1
|
King BR, Sumida KH, Caruso JL, Baker D, Zalatan JG. Computational Stabilization of a Non-Heme Iron Enzyme Enables Efficient Evolution of New Function. Angew Chem Int Ed Engl 2025; 64:e202414705. [PMID: 39394803 DOI: 10.1002/anie.202414705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Deep learning tools for enzyme design are rapidly emerging, and there is a critical need to evaluate their effectiveness in engineering workflows. Here we show that the deep learning-based tool ProteinMPNN can be used to redesign Fe(II)/αKG superfamily enzymes for greater stability, solubility, and expression while retaining both native activity and industrially relevant non-native functions. This superfamily has diverse catalytic functions and could provide a rich new source of biocatalysts for synthesis and industrial processes. Through systematic comparisons of directed evolution trajectories for a non-native, remote C(sp3)-H hydroxylation reaction, we demonstrate that the stabilized redesign can be evolved more efficiently than the wild-type enzyme. After three rounds of directed evolution, we obtained a 6-fold activity increase from the wild-type parent and an 80-fold increase from the stabilized variant. To generate the initial stabilized variant, we identified multiple structural and sequence constraints to preserve catalytic function. We applied these criteria to produce stabilized, catalytically active variants of a second Fe(II)/αKG enzyme, suggesting that the approach is generalizable to additional members of the Fe(II)/αKG superfamily. ProteinMPNN is user-friendly and widely accessible, and our results provide a framework for the routine implementation of deep learning-based protein stabilization tools in directed evolution workflows for novel biocatalysts.
Collapse
Affiliation(s)
- Brianne R King
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Kiera H Sumida
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
- Institute of Protein Design, University of Washington, Seattle, Washington, 98195, USA
| | - Jessica L Caruso
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - David Baker
- Institute of Protein Design, University of Washington, Seattle, Washington, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195, USA
| | - Jesse G Zalatan
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
2
|
Stumpf MM, Brunetti T, Davenport BJ, McCarthy MK, Morrison TE. Deep mutationally scanned (DMS) CHIKV E3/E2 virus library maps viral amino acid preferences and predicts viral escape mutants of neutralizing CHIKV antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626854. [PMID: 39677653 PMCID: PMC11643203 DOI: 10.1101/2024.12.04.626854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
As outbreaks of chikungunya virus (CHIKV), a mosquito-borne alphavirus, continue to present public health challenges, additional research is needed to generate protective and safe vaccines and effective therapeutics. Prior research has established a role for antibodies in mediating protection against CHIKV infection, and the early appearance of CHIKV-specific IgG or IgG neutralizing antibodies protects against progression to chronic CHIKV disease in humans. However, the importance of epitope specificity for these protective antibodies and how skewed responses contribute to development of acute and chronic CHIKV-associated joint disease remains poorly understood. Here, we describe the deep mutational scanning of one of the dominant targets of neutralizing antibodies during CHIKV infection, the E3/E2 (also known as p62) glycoprotein complex, to simultaneously test thousands of p62 mutants against selective pressures of interest in a high throughput manner. Characterization of the virus library revealed achievement of high diversity while also selecting out non-functional virus variants. Furthermore, this study provides evidence that this virus library system can comprehensively map sites critical for the neutralization function of antibodies of both known and unknown p62 domain specificities.
Collapse
Affiliation(s)
- Megan M. Stumpf
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| |
Collapse
|
3
|
Wu J, Wang Z, Zeng M, He Z, Chen Q, Chen J. Comprehensive Understanding of Laboratory Evolution for Food Enzymes: From Design to Screening Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24928-24943. [PMID: 39495102 DOI: 10.1021/acs.jafc.4c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
In the field of food processing, enzymes play a pivotal role in improving product quality and flavor, and extending shelf life. However, the exposure of traditional food enzymes to high temperatures during processing often leads to a decrease in activity or even inactivation, limiting the effectiveness of their application under high-temperature conditions. Therefore, the modification of thermostability and activity of enzymes to adapt to extreme conditions through protein engineering has become a key way to improve the efficiency and economic benefits of industrial production. Directed evolution and semirational design strategies in the laboratory have proven to be broadly applicable frameworks for biochemical researchers in the food field, including those who are beginners. In this review, we systematically summarize semirational design strategies and high-throughput screening strategies, and introduce some intuitive computer simulation software to improve the thermostability and enzyme activity of food enzymes. The application of these strategies and techniques provides a comprehensive guide for the optimization of food enzymes. In addition, the latest hot topics of genetically engineered food enzymes in the field of application are discussed.
Collapse
Affiliation(s)
- Junhao Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
4
|
Dou Z, Chen X, Zhu L, Zheng X, Chen X, Xue J, Niwayama S, Ni Y, Xu G. Enhanced stereodivergent evolution of carboxylesterase for efficient kinetic resolution of near-symmetric esters through machine learning. Nat Commun 2024; 15:9057. [PMID: 39428434 PMCID: PMC11491460 DOI: 10.1038/s41467-024-53191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Carboxylesterases serve as potent biocatalysts in the enantioselective synthesis of chiral carboxylic acids and esters. However, naturally occurring carboxylesterases exhibit limited enantioselectivity, particularly toward ethyl 3-cyclohexene-1-carboxylate (CHCE, S1), due to its nearly symmetric structure. While machine learning effectively expedites directed evolution, the lack of models for predicting the enantioselectivity for carboxylesterases has hindered progress, primarily due to challenges in obtaining high-quality training datasets. In this study, we devise a high-throughput method by coupling alcohol dehydrogenase to determine the apparent enantioselectivity of the carboxylesterase AcEst1 from Acinetobacter sp. JNU9335, generating a high-quality dataset. Leveraging seven features derived from biochemical considerations, we quantitively describe the steric, hydrophobic, hydrophilic, electrostatic, hydrogen bonding, and π-π interaction effects of residues within AcEst1. A robust gradient boosting regression tree model is trained to facilitate stereodivergent evolution, resulting in the enhanced enantioselectivity of AcEst1 toward S1. Through this approach, we successfully obtain two stereocomplementary variants, DR3 and DS6, demonstrating significantly increased and reversed enantioselectivity. Notably, DR3 and DS6 exhibit utility in the enantioselective hydrolysis of various symmetric esters. Comprehensive kinetic parameter analysis, molecular dynamics simulations, and QM/MM calculations offer insights into the kinetic and thermodynamic features underlying the manipulated enantioselectivity of DR3 and DS6.
Collapse
Affiliation(s)
- Zhe Dou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmacy, Zhejiang University of Technology, 310014, Hangzhou, Zhejiang, P. R. China
| | - Xuanzao Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Ledong Zhu
- Environmental Research Institute, Shandong University, Jimo, 266237, Qingdao, Shandong, P. R. China
| | - Xiangyu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Xiaoyu Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Jiayu Xue
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Satomi Niwayama
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China.
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China.
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
5
|
Xu J, Zhang Y, Zhu X, Shen C, Liu S, Xiao Y, Fang Z. Direct evolution of an alkaline fungal laccase to degrade tetracyclines. Int J Biol Macromol 2024; 277:134534. [PMID: 39111464 DOI: 10.1016/j.ijbiomac.2024.134534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/06/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
A fungal laccase-mediator system capable of high effectively oxidizing tetracyclines under a wide pH range will benefit environmental protection. This study reported a directed evolution of a laccase PIE5 to improve its performance on tetracyclines oxidization at alkaline conditions. Two mutants, namely MutA (D229N/A244V) and MutB (N123A/D229N/A244V) were obtained. Although they shared a similar optimum pH and temperature as PIE5, the two mutants displayed approximately 2- and 5-fold higher specific activity toward the mediators ABTS and guaiacol at pHs 4.0 to 6.5, respectively. Simultaneously, their catalytic efficiency increased by 8.0- and 6.4-fold compared to PIE5. At a pH range of 5-8 and 28 °C, MutA or MutB at a final concentration of 2.5 U·mL-1 degraded 77 % and 81 % of 100 mg·L-1 tetracycline within 10 min, higher than PIE5 (45 %). Furthermore, 0.1 U·mL-1 MutA or MutB completely degraded 100 mg·L-1 chlortetracycline within 6 min in the presence of 0.1 mM ABTS. At pH 8.0, MutA degraded tetracycline and chlortetracycline following the routine pathways were reported previously based on LC-MS analysis.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Yinliang Zhang
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Xuelin Zhu
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Chen Shen
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Shenglong Liu
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China.
| | - Zemin Fang
- School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China; Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, 230601 Hefei, Anhui, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 230601 Hefei, Anhui, China.
| |
Collapse
|
6
|
Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER. A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging. Nat Methods 2024; 21:1916-1925. [PMID: 39304767 PMCID: PMC11466818 DOI: 10.1038/s41592-024-02411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca2+ responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca2+ concentration using fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Helen Farrants
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Deng Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shang Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sarah E Plutkis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Electrical and Computer Engineering, Center for BioEngineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Abraham G Beyene
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
7
|
Liu X, Xu Y, Li L, Li J. Chemoenzymatic Oxidation of Labdane and Formal Synthesis of Nimbolide. J Am Chem Soc 2024; 146:26243-26250. [PMID: 39276077 DOI: 10.1021/jacs.4c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In nature, basic terpene skeletons are produced and subsequently undergo enzymatic or nonenzymatic oxidative transformations, leading to diverse structural variations. To date, thousands of natural products featuring a variety of oxidation patterns have been isolated solely from the labdane family. This work describes a strategy for the comprehensive introduction of oxidation states into the labdane core by employing a combination of enzyme library screening, directed evolution, and sequential chemical oxidation processes. Furthermore, we showcase the functional viability of our chemoenzymatic approach by accomplishing a formal synthesis of nimbolide, highlighting its potential for streamlining the synthesis of complex natural products.
