characterized by their capacity to accumulate within organisms and endure in the environment. These substances are frequently transmitted through aquatic food webs, engendering potential hazards to ecosystems and human well-being. The trophodynamics of HOPs in aquatic food webs has garnered worldwide attention within the scientific community. Despite comprehensive research endeavors, the prevailing trajectory of HOPs, whether inclined toward biomagnification or biodilution within global aquatic food webs, remains unresolved. Furthermore, while numerous studies have probed the variables influencing the trophic magnification factor (TMF), the paramount determinant remains elusive. Collating a compendium of pertinent literature encompassing TMFs from the Web of Science between 1994 and 2023, our analysis underscores the disparities in attention accorded to legacy HOPs compared to emerging counterparts. A discernible pattern of biomagnification characterizes the behavior of HOPs within aquatic food webs. Geographically, the northern hemisphere, including Asia, Europe, and North America, has demonstrated greater biomagnification than its southern hemisphere counterparts. Utilizing a boosted regression tree (BRT) approach, we reveal that the food web length and type emerge as pivotal determinants influencing TMFs. This review provides a valuable basis for gauging ecological and health risks, thereby facilitating the formulation of robust standards for managing aquatic environments.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ruo Lan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chuchu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tiantian Leng
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hanlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Pedersen AF, Dietz R, Sonne C, Letcher RJ, Roos AM, Simon M, Rosing-Asvid A, Ferguson SH, McKinney MA. Feeding and biological differences induce wide variation in legacy persistent organic pollutant concentrations among toothed whales and polar bear in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 908:168158. [PMID: 39491187 DOI: 10.1016/j.scitotenv.2023.168158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Polar bear and toothed whales in the Arctic exhibit orders of magnitude differences in concentrations of legacy persistent organic pollutants (POPs), which may be attributed to comparisons made across regions and different time frames. These interspecific differences could be influenced by variations in biological susceptibility, including differences in xenobiotic biotransformation between polar bear, from the order Carnivora, and toothed whales, from the order Artiodactyla, as well as ecological factors, such as variation in feeding patterns. Here, we analyzed samples from subsistence-harvested toothed whales and polar bear in East Greenland collected between 2012 and 2021 and quantitatively compared interspecific differences in blubber/adipose polychlorinated biphenyl (PCB) and organochlorine (OC) pesticide concentrations. We further determined fatty acid (FA) signatures as dietary tracers to evaluate how feeding patterns influence POP concentrations relative to the influence of biological differences between taxa. Killer whale exhibited the highest mean concentrations of ΣPCBs (57.0 ± 14.0 mg/kg lw), Σdichlorodiphentlytrichloroethanes (ΣDDTs; 55.7 ± 13.1), and Σchlordanes (ΣCHLs; 23.1 ± 5.6 mg/kg lw), while polar bear showed the second highest concentrations for ΣPCBs (12.5 ± 1.3 mg/kg lw), but comparable or even lower levels of all OCs relative to narwhal and pilot whale. Linear models using FA patterns as explanatory variables for POP concentrations demonstrated that, for ΣPCBs, diet differences explained most of the variation. Conversely, biological differences explained more of the variation for most OCs, especially for DDT, for which polar bear showed the lowest concentrations despite feeding on similarly high trophic position prey as killer whale. This novel quantitative comparison confirms that significant differences in legacy POP concentrations occur among Arctic marine mammal predators. Furthermore, the drivers of these differences are contaminant-specific, with feeding patterns primarily influencing PCB concentrations, taxa-specific biological characteristics (e.g., in xenobiotic biotransformation capacity) affecting DDT concentrations, and both factors contributing to variations in other OCs.
Collapse
Affiliation(s)
- Adam F Pedersen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Anna M Roos
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland; Department of Environmental Research and Monitoring, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Aqqalu Rosing-Asvid
- Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
23
|
Pouch A, Zaborska A, Legeżyńska J, Deja K, Pazdro K. Assessment of exposure of benthic organisms to selected organochlorine pollutants in the west Spitsbergen fjords. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165262. [PMID: 37400031 DOI: 10.1016/j.scitotenv.2023.165262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Climate-related changes in environmental conditions, such as reduction of sea ice, intensive glacier retreat, and increasing summer precipitation, directly influence the arctic marine environment and, therefore, the organisms living there. Benthic organisms, being an important food source for organisms from higher trophic levels, constitute an important part of the Arctic trophic network. Moreover, the long lifespan and limited mobility of some benthic species make them suitable for the study of the spatial and temporal variability of contaminants. In this study, organochlorine pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) were measured in benthic organisms collected in three fjords of western Spitsbergen. Two of these were recommended by the Marine Biodiversity and Ecosystem Functioning (MARBEF) Network of Excellence as European flagship sites, namely Hornsund as the Biodiversity Inventory and Kongsfjorden as the Long-Term Biodiversity Observatory. Adventfjorden, with notable human activity, was also studied. Ʃ7 PCB and HCB concentrations in sediments were up to 2.4 and 0.18 ng/g d.w. respectively. Concentrations of Ʃ7 PCBs and HCB measured in collected benthic organisms were up to 9.1 and 13 ng/g w.w., respectively. In several samples (41 of 169) the concentrations of ∑7 PCBs were below the detection limit values, yet nevertheless the results of the research show effective accumulation of target organochlorine contaminants by many Arctic benthic organisms. Important interspecies differences were observed. Free-living, mobile taxa, such as shrimp Eualus gaimardii, have accumulated a large quantity of contaminants, most probably due to their predatory lifestyle. ∑7 PCB and HCB concentrations were both significantly higher in Hornsund than in Kongsfjorden. Biomagnification occurred in 0 to 100 % of the predator-prey pairs, depending on the congener analyzed. Although the sampled organisms were proved to have accumulated organochlorine contaminants, the measured levels can be considered low, and not posing a substantial threat to the biota.