Collapse
Affiliation(s)
- Xiaotao Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyao Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
9
|
Hilvert D. Spiers Memorial Lecture: Engineering biocatalysts. Faraday Discuss 2024; 252:9-28. [PMID: 39046423 PMCID: PMC11389855 DOI: 10.1039/d4fd00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Enzymes are being engineered to catalyze chemical reactions for many practical applications in chemistry and biotechnology. The approaches used are surveyed in this short review, emphasizing methods for accessing reactivities not expressed by native protein scaffolds. The successful generation of completely de novo enzymes that rival the rates and selectivities of their natural counterparts highlights the potential role that designer enzymes may play in the coming years in research, industry, and medicine. Some challenges that need to be addressed to realize this ambitious dream are considered together with possible solutions.
Collapse
Affiliation(s)
- Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
10
|
Jiang Y, Renata H. Modular chemoenzymatic synthesis of ten fusicoccane diterpenoids. Nat Chem 2024; 16:1531-1538. [PMID: 38710830 DOI: 10.1038/s41557-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Fusicoccane diterpenoids display intriguing biological activities, including the ability to act as modulators of 14-3-3 protein-protein interactions. However, their innate structural complexity and diverse oxygenation patterns present enormous synthetic challenges. Here we develop a modular chemoenzymatic approach that combines de novo skeletal construction and late-stage hybrid C-H oxidations to achieve the synthesis of ten complex fusicoccanes in 8-13 steps each. A convergent fragment coupling strategy allowed rapid access to a key tricyclic intermediate, which was subjected to chemical and enzymatic C-H oxidations to modularly prepare five oxidized family members. We also conceived a complementary biomimetic skeletal remodelling strategy to synthetically access five rearranged fusicoccanes with unusual bridgehead double bonds. This work may facilitate future investigation into the biological activities of the fusicoccanes and also inspire the implementation of similar hybrid strategies to provide family-level synthetic solutions to other natural product scaffolds.
Collapse
Affiliation(s)
- Yanlong Jiang
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, USA
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Johnston KE, Almhjell PJ, Watkins-Dulaney EJ, Liu G, Porter NJ, Yang J, Arnold FH. A combinatorially complete epistatic fitness landscape in an enzyme active site. Proc Natl Acad Sci U S A 2024; 121:e2400439121. [PMID: 39074291 PMCID: PMC11317637 DOI: 10.1073/pnas.2400439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Protein engineering often targets binding pockets or active sites which are enriched in epistasis-nonadditive interactions between amino acid substitutions-and where the combined effects of multiple single substitutions are difficult to predict. Few existing sequence-fitness datasets capture epistasis at large scale, especially for enzyme catalysis, limiting the development and assessment of model-guided enzyme engineering approaches. We present here a combinatorially complete, 160,000-variant fitness landscape across four residues in the active site of an enzyme. Assaying the native reaction of a thermostable β-subunit of tryptophan synthase (TrpB) in a nonnative environment yielded a landscape characterized by significant epistasis and many local optima. These effects prevent simulated directed evolution approaches from efficiently reaching the global optimum. There is nonetheless wide variability in the effectiveness of different directed evolution approaches, which together provide experimental benchmarks for computational and machine learning workflows. The most-fit TrpB variants contain a substitution that is nearly absent in natural TrpB sequences-a result that conservation-based predictions would not capture. Thus, although fitness prediction using evolutionary data can enrich in more-active variants, these approaches struggle to identify and differentiate among the most-active variants, even for this near-native function. Overall, this work presents a large-scale testing ground for model-guided enzyme engineering and suggests that efficient navigation of epistatic fitness landscapes can be improved by advances in both machine learning and physical modeling.
Collapse
Affiliation(s)
- Kadina E. Johnston
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA91125
| | - Patrick J. Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ella J. Watkins-Dulaney
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA91125
| | - Grace Liu
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA91125
| | - Nicholas J. Porter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Jason Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Frances H. Arnold
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA91125
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
12
|
Almhjell PJ, Johnston KE, Porter NJ, Kennemur JL, Bhethanabotla VC, Ducharme J, Arnold FH. The β-subunit of tryptophan synthase is a latent tyrosine synthase. Nat Chem Biol 2024; 20:1086-1093. [PMID: 38744987 PMCID: PMC11288773 DOI: 10.1038/s41589-024-01619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Aromatic amino acids and their derivatives are diverse primary and secondary metabolites with critical roles in protein synthesis, cell structure and integrity, defense and signaling. All de novo aromatic amino acid production relies on a set of ancient and highly conserved chemistries. Here we introduce a new enzymatic transformation for L-tyrosine synthesis by demonstrating that the β-subunit of tryptophan synthase-which natively couples indole and L-serine to form L-tryptophan-can act as a latent 'tyrosine synthase'. A single substitution of a near-universally conserved catalytic residue unlocks activity toward simple phenol analogs and yields exclusive para carbon-carbon bond formation to furnish L-tyrosines. Structural and mechanistic studies show how a new active-site water molecule orients phenols for a nonnative mechanism of alkylation, with additional directed evolution resulting in a net >30,000-fold rate enhancement. This new biocatalyst can be used to efficiently prepare valuable L-tyrosine analogs at gram scales and provides the missing chemistry for a conceptually different pathway to L-tyrosine.
Collapse
Affiliation(s)
- Patrick J Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Merck & Co., Inc, South San Francisco, CA, USA
| | - Nicholas J Porter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Codexis, Inc., Redwood City, CA, USA
| | - Jennifer L Kennemur
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vignesh C Bhethanabotla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Julie Ducharme
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Quebec Government Office, Los Angeles, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
King BR, Sumida KH, Caruso JL, Baker D, Zalatan JG. Computational stabilization of a non-heme iron enzyme enables efficient evolution of new function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590141. [PMID: 39091854 PMCID: PMC11290999 DOI: 10.1101/2024.04.18.590141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Directed evolution has emerged as a powerful tool for engineering new biocatalysts. However, introducing new catalytic residues can be destabilizing, and it is generally beneficial to start with a stable enzyme parent. Here we show that the deep learning-based tool ProteinMPNN can be used to redesign Fe(II)/αKG superfamily enzymes for greater stability, solubility, and expression while retaining both native activity and industrially-relevant non-native functions. For the Fe(II)/αKG enzyme tP4H, we performed site-saturation mutagenesis with both the wild-type and stabilized design variant and screened for activity increases in a non-native C-H hydroxylation reaction. We observed substantially larger increases in non-native activity for variants obtained from the stabilized scaffold compared to those from the wild-type enzyme. ProteinMPNN is user-friendly and widely-accessible, and straightforward structural criteria were sufficient to obtain stabilized, catalytically-functional variants of the Fe(II)/αKG enzymes tP4H and GriE. Our work suggests that stabilization by computational sequence redesign could be routinely implemented as a first step in directed evolution campaigns for novel biocatalysts.
Collapse
Affiliation(s)
- Brianne R King
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kiera H Sumida
- Department of Chemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Jessica L Caruso
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Institute for Protein Design, Department of Biochemistry, and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse G Zalatan
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Zhao Q, Rui J, Huang X. Radical-relay C(sp 3)-H azidation catalyzed by an engineered nonheme iron enzyme. Methods Enzymol 2024; 703:195-213. [PMID: 39260996 DOI: 10.1016/bs.mie.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Nonheme iron enzymes are versatile biocatalysts for a broad range of unique and powerful transformations, such as hydroxylation, chlorination, and epimerization as well as cyclization/ring-opening of organic molecules. Beyond their native biological functions, these enzymes are robust for engineering due to their structural diversity and high evolvability. Based on enzyme promiscuity and directed evolution as well as inspired by synthetic organic chemistry, nonheme iron enzymes can be repurposed to catalyze reactions previously only accessible with synthetic catalysts. To this end, our group has engineered a series of nonheme iron enzymes to employ non-natural radical-relay mechanisms for new-to-nature radical transformations. In particular, we have demonstrated that a nonheme iron enzyme, (4-hydroxyphenyl)pyruvate dioxygenase from streptomyces avermitilis (SavHppD), can be repurposed to enable abiological radical-relay process to access C(sp3)-H azidation products. This represents the first known instance of enzymatic radical relay azidation reactions. In this chapter, we describe the detailed experimental protocol to convert promiscuous nonheme iron enzymes into efficient and selective biocatalyst for radical relay azidation reactions. One round of directed evolution is described in detail, which includes the generation and handling of site-saturation mutagenesis, protein expression and whole-cell reactions screening in a 96-well plate. These protocol details might be useful to engineer various nonheme iron enzymes for other applications.
Collapse
Affiliation(s)
- Qun Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, P.R. China.
| | - Jinyan Rui
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, United States
| | - Xiongyi Huang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
15
|
Yaghi R, Andrews CL, Wylie DC, Iverson BL. High-Resolution Substrate Specificity Profiling of SARS-CoV-2 M pro; Comparison to SARS-CoV M pro. ACS Chem Biol 2024; 19:1474-1483. [PMID: 38865301 PMCID: PMC11267570 DOI: 10.1021/acschembio.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
The SARS-CoV-2 Mpro protease from COVID-19 cleaves the pp1a and pp2b polyproteins at 11 sites during viral maturation and is the target of Nirmatrelvir, one of the two components of the frontline treatment sold as Paxlovid. We used the YESS 2.0 platform, combining protease and substrate expression in the yeast endoplasmic reticulum with fluorescence-activated cell sorting and next-generation sequencing, to carry out the high-resolution substrate specificity profiling of SARS-CoV-2 Mpro as well as the related SARS-CoV Mpro from SARS 2003. Even at such a high level of resolution, the substrate specificity profiles of both enzymes are essentially identical. The population of cleaved substrates isolated in our sorts is so deep, the relative catalytic efficiencies of the different cleavage sites on the SARS-CoV-2 polyproteins pp1a and pp2b are qualitatively predicted. These results not only demonstrated the precise and reproducible nature of the YESS 2.0/NGS approach to protease substrate specificity profiling but also should be useful in the design of next generation SARS-CoV-2 Mpro inhibitors, and by analogy, SARS-CoV Mpro inhibitors as well.
Collapse
Affiliation(s)
- Rasha
M. Yaghi
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Collin L. Andrews
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Dennis C. Wylie
- Center
of Biomedical Research Support, University
of Texas at Austin, Austin, Texas 78712, United States of America
| | - Brent L. Iverson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| |
Collapse
|
16
|
Chen SK, Liu J, Van Nynatten A, Tudor-Price BM, Chang BSW. Sampling Strategies for Experimentally Mapping Molecular Fitness Landscapes Using High-Throughput Methods. J Mol Evol 2024:10.1007/s00239-024-10179-8. [PMID: 38886207 DOI: 10.1007/s00239-024-10179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Empirical studies of genotype-phenotype-fitness maps of proteins are fundamental to understanding the evolutionary process, in elucidating the space of possible genotypes accessible through mutations in a landscape of phenotypes and fitness effects. Yet, comprehensively mapping molecular fitness landscapes remains challenging since all possible combinations of amino acid substitutions for even a few protein sites are encoded by an enormous genotype space. High-throughput mapping of genotype space can be achieved using large-scale screening experiments known as multiplexed assays of variant effect (MAVEs). However, to accommodate such multi-mutational studies, the size of MAVEs has grown to the point where a priori determination of sampling requirements is needed. To address this problem, we propose calculations and simulation methods to approximate minimum sampling requirements for multi-mutational MAVEs, which we combine with a new library construction protocol to experimentally validate our approximation approaches. Analysis of our simulated data reveals how sampling trajectories differ between simulations of nucleotide versus amino acid variants and among mutagenesis schemes. For this, we show quantitatively that marginal gains in sampling efficiency demand increasingly greater sampling effort when sampling for nucleotide sequences over their encoded amino acid equivalents. We present a new library construction protocol that efficiently maximizes sequence variation, and demonstrate using ultradeep sequencing that the library encodes virtually all possible combinations of mutations within the experimental design. Insights learned from our analyses together with the methodological advances reported herein are immediately applicable toward pooled experimental screens of arbitrary design, enabling further assay upscaling and expanded testing of genotype space.
Collapse
Affiliation(s)
- Steven K Chen
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jing Liu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Mao R, Gao S, Qin ZY, Rogge T, Wu SJ, Li ZQ, Das A, Houk KN, Arnold FH. Biocatalytic, Enantioenriched Primary Amination of Tertiary C-H Bonds. Nat Catal 2024; 7:585-592. [PMID: 39006156 PMCID: PMC11238567 DOI: 10.1038/s41929-024-01149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 07/16/2024]
Abstract
Intermolecular functionalization of tertiary C-H bonds to construct fully substituted stereogenic carbon centers represents a formidable challenge: without the assistance of directing groups, state-of-the-art catalysts struggle to introduce chirality to racemic tertiary sp 3 -carbon centers. Direct asymmetric functionalization of such centers is a worthy reactivity and selectivity goal for modern biocatalysis. Here we present an engineered nitrene transferase (P411-TEA-5274), derived from a bacterial cytochrome P450, that is capable of aminating tertiary C-H bonds to provide chiral α-tertiary primary amines with high efficiency (up to 2300 total turnovers) and selectivity (up to >99% enantiomeric excess (e.e.)). The construction of fully substituted stereocenters with methyl and ethyl groups underscores the enzyme's remarkable selectivity. A comprehensive substrate scope study demonstrates the biocatalyst's compatibility with diverse functional groups and tertiary C-H bonds. Mechanistic studies elucidate how active-site residues distinguish between the enantiomers and enable the enzyme to perform this transformation with excellent enantioselectivity.
Collapse
Affiliation(s)
- Runze Mao
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Zi-Yang Qin
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Sophia J. Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Zi-Qi Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, United States
| |
Collapse
|
18
|
Zheng J, Sun R, Wu D, Chen P, Zheng P. Engineered Zea mays phenylalanine ammonia-lyase for improve the catalytic efficiency of biosynthesis trans-cinnamic acid and p-coumaric acid. Enzyme Microb Technol 2024; 176:110423. [PMID: 38442476 DOI: 10.1016/j.enzmictec.2024.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Phenylalanine ammonia-lyase (PAL) plays a pivotal role in the biosynthesis of phenylalanine. PAL from Zea mays (ZmPAL2) exhibits a bi-function of direct deamination of L-phenylalanine (L-Phe) or L-tyrosine(-L-Tyr) to form trans-cinnamic acid or p-coumaric acid. trans-Cinnamic acid and p-coumaric acid are mainly used in flavors and fragrances, food additives, pharmaceutical and other fields. Here, the Activity of ZmPAL2 toward L-Phe or L-Tyr was improved by using semi-rational and rational designs. The catalytic efficiency (kcat/Km) of mutant PT10 (V258I/I459V/Q484N) against L-Phe was 30.8 μM-1 s-1, a 4.5-fold increase compared to the parent, and the catalytic efficiency of mutant PA1 (F135H/I459L) to L-tyrosine exhibited 8.6 μM-1 s-1, which was 1.6-fold of the parent. The yield of trans-cinnamic acid in PT10 reached 30.75 g/L with a conversion rate of 98%. Meanwhile, PA1 converted L-Tyr to yield 3.12 g/L of p-coumaric acid with a conversion rate of 95%. Suggesting these two engineered ZmPAL2 to be valuable biocatalysts for the synthesis of trans-cinnamic acid and p-coumaric acid. In addition, MD simulations revealed that the underlying mechanisms of the increased catalytic efficiency of both mutant PT10 and PA1 are attributed to the substrate remaining stable within the pocket and closer to the catalytically active site. This also provides a new perspective on engineered PAL.
Collapse
Affiliation(s)
- Jiangmei Zheng
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruobin Sun
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dan Wu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pengcheng Chen
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pu Zheng
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Zhao Q, Chen Z, Rui J, Huang X. Radical fluorine transfer catalysed by an engineered nonheme iron enzyme. Methods Enzymol 2024; 696:231-247. [PMID: 38658081 PMCID: PMC11232670 DOI: 10.1016/bs.mie.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nonheme iron enzymes stand out as one of the most versatile biocatalysts for molecular functionalization. They facilitate a wide array of chemical transformations within biological processes, including hydroxylation, chlorination, epimerization, desaturation, cyclization, and more. Beyond their native biological functions, these enzymes possess substantial potential as powerful biocatalytic platforms for achieving abiological metal-catalyzed reactions, owing to their functional and structural diversity and high evolvability. To this end, our group has recently engineered a series of nonheme iron enzymes to employ non-natural radical-relay mechanisms for abiological radical transformations not previously known in biology. Notably, we have demonstrated that a nonheme iron enzyme, (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE), can be repurposed into an efficient and selective biocatalyst for radical fluorine transfer reactions. This marks the first known instance of a redox enzymatic process for C(sp3)F bond formation. This chapter outlines the detailed experimental protocol for engineering SvHPPE for fluorination reactions. Furthermore, the provided protocol could serve as a general guideline that might facilitate other engineering endeavors targeting nonheme iron enzymes for novel catalytic functions.