Collapse
Affiliation(s)
- Anna Pouch
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Agata Zaborska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Joanna Legeżyńska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Kajetan Deja
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
24
|
Kim D, Won EJ, Cho HE, Lee J, Shin KH. New insight into biomagnification factor of mercury based on food web structure using stable isotopes of amino acids. WATER RESEARCH 2023; 245:120591. [PMID: 37690411 DOI: 10.1016/j.watres.2023.120591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Although many attempts have been carried out to elaborate trophic magnification factor (TMF) and biomagnification factor (BMF), such as normalizing the concentration of pollutants and averaging diet sources, the uncertainty of the indexes still need to be improved to assess the bioaccumulation of pollutants. This study first suggests an improved BMF (i.e., BMF') applied to mercury bioaccumulation in freshwater fish from four sites before and after rainfall. The diet source and TP of each fish were identified using nitrogen stable isotope of amino acids (δ15NAAs) combined with bulk carbon stable isotope (δ13C). The BMF' was calculated normalizing with TP and diet contributions derived from MixSIAR. The BMF' values (1.3-27.2 and 1.2-27.8), which are representative of the entire food web, were generally higher than TMF (1.5-13.9 and 1.5-14.5) for both total mercury and methyl mercury, respectively. The BMF' implying actual mercury transfer pathway is more reliable index than relatively underestimated TMF for risk assessment. The ecological approach for BMF calculations provides novel insight into the behavior and trophic transfer of pollutants like mercury.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
25
|
Tovar LR, Neves MC, Manhães BMR, Montanini G, Azevedo ADF, Lailson-Brito J, Bisi TL. Understanding trophic transference role in mercury biomagnification and bioaccumulation in the Atlantic spotted dolphin (Stenella frontalis). CHEMOSPHERE 2023; 338:139496. [PMID: 37451642 DOI: 10.1016/j.chemosphere.2023.139496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Mercury is a metal of toxicological importance that occurs naturally. However, its concentration can be affected by anthropogenic activities and has the potential to bioaccumulate and biomagnify in food webs. Thus, knowing how its concentration varies along the trophic levels allows us to understand its potential risks to the biota. The present study aimed to investigate mercury transfer through the Stenella frontalis food web in Ilha Grande Bay (IGB), Rio de Janeiro state, Brazil. Samples of muscle and liver of S. frontalis were obtained from carcasses (n = 8) found stranded in the IGB, and its potential prey species were collected in fishing landings in the same Bay (n = 145). Total mercury (THg) concentrations were determined by atomic absorption spectrometry, and the δ15N was determined by an isotope ratio mass spectrometer. To investigate how trophic transfer affects mercury contamination in biota, six linear models were applied between THg logarithmic concentrations and δ15N or trophic position (TP). The trophic magnification factor (TMF) was calculated from each model to estimate the trophic transfer. Mean THg concentration in S. frontalis was higher in the liver than in muscle, but no correlation was found with age and δ15N values. Instead, the hepatic and muscular THg concentrations positively correlated with the trophic position. In the summer, THg concentration, TP, and δ15N values in prey species varied significantly, as well as in the winter, except for THg concentration. All trophic transfer models were significant in both seasons, and the TMF >1. The present study showed that trophic transfer is an essential factor in mercury biomagnification in both seasons but is not the unique driver. Both δ15N and TP could explain mercury trophic transfer, but TP better integrates metabolic diversity and seasonality.
Collapse
Affiliation(s)
- Lucas Rodrigues Tovar
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil.
| | - Mariana Cappello Neves
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Bárbara M R Manhães
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Gleici Montanini
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Alexandre de Freitas Azevedo
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - José Lailson-Brito
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| | - Tatiana Lemos Bisi
- Programa de Pós-Graduação em Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20550-013, Brazil
| |
Collapse
|
26
|
Lu F, Hao X, Dai J, Wang H, Yang G, Sun C, Chen B. Regional variation of polybrominated diphenyl ethers in East Asian finless porpoises in the East China Sea. MARINE POLLUTION BULLETIN 2023; 194:115257. [PMID: 37478784 DOI: 10.1016/j.marpolbul.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Certain polybrominated diphenyl ethers (PBDEs) have been banned for years, however, they still possess the potential to harm marine cetaceans. In this study, 56 East Asian finless porpoises (EAFPs) collected from three locations of the East China Sea between 2009 and 2011, were analyzed to determine the presence of typical PBDE congeners. Among all the samples, BDE47 was the main congener, constituting ∼48.3 % of the ΣPBDEs. Significant variations (p < 0.01) in PBDE abundance were observed among different regions (Pingtan: 172.8 ng/g, Lvsi: 61.2 ng/g and Ningbo: 32.9 ng/g). In addition, there was a significant positive correlation between PBDE abundance and male body length. The general ΣPBDEs concentration of this population was lower compared to other populations and cetaceans. Although combined risk assessments indicated a low risk to porpoise health, long-term surveillance is essential as PBDEs are not completely banned.
Collapse
Affiliation(s)
- Fangting Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiuqing Hao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jianhua Dai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Cheng Sun
- School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bingyao Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
27
|
Fremlin KM, Elliott JE, Letcher RJ, Harner T, Gobas FA. Developing Methods for Assessing Trophic Magnification of Perfluoroalkyl Substances within an Urban Terrestrial Avian Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12806-12818. [PMID: 37590934 PMCID: PMC10469464 DOI: 10.1021/acs.est.3c02361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.
Collapse
Affiliation(s)
- Katharine M. Fremlin
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - John E. Elliott
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1A
0H3, Canada
| | - Tom Harner
- Air
Quality Research Division, Environment and
Climate Change Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada
| | - Frank A.P.C. Gobas
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- School
of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, BC V5A
1S6, Canada
| |
Collapse
|
28
|
Anderson MA, Fisk AT, Laing R, Noël M, Angnatok J, Kirk J, Evans M, Pijogge L, Brown TM. Changing environmental conditions have altered the feeding ecology of two keystone Arctic marine predators. Sci Rep 2023; 13:14056. [PMID: 37640733 PMCID: PMC10462653 DOI: 10.1038/s41598-023-39091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
Environmental change in the Arctic has impacted the composition and structure of marine food webs. Tracking feeding ecology changes of culturally-valued Arctic char (Salvelinus alpinus) and ringed seals (Pusa hispida) can provide an indication of the ecological significance of climate change in a vulnerable region. We characterized how changes in sea ice conditions, sea surface temperature (SST), and primary productivity affected the feeding ecology of these two keystone species over a 13- and 18-year period, respectively, in northern Labrador, Canada. Arctic char fed consistently on pelagic resources (δ13C) but shifted over time to feeding at a higher trophic level (δ15N) and on more marine/offshore resources (δ34S), which correlated with decreases in chlorophyll a concentration. A reduction in Arctic char condition factor and lipid content was associated with higher trophic position. Ringed seals also shifted to feeding at a higher trophic level, but on more pelagic resources, which was associated with lower SST and higher chlorophyll a concentrations. Years with abnormally high SSTs and reduced sea ice concentrations resulted in large isotopic niche sizes for both species, suggesting abrupt change can result in more variable feeding. Changes in abundance and distribution of species long valued by the Inuit of Labrador could diminish food security.
Collapse
Affiliation(s)
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, ON, Canada
| | - Rodd Laing
- Nunatsiavut Government, Nain, NL, Canada
| | | | | | - Jane Kirk
- Environment and Climate Change Canada, Burlington, ON, Canada
| | - Marlene Evans
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | | | - Tanya M Brown
- School of the Environment, University of Windsor, Windsor, ON, Canada.
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.
| |
Collapse
|
29
|
Yurkowski DJ, McCulloch E, Ogloff WR, Johnson KF, Amiraux R, Basu N, Elliott KH, Fisk AT, Ferguson SH, Harris LN, Hedges KJ, Jacobs K, Loewen TN, Matthews CJD, Mundy CJ, Niemi A, Rosenberg B, Watt CA, McKinney MA. Mercury accumulation, biomagnification, and relationships to δ 13C, δ 15N and δ 34S of fishes and marine mammals in a coastal Arctic marine food web. MARINE POLLUTION BULLETIN 2023; 193:115233. [PMID: 37421916 DOI: 10.1016/j.marpolbul.2023.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Combining mercury and stable isotope data sets of consumers facilitates the quantification of whether contaminant variation in predators is due to diet, habitat use and/or environmental factors. We investigated inter-species variation in total Hg (THg) concentrations, trophic magnification slope between δ15N and THg, and relationships of THg with δ13C and δ34S in 15 fish and four marine mammal species (249 individuals in total) in coastal Arctic waters. Median THg concentration in muscle varied between species ranging from 0.08 ± 0.04 μg g-1 dw in capelin to 3.10 ± 0.80 μg g-1 dw in beluga whales. Both δ15N (r2 = 0.26) and δ34S (r2 = 0.19) best explained variation in log-THg across consumers. Higher THg concentrations occurred in higher trophic level species that consumed more pelagic-associated prey than consumers that rely on the benthic microbial-based food web. Our study illustrates the importance of using a multi-isotopic approach that includes δ34S when investigating trophic Hg dynamics in coastal marine systems.