Collapse
Affiliation(s)
- Qun Zhao
- School of Biotechnology, Jiangnan University, Wuxi, P.R. China.
| | - Zhenhong Chen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, United States
| | - Jinyan Rui
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, United States
| | - Xiongyi Huang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
20
|
Ludwig J, Curado-Carballada C, Hammer SC, Schneider A, Diether S, Kress N, Ruiz-Barragán S, Osuna S, Hauer B. Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene-Hopene Cyclases. Angew Chem Int Ed Engl 2024; 63:e202318913. [PMID: 38270537 DOI: 10.1002/anie.202318913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene-hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)-β-pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)-borneol selectivity from 1 % to >90 % (>99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target-oriented skeletal reorganization of broadly abundant terpenes.
Collapse
Affiliation(s)
- Julian Ludwig
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Christian Curado-Carballada
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Stephan C Hammer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Andreas Schneider
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Svenja Diether
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Nico Kress
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sergi Ruiz-Barragán
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
- Departament de Fisica, Universitat Politecnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrassa, Barcelona, Spain
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|
21
|
Zhu Y, Chen P, Dong Q, Li Q, Liu D, Liu T, Liu W, Sun Y. Protein engineering of transaminase facilitating enzyme cascade reaction for the biosynthesis of azasugars. iScience 2024; 27:109034. [PMID: 38433920 PMCID: PMC10904899 DOI: 10.1016/j.isci.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Azasugars, such as 1-deoxynojirimycin (1-DNJ), exhibit unique physiological functions and hold promising applications in medicine and health fields. However, the biosynthesis of 1-DNJ is hindered by the low activity and thermostability of the transaminase. In this study, the transaminase from Mycobacterium vanbaalenii (MvTA) with activity toward d-fructose was engineered through semi-rational design and high-throughput screening method. The final mutant M9-1 demonstrated a remarkable 31.2-fold increase in specific activity and an impressive 200-fold improvement in thermostability compared to the wild-type enzyme. Molecular dynamics (MD) simulations revealed that the mutation sites of H69R and K145R in M9-1 played crucial roles in the binding of the amino acceptor and donor, leading to the stable conformation of substrates within the active pocket. An enzyme cascade reaction was developed using M9-1 and the dehydrogenase from Paenibacillus polymyxa (GutB1) for the production of mannojirimycin (MJ), which provided a new idea for the in vitro biosynthesis of 1-DNJ.
Collapse
Affiliation(s)
- Yueming Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Peng Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qianzhen Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Dechuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
22
|
Wang X, Li A, Li X, Cui H. Empowering Protein Engineering through Recombination of Beneficial Substitutions. Chemistry 2024; 30:e202303889. [PMID: 38288640 DOI: 10.1002/chem.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Directed evolution stands as a seminal technology for generating novel protein functionalities, a cornerstone in biocatalysis, metabolic engineering, and synthetic biology. Today, with the development of various mutagenesis methods and advanced analytical machines, the challenge of diversity generation and high-throughput screening platforms is largely solved, and one of the remaining challenges is: how to empower the potential of single beneficial substitutions with recombination to achieve the epistatic effect. This review overviews experimental and computer-assisted recombination methods in protein engineering campaigns. In addition, integrated and machine learning-guided strategies were highlighted to discuss how these recombination approaches contribute to generating the screening library with better diversity, coverage, and size. A decision tree was finally summarized to guide the further selection of proper recombination strategies in practice, which was beneficial for accelerating protein engineering.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
23
|
Hutton AE, Foster J, Crawshaw R, Hardy FJ, Johannissen LO, Lister TM, Gérard EF, Birch-Price Z, Obexer R, Hay S, Green AP. A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme. Nat Commun 2024; 15:1956. [PMID: 38438341 PMCID: PMC10912507 DOI: 10.1038/s41467-024-46123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Directed evolution of computationally designed enzymes has provided new insights into the emergence of sophisticated catalytic sites in proteins. In this regard, we have recently shown that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita-Baylis-Hillman (MBH) reaction with unrivalled efficiency. Here, we show that replacing the catalytic histidine with a non-canonical Nδ-methylhistidine (MeHis23) nucleophile leads to a substantially altered evolutionary outcome in which the catalytic Arg124 has been abandoned. Instead, Glu26 has emerged, which mediates a rate-limiting proton transfer step to deliver an enzyme (BHMeHis1.8) that is more than an order of magnitude more active than our earlier MBHase. Interestingly, although MeHis23 to His substitution in BHMeHis1.8 reduces activity by 4-fold, the resulting His containing variant is still a potent MBH biocatalyst. However, analysis of the BHMeHis1.8 evolutionary trajectory reveals that the MeHis nucleophile was crucial in the early stages of engineering to unlock the new mechanistic pathway. This study demonstrates how even subtle perturbations to key catalytic elements of designed enzymes can lead to vastly different evolutionary outcomes, resulting in new mechanistic solutions to complex chemical transformations.
Collapse
Affiliation(s)
- Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Jake Foster
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Rebecca Crawshaw
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Florence J Hardy
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Thomas M Lister
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Emilie F Gérard
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Zachary Birch-Price
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Richard Obexer
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
24
|
Wang B, Xu JZ, Liu S, Rao ZM, Zhang WG. Engineering of human tryptophan hydroxylase 2 for efficient synthesis of 5-hydroxytryptophan. Int J Biol Macromol 2024; 260:129484. [PMID: 38242416 DOI: 10.1016/j.ijbiomac.2024.129484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
L-Tryptophan hydroxylation catalyzed by tryptophan hydroxylase (TPH) presents a promising method for synthesizing 5-hydroxytryptophan (5-HTP), yet the limited activity of wild-type human TPH2 restricts its application. A high-activity mutant, MT10 (H318E/H323E), was developed through semi-rational active site saturation testing (CAST) of wild-type TPH2, exhibiting a 2.85-fold increase in kcat/Km over the wild type, thus enhancing catalytic efficiency. Two biotransformation systems were developed, including an in vitro one-pot system and a Whole-Cell Catalysis System (WCCS). In the WCCS, MT10 achieved a conversion rate of only 31.5 % within 32 h. In the one-pot reaction, MT10 converted 50 mM L-tryptophan to 44.5 mM 5-HTP within 8 h, achieving an 89 % conversion rate, outperforming the M1 (NΔ143/CΔ26) variant. Molecular dynamics simulations indicated enhanced interactions of MT10 with the substrate, suggesting improved binding affinity and system stability. This study offers an effective approach for the efficient production of 5-HTP.
Collapse
Affiliation(s)
- BingBing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, People's Republic of China.
| |
Collapse
|
25
|
Honda Malca S, Duss N, Meierhofer J, Patsch D, Niklaus M, Reiter S, Hanlon SP, Wetzl D, Kuhn B, Iding H, Buller R. Effective engineering of a ketoreductase for the biocatalytic synthesis of an ipatasertib precursor. Commun Chem 2024; 7:46. [PMID: 38418529 PMCID: PMC10902378 DOI: 10.1038/s42004-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/15/2024] [Indexed: 03/01/2024] Open
Abstract
Semi-rational enzyme engineering is a powerful method to develop industrial biocatalysts. Profiting from advances in molecular biology and bioinformatics, semi-rational approaches can effectively accelerate enzyme engineering campaigns. Here, we present the optimization of a ketoreductase from Sporidiobolus salmonicolor for the chemo-enzymatic synthesis of ipatasertib, a potent protein kinase B inhibitor. Harnessing the power of mutational scanning and structure-guided rational design, we created a 10-amino acid substituted variant exhibiting a 64-fold higher apparent kcat and improved robustness under process conditions compared to the wild-type enzyme. In addition, the benefit of algorithm-aided enzyme engineering was studied to derive correlations in protein sequence-function data, and it was found that the applied Gaussian processes allowed us to reduce enzyme library size. The final scalable and high performing biocatalytic process yielded the alcohol intermediate with ≥ 98% conversion and a diastereomeric excess of 99.7% (R,R-trans) from 100 g L-1 ketone after 30 h. Modelling and kinetic studies shed light on the mechanistic factors governing the improved reaction outcome, with mutations T134V, A238K, M242W and Q245S exerting the most beneficial effect on reduction activity towards the target ketone.
Collapse
Affiliation(s)
- Sumire Honda Malca
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Nadine Duss
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Jasmin Meierhofer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Analytical Research and Development, MSD Werthenstein BioPharma GmbH, Industrie Nord 1, 6105 Schachen, Switzerland
| | - David Patsch
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Michael Niklaus
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Stefanie Reiter
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Manufacturing Science and Technology, Fisher Clinical Services GmbH, Biotech Innovation Park, 2543 Lengnau, Switzerland
| | - Steven Paul Hanlon
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dennis Wetzl
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
- Nonclinical Drug Development, Boehringer Ingelheim International GmbH, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Bernd Kuhn
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hans Iding
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rebecca Buller
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
26
|
Qin Z, Zhou Y, Li Z, Höhne M, Bornscheuer UT, Wu S. Production of Biobased Ethylbenzene by Cascade Biocatalysis with an Engineered Photodecarboxylase. Angew Chem Int Ed Engl 2024; 63:e202314566. [PMID: 37947487 DOI: 10.1002/anie.202314566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Collapse
Affiliation(s)
- Zhaoyang Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Yi Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Matthias Höhne
- Institute of Chemistry, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623, Berlin, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| |
Collapse
|
27
|
Haloi N, Huang S, Nichols AL, Fine EJ, Friesenhahn NJ, Marotta CB, Dougherty DA, Lindahl E, Howard RJ, Mayo SL, Lester HA. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. Protein Eng Des Sel 2024; 37:gzae003. [PMID: 38302088 PMCID: PMC10896302 DOI: 10.1093/protein/gzae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
We developed fluorescent protein sensors for nicotine with improved sensitivity. For iNicSnFR12 at pH 7.4, the proportionality constant for ∆F/F0vs [nicotine] (δ-slope, 2.7 μM-1) is 6.1-fold higher than the previously reported iNicSnFR3a. The activated state of iNicSnFR12 has a fluorescence quantum yield of at least 0.6. We measured similar dose-response relations for the nicotine-induced absorbance increase and fluorescence increase, suggesting that the absorbance increase leads to the fluorescence increase via the previously described nicotine-induced conformational change, the 'candle snuffer' mechanism. Molecular dynamics (MD) simulations identified a binding pose for nicotine, previously indeterminate from experimental data. MD simulations also showed that Helix 4 of the periplasmic binding protein (PBP) domain appears tilted in iNicSnFR12 relative to iNicSnFR3a, likely altering allosteric network(s) that link the ligand binding site to the fluorophore. In thermal melt experiments, nicotine stabilized the PBP of the tested iNicSnFR variants. iNicSnFR12 resolved nicotine in diluted mouse and human serum at 100 nM, the peak [nicotine] that occurs during smoking or vaping, and possibly at the decreasing levels during intervals between sessions. NicSnFR12 was also partially activated by unidentified endogenous ligand(s) in biofluids. Improved iNicSnFR12 variants could become the molecular sensors in continuous nicotine monitors for animal and human biofluids.
Collapse
Affiliation(s)
- Nandan Haloi
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Shan Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eve J Fine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nicholas J Friesenhahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher B Marotta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 10044, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm 10691, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm 10691, Sweden
| | - Stephen L Mayo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
28
|
Sarai NS, Fulton TJ, O'Meara RL, Johnston KE, Brinkmann-Chen S, Maar RR, Tecklenburg RE, Roberts JM, Reddel JCT, Katsoulis DE, Arnold FH. Directed evolution of enzymatic silicon-carbon bond cleavage in siloxanes. Science 2024; 383:438-443. [PMID: 38271505 DOI: 10.1126/science.adi5554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Volatile methylsiloxanes (VMS) are man-made, nonbiodegradable chemicals produced at a megaton-per-year scale, which leads to concern over their potential for environmental persistence, long-range transport, and bioaccumulation. We used directed evolution to engineer a variant of bacterial cytochrome P450BM3 to break silicon-carbon bonds in linear and cyclic VMS. To accomplish silicon-carbon bond cleavage, the enzyme catalyzes two tandem oxidations of a siloxane methyl group, which is followed by putative [1,2]-Brook rearrangement and hydrolysis. Discovery of this so-called siloxane oxidase opens possibilities for the eventual biodegradation of VMS.
Collapse
Affiliation(s)
- Nicholas S Sarai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tyler J Fulton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ryen L O'Meara
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Zhu D, Brookes DH, Busia A, Carneiro A, Fannjiang C, Popova G, Shin D, Donohue KC, Lin LF, Miller ZM, Williams ER, Chang EF, Nowakowski TJ, Listgarten J, Schaffer DV. Optimal trade-off control in machine learning-based library design, with application to adeno-associated virus (AAV) for gene therapy. SCIENCE ADVANCES 2024; 10:eadj3786. [PMID: 38266077 PMCID: PMC10807795 DOI: 10.1126/sciadv.adj3786] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Adeno-associated viruses (AAVs) hold tremendous promise as delivery vectors for gene therapies. AAVs have been successfully engineered-for instance, for more efficient and/or cell-specific delivery to numerous tissues-by creating large, diverse starting libraries and selecting for desired properties. However, these starting libraries often contain a high proportion of variants unable to assemble or package their genomes, a prerequisite for any gene delivery goal. Here, we present and showcase a machine learning (ML) method for designing AAV peptide insertion libraries that achieve fivefold higher packaging fitness than the standard NNK library with negligible reduction in diversity. To demonstrate our ML-designed library's utility for downstream engineering goals, we show that it yields approximately 10-fold more successful variants than the NNK library after selection for infection of human brain tissue, leading to a promising glial-specific variant. Moreover, our design approach can be applied to other types of libraries for AAV and beyond.
Collapse
Affiliation(s)
- Danqing Zhu
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David H. Brookes
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Akosua Busia
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ana Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Galina Popova
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - David Shin
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kevin C. Donohue
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Medicine, University of California San Francisco, San Francisco, CA, USA. 94143
- Kavli Institute of Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Li F. Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zachary M. Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioural Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Listgarten
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V. Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute (IGI), University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Bloomer BJ, Joyner IA, Garcia-Borràs M, Hu DB, Garçon M, Quest A, Ugarte Montero C, Yu IF, Clark DS, Hartwig JF. Enantio- and Diastereodivergent Cyclopropanation of Allenes by Directed Evolution of an Iridium-Containing Cytochrome. J Am Chem Soc 2024; 146:1819-1824. [PMID: 38190322 DOI: 10.1021/jacs.3c13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Alkylidene cyclopropanes (ACPs) are valuable synthetic intermediates because of their constrained structure and opportunities for further diversification. Although routes to ACPs are known, preparations of ACPs with control of both the configuration of the cyclopropyl (R vs S) group and the geometry of the alkene (E vs Z) are unknown. We describe enzymatic cyclopropanation of allenes with ethyl diazoacetate (EDA) catalyzed by an iridium-containing cytochrome (Ir(Me)-CYP119) that controls both stereochemical elements. Two mutants of Ir(Me)-CYP119 identified by 6-codon (6c, VILAFG) saturation mutagenesis catalyze the formation of (E)-ACPs with -93% to >99% ee and >99:1 E/Z ratio with just three rounds of 96 mutants. By four additional rounds of mutagenesis, an enzyme variant was identified that forms (Z)-ACPs with up to 94% ee and a 28:72 E/Z ratio. Computational studies show that the orientation of the carbene unit dictated by the mutated positions accounts for the stereoselectivity.
Collapse
Affiliation(s)
- Brandon J Bloomer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isaac A Joyner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Derek B Hu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martí Garçon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew Quest
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Consuelo Ugarte Montero
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Isaac F Yu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Douglas S Clark
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Tutol J, Ong WSY, Phelps SM, Peng W, Goenawan H, Dodani SC. Engineering the ChlorON Series: Turn-On Fluorescent Protein Sensors for Imaging Labile Chloride in Living Cells. ACS CENTRAL SCIENCE 2024; 10:77-86. [PMID: 38292617 PMCID: PMC10823515 DOI: 10.1021/acscentsci.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Beyond its role as the "queen of electrolytes", chloride can also serve as an allosteric regulator or even a signaling ion. To illuminate this essential anion across such a spectrum of biological processes, researchers have relied on fluorescence imaging with genetically encoded sensors. In large part, these have been derived from the green fluorescent protein found in the jellyfish Aequorea victoria. However, a standalone sensor with a turn-on intensiometric response at physiological pH has yet to be reported. Here, we address this technology gap by building on our discovery of the anion-sensitive fluorescent protein mNeonGreen (mNG). The targeted engineering of two non-coordinating residues, namely K143 and R195, in the chloride binding pocket of mNG coupled with an anion walking screening and selection strategy resulted in the ChlorON sensors: ChlorON-1 (K143W/R195L), ChlorON-2 (K143R/R195I), and ChlorON-3 (K143R/R195L). In vitro spectroscopy revealed that all three sensors display a robust turn-on fluorescence response to chloride (20- to 45-fold) across a wide range of affinities (Kd ≈ 30-285 mM). We further showcase how this unique sensing mechanism can be exploited to directly image labile chloride transport with spatial and temporal resolution in a cell model overexpressing the cystic fibrosis transmembrane conductance regulator. Building from this initial demonstration, we anticipate that the ChlorON technology will have broad utility, accelerating the path forward for fundamental and translational aspects of chloride biology.