Collapse
Affiliation(s)
- David J Yurkowski
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada; Department of Biological Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Elena McCulloch
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Wesley R Ogloff
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada; Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Kelsey F Johnson
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Rémi Amiraux
- Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, Ontario, Canada
| | - Steven H Ferguson
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada; Department of Biological Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Les N Harris
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Kevin J Hedges
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Kevin Jacobs
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Tracey N Loewen
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Cory J D Matthews
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada; Department of Biological Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - C J Mundy
- Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea Niemi
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Bruno Rosenberg
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Cortney A Watt
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada; Department of Biological Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
30
|
Lavandier RC, Arêas J, Lemos LS, de Moura JF, Taniguchi S, Montone R, Quinete NS, Hauser-Davis RA, Siciliano S, Moreira I. Trophic Chain Organochlorine Pesticide Contamination in a Highly Productive Upwelling Area in Southeastern Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6343. [PMID: 37510576 PMCID: PMC10379595 DOI: 10.3390/ijerph20146343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Organochlorine pesticides (OCP) are legacy anthropogenic compounds known to persist for several years in the environment. The continuous use of some OCP, such as DDT, after restrictions in developing countries are cause of concern, due to their deleterious effects to marine life and humans. Studies assessing OCP contamination in coastal environments are still scarce in South America and there is a need to understand the impacts from trophic chain accumulation of these pollutants in marine life. In this study, we have assessed OCP levels in muscle and liver and estimated the biomagnification factor in several upwelling system trophic chain members, including fish, squid, and marine mammal from Southeastern Brazil. DDT degradation product DDE was the OCP detected in the highest concentrations in Franciscana dolphins (Pontoporia blainvillei), 86.4 ng·g-1 wet weight, and fish muscle and liver. In general, higher OCP levels were found in liver than in muscle, except for croaker. Biomagnification factors (BMF) of OCP in the top predator P. blainvillei and the carnivorous cutlass fish (Trichiurus lepturus) were on average between 0.2 and 1.8. Continued OCP monitoring in this region is warranted to better understand the distribution and fate of these compounds over time, with the goal to establish strategies for the conservation of local dolphin species and to assess human health risks from local coastal region populations.
Collapse
Affiliation(s)
- Ricardo Cavalcanti Lavandier
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| | - Jennifer Arêas
- PIBIC/Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Leila Soledade Lemos
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Jailson Fulgêncio de Moura
- Systems Ecology, Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany
| | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo (USP), Praça do Oceanográfico, 191, Butantã, São Paulo 05508-120, Brazil
| | - Rosalinda Montone
- Instituto Oceanográfico, Universidade de São Paulo (USP), Praça do Oceanográfico, 191, Butantã, São Paulo 05508-120, Brazil
| | - Natalia Soares Quinete
- Institute of Environment, Florida International University, North Miami, FL 33181, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Salvatore Siciliano
- Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública/Fundação Oswaldo Cruz, Rua Leopoldo Bulhões, 1.480, Manguinhos, Rio de Janeiro 20911-300, Brazil
| | - Isabel Moreira
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| |
Collapse
|
31
|
Point AD, Crimmins BS, Holsen TM, Fernando S, Hopke PK, Darie CC. Can blood proteome diversity among fish species help explain perfluoroalkyl acid trophodynamics in aquatic food webs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162337. [PMID: 36848995 DOI: 10.1016/j.scitotenv.2023.162337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/22/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse family of industrially significant synthetic chemicals infamous for extreme environmental persistence and global environmental distribution. Many PFAS are bioaccumulative and biologically active mainly due to their tendency to bind with various proteins. These protein interactions are important in determining the accumulation potential and tissue distribution of individual PFAS. Trophodynamics studies including aquatic food webs present inconsistent evidence for PFAS biomagnification. This study strives to identify whether the observed variability in PFAS bioaccumulation potential among species could correspond with interspecies protein composition differences. Specifically, this work compares the perfluorooctane sulfonate (PFOS) serum protein binding potential and the tissue distribution of ten perfluoroalkyl acids (PFAAs) detected in alewife (Alosa pseudoharengus), deepwater sculpin (Myoxocephalus thompsonii), and lake trout (Salvelinus namaycush) of the Lake Ontario aquatic piscivorous food web. These three fish sera and fetal bovine reference serum all had unique total serum protein concentrations. Serum protein-PFOS binding experiments showed divergent patterns between fetal bovine serum and fish sera, suggesting potentially two different PFOS binding mechanisms. To identify interspecies differences in PFAS-binding serum proteins, fish sera were pre-equilibrated with PFOS, fractionated by serial molecular weight cut-off filter fractionation, followed by liquid chromatography-tandem mass spectrometry analysis of the tryptic protein digests and the PFOS extracts of each fraction. This workflow identified similar serum proteins for all fish species. However, serum albumin was only identified in lake trout, suggesting apolipoproteins are likely the primary PFAA transporters in alewife and deepwater sculpin sera. PFAA tissue distribution analysis provided supporting evidence for interspecies variations in lipid transport and storage, which may also contribute to the varied PFAA accumulation in these species. Proteomics data are available via ProteomeXchange with identifier PXD039145.
Collapse
Affiliation(s)
- Adam D Point
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America.
| | - Bernard S Crimmins
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; AEACS, LLC, New Kensington, PA, United States of America
| | - Thomas M Holsen
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, United States of America
| |
Collapse
|
32
|
Tang J, Zhang C, Zhang J, Jia Y, Fang J. Trophodynamic of endocrine disrupting compounds in the aquatic food webs: Association with hydrophobicity and biota metabolic rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161731. [PMID: 36681335 DOI: 10.1016/j.scitotenv.2023.161731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Increasing concentration of endocrine disrupting compounds (EDCs) are released into the aquatic environment, resulting in irreversible effects on the endocrine and reproductive systems of biota. How the liver enzymes affect metabolic rate of these compounds and thus their structure-related trophic transfer in aquatic food webs remains largely unknown. In this study, the concentrations of seven common EDCs were measured in 15 species of fish, 7 invertebrate species and plankton collected from Liuxi River to Pearl River, South China. The mean ΣEDC concentrations generally were found to increase as follows: plankton (29.59 ng g-1 dw) < invertebrate species (50.69 ng g-1 dw) < fish (122.56 ng g-1 dw), with 4-nonylphenol (4-NP) and bisphenol S (BPS) as the predominant components. Trophic magnification factors (TMFs) values were >1.0 ranged from 1.30 (BPS) to 4.07 (4-NP), indicating trophic magnification potential. Measurement of metabolism and activities of microsomal CYP450 enzymes were performed in the fish liver microsomes of Hypophthalmichthys molitrix ([TL] = 2.27), Cirrhinus mrigala (TL = 3.87) and Odontamblyopus rubicundus (TL = 4.73). TMFs were significantly negatively correlated with the obtained in vitro biotransformation clearance rates (CL in vitro) of EDCs and CYP450 enzymes activities. A multiple linear regression model indicated that biotransformation clearance is a more powerful predictor for TMFs than the hydrophobicity (Kow) to drive changes in the studied aquatic food web trophodynamics.
Collapse
Affiliation(s)
- Jinpeng Tang
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Chencheng Zhang
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jinhua Zhang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Ji Fang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
33
|
Bjørneset J, Blévin P, Bjørnstad PM, Dalmo RA, Goksøyr A, Harju M, Limonta G, Panti C, Rikardsen AH, Sundaram AYM, Yadetie F, Routti H. Establishment of killer whale (Orcinus orca) primary fibroblast cell cultures and their transcriptomic responses to pollutant exposure. ENVIRONMENT INTERNATIONAL 2023; 174:107915. [PMID: 37031518 DOI: 10.1016/j.envint.2023.107915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Populations of killer whale (Orcinus orca) contain some of the most polluted animals on Earth. Yet, the knowledge on effects of chemical pollutants is limited in this species. Cell cultures and in vitro exposure experiments are pertinent tools to study effects of pollutants in free-ranging marine mammals. To investigate transcriptional responses to pollutants in killer whale cells, we collected skin biopsies of killer whales from the Northern Norwegian fjords and successfully established primary fibroblast cell cultures from the dermis of 4 out of 5 of them. Cells from the individual with the highest cell yield were exposed to three different concentrations of a mixture of persistent organic pollutants (POPs) that reflects the composition of the 10 most abundant POPs found in Norwegian killer whales (p,p'-DDE, trans-nonachlor, PCB52, 99, 101, 118, 138, 153, 180, 187). Transcriptional responses of 13 selected target genes were studied using digital droplet PCR, and whole transcriptome responses were investigated utilizing RNA sequencing. Among the target genes analysed, CYP1A1 was significantly downregulated in the cells exposed to medium (11.6 µM) and high (116 µM) concentrations of the pollutant mixture, while seven genes involved in endocrine functions showed a non-significant tendency to be upregulated at the highest exposure concentration. Bioinformatic analyses of RNA-seq data indicated that 13 and 43 genes were differentially expressed in the cells exposed to low and high concentrations of the mixture, respectively, in comparison to solvent control. Subsequent pathway and functional analyses of the differentially expressed genes indicated that the enriched pathways were mainly related to lipid metabolism, myogenesis and glucocorticoid receptor regulation. The current study results support previous correlative studies and provide cause-effect relationships, which is highly relevant for chemical and environmental management.
Collapse
Affiliation(s)
- J Bjørneset
- UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - P Blévin
- Akvaplan-niva AS, Fram Centre, Tromsø, Norway
| | | | - R A Dalmo
- UiT - The Arctic University of Norway, Tromsø, Norway
| | - A Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - M Harju
- Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | | | - C Panti
- University of Siena, Siena, Italy
| | - A H Rikardsen
- UiT - The Arctic University of Norway, Tromsø, Norway; Norwegian Institute for Nature Research, Tromsø, Norway
| | | | - F Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - H Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway.
| |
Collapse
|
34
|
Jin S, Cao S, Li R, Gao H, Na G. Trophic transfer of polycyclic aromatic hydrocarbons through the food web of the Fildes Peninsula, Antarctica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55057-55066. [PMID: 36884168 DOI: 10.1007/s11356-023-26049-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The Antarctic ecosystem is characterized by few consumer species and simple trophic levels (TLs), rendering it an ideal setting to investigate the environmental behavior of contaminants. The paper aims to assess the presence, sources and biomagnification behavior of polycyclic aromatic hydrocarbons (PAHs) of the Antarctic food web and is the first study of biomagnifications of PAHs in the Fildes Peninsula in Antarctica. Nine representative species from the Fildes Peninsula in Antarctica were sampled and evaluated for PAH presence. PAH concentrations ranged from 477.41 to 1237.54 ng/g lipid weight (lw) in the sampled Antarctic biota, with low molecular weight PAHs (naphthalene, acenaphthylene, acenaphthene, and fluorene) comprising the majority of the PAHs. PAHs concentrations were negatively correlated with TLs. Further, the food web magnification factor (FWMF) of ∑PAHs was 0.63, suggesting biodilution of PAHs along the TLs. Source analyses revealed that the PAHs mainly originated from petroleum contamination and the combustion of fossil fuels.
Collapse
Affiliation(s)
- Shuaichen Jin
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Shengkai Cao
- School of Marine Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruijing Li
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Hui Gao
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Guangshui Na
- Laboratory for Coastal Marine Eco-Environment Process and Carbon, Sink of Hainan Province/Yazhou Bay Innovation Institute/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
35
|
Zhang T, Ren H, Shokr M, Hui F, Cheng X. Bibliometric analysis of studies of the Arctic and Antarctic polynya. Front Res Metr Anal 2023; 8:1100845. [PMID: 37008287 PMCID: PMC10061148 DOI: 10.3389/frma.2023.1100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Based on the polar polynya-related 1,677 publications derived from the Web of Science from 1980 to 2021, this study analyses the scientific performance of polar polynya research with respect to publication outputs, scientific categories, journals, productive countries and partnerships, co-cited references, bibliographic documents and the thermal trends of keywords. The number of publications and citations on polar polynya has increased 17.28 and 11.22% annually since the 1990s, respectively, and those numbers for Antarctic polynya have surpassed that of the Arctic polynya since 2014. Oceanography, geosciences multidisciplinary, and environmental sciences were the top 3 scientific categories in the Arctic and Antarctic polynya research field. Nevertheless, ecology and meteorology are gaining ground in the Arctic and the Antarctic recently. The Journal of Geophysical Research-Oceans accommodated most publications for both polar regions, followed by Deep-Sea Research Part II-Topical Studies in Oceanography and Polar Biology. The Continental Shelf Research and Ocean Modeling were favored journals in Arctic and Antarctic polynya research, respectively. The USA dominated the polar polynya study field with 31.74%/43.60% publications on the Arctic/Antarctic polynya research, followed by Canada (40.23%/4.32%) and Germany (17.21%/11.22%). Besides, Australia occupied the second most popular position in the Antarctic polynya research. The keywords analysis concluded that the polynya topics that generated the most interest were altered from model to climate change in the Arctic and ocean water and glacier in the Antarctic over time. This study gives a summary of the polar polynya scientific field through bibliometric analysis which may provide reference for future research.
Collapse
Affiliation(s)
- Tianyu Zhang
- School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Haiyi Ren
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Mohammed Shokr
- Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Fengming Hui
- School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Fengming Hui
| | - Xiao Cheng
- School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
36
|
Sørensen L, Schaufelberger S, Igartua A, Størseth TR, Øverjordet IB. Non-target and suspect screening reveal complex pattern of contamination in Arctic marine zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161056. [PMID: 36565880 DOI: 10.1016/j.scitotenv.2022.161056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Although increasing, there is still limited knowledge of the presence of 'contaminants of emerging concern' in Arctic marine biota, particularly in lower trophic species. In the present study, we have applied a novel pipeline to investigate the presence of contaminants in a variety of benthic and pelagic low-trophic organisms: amphipods, copepods, arrow worms and krill. Samples collected in Kongsfjorden in Svalbard in 2018 were subject to extraction and two-dimensional gas chromatography coupled to high-resolution mass spectrometry (GC×GC-HRMS). Tentatively identified compounds included plastic additives, antioxidants, antimicrobials, flame retardants, precursors, production solvents and chemicals, insecticides, and pharmaceuticals. Both legacy contaminants (PAHs, PCBs, PBDEs, hexachlorobenzene) as well as novel and emerging contaminants (triclosan, bisphenol A, and ibuprofen) were quantified in several species using target analysis by GC-MS/MS. The significance of these discoveries is discussed considering the potential for detrimental effects caused by these chemicals, as well as suggested local and distant sources of the components to the Arctic environment.