Collapse
Affiliation(s)
- Jasmine
N. Tutol
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Whitney S. Y. Ong
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shelby M. Phelps
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Weicheng Peng
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Helen Goenawan
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sheel C. Dodani
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
32
|
Haloi N, Huang S, Nichols AL, Fine EJ, Friesenhahn NJ, Marotta CB, Dougherty DA, Lindahl E, Howard RJ, Mayo SL, Lester HA. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.16.524298. [PMID: 36712031 PMCID: PMC9882114 DOI: 10.1101/2023.01.16.524298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We developed fluorescent protein sensors for nicotine with improved sensitivity. For iNicSnFR12 at pH 7.4, the proportionality constant for Δ F / F 0 vs [nicotine] (δ-slope, 2.7 μM-1) is 6.1-fold higher than the previously reported iNicSnFR3a. The activated state of iNicSnFR12 has a fluorescence quantum yield of at least 0.6. We measured similar dose-response relations for the nicotine-induced absorbance increase and fluorescence increase, suggesting that the absorbance increase leads to the fluorescence increase via the previously described nicotine-induced conformational change, the "candle snuffer" mechanism. Molecular dynamics (MD) simulations identified a binding pose for nicotine, previously indeterminate from experimental data. MD simulations also showed that Helix 4 of the periplasmic binding protein (PBP) domain appears tilted in iNicSnFR12 relative to iNicSnFR3a, likely altering allosteric network(s) that link the ligand binding site to the fluorophore. In thermal melt experiments, nicotine stabilized the PBP of the tested iNicSnFR variants. iNicSnFR12 resolved nicotine in diluted mouse and human serum at 100 nM, the peak [nicotine] that occurs during smoking or vaping, and possibly at the decreasing levels during intervals between sessions. NicSnFR12 was also partially activated by unidentified endogenous ligand(s) in biofluids. Improved iNicSnFR12 variants could become the molecular sensors in continuous nicotine monitors for animal and human biofluids.
Collapse
Affiliation(s)
- Nandan Haloi
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Shan Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Eve J Fine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Nicholas J Friesenhahn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Christopher B Marotta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Stephen L Mayo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| |
Collapse
|
33
|
Daffern N, Francino-Urdaniz IM, Baumer ZT, Whitehead TA. Standardizing cassette-based deep mutagenesis by Golden Gate assembly. Biotechnol Bioeng 2024; 121:281-290. [PMID: 37750676 PMCID: PMC10841073 DOI: 10.1002/bit.28564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Protocols for the construction of large, deeply mutagenized protein encoding libraries via Golden Gate assembly of synthetic DNA cassettes employ disparate, system-specific methodology. Here we present a standardized Golden Gate method for building user-defined libraries. We demonstrate that a 25 μL reaction, using 40 fmol of input DNA, can generate a library on the order of 1 × 106 members and that reaction volume or input DNA concentration can be scaled up with no losses in transformation efficiency. Such libraries can be constructed from dsDNA cassettes generated either by degenerate oligonucleotides or oligo pools. We demonstrate its real-world effectiveness by building custom, user-defined libraries on the order of 104 -107 unique protein encoding variants for two orthogonal protein engineering systems. We include a detailed protocol and provide several general-use destination vectors.
Collapse
Affiliation(s)
- Nicolas Daffern
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | | | - Zachary T. Baumer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305, USA
| |
Collapse
|
34
|
Eddins AJ, Bednar RM, Jana S, Pung A, Mbengi L, Meyer K, Perona JJ, Cooley RB, Andrew Karplus P, Mehl RA. Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations. Bioconjug Chem 2023; 34:2243-2254. [PMID: 38047550 PMCID: PMC11641772 DOI: 10.1021/acs.bioconjchem.3c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Quantitative labeling of biomolecules is necessary to advance areas of antibody-drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.
Collapse
Affiliation(s)
- Alex J. Eddins
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Riley M. Bednar
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Subhashis Jana
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Abigail Pung
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Lea Mbengi
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - Kyle Meyer
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - John J. Perona
- Portland State University, Department of Chemistry, Portland, OR 97207
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331
| |
Collapse
|
35
|
Marchal D, Schulz L, Schuster I, Ivanovska J, Paczia N, Prinz S, Zarzycki J, Erb TJ. Machine Learning-Supported Enzyme Engineering toward Improved CO 2-Fixation of Glycolyl-CoA Carboxylase. ACS Synth Biol 2023; 12:3521-3530. [PMID: 37983631 PMCID: PMC10729300 DOI: 10.1021/acssynbio.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Glycolyl-CoA carboxylase (GCC) is a new-to-nature enzyme that catalyzes the key reaction in the tartronyl-CoA (TaCo) pathway, a synthetic photorespiration bypass that was recently designed to improve photosynthetic CO2 fixation. GCC was created from propionyl-CoA carboxylase (PCC) through five mutations. However, despite reaching activities of naturally evolved biotin-dependent carboxylases, the quintuple substitution variant GCC M5 still lags behind 4-fold in catalytic efficiency compared to its template PCC and suffers from futile ATP hydrolysis during CO2 fixation. To further improve upon GCC M5, we developed a machine learning-supported workflow that reduces screening efforts for identifying improved enzymes. Using this workflow, we present two novel GCC variants with 2-fold increased carboxylation rate and 60% reduced energy demand, respectively, which are able to address kinetic and thermodynamic limitations of the TaCo pathway. Our work highlights the potential of combining machine learning and directed evolution strategies to reduce screening efforts in enzyme engineering.
Collapse
Affiliation(s)
- Daniel
G. Marchal
- Department
of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | | | | | - Nicole Paczia
- Core
Facility for Metabolomics and Small Molecule Mass Spectrometry, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Simone Prinz
- Central
Electron Microscopy Facility, Max-Planck-Institute
of Biophysics, Frankfurt 60438, Germany
| | - Jan Zarzycki
- Department
of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Marburg 35043, Germany
- SYNMIKRO
Center for Synthetic Microbiology, Marburg 35032, Germany
| |
Collapse
|
36
|
Musil M, Jezik A, Horackova J, Borko S, Kabourek P, Damborsky J, Bednar D. FireProt 2.0: web-based platform for the fully automated design of thermostable proteins. Brief Bioinform 2023; 25:bbad425. [PMID: 38018911 PMCID: PMC10685400 DOI: 10.1093/bib/bbad425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Thermostable proteins find their use in numerous biomedical and biotechnological applications. However, the computational design of stable proteins often results in single-point mutations with a limited effect on protein stability. However, the construction of stable multiple-point mutants can prove difficult due to the possibility of antagonistic effects between individual mutations. FireProt protocol enables the automated computational design of highly stable multiple-point mutants. FireProt 2.0 builds on top of the previously published FireProt web, retaining the original functionality and expanding it with several new stabilization strategies. FireProt 2.0 integrates the AlphaFold database and the homology modeling for structure prediction, enabling calculations starting from a sequence. Multiple-point designs are constructed using the Bron-Kerbosch algorithm minimizing the antagonistic effect between the individual mutations. Users can newly limit the FireProt calculation to a set of user-defined mutations, run a saturation mutagenesis of the whole protein or select rigidifying mutations based on B-factors. Evolution-based back-to-consensus strategy is complemented by ancestral sequence reconstruction. FireProt 2.0 is significantly faster and a reworked graphical user interface broadens the tool's availability even to users with older hardware. FireProt 2.0 is freely available at http://loschmidt.chemi.muni.cz/fireprotweb.
Collapse
Affiliation(s)
- Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Andrej Jezik
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Horackova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Simeon Borko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Petr Kabourek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
37
|
Dietz N, Wan L, Münch J, Weissenborn MJ. Secretion and directed evolution of unspecific peroxygenases in S. cerevisiae. Methods Enzymol 2023; 693:267-306. [PMID: 37977733 DOI: 10.1016/bs.mie.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Yeast-based secretion systems are advantageous for engineering highly interesting enzymes that are not or barely producible in E. coli. The herein-presented production setup facilitates high-throughput screening as no cell lysis is required. All techniques are described in detail, with access to freely available online tools and all vectors have been made available on the non-profit plasmid repository AddGene. We describe the method for UPOs as a model enzyme, showcasing their secretion, detection, and evolution using S. cerevisiae. Additional material to transfer this to P. pastoris has been published by our group previously (Püllmann & Weissenborn, 2021).
Collapse
Affiliation(s)
- Niklas Dietz
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Li Wan
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Judith Münch
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany
| | - Martin J Weissenborn
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg Weinbergweg 22, Halle (Saale), Germany.
| |
Collapse
|
38
|
Fulton TJ, Sarai NS, O'Meara RL, Arnold FH. Directed evolution for Si-C bond cleavage of volatile siloxanes in glass bioreactors. Methods Enzymol 2023; 693:375-403. [PMID: 37977737 DOI: 10.1016/bs.mie.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Volatile methylsiloxanes (VMS) are a class of non-biodegradable anthropogenic compounds with propensity for long-range transport and potential for bioaccumulation in the environment. As a proof-of-principle for biological degradation of these compounds, we engineered P450 enzymes to oxidatively cleave Si-C bonds in linear and cyclic VMS. Enzymatic reactions with VMS are challenging to screen with conventional tools, however, due to their volatility, poor aqueous solubility, and tendency to extract polypropylene from standard 96-well deep-well plates. To address these challenges, we developed a new biocatalytic reactor consisting of individual 2-mL glass shells assembled in conventional 96-well plate format. In this chapter, we provide a detailed account of the assembly and use of the 96-well glass shell reactors for screening biocatalytic reactions. Additionally, we discuss the application of GC/MS analysis techniques for VMS oxidase reactions and modified procedures for validating improved variants. This protocol can be adopted broadly for biocatalytic reactions with substrates that are volatile or not suitable for polypropylene plates.
Collapse
Affiliation(s)
- Tyler J Fulton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Nicholas S Sarai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ryen L O'Meara
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
39
|
Das A, Gao S, Athavale SV, Alfonzo E, Long Y, Arnold FH. Directed evolution of P411 enzymes for amination of inert C-H bonds. Methods Enzymol 2023; 693:1-30. [PMID: 37977727 DOI: 10.1016/bs.mie.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Functionalizing inert C-H bonds selectively is a formidable task due to their strong bond energy and the difficulty of distinguishing chemically similar C-H bonds. While enzymatic oxygenation of C-H bonds is ubiquitous and well established, there is currently no known natural enzymatic process for direct nitrogen insertion. Instead, nature typically relies on pre-oxidized compounds for nitrogen incorporation. Direct biocatalytic C-H amination methods developed in the last few years are only selective for activated C-H bonds that contain specific groups such as benzylic, allylic, or propargylic groups. However, we recently used directed evolution to generate cytochrome P411 enzymes (engineered P450 enzymes with axial ligand mutation from cysteine to serine) that directly aminate inert C-H bonds with high site-, diastereo-, and enantioselectivity. Using these enzymes, we demonstrated the regiodivergent desymmetrization of methylcyclohexane, among other reactions. This chapter provides a comprehensive account of the experimental protocols used to evolve P411s for aminating unactivated C-H bonds. These methods are illustrative and can be adapted for other directed enzyme evolution campaigns.
Collapse
Affiliation(s)
- Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Soumitra V Athavale
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Yueming Long
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
40
|
Rudzka A, Zdun B, Antos N, Montero LM, Reiter T, Kroutil W, Borowiecki P. Biocatalytic characterization of an alcohol dehydrogenase variant deduced from Lactobacillus kefir in asymmetric hydrogen transfer. Commun Chem 2023; 6:217. [PMID: 37828252 PMCID: PMC10570314 DOI: 10.1038/s42004-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Hydrogen transfer biocatalysts to prepare optically pure alcohols are in need, especially when it comes to sterically demanding ketones, whereof the bioreduced products are either essential precursors of pharmaceutically relevant compounds or constitute APIs themselves. In this study, we report on the biocatalytic potential of an anti-Prelog (R)-specific Lactobacillus kefir ADH variant (Lk-ADH-E145F-F147L-Y190C, named Lk-ADH Prince) employed as E. coli/ADH whole-cell biocatalyst and its characterization for stereoselective reduction of prochiral carbonyl substrates. Key enzymatic reaction parameters, including the reaction medium, evaluation of cofactor-dependency, organic co-solvent tolerance, and substrate loading, were determined employing the drug pentoxifylline as a model prochiral ketone. Furthermore, to tap the substrate scope of Lk-ADH Prince in hydrogen transfer reactions, a broad range of 34 carbonylic derivatives was screened. Our data demonstrate that E. coli/Lk-ADH Prince exhibits activity toward a variety of structurally different ketones, furnishing optically active alcohol products at the high conversion of 65-99.9% and in moderate-to-high isolated yields (38-91%) with excellent anti-Prelog (R)-stereoselectivity (up to >99% ee) at substrate concentrations up to 100 mM.
Collapse
Affiliation(s)
- Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Beata Zdun
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Natalia Antos
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Lia Martínez Montero
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010, Graz, Austria
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.
| |
Collapse
|
41
|
Chen H, Fu W, Yang Y. P450-catalyzed atom transfer radical cyclization. Methods Enzymol 2023; 693:31-49. [PMID: 37977735 PMCID: PMC11289761 DOI: 10.1016/bs.mie.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cytochromes P450 have been extensively studied for both fundamental enzymology and biotechnological applications. Over the past decade, by taking inspiration from synthetic organic chemistry, new classes of P450-catalyzed reactions that were not previously encountered in the biological world have been developed to address challenging problems in organic chemistry and asymmetric catalysis. In particular, by repurposing and evolving P450 enzymes, stereoselective biocatalytic atom transfer radical cyclization (ATRC) was developed as a new means to impose stereocontrol over transient free radical intermediates. In this chapter, we describe the detailed experimental protocol for the directed evolution of P450 atom transfer radical cyclases. We also delineate protocols for analytical and preparative scale biocatalytic atom transfer radical cyclization processes. These methods will find application in the development of new P450-catalyzed radical reactions, as well as other synthetically useful processes.
Collapse
Affiliation(s)
- Heyu Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
42
|
Wang Y, Zhao Y, Li Y, Zhang K, Fan Y, Li B, Su W, Li S. piggyBac-mediated genomic integration of linear dsDNA-based library for deep mutational scanning in mammalian cells. Cell Mol Life Sci 2023; 80:321. [PMID: 37815732 PMCID: PMC11071730 DOI: 10.1007/s00018-023-04976-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Deep mutational scanning (DMS) makes it possible to perform massively parallel quantification of the relationship between genetic variants and phenotypes of interest. However, the difficulties in introducing large variant libraries into mammalian cells greatly hinder DMS under physiological states. Here, we developed two novel strategies for DMS library construction in mammalian cells, namely 'piggyBac-in vitro ligation' and 'piggyBac-in vitro ligation-PCR'. For the first strategy, we took the 'in vitro ligation' approach to prepare high-diversity linear dsDNAs, and integrate them into the mammalian genome with a piggyBac transposon system. For the second strategy, we further added a PCR step using the in vitro ligation dsDNAs as templates, for the construction of high-content genome-integrated libraries via large-scale transfection. Both strategies could successfully establish genome-integrated EGFP-chromophore-randomized libraries in HEK293T cells and enrich the green fluorescence-chromophore amino-acid sequences. And we further identified a novel transcriptional activator peptide with the 'piggyBac-in vitro ligation-PCR' strategy. Our novel strategies greatly facilitate the construction of large variant DMS library in mammalian cells, and may have great application potential in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Fan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
43
|
Klaus C, Hammer SC. Engineering cytochrome P450s for selective alkene to carbonyl oxidation. Methods Enzymol 2023; 693:111-131. [PMID: 37977728 DOI: 10.1016/bs.mie.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The Wacker-Tsuji oxidation is an important aerobic oxidation process to synthesize ethanal from ethene and methyl ketones from 1-alkenes. Current challenges in aerobic alkene oxidation include selective carbonyl product formation beyond methyl ketones. This includes the regioselective oxidation of the terminal carbon atom of 1-alkenes, the regioselective ketone formation with internal alkenes as well as the enantioselective alkene to carbonyl oxidation. Recently, the potential of high-valent metal-oxo species for direct alkene to carbonyl oxidation was explored as carbonyl product formation is frequently reported as a side reaction of alkene epoxidation by cytochrome P450s. It was shown that such promiscuous P450s can be engineered via directed evolution to perform alkene to carbonyl oxidation reactions with high activity and selectivity. Here, we report a protocol to convert promiscuous P450s into efficient and selective enzymes for Wacker-type alkene oxidation. One round of directed evolution is described in detail, which includes the generation and handling of site-saturation libraries, recombinant protein expression, library screening in a 96-well plate format and the rescreening of variants with beneficial mutations. These protocols might be useful to engineer various P450s for selective alkene to carbonyl oxidation, and to engineer enzymes in general.
Collapse
Affiliation(s)
- Cindy Klaus
- Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Stephan C Hammer
- Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
44
|
Yang J, Ducharme J, Johnston KE, Li FZ, Yue Y, Arnold FH. DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering. ACS Synth Biol 2023; 12:2444-2454. [PMID: 37524064 DOI: 10.1021/acssynbio.3c00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
With advances in machine learning (ML)-assisted protein engineering, models based on data, biophysics, and natural evolution are being used to propose informed libraries of protein variants to explore. Synthesizing these libraries for experimental screens is a major bottleneck, as the cost of obtaining large numbers of exact gene sequences is often prohibitive. Degenerate codon (DC) libraries are a cost-effective alternative for generating combinatorial mutagenesis libraries where mutations are targeted to a handful of amino acid sites. However, existing computational methods to optimize DC libraries to include desired protein variants are not well suited to design libraries for ML-assisted protein engineering. To address these drawbacks, we present DEgenerate Codon Optimization for Informed Libraries (DeCOIL), a generalized method that directly optimizes DC libraries to be useful for protein engineering: to sample protein variants that are likely to have both high fitness and high diversity in the sequence search space. Using computational simulations and wet-lab experiments, we demonstrate that DeCOIL is effective across two specific case studies, with the potential to be applied to many other use cases. DeCOIL offers several advantages over existing methods, as it is direct, easy to use, generalizable, and scalable. With accompanying software (https://github.com/jsunn-y/DeCOIL), DeCOIL can be readily implemented to generate desired informed libraries.