Collapse
Affiliation(s)
| | - Sonja Schaufelberger
- University of Koblenz-Landau, Institute for Environmental Sciences, Germany; University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| | - Amaia Igartua
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | | |
Collapse
|
37
|
Santos ACSS, Souza LA, Araujo TG, de Rezende CE, Hatje V. Fate and Trophic Transfer of Rare Earth Elements in a Tropical Estuarine Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2404-2414. [PMID: 36719271 DOI: 10.1021/acs.est.2c07726] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We sampled abiotic and food web components in an impacted estuarine system to assess the transfer and fate of rare earth elements (REE). REE (based on dry weight) were measured in sediments, suspended particulate matter (SPM), and organisms from different trophic levels. The highest ∑REE concentrations were measured in sediments (180 ± 4.24 mg kg-1) and SPM (163 ± 12.6 mg kg-1). Phytoplankton (45.7 ± 5.31 mg kg-1), periphyton (51.6 ± 1.81 mg kg-1), and zooplankton (68.5 ± 1.27 mg kg-1) are the major sources of exposure and transfer of REE to the food web. REE concentrations were several orders of magnitude lower in bivalves, crustaceans, and fish (6.01 ± 0.11, 1.22 ± 0.18, and 0.059 ± 0.003 mg kg-1, respectively) than in plankton. The ∑REE declined as a function of the trophic position, as determined by functional feeding groups and δ15N, indicating that REE were subject to trophic dilution. Our study suggests that the consumption of seafood is unlikely to be an important source of REE for humans. However, given the numerous sources of dietary introduction of REE, they should be monitored for a possible harmful cumulative effect. This study provides new key information on REE's baseline concentrations and trophic transfers and patterns.
Collapse
Affiliation(s)
- Ana C S S Santos
- Centro Interdisciplinar de Energia e Ambiente - CIENAM, Universidade Federal da Bahia, Campus Ondina, Ondina, Salvador, Bahia40170-115, Brazil
| | - Laís A Souza
- Centro Interdisciplinar de Energia e Ambiente - CIENAM, Universidade Federal da Bahia, Campus Ondina, Ondina, Salvador, Bahia40170-115, Brazil
| | - Taiana G Araujo
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Salobrinho, Ilhéus, Bahia45662-900, Brazil
| | - Carlos Eduardo de Rezende
- Laboratório de Ciências Ambientais; Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego 2000 Parque Califórnia, Campos dos Goytacazes, RJ28013-602, Brazil
| | - Vanessa Hatje
- Centro Interdisciplinar de Energia e Ambiente - CIENAM, Universidade Federal da Bahia, Campus Ondina, Ondina, Salvador, Bahia40170-115, Brazil
- Dept de Química Analítica, Inst. de Química. Universidade Federal da Bahia, Ondina, Salvador, Bahia40170-115, Brazil
| |
Collapse
|
38
|
Wang Q, Li X, Zhou X. Improving the qualities of the trophic magnification factors (TMFs): A case study based on scaled Δ 15N trophic position framework and separate baseline species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160095. [PMID: 36372174 DOI: 10.1016/j.scitotenv.2022.160095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Scientific understanding of trophic magnification factors (TMFs) is conducive to formulating environmental management measures. Trophic position (TP) of species is the key parameter in TMFs assessment. Nitrogen stable isotopes (δ15N) provide a powerful tool to estimate TP. However, some limitations could introduce considerable uncertainty into TP and TMFs assessment which mainly includes: 1) determination of Δ15N between two adjacent trophic positions; 2) determination of baseline species. Different from the widely used constant Δ15N (3.4 ‰) between two adjacent trophic positions, which is called additive Δ15N framework, Δ15N gradually decreases as trophic position increases under scaled Δ15N framework, which has been confirmed by more and more laboratory studies and meta-analyses. In this study, we sampled in two similar littoral ecosystems separated by one natural dam, which is called Small Xingkai Lake and Xingkai Lake, analyzed the δ15N and total mercury (THg) of each species. On the one hand, we compared the TP of species under the additive Δ15N framework and scaled Δ15N framework with the White shrimp (Exopalaemon modestus) as baseline species in two lakes respectively. On the other hand, we explored the possible changes in TMFs based on TP. Our results show, under the scaled Δ15N framework, the trophic position of the same species is higher, while TMFs is lower compared with the additive Δ15N framework; even if in the two interconnected lakes, distributed the same baseline species, in the similar ecosystem, separate baselines should also be used. In this study, two frameworks of the food chain were compared in two interconnected freshwater ecosystems for the first time. The difference between TMFs of two lakes was obvious under scaled framework but not under additive framework. We also recommend that future TMFs assessments should be based on the scaled Δ15N framework because it has improved the accuracy of trophic position assessment.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province 130102, China
| | - Xingchun Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province 150040, China
| | - Xuehong Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province 150040, China.
| |
Collapse
|
39
|
Cao X, Lu R, Xu Q, Zheng X, Zeng Y, Mai B. Distinct biomagnification of chlorinated persistent organic pollutants in adjacent aquatic and terrestrial food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120841. [PMID: 36493935 DOI: 10.1016/j.envpol.2022.120841] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biomagnification of persistent organic pollutants (POPs) in food webs has been studied for many years. However, the different processes and influencing factors in biomagnification of POPs in aquatic and terrestrial food webs still need clarification. Polychlorinated biphenyls (PCBs) and short-chain chlorinated paraffins (SCCPs) were measured in organisms from adjacent terrestrial and aquatic environment in this study. The median levels of PCBs in terrestrial and aquatic organisms were 21.7-138 ng/g lw and 37.1-149 ng/g lw, respectively. SCCP concentrations were 18.6-87.3 μg/g lw and 21.4-93.9 μg/g lw in terrestrial and aquatic organisms, respectively. Biomagnification factors (BMFs) of PCBs increased with higher log KOW in all food chains. BMFs of SCCPs were negatively correlated with log KOW in aquatic food chains, but positively correlated with log KOW in terrestrial food chains. The terrestrial food web had similar trophic magnification factors (TMFs) of PCBs, and higher TMFs of SCCPs than the aquatic food web. Biomagnification of PCBs was consistent in aquatic and terrestrial food webs, while SCCPs had higher biomagnification potential in terrestrial than aquatic organisms. The distinct biomagnification of SCCPs was affected by the respiratory elimination for terrestrial organisms, the different metabolism rates in various species, and more homotherms in terrestrial food webs. Fugacity model can well predict levels of less hydrophobic chemicals, and warrants more precise toxicokinetic data of SCCPs.