Collapse
Affiliation(s)
- Jason Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Julie Ducharme
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Francesca-Zhoufan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yisong Yue
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
45
|
Mao R, Wackelin DJ, Jamieson CS, Rogge T, Gao S, Das A, Taylor DM, Houk KN, Arnold FH. Enantio- and Diastereoenriched Enzymatic Synthesis of 1,2,3-Polysubstituted Cyclopropanes from ( Z/ E)-Trisubstituted Enol Acetates. J Am Chem Soc 2023; 145:16176-16185. [PMID: 37433085 PMCID: PMC10528827 DOI: 10.1021/jacs.3c04870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In nature and synthetic chemistry, stereoselective [2 + 1] cyclopropanation is the most prevalent strategy for the synthesis of chiral cyclopropanes, a class of key pharmacophores in pharmaceuticals and bioactive natural products. One of the most extensively studied reactions in the organic chemist's arsenal, stereoselective [2 + 1] cyclopropanation, largely relies on the use of stereodefined olefins, which can require elaborate laboratory synthesis or tedious separation to ensure high stereoselectivity. Here, we report engineered hemoproteins derived from a bacterial cytochrome P450 that catalyze the synthesis of chiral 1,2,3-polysubstituted cyclopropanes, regardless of the stereopurity of the olefin substrates used. Cytochrome P450BM3 variant P411-INC-5185 exclusively converts (Z)-enol acetates to enantio- and diastereoenriched cyclopropanes and in the model reaction delivers a leftover (E)-enol acetate with 98% stereopurity, using whole Escherichia coli cells. P411-INC-5185 was further engineered with a single mutation to enable the biotransformation of (E)-enol acetates to α-branched ketones with high levels of enantioselectivity while simultaneously catalyzing the cyclopropanation of (Z)-enol acetates with excellent activities and selectivities. We conducted docking studies and molecular dynamics simulations to understand how active-site residues distinguish between the substrate isomers and enable the enzyme to perform these distinct transformations with such high selectivities. Computational studies suggest the observed enantio- and diastereoselectivities are achieved through a stepwise pathway. These biotransformations streamline the synthesis of chiral 1,2,3-polysubstituted cyclopropanes from readily available mixtures of (Z/E)-olefins, adding a new dimension to classical cyclopropanation methods.
Collapse
Affiliation(s)
- Runze Mao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel J. Wackelin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Cooper S. Jamieson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Doris Mia Taylor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
46
|
Wang Y, Zhang K, Zhao Y, Li Y, Su W, Li S. Construction and Applications of Mammalian Cell-Based DNA-Encoded Peptide/Protein Libraries. ACS Synth Biol 2023; 12:1874-1888. [PMID: 37315219 DOI: 10.1021/acssynbio.3c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA-encoded peptide/protein libraries are the starting point for protein evolutionary modification and functional peptide/antibody selection. Different display technologies, protein directed evolution, and deep mutational scanning (DMS) experiments employ DNA-encoded libraries to provide sequence variations for downstream affinity- or function-based selections. Mammalian cells promise the inherent post-translational modification and near-to-natural conformation of exogenously expressed mammalian proteins and thus are the best platform for studying transmembrane proteins or human disease-related proteins. However, due to the current technical bottlenecks of constructing mammalian cell-based large size DNA-encoded libraries, the advantages of mammalian cells as screening platforms have not been fully exploited. In this review, we summarize the current efforts in constructing DNA-encoded libraries in mammalian cells and the existing applications of these libraries in different fields.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
47
|
Tan DZJ, Fung V, Sun T, Tian K, Li Z, Zhou K. Developing a Nanopore Sequencing Workflow for Protein Engineering Applications. ACS Synth Biol 2023; 12:2041-2050. [PMID: 37403232 DOI: 10.1021/acssynbio.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Sequencing plays a critical role in protein engineering, where the genetic information encoding for a desired mutation can be identified. We evaluated the performance of two commercially available NGS technologies (Illumina NGS and nanopore sequencing) on the available mutant libraries that were either previously constructed for other protein engineering projects or constructed in-house for this study. The sequencing results from Illumina sequencing indicated that a substantial proportion of the reads exhibited strand exchange, which mixed information of different mutants. When nanopore sequencing was used, the occurrence of strand exchange was substantially reduced compared with that of Illumina sequencing. We then developed a new library preparation workflow for nanopore sequencing and were successful in further reducing the incidence of strand exchange. The optimized workflow was successfully used to aid selection of improved alcohol dehydrogenase mutants in cells where their activities were coupled with the cell growth rate. The workflow quantified the enrichment fold change of most mutants in the library (size = 1728) in the growth-based selection passaging. A mutant that was >500% more active than its parent variant was identified based on the fold change data but not with the absolute abundance data (random sampling of the passaged cells), highlighting the usefulness of this rapid and affordable sequencing workflow in protein engineering.
Collapse
Affiliation(s)
- Daniel Zhi Jun Tan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Vincent Fung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Kaiyuan Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
48
|
Phelps SM, Tutol JN, Advani D, Peng W, Dodani SC. Unlocking chloride sensing in the red at physiological pH with a fluorescent rhodopsin-based host. Chem Commun (Camb) 2023; 59:8460-8463. [PMID: 37337864 PMCID: PMC11136539 DOI: 10.1039/d3cc01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chloride is a vital ion for all forms of life. Protein-based fluorescent biosensors can enable researchers to visualize chloride in cells but remain underdeveloped. Here, we demonstrate how a single point mutation in an engineered microbial rhodopsin results in ChloRED-1-CFP. This membrane-bound host is a far-red emitting, ratiometric sensor that provides a reversible readout of chloride in live bacteria at physiological pH, setting the stage to investigate the roles of chloride in diverse biological contexts.
Collapse
Affiliation(s)
- Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Deeya Advani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Weicheng Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
49
|
Li S, Cao L, Yang X, Wu X, Xu S, Liu Y. Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-)rational design strategies and investigation of the underlying mechanisms. BIORESOURCE TECHNOLOGY 2023; 374:128792. [PMID: 36842511 DOI: 10.1016/j.biortech.2023.128792] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The performance of β-glucosidase during cellulose saccharification is determined by thermostability, activity and glucose tolerance. However, conflicts between them make it challenging to simultaneously optimize three properties. In this work, such a case was reported using Bgl6-M3 as a starting point. Firstly, four thermostability-enhancing mutations were obtained using computer-aided engineering strategies (mutant M7). Secondly, substrate binding pocket of M7 was reshaped, generating two mutations that increased activity but decreased glucose tolerance (mutant M9). Then a key region lining active site cavity was redesigned, resulting in three mutations that boosted glucose tolerance and activity. Finally, mutant M12 with simultaneously improved thermostability (half-life of 20-fold), activity (kcat/Km of 5.6-fold) and glucose tolerance (ΔIC50 of 200 mM) was obtained. Mechanisms for property improvement were elucidated by structural analysis and molecular dynamics simulations. Overall, the strategies used here and new insights into the underlying mechanisms may provide guidance for multi-property engineering of other enzymes.
Collapse
Affiliation(s)
- Shuifeng Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lichuang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangpeng Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiangrui Wu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shujing Xu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuhuan Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
50
|
Meier G, Thavarasah S, Ehrenbolger K, Hutter CAJ, Hürlimann LM, Barandun J, Seeger MA. Deep mutational scan of a drug efflux pump reveals its structure-function landscape. Nat Chem Biol 2023; 19:440-450. [PMID: 36443574 PMCID: PMC7615509 DOI: 10.1038/s41589-022-01205-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Drug efflux is a common resistance mechanism found in bacteria and cancer cells, but studies providing comprehensive functional insights are scarce. In this study, we performed deep mutational scanning (DMS) on the bacterial ABC transporter EfrCD to determine the drug efflux activity profile of more than 1,430 single variants. These systematic measurements revealed that the introduction of negative charges at different locations within the large substrate binding pocket results in strongly increased efflux activity toward positively charged ethidium, whereas additional aromatic residues did not display the same effect. Data analysis in the context of an inward-facing cryogenic electron microscopy structure of EfrCD uncovered a high-affinity binding site, which releases bound drugs through a peristaltic transport mechanism as the transporter transits to its outward-facing conformation. Finally, we identified substitutions resulting in rapid Hoechst influx without affecting the efflux activity for ethidium and daunorubicin. Hence, single mutations can convert EfrCD into a drug-specific ABC importer.
Collapse
Affiliation(s)
- Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sujani Thavarasah
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Kai Ehrenbolger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Linkster Therapeutics AG, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Linkster Therapeutics AG, Zurich, Switzerland
| | - Jonas Barandun
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|