Collapse
Affiliation(s)
- Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qishan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
40
|
Ren J, Point AD, Baygi SF, Fernando S, Hopke PK, Holsen TM, Crimmins BS. Bioaccumulation of perfluoroalkyl substances in the Lake Erie food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120677. [PMID: 36400140 DOI: 10.1016/j.envpol.2022.120677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The bioaccumulation and biomagnification of perfluoroalkyl substances (PFAS) in the Lake Erie food web was investigated by analyzing surface water and biological samples including 10 taxa of fish species, 2 taxa of benthos and zooplankton. The carbon (δ13C) and nitrogen (δ15N) isotopic composition and fatty acids profiles of biological samples were used to evaluate the food web structure and assess the biomagnification of PFAS. Perfluorooctane sulfonate (PFOS) dominated the total PFAS (ΣPFAS) concentration (50-90% of ΣPFAS concentration), followed by C9-C11 perfluorinated carboxylic acids (PFCAs). The highest PFOS concentrations (79 ± 4.8 ng/g, wet weight (wwt)) and ΣPFAS (88 ± 5.2 ng/g, wwt) were detected in yellow perch (Perca flavescens). The C8-C14 PFAS biomagnification factors (BMFs) between apex piscivorous fish and prey fish were found to be generally greater than 1, indicative of PFAS biomagnification, while biodilution (BMF<1) was observed between planktivorous fish and zooplankton. Trophic magnification factors (TMFs) of C8-C14 PFCA were not correlated with perfluoroalkyl chain length. The C4-C9 PFAS were detected in the surface water of Lake Erie, and PFBA was found to have the highest concentrations (2.1-2.8 ng/L) among all PFAS detected. The log of bioaccumulation factor (BAF) was found to generally increase with increasing log Kow for C6, 8, and 9 PFAS in all selected species from three tropic levels.
Collapse
Affiliation(s)
- Junda Ren
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Adam D Point
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Sadjad Fakouri Baygi
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Sujan Fernando
- Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA; Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas M Holsen
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Bernard S Crimmins
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; AEACS, LLC, New Kensington, PA, USA.
| |
Collapse
|
41
|
Mauffret A, Chouvelon T, Wessel N, Cresson P, Bănaru D, Baudrier J, Bustamante P, Chekri R, Jitaru P, Le Loc'h F, Mialet B, Vaccher V, Harmelin-Vivien M. Trace elements, dioxins and PCBs in different fish species and marine regions: Importance of the taxon and regional features. ENVIRONMENTAL RESEARCH 2023; 216:114624. [PMID: 36309213 DOI: 10.1016/j.envres.2022.114624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Chemical contaminant concentrations in wild organisms are used to assess environmental status under the European Marine Strategy Framework Directive. However, this approach is challenged by the complex intra- and inter-species variability, and the different regional features. In this study, concentrations in trace elements (As, Cd, Hg and Pb), polychlorinated biphenyls (PCBs), polychlorodibenzo-para-dioxines (PCDDs) and polychlorodibenzofuranes (PCDFs) were monitored in 8 fish species sampled on the continental shelf of three French regions: the Eastern English Channel (EEC) and Bay of Biscay (BoB) in the Northeast Atlantic Ocean, and the Gulf of Lions (GoL) in Western Mediterranean Sea. Our objectives were to identify species or regions more likely to be contaminated and to assess how to take this variability into account in environmental assessment. While concentrations were higher in benthic and demersal piscivores, PCB and PCDD/F concentrations (lipid-weight) were similar in most teleost species. For Cd, Hg and Pb, the trophic group accumulating the highest concentrations depended on the contaminant and region. Concentrations in Hg, PCBs and PCDD/Fs were higher in the EEC and/or GoL than in BoB. Cadmium and Pb concentrations were highest in the BoB. Lipid content accounted for 35%-84% of organic contaminant variability. Lipid normalisation was employed to enhance robustness in the identification of spatial patterns. Contaminant patterns in chondrichthyans clearly differed from that in teleosts. In addition, trophic levels accounted for ≤1% and ≤33% of the contaminant variability in teleost fishes in the EEC and BoB, respectively. Therefore, developing taxa-specific thresholds might be a more practical way forward for environmental assessment than normalisation to trophic levels.
Collapse
Affiliation(s)
- Aourell Mauffret
- Ifremer, CCEM, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - Tiphaine Chouvelon
- Ifremer, CCEM, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France; Observatoire Pelagis, UAR 3462 La Rochelle Université/CNRS, 5 Allées de L'Océan, 17000 La Rochelle, France
| | - Nathalie Wessel
- Ifremer, ODE/Vigies, Rue de L'île d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Pierre Cresson
- Ifremer, Channel and North Sea Fisheries Research Unit, 50 Quai Gambetta, BP 699, 62321 Boulogne sur Mer, France
| | - Daniela Bănaru
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, Marseille, France
| | - Jérôme Baudrier
- Ifremer, Biodivenv, 79 Route de Pointe-Fort, 97 231 Le Robert, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, 2 rue Olympe de Gouges 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005 Paris, France
| | - Rachida Chekri
- Anses, Laboratory for Food Safety, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Petru Jitaru
- Anses, Laboratory for Food Safety, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - François Le Loc'h
- University of Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzane, France
| | - Benoit Mialet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, 2 rue Olympe de Gouges 17000 La Rochelle, France
| | - Vincent Vaccher
- Oniris, INRAE, UMR 1329, Laboratoire d'Étude des Résidus et Contaminants dans Les Aliments (LABERCA), F-44307, Nantes, France
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, Marseille, France
| |
Collapse
|
42
|
Rebryk A, Haglund P. Comprehensive non-target screening of biomagnifying organic contaminants in the Baltic Sea food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158280. [PMID: 36029819 DOI: 10.1016/j.scitotenv.2022.158280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
High-resolution mass spectrometry (HRMS) based non-target screening (NTS) is a powerful approach for the simultaneous determination of multiple environmental contaminant classes in complex biota samples. In this study, trophic biomagnification factor (TMF) directed NTS was performed to find and (tentatively) identify known, emerging, and new chemical contaminants that are persistent and biomagnify in Baltic Sea biota. The investigated food web included seven species: one filter feeder (blue mussel, Mytilus edulis), two fish (eelpout, Zoarces viviparous; herring, Clupea harengus), two marine mammals (harbor porpoise, Phocoena phocoena; grey seal, Halichoerus grypus) and two birds (guillemot, Uria aalge; white-tailed sea eagle, Haliaeetus albicilla). The NTS procedure included extraction with organic solvent mixtures, two-step high-resolution gel permeation chromatography clean-up, Florisil® fractionation, gas chromatography (GC) HRMS analysis in electron ionization (EI) and electron capture negative ion chemical ionization (ECNI) modes, and NTS data processing. The latter was performed differently for the EI and ECNI data: the EI data were treated using a flexible and highly automated TMF-directed NTS workflow, whereas the ECNI data were treated with a simpler and less automated workflow that specifically screened for brominated compounds. The two workflows collectively revealed biomagnification (statistically significant TMF values) of >250 tentatively identified compounds, including legacy persistent organic pollutants (POPs), such as PCBs and PCB-related compounds, DDT and its metabolites, and organochlorine pesticides (OCPs), contaminants of emerging concern (CECs), and halogenated natural products (HNPs). Among the tentatively identified CECs, nine have not previously been reported in environmental biota samples. These included four polymer additives (used as antioxidants, rubber additives or plasticizers) and two cosmetic product additives (ethyl myristate and isopropyl palmitate). The CECs should be prioritized for future structure verification and quantification using reference standards.
Collapse
Affiliation(s)
- Andriy Rebryk
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden.
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| |
Collapse
|
43
|
Zhu L, Wang C, Huang L, Ding Y, Cheng Y, Rad S, Xu P, Kang B. Halogenated organic pollutants (HOPs) in marine fish from the Beibu Gulf, South China Sea: Levels, distribution, and health risk assessment. MARINE POLLUTION BULLETIN 2022; 185:114374. [PMID: 36410197 DOI: 10.1016/j.marpolbul.2022.114374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Six marine fish species, collected from the Beibu Gulf were statistically analyzed for polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethanes (DDTs). The concentrations of ∑14PBDEs, ∑26PCBs, and ∑6DDTs ranged from 11.8-1431, 8.74-495, and 9.47-1263 ng g-1 lipid weight (lw), respectively. In general, PBDEs were the predominant halogenated organic pollutants (HOPs) in the Beibu Gulf. The homologues profiles of Mugil cephalus and Trichiurus nanhaiensis differed from other four species. For example, the contributions of deca-BDEs in M. cephalus (14 %) and T. nanhaiensis (1 %) were lower than other four species (56 %). The ratio of (DDE + DDD)/ΣDDTs in all samples was >0.5, indicating that DDTs were mainly derived from historical residues. Intakes of HOPs through the consumption of the marine fish from the study areas might not subject residents of the coastal areas in the Beibu Gulf to health risks.
Collapse
Affiliation(s)
- Liang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, Guangxi 541004, China.
| | - Yang Ding
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People's Republic of China, Guangxi Normal University, Guilin, Guangxi 541004, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541004, China.
| | - Yanan Cheng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Bin Kang
- College of Fisheries, Ocean University of China, Qingdao, Shandong 266100, China
| |
Collapse
|
44
|
Facciola N, Houde M, Muir DCG, Ferguson SH, McKinney MA. Feeding and contaminant patterns of sub-arctic and arctic ringed seals: Potential insight into climate change-contaminant interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120108. [PMID: 36084741 DOI: 10.1016/j.envpol.2022.120108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
To provide insight into how climate-driven diet shifts may impact contaminant exposures of Arctic species, we compared feeding ecology and contaminant concentrations in ringed seals (Pusa hispida) from two Canadian sub-Arctic (Nain at 56.5°N, Arviat at 61.1°N) and two Arctic sites (Sachs Harbour at 72.0 °N, Resolute Bay at 74.7 °N). In the sub-Arctic, empirical evidence of changing prey fish communities has been documented, while less community change has been reported in the Arctic to date, suggesting current sub-Arctic conditions may be a harbinger of future Arctic conditions. Here, Indigenous partners collected tissues from subsistence-harvested ringed seals in 2018. Blubber fatty acids (FAs) and muscle stable isotopes (δ15N, δ13C) indicated dietary patterns, while measured contaminants included heavy metals (e.g., total mercury (THg)), legacy persistent organic pollutants (e.g., dichlorodiphenyltrichloroethanes (DDTs)), polybrominated diphenyl ethers (PBDEs), and per-/polyfluoroalkyl substances (PFASs). FA signatures are distinct between sub-Arctic and Resolute Bay seals, likely related to higher consumption of southern prey species including capelin (Mallotus villosus) in the sub-Arctic but on-going feeding on Arctic species in Resolute Bay. Sachs Harbour ringed seals show FA overlap with all locations, possibly consuming both southern and endemic Arctic species. Negative δ13C estimates for PFAS models suggest that more pelagic, sub-Arctic type prey (e.g., capelin) increases PFAS concentrations, whereas the reverse occurs for, e.g., THg, ΣPBDE, and ΣDDT. Inconsistent directionality of δ15N estimates in the models likely reflects baseline isotopic variation not trophic position differences. Adjusting for the influence of diet suggests that if Arctic ringed seal diets become more like sub-Arctic seals due to climate change, diet-driven increases may occur for newer contaminants like PFASs, but not for more legacy contaminants. Nonetheless, temporal trends studies are still needed, as are investigations into the potential confounding influence of baseline isotope variation in spatial studies of contaminants in Arctic biota.
Collapse
Affiliation(s)
- Nadia Facciola
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, QC H2Y 2E5, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Steven H Ferguson
- Fisheries and Oceans Canada, Central and Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
45
|
Pantoja-Echevarría LM, Marmolejo-Rodríguez AJ, Galván-Magaña F, Elorriaga-Verplancken FR, Tripp-Valdéz A, Tamburin E, Lara A, Jonathan M, Sujitha S, Delgado-Huertas A, Arreola-Mendoza L. Trophic structure and biomagnification of cadmium, mercury and selenium in brown smooth hound shark (Mustelus henlei) within a trophic web. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Zhang Y, Li S, Zhang Y, Chen Y, Wang X, Sun Y. Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review. TOXICS 2022; 10:toxics10100620. [PMID: 36287900 PMCID: PMC9610277 DOI: 10.3390/toxics10100620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
Hexabromocyclododecane (HBCD) was listed in Annex A of the Stockholm Convention on Persistent Organic Pollutants for its persistence, bioaccumulation and toxicity, and pose significant adverse effects on natural environments and human health. HBCDs are ubiquitously found in marine environments worldwide and can be biomagnified in marine organisms with a high trophic level. In the present study, we reviewed the available data on contamination of HBCDs in the marine biota from China, including mollusks, crustaceans, fish and mammals. Bioaccumulation and biomagnification of HBCDs in the marine food web were summarized as well. This study also prospected the future research of HBCDs, including the transport and fluxes of HBCDs to and within the marine environment, the biomagnification of HBCDs in different ecosystems, and the metabolism of HBCDs in different marine species.
Collapse
Affiliation(s)
- Ying Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Sijia Li
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Yafeng Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Yezi Chen
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
| | - Xutao Wang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510611, China
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yuxin Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
47
|
Keilen EK, Borgå K, Thorstensen HS, Hylland K, Helberg M, Warner N, Bæk K, Reiertsen TK, Ruus A. Differences in Trophic Level, Contaminant Load, and DNA Damage in an Urban and a Remote Herring Gull (Larus argentatus) Breeding Colony in Coastal Norway. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2466-2478. [PMID: 35860956 PMCID: PMC9826413 DOI: 10.1002/etc.5441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Herring gulls (Larus argentatus) are opportunistic feeders, resulting in contaminant exposure depending on area and habitat. We compared contaminant concentrations and dietary markers between two herring gull breeding colonies with different distances to extensive human activity and presumed contaminant exposure from the local marine diet. Furthermore, we investigated the integrity of DNA in white blood cells and sensitivity to oxidative stress. We analyzed blood from 15 herring gulls from each colony-the urban Oslofjord near the Norwegian capital Oslo in the temperate region and the remote Hornøya island in northern Norway, on the Barents Sea coast. Based on d13 C and d34 S, the dietary sources of urban gulls differed, with some individuals having a marine and others a more terrestrial dietary signal. All remote gulls had a marine dietary signal and higher relative trophic level than the urban marine feeding gulls. Concentrations (mean ± standard deviation [SD]) of most persistent organic pollutants, such as polychlorinated biphenyl ethers (PCBs) and perfluorooctane sulfonic acid (PFOS), were higher in urban marine (PCB153 17 ± 17 ng/g wet weight, PFOS 25 ± 21 ng/g wet wt) than urban terrestrial feeders (PCB153 3.7 ± 2.4 ng/g wet wt, PFOS 6.7 ± 10 ng/g wet wt). Despite feeding at a higher trophic level (d15 N), the remote gulls (PCB153 17 ± 1221 ng/g wet wt, PFOS 19 ± 1421 ng/g wet wt) were similar to the urban marine feeders. Cyclic volatile methyl siloxanes were detected in only a few gulls, except for decamethylcyclopentasiloxane in the urban colony, which was found in 12 of 13 gulls. Only hexachlorobenzene was present in higher concentrations in the remote (2.6 ± 0.42 ng/g wet wt) compared with the urban colony (0.34 ± 0.33 ng/g wet wt). Baseline and induced DNA damage (doublestreak breaks) was higher in urban than in remote gulls for both terrestrial and marine feeders. Environ Toxicol Chem 2022;41:2466-2478. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Katrine Borgå
- Department of BiosciencesUniversity of OsloOsloNorway
| | | | - Ketil Hylland
- Department of BiosciencesUniversity of OsloOsloNorway
| | | | | | - Kine Bæk
- The Norwegian Institute for Water ResearchOsloNorway
| | | | - Anders Ruus
- Department of BiosciencesUniversity of OsloOsloNorway
- The Norwegian Institute for Water ResearchOsloNorway
| |
Collapse
|
48
|
Lewis PJ, Lashko A, Chiaradia A, Allinson G, Shimeta J, Emmerson L. New and legacy persistent organic pollutants (POPs) in breeding seabirds from the East Antarctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119734. [PMID: 35835279 DOI: 10.1016/j.envpol.2022.119734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants (POPs) are pervasive and a significant threat to the environment worldwide. Yet, reports of POP levels in Antarctic seabirds based on blood are scarce, resulting in significant geographical gaps. Blood concentrations offer a snapshot of contamination within live populations, and have been used widely for Arctic and Northern Hemisphere seabird species but less so in Antarctica. This paper presents levels of legacy POPs (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)) and novel brominated flame retardants (NBFRs) in the blood of five Antarctic seabird species breeding within Prydz Bay, East Antarctica. Legacy PCBs and OCPs were detected in all species sampled, with Adélie penguins showing comparatively high ∑PCB levels (61.1 ± 87.6 ng/g wet weight (ww)) compared to the four species of flying seabirds except the snow petrel (22.5 ± 15.5 ng/g ww), highlighting that legacy POPs are still present within Antarctic wildlife despite decades-long bans. Both PBDEs and NBFRs were detected in trace levels for all species and hexabromobenzene (HBB) was quantified in cape petrels (0.3 ± 0.2 ng/g ww) and snow petrels (0.2 ± 0.1 ng/g ww), comparable to concentrations found in Arctic seabirds. These results fill a significant data gap within the Antarctic region for POPs studies, representing a crucial step forward assessing the fate and impact of legacy POPs contamination in the Antarctic environment.
Collapse
Affiliation(s)
- Phoebe J Lewis
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
| | - Anna Lashko
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, Victoria, 3925, Australia
| | - Graeme Allinson
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Louise Emmerson
- Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| |
Collapse
|
49
|
Reyes-Márquez A, Aguíñiga-García S, Morales-García SS, Sedeño-Díaz JE, López-López E. Temporal distribution patterns of metals in water, sediment, and components of the trophic structure in a tropical coastal lagoon of the Gulf of Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61643-61661. [PMID: 35020148 DOI: 10.1007/s11356-021-17815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Trophic transfer and bioaccumulation of trace metals have a profound impact on the structure and function of coastal areas; however, the metal accumulation patterns in detritus-based food webs and the influence of climatic variability have not been thoroughly investigated. The Tampamachoco Lagoon (Gulf of Mexico) is a coastal system impacted by emissions from a thermoelectric plant. We evaluated the spatial-temporal distribution patterns of Al, Cd, Hg, Cr, Cu, and Pb in water, sediments, and in organisms categorized by trophic levels (TLs), trophic guilds, and habitat preferences. The sediments had the highest concentrations of metals with no significant differences between seasons. The indices of geo-accumulation and potential ecological risk classified sediments as "moderately contaminated", evidencing a threat to human health through consumption of detritivores and filter-feeders. The lowest TLs (filter-feeders and detritivorous) reached the maximum Metal Pollution Index in the rainy season. According to discriminant analyses of metals and species, omnivorous and zoobentivorous organisms were associated with Hg during the rainy and dry seasons; while Al, Cd, and Cu were related to low TLs, and seston was associated with Pb. Food web magnification factor analysis showed that: (a) Pb, Cu, and Cr were biodiluted as trophic levels increased; (b) Cd and Hg showed temporal biomagnification trends; (c) Al, Pb, Cu, and Cd showed significant biodilution from the lowest TL to intermediate TLs; and (d) Hg was transferred from the lowest to intermediate TLs with clear biomagnification effects.
Collapse
Affiliation(s)
- Alejandra Reyes-Márquez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Ciudad de México, México
| | - Sergio Aguíñiga-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, BCS, 23096, La Paz, México
| | - Sandra Soledad Morales-García
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto S/N, Gustavo A. Madero, Ticomán, C.P., 07340, Ciudad de México, México
| | - Jacinto Elías Sedeño-Díaz
- Instituto Politécnico Nacional, Coordinación Politécnica Para La Sustentabilidad, C.P. 07738, Ciudad de México, México
| | - Eugenia López-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Ciudad de México, México.
| |
Collapse
|
50
|
McGovern M, Borgå K, Heimstad E, Ruus A, Christensen G, Evenset A. Small Arctic rivers transport legacy contaminants from thawing catchments to coastal areas in Kongsfjorden, Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119191. [PMID: 35364186 DOI: 10.1016/j.envpol.2022.119191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Decades of atmospheric and oceanic long-range transport from lower latitudes have resulted in deposition and storage of persistent organic pollutants (POPs) in Arctic regions. With increased temperatures, melting glaciers and thawing permafrost may serve as a secondary source of these stored POPs to freshwater and marine ecosystems. Here, we present concentrations and composition of legacy POPs in glacier- and permafrost-influenced rivers and coastal waters in the high Arctic Svalbard fjord Kongsfjorden. Targeted contaminants include polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs) and chlordane pesticides. Dissolved (defined as fraction filtered through 0.7 μm GF/F filter) and particulate samples were collected from rivers and near-shore fjord stations along a gradient from the heavily glaciated inner fjord to the tundra-dominated catchments at the outer fjord. There were no differences in contaminant concentration or pattern between glacier and tundra-dominated catchments, and the general contaminant pattern reflected snow melt with some evidence of pesticides released with glacial meltwater. Rivers were a small source of chlordane pesticides, DDTs and particulate HCB to the marine system and the particle-rich glacial meltwater contained higher concentrations of particle associated contaminants compared to the fjord. This study provides rare insight into the role of small Arctic rivers in transporting legacy contaminants from thawing catchments to coastal areas. Results indicate that the spring thaw is a source of contaminants to Kongsfjorden, and that expected increases in runoff on Svalbard and elsewhere in the Arctic could have implications for the contamination of Arctic coastal food-webs.
Collapse
Affiliation(s)
- Maeve McGovern
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway.
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Eldbjørg Heimstad
- NILU-Norwegian Institute for Air Research, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Guttorm Christensen
- Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anita Evenset
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway; Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway.
| |
Collapse
|